1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
49 #define DRV_VERSION "0.2.0"
50 char e1000e_driver_name
[] = "e1000e";
51 const char e1000e_driver_version
[] = DRV_VERSION
;
53 static const struct e1000_info
*e1000_info_tbl
[] = {
54 [board_82571
] = &e1000_82571_info
,
55 [board_82572
] = &e1000_82572_info
,
56 [board_82573
] = &e1000_82573_info
,
57 [board_80003es2lan
] = &e1000_es2_info
,
58 [board_ich8lan
] = &e1000_ich8_info
,
59 [board_ich9lan
] = &e1000_ich9_info
,
64 * e1000_get_hw_dev_name - return device name string
65 * used by hardware layer to print debugging information
67 char *e1000e_get_hw_dev_name(struct e1000_hw
*hw
)
69 return hw
->adapter
->netdev
->name
;
74 * e1000_desc_unused - calculate if we have unused descriptors
76 static int e1000_desc_unused(struct e1000_ring
*ring
)
78 if (ring
->next_to_clean
> ring
->next_to_use
)
79 return ring
->next_to_clean
- ring
->next_to_use
- 1;
81 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
85 * e1000_receive_skb - helper function to handle rx indications
86 * @adapter: board private structure
87 * @status: descriptor status field as written by hardware
88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89 * @skb: pointer to sk_buff to be indicated to stack
91 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
92 struct net_device
*netdev
,
96 skb
->protocol
= eth_type_trans(skb
, netdev
);
98 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
99 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
101 E1000_RXD_SPC_VLAN_MASK
);
103 netif_receive_skb(skb
);
105 netdev
->last_rx
= jiffies
;
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
116 u32 csum
, struct sk_buff
*skb
)
118 u16 status
= (u16
)status_err
;
119 u8 errors
= (u8
)(status_err
>> 24);
120 skb
->ip_summed
= CHECKSUM_NONE
;
122 /* Ignore Checksum bit is set */
123 if (status
& E1000_RXD_STAT_IXSM
)
125 /* TCP/UDP checksum error bit is set */
126 if (errors
& E1000_RXD_ERR_TCPE
) {
127 /* let the stack verify checksum errors */
128 adapter
->hw_csum_err
++;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status
& E1000_RXD_STAT_TCPCS
) {
138 /* TCP checksum is good */
139 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
141 /* IP fragment with UDP payload */
142 /* Hardware complements the payload checksum, so we undo it
143 * and then put the value in host order for further stack use.
145 csum
= ntohl(csum
^ 0xFFFF);
147 skb
->ip_summed
= CHECKSUM_COMPLETE
;
149 adapter
->hw_csum_good
++;
153 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154 * @adapter: address of board private structure
156 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
159 struct net_device
*netdev
= adapter
->netdev
;
160 struct pci_dev
*pdev
= adapter
->pdev
;
161 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
162 struct e1000_rx_desc
*rx_desc
;
163 struct e1000_buffer
*buffer_info
;
166 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
168 i
= rx_ring
->next_to_use
;
169 buffer_info
= &rx_ring
->buffer_info
[i
];
171 while (cleaned_count
--) {
172 skb
= buffer_info
->skb
;
178 skb
= netdev_alloc_skb(netdev
, bufsz
);
180 /* Better luck next round */
181 adapter
->alloc_rx_buff_failed
++;
185 /* Make buffer alignment 2 beyond a 16 byte boundary
186 * this will result in a 16 byte aligned IP header after
187 * the 14 byte MAC header is removed
189 skb_reserve(skb
, NET_IP_ALIGN
);
191 buffer_info
->skb
= skb
;
193 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
194 adapter
->rx_buffer_len
,
196 if (pci_dma_mapping_error(buffer_info
->dma
)) {
197 dev_err(&pdev
->dev
, "RX DMA map failed\n");
198 adapter
->rx_dma_failed
++;
202 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
203 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
206 if (i
== rx_ring
->count
)
208 buffer_info
= &rx_ring
->buffer_info
[i
];
211 if (rx_ring
->next_to_use
!= i
) {
212 rx_ring
->next_to_use
= i
;
214 i
= (rx_ring
->count
- 1);
216 /* Force memory writes to complete before letting h/w
217 * know there are new descriptors to fetch. (Only
218 * applicable for weak-ordered memory model archs,
221 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
226 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227 * @adapter: address of board private structure
229 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
232 struct net_device
*netdev
= adapter
->netdev
;
233 struct pci_dev
*pdev
= adapter
->pdev
;
234 union e1000_rx_desc_packet_split
*rx_desc
;
235 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
236 struct e1000_buffer
*buffer_info
;
237 struct e1000_ps_page
*ps_page
;
241 i
= rx_ring
->next_to_use
;
242 buffer_info
= &rx_ring
->buffer_info
[i
];
244 while (cleaned_count
--) {
245 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
247 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
248 ps_page
= &rx_ring
->ps_pages
[(i
* PS_PAGE_BUFFERS
)
250 if (j
< adapter
->rx_ps_pages
) {
251 if (!ps_page
->page
) {
252 ps_page
->page
= alloc_page(GFP_ATOMIC
);
253 if (!ps_page
->page
) {
254 adapter
->alloc_rx_buff_failed
++;
257 ps_page
->dma
= pci_map_page(pdev
,
261 if (pci_dma_mapping_error(
263 dev_err(&adapter
->pdev
->dev
,
264 "RX DMA page map failed\n");
265 adapter
->rx_dma_failed
++;
270 * Refresh the desc even if buffer_addrs
271 * didn't change because each write-back
274 rx_desc
->read
.buffer_addr
[j
+1] =
275 cpu_to_le64(ps_page
->dma
);
277 rx_desc
->read
.buffer_addr
[j
+1] = ~0;
281 skb
= netdev_alloc_skb(netdev
,
282 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
285 adapter
->alloc_rx_buff_failed
++;
289 /* Make buffer alignment 2 beyond a 16 byte boundary
290 * this will result in a 16 byte aligned IP header after
291 * the 14 byte MAC header is removed
293 skb_reserve(skb
, NET_IP_ALIGN
);
295 buffer_info
->skb
= skb
;
296 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
297 adapter
->rx_ps_bsize0
,
299 if (pci_dma_mapping_error(buffer_info
->dma
)) {
300 dev_err(&pdev
->dev
, "RX DMA map failed\n");
301 adapter
->rx_dma_failed
++;
303 dev_kfree_skb_any(skb
);
304 buffer_info
->skb
= NULL
;
308 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
311 if (i
== rx_ring
->count
)
313 buffer_info
= &rx_ring
->buffer_info
[i
];
317 if (rx_ring
->next_to_use
!= i
) {
318 rx_ring
->next_to_use
= i
;
321 i
= (rx_ring
->count
- 1);
323 /* Force memory writes to complete before letting h/w
324 * know there are new descriptors to fetch. (Only
325 * applicable for weak-ordered memory model archs,
328 /* Hardware increments by 16 bytes, but packet split
329 * descriptors are 32 bytes...so we increment tail
332 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
337 * e1000_alloc_rx_buffers_jumbo - Replace used jumbo receive buffers
339 * @adapter: address of board private structure
340 * @cleaned_count: number of buffers to allocate this pass
342 static void e1000_alloc_rx_buffers_jumbo(struct e1000_adapter
*adapter
,
345 struct net_device
*netdev
= adapter
->netdev
;
346 struct pci_dev
*pdev
= adapter
->pdev
;
347 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
348 struct e1000_rx_desc
*rx_desc
;
349 struct e1000_buffer
*buffer_info
;
352 unsigned int bufsz
= 256 -
353 16 /*for skb_reserve */ -
356 i
= rx_ring
->next_to_use
;
357 buffer_info
= &rx_ring
->buffer_info
[i
];
359 while (cleaned_count
--) {
360 skb
= buffer_info
->skb
;
366 skb
= netdev_alloc_skb(netdev
, bufsz
);
368 /* Better luck next round */
369 adapter
->alloc_rx_buff_failed
++;
373 /* Make buffer alignment 2 beyond a 16 byte boundary
374 * this will result in a 16 byte aligned IP header after
375 * the 14 byte MAC header is removed
377 skb_reserve(skb
, NET_IP_ALIGN
);
379 buffer_info
->skb
= skb
;
381 /* allocate a new page if necessary */
382 if (!buffer_info
->page
) {
383 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
384 if (!buffer_info
->page
) {
385 adapter
->alloc_rx_buff_failed
++;
390 if (!buffer_info
->dma
)
391 buffer_info
->dma
= pci_map_page(pdev
,
392 buffer_info
->page
, 0,
395 if (pci_dma_mapping_error(buffer_info
->dma
)) {
396 dev_err(&adapter
->pdev
->dev
, "RX DMA page map failed\n");
397 adapter
->rx_dma_failed
++;
401 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
402 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
405 if (i
== rx_ring
->count
)
407 buffer_info
= &rx_ring
->buffer_info
[i
];
410 if (rx_ring
->next_to_use
!= i
) {
411 rx_ring
->next_to_use
= i
;
413 i
= (rx_ring
->count
- 1);
415 /* Force memory writes to complete before letting h/w
416 * know there are new descriptors to fetch. (Only
417 * applicable for weak-ordered memory model archs,
420 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
425 * e1000_clean_rx_irq - Send received data up the network stack; legacy
426 * @adapter: board private structure
428 * the return value indicates whether actual cleaning was done, there
429 * is no guarantee that everything was cleaned
431 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
432 int *work_done
, int work_to_do
)
434 struct net_device
*netdev
= adapter
->netdev
;
435 struct pci_dev
*pdev
= adapter
->pdev
;
436 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
437 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
438 struct e1000_buffer
*buffer_info
, *next_buffer
;
441 int cleaned_count
= 0;
443 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
445 i
= rx_ring
->next_to_clean
;
446 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
447 buffer_info
= &rx_ring
->buffer_info
[i
];
449 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
453 if (*work_done
>= work_to_do
)
457 status
= rx_desc
->status
;
458 skb
= buffer_info
->skb
;
459 buffer_info
->skb
= NULL
;
461 prefetch(skb
->data
- NET_IP_ALIGN
);
464 if (i
== rx_ring
->count
)
466 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
469 next_buffer
= &rx_ring
->buffer_info
[i
];
473 pci_unmap_single(pdev
,
475 adapter
->rx_buffer_len
,
477 buffer_info
->dma
= 0;
479 length
= le16_to_cpu(rx_desc
->length
);
481 /* !EOP means multiple descriptors were used to store a single
482 * packet, also make sure the frame isn't just CRC only */
483 if (!(status
& E1000_RXD_STAT_EOP
) || (length
<= 4)) {
484 /* All receives must fit into a single buffer */
485 ndev_dbg(netdev
, "%s: Receive packet consumed "
486 "multiple buffers\n", netdev
->name
);
488 buffer_info
->skb
= skb
;
492 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
494 buffer_info
->skb
= skb
;
498 /* adjust length to remove Ethernet CRC */
501 /* probably a little skewed due to removing CRC */
502 total_rx_bytes
+= length
;
505 /* code added for copybreak, this should improve
506 * performance for small packets with large amounts
507 * of reassembly being done in the stack */
508 if (length
< copybreak
) {
509 struct sk_buff
*new_skb
=
510 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
512 skb_reserve(new_skb
, NET_IP_ALIGN
);
513 memcpy(new_skb
->data
- NET_IP_ALIGN
,
514 skb
->data
- NET_IP_ALIGN
,
515 length
+ NET_IP_ALIGN
);
516 /* save the skb in buffer_info as good */
517 buffer_info
->skb
= skb
;
520 /* else just continue with the old one */
522 /* end copybreak code */
523 skb_put(skb
, length
);
525 /* Receive Checksum Offload */
526 e1000_rx_checksum(adapter
,
528 ((u32
)(rx_desc
->errors
) << 24),
529 le16_to_cpu(rx_desc
->csum
), skb
);
531 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
536 /* return some buffers to hardware, one at a time is too slow */
537 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
538 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
542 /* use prefetched values */
544 buffer_info
= next_buffer
;
546 rx_ring
->next_to_clean
= i
;
548 cleaned_count
= e1000_desc_unused(rx_ring
);
550 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
552 adapter
->total_rx_packets
+= total_rx_packets
;
553 adapter
->total_rx_bytes
+= total_rx_bytes
;
557 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
562 skb
->data_len
+= length
;
563 skb
->truesize
+= length
;
566 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
567 struct e1000_buffer
*buffer_info
)
569 if (buffer_info
->dma
) {
570 pci_unmap_page(adapter
->pdev
, buffer_info
->dma
,
571 buffer_info
->length
, PCI_DMA_TODEVICE
);
572 buffer_info
->dma
= 0;
574 if (buffer_info
->skb
) {
575 dev_kfree_skb_any(buffer_info
->skb
);
576 buffer_info
->skb
= NULL
;
580 static void e1000_print_tx_hang(struct e1000_adapter
*adapter
)
582 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
583 unsigned int i
= tx_ring
->next_to_clean
;
584 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
585 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
586 struct net_device
*netdev
= adapter
->netdev
;
588 /* detected Tx unit hang */
590 "Detected Tx Unit Hang:\n"
593 " next_to_use <%x>\n"
594 " next_to_clean <%x>\n"
595 "buffer_info[next_to_clean]:\n"
596 " time_stamp <%lx>\n"
597 " next_to_watch <%x>\n"
599 " next_to_watch.status <%x>\n",
600 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
601 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
602 tx_ring
->next_to_use
,
603 tx_ring
->next_to_clean
,
604 tx_ring
->buffer_info
[eop
].time_stamp
,
607 eop_desc
->upper
.fields
.status
);
611 * e1000_clean_tx_irq - Reclaim resources after transmit completes
612 * @adapter: board private structure
614 * the return value indicates whether actual cleaning was done, there
615 * is no guarantee that everything was cleaned
617 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
619 struct net_device
*netdev
= adapter
->netdev
;
620 struct e1000_hw
*hw
= &adapter
->hw
;
621 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
622 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
623 struct e1000_buffer
*buffer_info
;
625 unsigned int count
= 0;
627 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
629 i
= tx_ring
->next_to_clean
;
630 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
631 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
633 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
634 for (cleaned
= 0; !cleaned
; ) {
635 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
636 buffer_info
= &tx_ring
->buffer_info
[i
];
637 cleaned
= (i
== eop
);
640 struct sk_buff
*skb
= buffer_info
->skb
;
641 unsigned int segs
, bytecount
;
642 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
643 /* multiply data chunks by size of headers */
644 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
646 total_tx_packets
+= segs
;
647 total_tx_bytes
+= bytecount
;
650 e1000_put_txbuf(adapter
, buffer_info
);
651 tx_desc
->upper
.data
= 0;
654 if (i
== tx_ring
->count
)
658 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
659 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
660 #define E1000_TX_WEIGHT 64
661 /* weight of a sort for tx, to avoid endless transmit cleanup */
662 if (count
++ == E1000_TX_WEIGHT
)
666 tx_ring
->next_to_clean
= i
;
668 #define TX_WAKE_THRESHOLD 32
669 if (cleaned
&& netif_carrier_ok(netdev
) &&
670 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
671 /* Make sure that anybody stopping the queue after this
672 * sees the new next_to_clean.
676 if (netif_queue_stopped(netdev
) &&
677 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
678 netif_wake_queue(netdev
);
679 ++adapter
->restart_queue
;
683 if (adapter
->detect_tx_hung
) {
684 /* Detect a transmit hang in hardware, this serializes the
685 * check with the clearing of time_stamp and movement of i */
686 adapter
->detect_tx_hung
= 0;
687 if (tx_ring
->buffer_info
[eop
].dma
&&
688 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
689 + (adapter
->tx_timeout_factor
* HZ
))
691 E1000_STATUS_TXOFF
)) {
692 e1000_print_tx_hang(adapter
);
693 netif_stop_queue(netdev
);
696 adapter
->total_tx_bytes
+= total_tx_bytes
;
697 adapter
->total_tx_packets
+= total_tx_packets
;
702 * e1000_clean_rx_irq_jumbo - Send received data up the network stack; legacy
703 * @adapter: board private structure
705 * the return value indicates whether actual cleaning was done, there
706 * is no guarantee that everything was cleaned
708 static bool e1000_clean_rx_irq_jumbo(struct e1000_adapter
*adapter
,
709 int *work_done
, int work_to_do
)
711 struct net_device
*netdev
= adapter
->netdev
;
712 struct pci_dev
*pdev
= adapter
->pdev
;
713 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
714 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
715 struct e1000_buffer
*buffer_info
, *next_buffer
;
718 int cleaned_count
= 0;
720 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
722 i
= rx_ring
->next_to_clean
;
723 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
724 buffer_info
= &rx_ring
->buffer_info
[i
];
726 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
730 if (*work_done
>= work_to_do
)
734 status
= rx_desc
->status
;
735 skb
= buffer_info
->skb
;
736 buffer_info
->skb
= NULL
;
739 if (i
== rx_ring
->count
)
741 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
744 next_buffer
= &rx_ring
->buffer_info
[i
];
752 buffer_info
->dma
= 0;
754 length
= le16_to_cpu(rx_desc
->length
);
756 /* errors is only valid for DD + EOP descriptors */
757 if ((status
& E1000_RXD_STAT_EOP
) &&
758 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
759 /* recycle both page and skb */
760 buffer_info
->skb
= skb
;
761 /* an error means any chain goes out the window too */
762 if (rx_ring
->rx_skb_top
)
763 dev_kfree_skb(rx_ring
->rx_skb_top
);
764 rx_ring
->rx_skb_top
= NULL
;
768 #define rxtop rx_ring->rx_skb_top
769 if (!(status
& E1000_RXD_STAT_EOP
)) {
770 /* this descriptor is only the beginning (or middle) */
772 /* this is the beginning of a chain */
774 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
777 /* this is the middle of a chain */
778 skb_fill_page_desc(rxtop
,
779 skb_shinfo(rxtop
)->nr_frags
,
780 buffer_info
->page
, 0,
782 /* re-use the skb, only consumed the page */
783 buffer_info
->skb
= skb
;
785 e1000_consume_page(buffer_info
, rxtop
, length
);
789 /* end of the chain */
790 skb_fill_page_desc(rxtop
,
791 skb_shinfo(rxtop
)->nr_frags
,
792 buffer_info
->page
, 0, length
);
793 /* re-use the current skb, we only consumed the
795 buffer_info
->skb
= skb
;
798 e1000_consume_page(buffer_info
, skb
, length
);
800 /* no chain, got EOP, this buf is the packet
801 * copybreak to save the put_page/alloc_page */
802 if (length
<= copybreak
&&
803 skb_tailroom(skb
) >= length
) {
805 vaddr
= kmap_atomic(buffer_info
->page
,
806 KM_SKB_DATA_SOFTIRQ
);
807 memcpy(skb_tail_pointer(skb
),
810 KM_SKB_DATA_SOFTIRQ
);
811 /* re-use the page, so don't erase
812 * buffer_info->page */
813 skb_put(skb
, length
);
815 skb_fill_page_desc(skb
, 0,
816 buffer_info
->page
, 0,
818 e1000_consume_page(buffer_info
, skb
,
824 /* Receive Checksum Offload XXX recompute due to CRC strip? */
825 e1000_rx_checksum(adapter
,
827 ((u32
)(rx_desc
->errors
) << 24),
828 le16_to_cpu(rx_desc
->csum
), skb
);
830 pskb_trim(skb
, skb
->len
- 4);
832 /* probably a little skewed due to removing CRC */
833 total_rx_bytes
+= skb
->len
;
836 /* eth type trans needs skb->data to point to something */
837 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
838 ndev_err(netdev
, "__pskb_pull_tail failed.\n");
843 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
848 /* return some buffers to hardware, one at a time is too slow */
849 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
850 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
854 /* use prefetched values */
856 buffer_info
= next_buffer
;
858 rx_ring
->next_to_clean
= i
;
860 cleaned_count
= e1000_desc_unused(rx_ring
);
862 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
864 adapter
->total_rx_packets
+= total_rx_packets
;
865 adapter
->total_rx_bytes
+= total_rx_bytes
;
870 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
871 * @adapter: board private structure
873 * the return value indicates whether actual cleaning was done, there
874 * is no guarantee that everything was cleaned
876 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
877 int *work_done
, int work_to_do
)
879 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
880 struct net_device
*netdev
= adapter
->netdev
;
881 struct pci_dev
*pdev
= adapter
->pdev
;
882 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
883 struct e1000_buffer
*buffer_info
, *next_buffer
;
884 struct e1000_ps_page
*ps_page
;
888 int cleaned_count
= 0;
890 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
892 i
= rx_ring
->next_to_clean
;
893 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
894 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
895 buffer_info
= &rx_ring
->buffer_info
[i
];
897 while (staterr
& E1000_RXD_STAT_DD
) {
898 if (*work_done
>= work_to_do
)
901 skb
= buffer_info
->skb
;
903 /* in the packet split case this is header only */
904 prefetch(skb
->data
- NET_IP_ALIGN
);
907 if (i
== rx_ring
->count
)
909 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
912 next_buffer
= &rx_ring
->buffer_info
[i
];
916 pci_unmap_single(pdev
, buffer_info
->dma
,
917 adapter
->rx_ps_bsize0
,
919 buffer_info
->dma
= 0;
921 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
922 ndev_dbg(netdev
, "%s: Packet Split buffers didn't pick "
923 "up the full packet\n", netdev
->name
);
924 dev_kfree_skb_irq(skb
);
928 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
929 dev_kfree_skb_irq(skb
);
933 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
936 ndev_dbg(netdev
, "%s: Last part of the packet spanning"
937 " multiple descriptors\n", netdev
->name
);
938 dev_kfree_skb_irq(skb
);
943 skb_put(skb
, length
);
946 /* this looks ugly, but it seems compiler issues make it
947 more efficient than reusing j */
948 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
950 /* page alloc/put takes too long and effects small packet
951 * throughput, so unsplit small packets and save the alloc/put*/
952 if (l1
&& (l1
<= copybreak
) &&
953 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
956 ps_page
= &rx_ring
->ps_pages
[i
* PS_PAGE_BUFFERS
];
958 /* there is no documentation about how to call
959 * kmap_atomic, so we can't hold the mapping
961 pci_dma_sync_single_for_cpu(pdev
, ps_page
->dma
,
962 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
963 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
964 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
965 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
966 pci_dma_sync_single_for_device(pdev
, ps_page
->dma
,
967 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
975 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
976 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
980 ps_page
= &rx_ring
->ps_pages
[(i
* PS_PAGE_BUFFERS
) + j
];
981 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
984 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
985 ps_page
->page
= NULL
;
987 skb
->data_len
+= length
;
988 skb
->truesize
+= length
;
991 /* strip the ethernet crc, problem is we're using pages now so
992 * this whole operation can get a little cpu intensive */
993 pskb_trim(skb
, skb
->len
- 4);
996 total_rx_bytes
+= skb
->len
;
999 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
1000 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
1002 if (rx_desc
->wb
.upper
.header_status
&
1003 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1004 adapter
->rx_hdr_split
++;
1006 e1000_receive_skb(adapter
, netdev
, skb
,
1007 staterr
, rx_desc
->wb
.middle
.vlan
);
1010 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1011 buffer_info
->skb
= NULL
;
1013 /* return some buffers to hardware, one at a time is too slow */
1014 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1015 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1019 /* use prefetched values */
1021 buffer_info
= next_buffer
;
1023 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1025 rx_ring
->next_to_clean
= i
;
1027 cleaned_count
= e1000_desc_unused(rx_ring
);
1029 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1031 adapter
->total_rx_packets
+= total_rx_packets
;
1032 adapter
->total_rx_bytes
+= total_rx_bytes
;
1037 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1038 * @adapter: board private structure
1040 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1042 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1043 struct e1000_buffer
*buffer_info
;
1044 struct e1000_ps_page
*ps_page
;
1045 struct pci_dev
*pdev
= adapter
->pdev
;
1049 /* Free all the Rx ring sk_buffs */
1050 for (i
= 0; i
< rx_ring
->count
; i
++) {
1051 buffer_info
= &rx_ring
->buffer_info
[i
];
1052 if (buffer_info
->dma
) {
1053 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1054 pci_unmap_single(pdev
, buffer_info
->dma
,
1055 adapter
->rx_buffer_len
,
1056 PCI_DMA_FROMDEVICE
);
1057 else if (adapter
->clean_rx
== e1000_clean_rx_irq_jumbo
)
1058 pci_unmap_page(pdev
, buffer_info
->dma
,
1059 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
1060 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1061 pci_unmap_single(pdev
, buffer_info
->dma
,
1062 adapter
->rx_ps_bsize0
,
1063 PCI_DMA_FROMDEVICE
);
1064 buffer_info
->dma
= 0;
1067 if (buffer_info
->page
) {
1068 put_page(buffer_info
->page
);
1069 buffer_info
->page
= NULL
;
1072 if (buffer_info
->skb
) {
1073 dev_kfree_skb(buffer_info
->skb
);
1074 buffer_info
->skb
= NULL
;
1077 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1078 ps_page
= &rx_ring
->ps_pages
[(i
* PS_PAGE_BUFFERS
)
1082 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
1083 PCI_DMA_FROMDEVICE
);
1085 put_page(ps_page
->page
);
1086 ps_page
->page
= NULL
;
1090 /* there also may be some cached data from a chained receive */
1091 if (rx_ring
->rx_skb_top
) {
1092 dev_kfree_skb(rx_ring
->rx_skb_top
);
1093 rx_ring
->rx_skb_top
= NULL
;
1096 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1097 memset(rx_ring
->buffer_info
, 0, size
);
1098 size
= sizeof(struct e1000_ps_page
)
1099 * (rx_ring
->count
* PS_PAGE_BUFFERS
);
1100 memset(rx_ring
->ps_pages
, 0, size
);
1102 /* Zero out the descriptor ring */
1103 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1105 rx_ring
->next_to_clean
= 0;
1106 rx_ring
->next_to_use
= 0;
1108 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1109 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1113 * e1000_intr_msi - Interrupt Handler
1114 * @irq: interrupt number
1115 * @data: pointer to a network interface device structure
1117 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1119 struct net_device
*netdev
= data
;
1120 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1121 struct e1000_hw
*hw
= &adapter
->hw
;
1122 u32 icr
= er32(ICR
);
1124 /* read ICR disables interrupts using IAM, so keep up with our
1125 * enable/disable accounting */
1126 atomic_inc(&adapter
->irq_sem
);
1128 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
1129 hw
->mac
.get_link_status
= 1;
1130 /* ICH8 workaround-- Call gig speed drop workaround on cable
1131 * disconnect (LSC) before accessing any PHY registers */
1132 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1133 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1134 e1000e_gig_downshift_workaround_ich8lan(hw
);
1136 /* 80003ES2LAN workaround-- For packet buffer work-around on
1137 * link down event; disable receives here in the ISR and reset
1138 * adapter in watchdog */
1139 if (netif_carrier_ok(netdev
) &&
1140 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1141 /* disable receives */
1142 u32 rctl
= er32(RCTL
);
1143 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1145 /* guard against interrupt when we're going down */
1146 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1147 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1150 if (netif_rx_schedule_prep(netdev
, &adapter
->napi
)) {
1151 adapter
->total_tx_bytes
= 0;
1152 adapter
->total_tx_packets
= 0;
1153 adapter
->total_rx_bytes
= 0;
1154 adapter
->total_rx_packets
= 0;
1155 __netif_rx_schedule(netdev
, &adapter
->napi
);
1157 atomic_dec(&adapter
->irq_sem
);
1164 * e1000_intr - Interrupt Handler
1165 * @irq: interrupt number
1166 * @data: pointer to a network interface device structure
1168 static irqreturn_t
e1000_intr(int irq
, void *data
)
1170 struct net_device
*netdev
= data
;
1171 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1172 struct e1000_hw
*hw
= &adapter
->hw
;
1174 u32 rctl
, icr
= er32(ICR
);
1176 return IRQ_NONE
; /* Not our interrupt */
1178 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1179 * not set, then the adapter didn't send an interrupt */
1180 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1183 /* Interrupt Auto-Mask...upon reading ICR,
1184 * interrupts are masked. No need for the
1185 * IMC write, but it does mean we should
1186 * account for it ASAP. */
1187 atomic_inc(&adapter
->irq_sem
);
1189 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
1190 hw
->mac
.get_link_status
= 1;
1191 /* ICH8 workaround-- Call gig speed drop workaround on cable
1192 * disconnect (LSC) before accessing any PHY registers */
1193 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1194 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1195 e1000e_gig_downshift_workaround_ich8lan(hw
);
1197 /* 80003ES2LAN workaround--
1198 * For packet buffer work-around on link down event;
1199 * disable receives here in the ISR and
1200 * reset adapter in watchdog
1202 if (netif_carrier_ok(netdev
) &&
1203 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1204 /* disable receives */
1206 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1208 /* guard against interrupt when we're going down */
1209 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1210 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1213 if (netif_rx_schedule_prep(netdev
, &adapter
->napi
)) {
1214 adapter
->total_tx_bytes
= 0;
1215 adapter
->total_tx_packets
= 0;
1216 adapter
->total_rx_bytes
= 0;
1217 adapter
->total_rx_packets
= 0;
1218 __netif_rx_schedule(netdev
, &adapter
->napi
);
1220 atomic_dec(&adapter
->irq_sem
);
1226 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1228 struct net_device
*netdev
= adapter
->netdev
;
1229 void (*handler
) = &e1000_intr
;
1230 int irq_flags
= IRQF_SHARED
;
1233 err
= pci_enable_msi(adapter
->pdev
);
1236 "Unable to allocate MSI interrupt Error: %d\n", err
);
1238 adapter
->flags
|= FLAG_MSI_ENABLED
;
1239 handler
= &e1000_intr_msi
;
1243 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
1246 if (adapter
->flags
& FLAG_MSI_ENABLED
)
1247 pci_disable_msi(adapter
->pdev
);
1249 "Unable to allocate interrupt Error: %d\n", err
);
1255 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1257 struct net_device
*netdev
= adapter
->netdev
;
1259 free_irq(adapter
->pdev
->irq
, netdev
);
1260 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1261 pci_disable_msi(adapter
->pdev
);
1262 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1267 * e1000_irq_disable - Mask off interrupt generation on the NIC
1269 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1271 struct e1000_hw
*hw
= &adapter
->hw
;
1273 atomic_inc(&adapter
->irq_sem
);
1276 synchronize_irq(adapter
->pdev
->irq
);
1280 * e1000_irq_enable - Enable default interrupt generation settings
1282 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1284 struct e1000_hw
*hw
= &adapter
->hw
;
1286 if (atomic_dec_and_test(&adapter
->irq_sem
)) {
1287 ew32(IMS
, IMS_ENABLE_MASK
);
1293 * e1000_get_hw_control - get control of the h/w from f/w
1294 * @adapter: address of board private structure
1296 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1297 * For ASF and Pass Through versions of f/w this means that
1298 * the driver is loaded. For AMT version (only with 82573)
1299 * of the f/w this means that the network i/f is open.
1301 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
1303 struct e1000_hw
*hw
= &adapter
->hw
;
1307 /* Let firmware know the driver has taken over */
1308 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1310 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
1311 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1312 ctrl_ext
= er32(CTRL_EXT
);
1314 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1319 * e1000_release_hw_control - release control of the h/w to f/w
1320 * @adapter: address of board private structure
1322 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1323 * For ASF and Pass Through versions of f/w this means that the
1324 * driver is no longer loaded. For AMT version (only with 82573) i
1325 * of the f/w this means that the network i/f is closed.
1328 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
1330 struct e1000_hw
*hw
= &adapter
->hw
;
1334 /* Let firmware taken over control of h/w */
1335 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1337 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
1338 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1339 ctrl_ext
= er32(CTRL_EXT
);
1341 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1345 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
1347 if (adapter
->flags
& FLAG_MNG_PT_ENABLED
) {
1348 struct e1000_hw
*hw
= &adapter
->hw
;
1350 u32 manc
= er32(MANC
);
1352 /* re-enable hardware interception of ARP */
1353 manc
|= E1000_MANC_ARP_EN
;
1354 manc
&= ~E1000_MANC_EN_MNG2HOST
;
1356 /* don't explicitly have to mess with MANC2H since
1357 * MANC has an enable disable that gates MANC2H */
1363 * @e1000_alloc_ring - allocate memory for a ring structure
1365 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
1366 struct e1000_ring
*ring
)
1368 struct pci_dev
*pdev
= adapter
->pdev
;
1370 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
1379 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1380 * @adapter: board private structure
1382 * Return 0 on success, negative on failure
1384 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
1386 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1387 int err
= -ENOMEM
, size
;
1389 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1390 tx_ring
->buffer_info
= vmalloc(size
);
1391 if (!tx_ring
->buffer_info
)
1393 memset(tx_ring
->buffer_info
, 0, size
);
1395 /* round up to nearest 4K */
1396 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1397 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1399 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
1403 tx_ring
->next_to_use
= 0;
1404 tx_ring
->next_to_clean
= 0;
1405 spin_lock_init(&adapter
->tx_queue_lock
);
1409 vfree(tx_ring
->buffer_info
);
1410 ndev_err(adapter
->netdev
,
1411 "Unable to allocate memory for the transmit descriptor ring\n");
1416 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1417 * @adapter: board private structure
1419 * Returns 0 on success, negative on failure
1421 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
1423 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1424 int size
, desc_len
, err
= -ENOMEM
;
1426 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1427 rx_ring
->buffer_info
= vmalloc(size
);
1428 if (!rx_ring
->buffer_info
)
1430 memset(rx_ring
->buffer_info
, 0, size
);
1432 rx_ring
->ps_pages
= kcalloc(rx_ring
->count
* PS_PAGE_BUFFERS
,
1433 sizeof(struct e1000_ps_page
),
1435 if (!rx_ring
->ps_pages
)
1438 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1440 /* Round up to nearest 4K */
1441 rx_ring
->size
= rx_ring
->count
* desc_len
;
1442 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1444 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
1448 rx_ring
->next_to_clean
= 0;
1449 rx_ring
->next_to_use
= 0;
1450 rx_ring
->rx_skb_top
= NULL
;
1454 vfree(rx_ring
->buffer_info
);
1455 kfree(rx_ring
->ps_pages
);
1456 ndev_err(adapter
->netdev
,
1457 "Unable to allocate memory for the transmit descriptor ring\n");
1462 * e1000_clean_tx_ring - Free Tx Buffers
1463 * @adapter: board private structure
1465 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
1467 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1468 struct e1000_buffer
*buffer_info
;
1472 for (i
= 0; i
< tx_ring
->count
; i
++) {
1473 buffer_info
= &tx_ring
->buffer_info
[i
];
1474 e1000_put_txbuf(adapter
, buffer_info
);
1477 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1478 memset(tx_ring
->buffer_info
, 0, size
);
1480 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1482 tx_ring
->next_to_use
= 0;
1483 tx_ring
->next_to_clean
= 0;
1485 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1486 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1490 * e1000e_free_tx_resources - Free Tx Resources per Queue
1491 * @adapter: board private structure
1493 * Free all transmit software resources
1495 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
1497 struct pci_dev
*pdev
= adapter
->pdev
;
1498 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1500 e1000_clean_tx_ring(adapter
);
1502 vfree(tx_ring
->buffer_info
);
1503 tx_ring
->buffer_info
= NULL
;
1505 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1507 tx_ring
->desc
= NULL
;
1511 * e1000e_free_rx_resources - Free Rx Resources
1512 * @adapter: board private structure
1514 * Free all receive software resources
1517 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
1519 struct pci_dev
*pdev
= adapter
->pdev
;
1520 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1522 e1000_clean_rx_ring(adapter
);
1524 vfree(rx_ring
->buffer_info
);
1525 rx_ring
->buffer_info
= NULL
;
1527 kfree(rx_ring
->ps_pages
);
1528 rx_ring
->ps_pages
= NULL
;
1530 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1532 rx_ring
->desc
= NULL
;
1536 * e1000_update_itr - update the dynamic ITR value based on statistics
1537 * Stores a new ITR value based on packets and byte
1538 * counts during the last interrupt. The advantage of per interrupt
1539 * computation is faster updates and more accurate ITR for the current
1540 * traffic pattern. Constants in this function were computed
1541 * based on theoretical maximum wire speed and thresholds were set based
1542 * on testing data as well as attempting to minimize response time
1543 * while increasing bulk throughput.
1544 * this functionality is controlled by the InterruptThrottleRate module
1545 * parameter (see e1000_param.c)
1546 * @adapter: pointer to adapter
1547 * @itr_setting: current adapter->itr
1548 * @packets: the number of packets during this measurement interval
1549 * @bytes: the number of bytes during this measurement interval
1551 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
1552 u16 itr_setting
, int packets
,
1555 unsigned int retval
= itr_setting
;
1558 goto update_itr_done
;
1560 switch (itr_setting
) {
1561 case lowest_latency
:
1562 /* handle TSO and jumbo frames */
1563 if (bytes
/packets
> 8000)
1564 retval
= bulk_latency
;
1565 else if ((packets
< 5) && (bytes
> 512)) {
1566 retval
= low_latency
;
1569 case low_latency
: /* 50 usec aka 20000 ints/s */
1570 if (bytes
> 10000) {
1571 /* this if handles the TSO accounting */
1572 if (bytes
/packets
> 8000) {
1573 retval
= bulk_latency
;
1574 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
1575 retval
= bulk_latency
;
1576 } else if ((packets
> 35)) {
1577 retval
= lowest_latency
;
1579 } else if (bytes
/packets
> 2000) {
1580 retval
= bulk_latency
;
1581 } else if (packets
<= 2 && bytes
< 512) {
1582 retval
= lowest_latency
;
1585 case bulk_latency
: /* 250 usec aka 4000 ints/s */
1586 if (bytes
> 25000) {
1588 retval
= low_latency
;
1590 } else if (bytes
< 6000) {
1591 retval
= low_latency
;
1600 static void e1000_set_itr(struct e1000_adapter
*adapter
)
1602 struct e1000_hw
*hw
= &adapter
->hw
;
1604 u32 new_itr
= adapter
->itr
;
1606 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1607 if (adapter
->link_speed
!= SPEED_1000
) {
1613 adapter
->tx_itr
= e1000_update_itr(adapter
,
1615 adapter
->total_tx_packets
,
1616 adapter
->total_tx_bytes
);
1617 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1618 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
1619 adapter
->tx_itr
= low_latency
;
1621 adapter
->rx_itr
= e1000_update_itr(adapter
,
1623 adapter
->total_rx_packets
,
1624 adapter
->total_rx_bytes
);
1625 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1626 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
1627 adapter
->rx_itr
= low_latency
;
1629 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
1631 switch (current_itr
) {
1632 /* counts and packets in update_itr are dependent on these numbers */
1633 case lowest_latency
:
1637 new_itr
= 20000; /* aka hwitr = ~200 */
1647 if (new_itr
!= adapter
->itr
) {
1648 /* this attempts to bias the interrupt rate towards Bulk
1649 * by adding intermediate steps when interrupt rate is
1651 new_itr
= new_itr
> adapter
->itr
?
1652 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
1654 adapter
->itr
= new_itr
;
1655 ew32(ITR
, 1000000000 / (new_itr
* 256));
1660 * e1000_clean - NAPI Rx polling callback
1661 * @adapter: board private structure
1663 static int e1000_clean(struct napi_struct
*napi
, int budget
)
1665 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
1666 struct net_device
*poll_dev
= adapter
->netdev
;
1667 int tx_cleaned
= 0, work_done
= 0;
1669 /* Must NOT use netdev_priv macro here. */
1670 adapter
= poll_dev
->priv
;
1672 /* Keep link state information with original netdev */
1673 if (!netif_carrier_ok(poll_dev
))
1676 /* e1000_clean is called per-cpu. This lock protects
1677 * tx_ring from being cleaned by multiple cpus
1678 * simultaneously. A failure obtaining the lock means
1679 * tx_ring is currently being cleaned anyway. */
1680 if (spin_trylock(&adapter
->tx_queue_lock
)) {
1681 tx_cleaned
= e1000_clean_tx_irq(adapter
);
1682 spin_unlock(&adapter
->tx_queue_lock
);
1685 adapter
->clean_rx(adapter
, &work_done
, budget
);
1687 /* If no Tx and not enough Rx work done, exit the polling mode */
1688 if ((!tx_cleaned
&& (work_done
< budget
)) ||
1689 !netif_running(poll_dev
)) {
1691 if (adapter
->itr_setting
& 3)
1692 e1000_set_itr(adapter
);
1693 netif_rx_complete(poll_dev
, napi
);
1694 e1000_irq_enable(adapter
);
1700 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1702 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1703 struct e1000_hw
*hw
= &adapter
->hw
;
1706 /* don't update vlan cookie if already programmed */
1707 if ((adapter
->hw
.mng_cookie
.status
&
1708 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1709 (vid
== adapter
->mng_vlan_id
))
1711 /* add VID to filter table */
1712 index
= (vid
>> 5) & 0x7F;
1713 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
1714 vfta
|= (1 << (vid
& 0x1F));
1715 e1000e_write_vfta(hw
, index
, vfta
);
1718 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1720 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1721 struct e1000_hw
*hw
= &adapter
->hw
;
1724 e1000_irq_disable(adapter
);
1725 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
1726 e1000_irq_enable(adapter
);
1728 if ((adapter
->hw
.mng_cookie
.status
&
1729 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1730 (vid
== adapter
->mng_vlan_id
)) {
1731 /* release control to f/w */
1732 e1000_release_hw_control(adapter
);
1736 /* remove VID from filter table */
1737 index
= (vid
>> 5) & 0x7F;
1738 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
1739 vfta
&= ~(1 << (vid
& 0x1F));
1740 e1000e_write_vfta(hw
, index
, vfta
);
1743 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
1745 struct net_device
*netdev
= adapter
->netdev
;
1746 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
1747 u16 old_vid
= adapter
->mng_vlan_id
;
1749 if (!adapter
->vlgrp
)
1752 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
1753 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1754 if (adapter
->hw
.mng_cookie
.status
&
1755 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
1756 e1000_vlan_rx_add_vid(netdev
, vid
);
1757 adapter
->mng_vlan_id
= vid
;
1760 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
1762 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
1763 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
1765 adapter
->mng_vlan_id
= vid
;
1770 static void e1000_vlan_rx_register(struct net_device
*netdev
,
1771 struct vlan_group
*grp
)
1773 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1774 struct e1000_hw
*hw
= &adapter
->hw
;
1777 e1000_irq_disable(adapter
);
1778 adapter
->vlgrp
= grp
;
1781 /* enable VLAN tag insert/strip */
1783 ctrl
|= E1000_CTRL_VME
;
1786 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
1787 /* enable VLAN receive filtering */
1789 rctl
|= E1000_RCTL_VFE
;
1790 rctl
&= ~E1000_RCTL_CFIEN
;
1792 e1000_update_mng_vlan(adapter
);
1795 /* disable VLAN tag insert/strip */
1797 ctrl
&= ~E1000_CTRL_VME
;
1800 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
1801 /* disable VLAN filtering */
1803 rctl
&= ~E1000_RCTL_VFE
;
1805 if (adapter
->mng_vlan_id
!=
1806 (u16
)E1000_MNG_VLAN_NONE
) {
1807 e1000_vlan_rx_kill_vid(netdev
,
1808 adapter
->mng_vlan_id
);
1809 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1814 e1000_irq_enable(adapter
);
1817 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
1821 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
1823 if (!adapter
->vlgrp
)
1826 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
1827 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
1829 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
1833 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
1835 struct e1000_hw
*hw
= &adapter
->hw
;
1838 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
1843 /* disable hardware interception of ARP */
1844 manc
&= ~(E1000_MANC_ARP_EN
);
1846 /* enable receiving management packets to the host. this will probably
1847 * generate destination unreachable messages from the host OS, but
1848 * the packets will be handled on SMBUS */
1849 manc
|= E1000_MANC_EN_MNG2HOST
;
1850 manc2h
= er32(MANC2H
);
1851 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1852 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1853 manc2h
|= E1000_MNG2HOST_PORT_623
;
1854 manc2h
|= E1000_MNG2HOST_PORT_664
;
1855 ew32(MANC2H
, manc2h
);
1860 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1861 * @adapter: board private structure
1863 * Configure the Tx unit of the MAC after a reset.
1865 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1867 struct e1000_hw
*hw
= &adapter
->hw
;
1868 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1870 u32 tdlen
, tctl
, tipg
, tarc
;
1873 /* Setup the HW Tx Head and Tail descriptor pointers */
1874 tdba
= tx_ring
->dma
;
1875 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1876 ew32(TDBAL
, (tdba
& DMA_32BIT_MASK
));
1877 ew32(TDBAH
, (tdba
>> 32));
1881 tx_ring
->head
= E1000_TDH
;
1882 tx_ring
->tail
= E1000_TDT
;
1884 /* Set the default values for the Tx Inter Packet Gap timer */
1885 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
1886 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
1887 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
1889 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
1890 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
1892 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1893 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1896 /* Set the Tx Interrupt Delay register */
1897 ew32(TIDV
, adapter
->tx_int_delay
);
1898 /* tx irq moderation */
1899 ew32(TADV
, adapter
->tx_abs_int_delay
);
1901 /* Program the Transmit Control Register */
1903 tctl
&= ~E1000_TCTL_CT
;
1904 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1905 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1907 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
1909 /* set the speed mode bit, we'll clear it if we're not at
1910 * gigabit link later */
1911 #define SPEED_MODE_BIT (1 << 21)
1912 tarc
|= SPEED_MODE_BIT
;
1916 /* errata: program both queues to unweighted RR */
1917 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
1926 e1000e_config_collision_dist(hw
);
1928 /* Setup Transmit Descriptor Settings for eop descriptor */
1929 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1931 /* only set IDE if we are delaying interrupts using the timers */
1932 if (adapter
->tx_int_delay
)
1933 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1935 /* enable Report Status bit */
1936 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1940 adapter
->tx_queue_len
= adapter
->netdev
->tx_queue_len
;
1944 * e1000_setup_rctl - configure the receive control registers
1945 * @adapter: Board private structure
1947 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1948 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1949 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1951 struct e1000_hw
*hw
= &adapter
->hw
;
1956 /* Program MC offset vector base */
1958 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1959 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1960 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1961 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1963 /* Do not Store bad packets */
1964 rctl
&= ~E1000_RCTL_SBP
;
1966 /* Enable Long Packet receive */
1967 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1968 rctl
&= ~E1000_RCTL_LPE
;
1970 rctl
|= E1000_RCTL_LPE
;
1972 /* Setup buffer sizes */
1973 rctl
&= ~E1000_RCTL_SZ_4096
;
1974 rctl
|= E1000_RCTL_BSEX
;
1975 switch (adapter
->rx_buffer_len
) {
1977 rctl
|= E1000_RCTL_SZ_256
;
1978 rctl
&= ~E1000_RCTL_BSEX
;
1981 rctl
|= E1000_RCTL_SZ_512
;
1982 rctl
&= ~E1000_RCTL_BSEX
;
1985 rctl
|= E1000_RCTL_SZ_1024
;
1986 rctl
&= ~E1000_RCTL_BSEX
;
1990 rctl
|= E1000_RCTL_SZ_2048
;
1991 rctl
&= ~E1000_RCTL_BSEX
;
1994 rctl
|= E1000_RCTL_SZ_4096
;
1997 rctl
|= E1000_RCTL_SZ_8192
;
2000 rctl
|= E1000_RCTL_SZ_16384
;
2005 * 82571 and greater support packet-split where the protocol
2006 * header is placed in skb->data and the packet data is
2007 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2008 * In the case of a non-split, skb->data is linearly filled,
2009 * followed by the page buffers. Therefore, skb->data is
2010 * sized to hold the largest protocol header.
2012 * allocations using alloc_page take too long for regular MTU
2013 * so only enable packet split for jumbo frames
2015 * Using pages when the page size is greater than 16k wastes
2016 * a lot of memory, since we allocate 3 pages at all times
2019 adapter
->rx_ps_pages
= 0;
2020 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2021 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2022 adapter
->rx_ps_pages
= pages
;
2024 if (adapter
->rx_ps_pages
) {
2025 /* Configure extra packet-split registers */
2026 rfctl
= er32(RFCTL
);
2027 rfctl
|= E1000_RFCTL_EXTEN
;
2028 /* disable packet split support for IPv6 extension headers,
2029 * because some malformed IPv6 headers can hang the RX */
2030 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2031 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2035 /* disable the stripping of CRC because it breaks
2036 * BMC firmware connected over SMBUS */
2037 rctl
|= E1000_RCTL_DTYP_PS
/* | E1000_RCTL_SECRC */;
2039 psrctl
|= adapter
->rx_ps_bsize0
>>
2040 E1000_PSRCTL_BSIZE0_SHIFT
;
2042 switch (adapter
->rx_ps_pages
) {
2044 psrctl
|= PAGE_SIZE
<<
2045 E1000_PSRCTL_BSIZE3_SHIFT
;
2047 psrctl
|= PAGE_SIZE
<<
2048 E1000_PSRCTL_BSIZE2_SHIFT
;
2050 psrctl
|= PAGE_SIZE
>>
2051 E1000_PSRCTL_BSIZE1_SHIFT
;
2055 ew32(PSRCTL
, psrctl
);
2062 * e1000_configure_rx - Configure Receive Unit after Reset
2063 * @adapter: board private structure
2065 * Configure the Rx unit of the MAC after a reset.
2067 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2069 struct e1000_hw
*hw
= &adapter
->hw
;
2070 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2072 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2074 if (adapter
->rx_ps_pages
) {
2075 /* this is a 32 byte descriptor */
2076 rdlen
= rx_ring
->count
*
2077 sizeof(union e1000_rx_desc_packet_split
);
2078 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2079 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2080 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ VLAN_HLEN
+ 4) {
2081 rdlen
= rx_ring
->count
*
2082 sizeof(struct e1000_rx_desc
);
2083 adapter
->clean_rx
= e1000_clean_rx_irq_jumbo
;
2084 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_jumbo
;
2086 rdlen
= rx_ring
->count
*
2087 sizeof(struct e1000_rx_desc
);
2088 adapter
->clean_rx
= e1000_clean_rx_irq
;
2089 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2092 /* disable receives while setting up the descriptors */
2094 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2098 /* set the Receive Delay Timer Register */
2099 ew32(RDTR
, adapter
->rx_int_delay
);
2101 /* irq moderation */
2102 ew32(RADV
, adapter
->rx_abs_int_delay
);
2103 if (adapter
->itr_setting
!= 0)
2105 1000000000 / (adapter
->itr
* 256));
2107 ctrl_ext
= er32(CTRL_EXT
);
2108 /* Reset delay timers after every interrupt */
2109 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
2110 /* Auto-Mask interrupts upon ICR access */
2111 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2112 ew32(IAM
, 0xffffffff);
2113 ew32(CTRL_EXT
, ctrl_ext
);
2116 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2117 * the Base and Length of the Rx Descriptor Ring */
2118 rdba
= rx_ring
->dma
;
2119 ew32(RDBAL
, (rdba
& DMA_32BIT_MASK
));
2120 ew32(RDBAH
, (rdba
>> 32));
2124 rx_ring
->head
= E1000_RDH
;
2125 rx_ring
->tail
= E1000_RDT
;
2127 /* Enable Receive Checksum Offload for TCP and UDP */
2128 rxcsum
= er32(RXCSUM
);
2129 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2130 rxcsum
|= E1000_RXCSUM_TUOFL
;
2132 /* IPv4 payload checksum for UDP fragments must be
2133 * used in conjunction with packet-split. */
2134 if (adapter
->rx_ps_pages
)
2135 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2137 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2138 /* no need to clear IPPCSE as it defaults to 0 */
2140 ew32(RXCSUM
, rxcsum
);
2142 /* Enable early receives on supported devices, only takes effect when
2143 * packet size is equal or larger than the specified value (in 8 byte
2144 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
2145 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
2146 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
2147 ew32(ERT
, E1000_ERT_2048
);
2149 /* Enable Receives */
2154 * e1000_mc_addr_list_update - Update Multicast addresses
2155 * @hw: pointer to the HW structure
2156 * @mc_addr_list: array of multicast addresses to program
2157 * @mc_addr_count: number of multicast addresses to program
2158 * @rar_used_count: the first RAR register free to program
2159 * @rar_count: total number of supported Receive Address Registers
2161 * Updates the Receive Address Registers and Multicast Table Array.
2162 * The caller must have a packed mc_addr_list of multicast addresses.
2163 * The parameter rar_count will usually be hw->mac.rar_entry_count
2164 * unless there are workarounds that change this. Currently no func pointer
2165 * exists and all implementations are handled in the generic version of this
2168 static void e1000_mc_addr_list_update(struct e1000_hw
*hw
, u8
*mc_addr_list
,
2169 u32 mc_addr_count
, u32 rar_used_count
,
2172 hw
->mac
.ops
.mc_addr_list_update(hw
, mc_addr_list
, mc_addr_count
,
2173 rar_used_count
, rar_count
);
2177 * e1000_set_multi - Multicast and Promiscuous mode set
2178 * @netdev: network interface device structure
2180 * The set_multi entry point is called whenever the multicast address
2181 * list or the network interface flags are updated. This routine is
2182 * responsible for configuring the hardware for proper multicast,
2183 * promiscuous mode, and all-multi behavior.
2185 static void e1000_set_multi(struct net_device
*netdev
)
2187 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2188 struct e1000_hw
*hw
= &adapter
->hw
;
2189 struct e1000_mac_info
*mac
= &hw
->mac
;
2190 struct dev_mc_list
*mc_ptr
;
2195 /* Check for Promiscuous and All Multicast modes */
2199 if (netdev
->flags
& IFF_PROMISC
) {
2200 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2201 } else if (netdev
->flags
& IFF_ALLMULTI
) {
2202 rctl
|= E1000_RCTL_MPE
;
2203 rctl
&= ~E1000_RCTL_UPE
;
2205 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2210 if (netdev
->mc_count
) {
2211 mta_list
= kmalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2215 /* prepare a packed array of only addresses. */
2216 mc_ptr
= netdev
->mc_list
;
2218 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2221 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
,
2223 mc_ptr
= mc_ptr
->next
;
2226 e1000_mc_addr_list_update(hw
, mta_list
, i
, 1,
2227 mac
->rar_entry_count
);
2231 * if we're called from probe, we might not have
2232 * anything to do here, so clear out the list
2234 e1000_mc_addr_list_update(hw
, NULL
, 0, 1,
2235 mac
->rar_entry_count
);
2240 * e1000_configure - configure the hardware for RX and TX
2241 * @adapter: private board structure
2243 static void e1000_configure(struct e1000_adapter
*adapter
)
2245 e1000_set_multi(adapter
->netdev
);
2247 e1000_restore_vlan(adapter
);
2248 e1000_init_manageability(adapter
);
2250 e1000_configure_tx(adapter
);
2251 e1000_setup_rctl(adapter
);
2252 e1000_configure_rx(adapter
);
2253 adapter
->alloc_rx_buf(adapter
,
2254 e1000_desc_unused(adapter
->rx_ring
));
2258 * e1000e_power_up_phy - restore link in case the phy was powered down
2259 * @adapter: address of board private structure
2261 * The phy may be powered down to save power and turn off link when the
2262 * driver is unloaded and wake on lan is not enabled (among others)
2263 * *** this routine MUST be followed by a call to e1000e_reset ***
2265 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
2269 /* Just clear the power down bit to wake the phy back up */
2270 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
2271 /* according to the manual, the phy will retain its
2272 * settings across a power-down/up cycle */
2273 e1e_rphy(&adapter
->hw
, PHY_CONTROL
, &mii_reg
);
2274 mii_reg
&= ~MII_CR_POWER_DOWN
;
2275 e1e_wphy(&adapter
->hw
, PHY_CONTROL
, mii_reg
);
2278 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
2282 * e1000_power_down_phy - Power down the PHY
2284 * Power down the PHY so no link is implied when interface is down
2285 * The PHY cannot be powered down is management or WoL is active
2287 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
2289 struct e1000_hw
*hw
= &adapter
->hw
;
2292 /* WoL is enabled */
2296 /* non-copper PHY? */
2297 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
2300 /* reset is blocked because of a SoL/IDER session */
2301 if (e1000e_check_mng_mode(hw
) ||
2302 e1000_check_reset_block(hw
))
2305 /* managebility (AMT) is enabled */
2306 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
2309 /* power down the PHY */
2310 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2311 mii_reg
|= MII_CR_POWER_DOWN
;
2312 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2317 * e1000e_reset - bring the hardware into a known good state
2319 * This function boots the hardware and enables some settings that
2320 * require a configuration cycle of the hardware - those cannot be
2321 * set/changed during runtime. After reset the device needs to be
2322 * properly configured for rx, tx etc.
2324 void e1000e_reset(struct e1000_adapter
*adapter
)
2326 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2327 struct e1000_hw
*hw
= &adapter
->hw
;
2328 u32 tx_space
, min_tx_space
, min_rx_space
;
2331 if (mac
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2332 /* To maintain wire speed transmits, the Tx FIFO should be
2333 * large enough to accommodate two full transmit packets,
2334 * rounded up to the next 1KB and expressed in KB. Likewise,
2335 * the Rx FIFO should be large enough to accommodate at least
2336 * one full receive packet and is similarly rounded up and
2337 * expressed in KB. */
2338 adapter
->pba
= er32(PBA
);
2339 /* upper 16 bits has Tx packet buffer allocation size in KB */
2340 tx_space
= adapter
->pba
>> 16;
2341 /* lower 16 bits has Rx packet buffer allocation size in KB */
2342 adapter
->pba
&= 0xffff;
2343 /* the tx fifo also stores 16 bytes of information about the tx
2344 * but don't include ethernet FCS because hardware appends it */
2345 min_tx_space
= (mac
->max_frame_size
+
2346 sizeof(struct e1000_tx_desc
) -
2348 min_tx_space
= ALIGN(min_tx_space
, 1024);
2349 min_tx_space
>>= 10;
2350 /* software strips receive CRC, so leave room for it */
2351 min_rx_space
= mac
->max_frame_size
;
2352 min_rx_space
= ALIGN(min_rx_space
, 1024);
2353 min_rx_space
>>= 10;
2355 /* If current Tx allocation is less than the min Tx FIFO size,
2356 * and the min Tx FIFO size is less than the current Rx FIFO
2357 * allocation, take space away from current Rx allocation */
2358 if (tx_space
< min_tx_space
&&
2359 ((min_tx_space
- tx_space
) < adapter
->pba
)) {
2360 adapter
->pba
-= - (min_tx_space
- tx_space
);
2362 /* if short on rx space, rx wins and must trump tx
2363 * adjustment or use Early Receive if available */
2364 if ((adapter
->pba
< min_rx_space
) &&
2365 (!(adapter
->flags
& FLAG_HAS_ERT
)))
2366 /* ERT enabled in e1000_configure_rx */
2367 adapter
->pba
= min_rx_space
;
2371 ew32(PBA
, adapter
->pba
);
2373 /* flow control settings */
2374 /* The high water mark must be low enough to fit one full frame
2375 * (or the size used for early receive) above it in the Rx FIFO.
2376 * Set it to the lower of:
2377 * - 90% of the Rx FIFO size, and
2378 * - the full Rx FIFO size minus the early receive size (for parts
2379 * with ERT support assuming ERT set to E1000_ERT_2048), or
2380 * - the full Rx FIFO size minus one full frame */
2381 if (adapter
->flags
& FLAG_HAS_ERT
)
2382 hwm
= min(((adapter
->pba
<< 10) * 9 / 10),
2383 ((adapter
->pba
<< 10) - (E1000_ERT_2048
<< 3)));
2385 hwm
= min(((adapter
->pba
<< 10) * 9 / 10),
2386 ((adapter
->pba
<< 10) - mac
->max_frame_size
));
2388 mac
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
2389 mac
->fc_low_water
= mac
->fc_high_water
- 8;
2391 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
2392 mac
->fc_pause_time
= 0xFFFF;
2394 mac
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
2395 mac
->fc
= mac
->original_fc
;
2397 /* Allow time for pending master requests to run */
2398 mac
->ops
.reset_hw(hw
);
2401 if (mac
->ops
.init_hw(hw
))
2402 ndev_err(adapter
->netdev
, "Hardware Error\n");
2404 e1000_update_mng_vlan(adapter
);
2406 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2407 ew32(VET
, ETH_P_8021Q
);
2409 e1000e_reset_adaptive(hw
);
2410 e1000_get_phy_info(hw
);
2412 if (!(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
2414 /* speed up time to link by disabling smart power down, ignore
2415 * the return value of this function because there is nothing
2416 * different we would do if it failed */
2417 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
2418 phy_data
&= ~IGP02E1000_PM_SPD
;
2419 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
2422 e1000_release_manageability(adapter
);
2425 int e1000e_up(struct e1000_adapter
*adapter
)
2427 struct e1000_hw
*hw
= &adapter
->hw
;
2429 /* hardware has been reset, we need to reload some things */
2430 e1000_configure(adapter
);
2432 clear_bit(__E1000_DOWN
, &adapter
->state
);
2434 napi_enable(&adapter
->napi
);
2435 e1000_irq_enable(adapter
);
2437 /* fire a link change interrupt to start the watchdog */
2438 ew32(ICS
, E1000_ICS_LSC
);
2442 void e1000e_down(struct e1000_adapter
*adapter
)
2444 struct net_device
*netdev
= adapter
->netdev
;
2445 struct e1000_hw
*hw
= &adapter
->hw
;
2448 /* signal that we're down so the interrupt handler does not
2449 * reschedule our watchdog timer */
2450 set_bit(__E1000_DOWN
, &adapter
->state
);
2452 /* disable receives in the hardware */
2454 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2455 /* flush and sleep below */
2457 netif_stop_queue(netdev
);
2459 /* disable transmits in the hardware */
2461 tctl
&= ~E1000_TCTL_EN
;
2463 /* flush both disables and wait for them to finish */
2467 napi_disable(&adapter
->napi
);
2468 e1000_irq_disable(adapter
);
2470 del_timer_sync(&adapter
->watchdog_timer
);
2471 del_timer_sync(&adapter
->phy_info_timer
);
2473 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2474 netif_carrier_off(netdev
);
2475 adapter
->link_speed
= 0;
2476 adapter
->link_duplex
= 0;
2478 e1000e_reset(adapter
);
2479 e1000_clean_tx_ring(adapter
);
2480 e1000_clean_rx_ring(adapter
);
2483 * TODO: for power management, we could drop the link and
2484 * pci_disable_device here.
2488 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
2491 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
2493 e1000e_down(adapter
);
2495 clear_bit(__E1000_RESETTING
, &adapter
->state
);
2499 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2500 * @adapter: board private structure to initialize
2502 * e1000_sw_init initializes the Adapter private data structure.
2503 * Fields are initialized based on PCI device information and
2504 * OS network device settings (MTU size).
2506 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
2508 struct e1000_hw
*hw
= &adapter
->hw
;
2509 struct net_device
*netdev
= adapter
->netdev
;
2511 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
2512 adapter
->rx_ps_bsize0
= 128;
2513 hw
->mac
.max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2514 hw
->mac
.min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
2516 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2517 if (!adapter
->tx_ring
)
2520 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2521 if (!adapter
->rx_ring
)
2524 spin_lock_init(&adapter
->tx_queue_lock
);
2526 /* Explicitly disable IRQ since the NIC can be in any state. */
2527 atomic_set(&adapter
->irq_sem
, 0);
2528 e1000_irq_disable(adapter
);
2530 spin_lock_init(&adapter
->stats_lock
);
2532 set_bit(__E1000_DOWN
, &adapter
->state
);
2536 ndev_err(netdev
, "Unable to allocate memory for queues\n");
2537 kfree(adapter
->rx_ring
);
2538 kfree(adapter
->tx_ring
);
2543 * e1000_open - Called when a network interface is made active
2544 * @netdev: network interface device structure
2546 * Returns 0 on success, negative value on failure
2548 * The open entry point is called when a network interface is made
2549 * active by the system (IFF_UP). At this point all resources needed
2550 * for transmit and receive operations are allocated, the interrupt
2551 * handler is registered with the OS, the watchdog timer is started,
2552 * and the stack is notified that the interface is ready.
2554 static int e1000_open(struct net_device
*netdev
)
2556 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2557 struct e1000_hw
*hw
= &adapter
->hw
;
2560 /* disallow open during test */
2561 if (test_bit(__E1000_TESTING
, &adapter
->state
))
2564 /* allocate transmit descriptors */
2565 err
= e1000e_setup_tx_resources(adapter
);
2569 /* allocate receive descriptors */
2570 err
= e1000e_setup_rx_resources(adapter
);
2574 e1000e_power_up_phy(adapter
);
2576 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2577 if ((adapter
->hw
.mng_cookie
.status
&
2578 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
2579 e1000_update_mng_vlan(adapter
);
2581 /* If AMT is enabled, let the firmware know that the network
2582 * interface is now open */
2583 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
2584 e1000e_check_mng_mode(&adapter
->hw
))
2585 e1000_get_hw_control(adapter
);
2587 /* before we allocate an interrupt, we must be ready to handle it.
2588 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2589 * as soon as we call pci_request_irq, so we have to setup our
2590 * clean_rx handler before we do so. */
2591 e1000_configure(adapter
);
2593 err
= e1000_request_irq(adapter
);
2597 /* From here on the code is the same as e1000e_up() */
2598 clear_bit(__E1000_DOWN
, &adapter
->state
);
2600 napi_enable(&adapter
->napi
);
2602 e1000_irq_enable(adapter
);
2604 /* fire a link status change interrupt to start the watchdog */
2605 ew32(ICS
, E1000_ICS_LSC
);
2610 e1000_release_hw_control(adapter
);
2611 e1000_power_down_phy(adapter
);
2612 e1000e_free_rx_resources(adapter
);
2614 e1000e_free_tx_resources(adapter
);
2616 e1000e_reset(adapter
);
2622 * e1000_close - Disables a network interface
2623 * @netdev: network interface device structure
2625 * Returns 0, this is not allowed to fail
2627 * The close entry point is called when an interface is de-activated
2628 * by the OS. The hardware is still under the drivers control, but
2629 * needs to be disabled. A global MAC reset is issued to stop the
2630 * hardware, and all transmit and receive resources are freed.
2632 static int e1000_close(struct net_device
*netdev
)
2634 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2636 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
2637 e1000e_down(adapter
);
2638 e1000_power_down_phy(adapter
);
2639 e1000_free_irq(adapter
);
2641 e1000e_free_tx_resources(adapter
);
2642 e1000e_free_rx_resources(adapter
);
2644 /* kill manageability vlan ID if supported, but not if a vlan with
2645 * the same ID is registered on the host OS (let 8021q kill it) */
2646 if ((adapter
->hw
.mng_cookie
.status
&
2647 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2649 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
2650 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
2652 /* If AMT is enabled, let the firmware know that the network
2653 * interface is now closed */
2654 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
2655 e1000e_check_mng_mode(&adapter
->hw
))
2656 e1000_release_hw_control(adapter
);
2661 * e1000_set_mac - Change the Ethernet Address of the NIC
2662 * @netdev: network interface device structure
2663 * @p: pointer to an address structure
2665 * Returns 0 on success, negative on failure
2667 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2669 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2670 struct sockaddr
*addr
= p
;
2672 if (!is_valid_ether_addr(addr
->sa_data
))
2673 return -EADDRNOTAVAIL
;
2675 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2676 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2678 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
2680 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
2681 /* activate the work around */
2682 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
2684 /* Hold a copy of the LAA in RAR[14] This is done so that
2685 * between the time RAR[0] gets clobbered and the time it
2686 * gets fixed (in e1000_watchdog), the actual LAA is in one
2687 * of the RARs and no incoming packets directed to this port
2688 * are dropped. Eventually the LAA will be in RAR[0] and
2690 e1000e_rar_set(&adapter
->hw
,
2691 adapter
->hw
.mac
.addr
,
2692 adapter
->hw
.mac
.rar_entry_count
- 1);
2698 /* Need to wait a few seconds after link up to get diagnostic information from
2700 static void e1000_update_phy_info(unsigned long data
)
2702 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2703 e1000_get_phy_info(&adapter
->hw
);
2707 * e1000e_update_stats - Update the board statistics counters
2708 * @adapter: board private structure
2710 void e1000e_update_stats(struct e1000_adapter
*adapter
)
2712 struct e1000_hw
*hw
= &adapter
->hw
;
2713 struct pci_dev
*pdev
= adapter
->pdev
;
2714 unsigned long irq_flags
;
2717 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2720 * Prevent stats update while adapter is being reset, or if the pci
2721 * connection is down.
2723 if (adapter
->link_speed
== 0)
2725 if (pci_channel_offline(pdev
))
2728 spin_lock_irqsave(&adapter
->stats_lock
, irq_flags
);
2730 /* these counters are modified from e1000_adjust_tbi_stats,
2731 * called from the interrupt context, so they must only
2732 * be written while holding adapter->stats_lock
2735 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
2736 adapter
->stats
.gprc
+= er32(GPRC
);
2737 adapter
->stats
.gorcl
+= er32(GORCL
);
2738 adapter
->stats
.gorch
+= er32(GORCH
);
2739 adapter
->stats
.bprc
+= er32(BPRC
);
2740 adapter
->stats
.mprc
+= er32(MPRC
);
2741 adapter
->stats
.roc
+= er32(ROC
);
2743 if (adapter
->flags
& FLAG_HAS_STATS_PTC_PRC
) {
2744 adapter
->stats
.prc64
+= er32(PRC64
);
2745 adapter
->stats
.prc127
+= er32(PRC127
);
2746 adapter
->stats
.prc255
+= er32(PRC255
);
2747 adapter
->stats
.prc511
+= er32(PRC511
);
2748 adapter
->stats
.prc1023
+= er32(PRC1023
);
2749 adapter
->stats
.prc1522
+= er32(PRC1522
);
2750 adapter
->stats
.symerrs
+= er32(SYMERRS
);
2751 adapter
->stats
.sec
+= er32(SEC
);
2754 adapter
->stats
.mpc
+= er32(MPC
);
2755 adapter
->stats
.scc
+= er32(SCC
);
2756 adapter
->stats
.ecol
+= er32(ECOL
);
2757 adapter
->stats
.mcc
+= er32(MCC
);
2758 adapter
->stats
.latecol
+= er32(LATECOL
);
2759 adapter
->stats
.dc
+= er32(DC
);
2760 adapter
->stats
.rlec
+= er32(RLEC
);
2761 adapter
->stats
.xonrxc
+= er32(XONRXC
);
2762 adapter
->stats
.xontxc
+= er32(XONTXC
);
2763 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
2764 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
2765 adapter
->stats
.fcruc
+= er32(FCRUC
);
2766 adapter
->stats
.gptc
+= er32(GPTC
);
2767 adapter
->stats
.gotcl
+= er32(GOTCL
);
2768 adapter
->stats
.gotch
+= er32(GOTCH
);
2769 adapter
->stats
.rnbc
+= er32(RNBC
);
2770 adapter
->stats
.ruc
+= er32(RUC
);
2771 adapter
->stats
.rfc
+= er32(RFC
);
2772 adapter
->stats
.rjc
+= er32(RJC
);
2773 adapter
->stats
.torl
+= er32(TORL
);
2774 adapter
->stats
.torh
+= er32(TORH
);
2775 adapter
->stats
.totl
+= er32(TOTL
);
2776 adapter
->stats
.toth
+= er32(TOTH
);
2777 adapter
->stats
.tpr
+= er32(TPR
);
2779 if (adapter
->flags
& FLAG_HAS_STATS_PTC_PRC
) {
2780 adapter
->stats
.ptc64
+= er32(PTC64
);
2781 adapter
->stats
.ptc127
+= er32(PTC127
);
2782 adapter
->stats
.ptc255
+= er32(PTC255
);
2783 adapter
->stats
.ptc511
+= er32(PTC511
);
2784 adapter
->stats
.ptc1023
+= er32(PTC1023
);
2785 adapter
->stats
.ptc1522
+= er32(PTC1522
);
2788 adapter
->stats
.mptc
+= er32(MPTC
);
2789 adapter
->stats
.bptc
+= er32(BPTC
);
2791 /* used for adaptive IFS */
2793 hw
->mac
.tx_packet_delta
= er32(TPT
);
2794 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
2795 hw
->mac
.collision_delta
= er32(COLC
);
2796 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
2798 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
2799 adapter
->stats
.rxerrc
+= er32(RXERRC
);
2800 adapter
->stats
.tncrs
+= er32(TNCRS
);
2801 adapter
->stats
.cexterr
+= er32(CEXTERR
);
2802 adapter
->stats
.tsctc
+= er32(TSCTC
);
2803 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
2805 adapter
->stats
.iac
+= er32(IAC
);
2807 if (adapter
->flags
& FLAG_HAS_STATS_ICR_ICT
) {
2808 adapter
->stats
.icrxoc
+= er32(ICRXOC
);
2809 adapter
->stats
.icrxptc
+= er32(ICRXPTC
);
2810 adapter
->stats
.icrxatc
+= er32(ICRXATC
);
2811 adapter
->stats
.ictxptc
+= er32(ICTXPTC
);
2812 adapter
->stats
.ictxatc
+= er32(ICTXATC
);
2813 adapter
->stats
.ictxqec
+= er32(ICTXQEC
);
2814 adapter
->stats
.ictxqmtc
+= er32(ICTXQMTC
);
2815 adapter
->stats
.icrxdmtc
+= er32(ICRXDMTC
);
2818 /* Fill out the OS statistics structure */
2819 adapter
->net_stats
.rx_packets
= adapter
->stats
.gprc
;
2820 adapter
->net_stats
.tx_packets
= adapter
->stats
.gptc
;
2821 adapter
->net_stats
.rx_bytes
= adapter
->stats
.gorcl
;
2822 adapter
->net_stats
.tx_bytes
= adapter
->stats
.gotcl
;
2823 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
2824 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
2828 /* RLEC on some newer hardware can be incorrect so build
2829 * our own version based on RUC and ROC */
2830 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
2831 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
2832 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
2833 adapter
->stats
.cexterr
;
2834 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
2836 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
2837 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
2838 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
2841 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
2842 adapter
->stats
.latecol
;
2843 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
2844 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
2845 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
2847 /* Tx Dropped needs to be maintained elsewhere */
2850 if (hw
->media_type
== e1000_media_type_copper
) {
2851 if ((adapter
->link_speed
== SPEED_1000
) &&
2852 (!e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
2853 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
2854 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
2858 /* Management Stats */
2859 adapter
->stats
.mgptc
+= er32(MGTPTC
);
2860 adapter
->stats
.mgprc
+= er32(MGTPRC
);
2861 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
2863 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
2866 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
2868 struct net_device
*netdev
= adapter
->netdev
;
2869 struct e1000_hw
*hw
= &adapter
->hw
;
2870 u32 ctrl
= er32(CTRL
);
2873 "Link is Up %d Mbps %s, Flow Control: %s\n",
2874 adapter
->link_speed
,
2875 (adapter
->link_duplex
== FULL_DUPLEX
) ?
2876 "Full Duplex" : "Half Duplex",
2877 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
2879 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
2880 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None" )));
2884 * e1000_watchdog - Timer Call-back
2885 * @data: pointer to adapter cast into an unsigned long
2887 static void e1000_watchdog(unsigned long data
)
2889 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2891 /* Do the rest outside of interrupt context */
2892 schedule_work(&adapter
->watchdog_task
);
2894 /* TODO: make this use queue_delayed_work() */
2897 static void e1000_watchdog_task(struct work_struct
*work
)
2899 struct e1000_adapter
*adapter
= container_of(work
,
2900 struct e1000_adapter
, watchdog_task
);
2902 struct net_device
*netdev
= adapter
->netdev
;
2903 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2904 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2905 struct e1000_hw
*hw
= &adapter
->hw
;
2910 if ((netif_carrier_ok(netdev
)) &&
2911 (er32(STATUS
) & E1000_STATUS_LU
))
2914 ret_val
= mac
->ops
.check_for_link(hw
);
2915 if ((ret_val
== E1000_ERR_PHY
) &&
2916 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
) &&
2918 E1000_PHY_CTRL_GBE_DISABLE
)) {
2919 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2921 "Gigabit has been disabled, downgrading speed\n");
2924 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
2925 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
2926 e1000_update_mng_vlan(adapter
);
2928 if ((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2929 !(er32(TXCW
) & E1000_TXCW_ANE
))
2930 link
= adapter
->hw
.mac
.serdes_has_link
;
2932 link
= er32(STATUS
) & E1000_STATUS_LU
;
2935 if (!netif_carrier_ok(netdev
)) {
2937 mac
->ops
.get_link_up_info(&adapter
->hw
,
2938 &adapter
->link_speed
,
2939 &adapter
->link_duplex
);
2940 e1000_print_link_info(adapter
);
2941 /* tweak tx_queue_len according to speed/duplex
2942 * and adjust the timeout factor */
2943 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2944 adapter
->tx_timeout_factor
= 1;
2945 switch (adapter
->link_speed
) {
2948 netdev
->tx_queue_len
= 10;
2949 adapter
->tx_timeout_factor
= 14;
2953 netdev
->tx_queue_len
= 100;
2954 /* maybe add some timeout factor ? */
2958 /* workaround: re-program speed mode bit after
2960 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
2963 tarc0
= er32(TARC0
);
2964 tarc0
&= ~SPEED_MODE_BIT
;
2968 /* disable TSO for pcie and 10/100 speeds, to avoid
2969 * some hardware issues */
2970 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
2971 switch (adapter
->link_speed
) {
2975 "10/100 speed: disabling TSO\n");
2976 netdev
->features
&= ~NETIF_F_TSO
;
2977 netdev
->features
&= ~NETIF_F_TSO6
;
2980 netdev
->features
|= NETIF_F_TSO
;
2981 netdev
->features
|= NETIF_F_TSO6
;
2989 /* enable transmits in the hardware, need to do this
2990 * after setting TARC0 */
2992 tctl
|= E1000_TCTL_EN
;
2995 netif_carrier_on(netdev
);
2996 netif_wake_queue(netdev
);
2998 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2999 mod_timer(&adapter
->phy_info_timer
,
3000 round_jiffies(jiffies
+ 2 * HZ
));
3002 /* make sure the receive unit is started */
3003 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
3004 u32 rctl
= er32(RCTL
);
3010 if (netif_carrier_ok(netdev
)) {
3011 adapter
->link_speed
= 0;
3012 adapter
->link_duplex
= 0;
3013 ndev_info(netdev
, "Link is Down\n");
3014 netif_carrier_off(netdev
);
3015 netif_stop_queue(netdev
);
3016 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3017 mod_timer(&adapter
->phy_info_timer
,
3018 round_jiffies(jiffies
+ 2 * HZ
));
3020 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
3021 schedule_work(&adapter
->reset_task
);
3026 e1000e_update_stats(adapter
);
3028 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
3029 adapter
->tpt_old
= adapter
->stats
.tpt
;
3030 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
3031 adapter
->colc_old
= adapter
->stats
.colc
;
3033 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
3034 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
3035 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
3036 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
3038 e1000e_update_adaptive(&adapter
->hw
);
3040 if (!netif_carrier_ok(netdev
)) {
3041 tx_pending
= (e1000_desc_unused(tx_ring
) + 1 <
3044 /* We've lost link, so the controller stops DMA,
3045 * but we've got queued Tx work that's never going
3046 * to get done, so reset controller to flush Tx.
3047 * (Do the reset outside of interrupt context). */
3048 adapter
->tx_timeout_count
++;
3049 schedule_work(&adapter
->reset_task
);
3053 /* Cause software interrupt to ensure rx ring is cleaned */
3054 ew32(ICS
, E1000_ICS_RXDMT0
);
3056 /* Force detection of hung controller every watchdog period */
3057 adapter
->detect_tx_hung
= 1;
3059 /* With 82571 controllers, LAA may be overwritten due to controller
3060 * reset from the other port. Set the appropriate LAA in RAR[0] */
3061 if (e1000e_get_laa_state_82571(hw
))
3062 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
3064 /* Reset the timer */
3065 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3066 mod_timer(&adapter
->watchdog_timer
,
3067 round_jiffies(jiffies
+ 2 * HZ
));
3070 #define E1000_TX_FLAGS_CSUM 0x00000001
3071 #define E1000_TX_FLAGS_VLAN 0x00000002
3072 #define E1000_TX_FLAGS_TSO 0x00000004
3073 #define E1000_TX_FLAGS_IPV4 0x00000008
3074 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3075 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3077 static int e1000_tso(struct e1000_adapter
*adapter
,
3078 struct sk_buff
*skb
)
3080 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3081 struct e1000_context_desc
*context_desc
;
3082 struct e1000_buffer
*buffer_info
;
3085 u16 ipcse
= 0, tucse
, mss
;
3086 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
3089 if (skb_is_gso(skb
)) {
3090 if (skb_header_cloned(skb
)) {
3091 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3096 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3097 mss
= skb_shinfo(skb
)->gso_size
;
3098 if (skb
->protocol
== htons(ETH_P_IP
)) {
3099 struct iphdr
*iph
= ip_hdr(skb
);
3102 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
3106 cmd_length
= E1000_TXD_CMD_IP
;
3107 ipcse
= skb_transport_offset(skb
) - 1;
3108 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
3109 ipv6_hdr(skb
)->payload_len
= 0;
3110 tcp_hdr(skb
)->check
=
3111 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3112 &ipv6_hdr(skb
)->daddr
,
3116 ipcss
= skb_network_offset(skb
);
3117 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
3118 tucss
= skb_transport_offset(skb
);
3119 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
3122 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
3123 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
3125 i
= tx_ring
->next_to_use
;
3126 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3127 buffer_info
= &tx_ring
->buffer_info
[i
];
3129 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
3130 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
3131 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
3132 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
3133 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
3134 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
3135 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
3136 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
3137 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
3139 buffer_info
->time_stamp
= jiffies
;
3140 buffer_info
->next_to_watch
= i
;
3143 if (i
== tx_ring
->count
)
3145 tx_ring
->next_to_use
= i
;
3153 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3155 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3156 struct e1000_context_desc
*context_desc
;
3157 struct e1000_buffer
*buffer_info
;
3161 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3162 css
= skb_transport_offset(skb
);
3164 i
= tx_ring
->next_to_use
;
3165 buffer_info
= &tx_ring
->buffer_info
[i
];
3166 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3168 context_desc
->lower_setup
.ip_config
= 0;
3169 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
3170 context_desc
->upper_setup
.tcp_fields
.tucso
=
3171 css
+ skb
->csum_offset
;
3172 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
3173 context_desc
->tcp_seg_setup
.data
= 0;
3174 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
3176 buffer_info
->time_stamp
= jiffies
;
3177 buffer_info
->next_to_watch
= i
;
3180 if (i
== tx_ring
->count
)
3182 tx_ring
->next_to_use
= i
;
3190 #define E1000_MAX_PER_TXD 8192
3191 #define E1000_MAX_TXD_PWR 12
3193 static int e1000_tx_map(struct e1000_adapter
*adapter
,
3194 struct sk_buff
*skb
, unsigned int first
,
3195 unsigned int max_per_txd
, unsigned int nr_frags
,
3198 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3199 struct e1000_buffer
*buffer_info
;
3200 unsigned int len
= skb
->len
- skb
->data_len
;
3201 unsigned int offset
= 0, size
, count
= 0, i
;
3204 i
= tx_ring
->next_to_use
;
3207 buffer_info
= &tx_ring
->buffer_info
[i
];
3208 size
= min(len
, max_per_txd
);
3210 /* Workaround for premature desc write-backs
3211 * in TSO mode. Append 4-byte sentinel desc */
3212 if (mss
&& !nr_frags
&& size
== len
&& size
> 8)
3215 buffer_info
->length
= size
;
3216 /* set time_stamp *before* dma to help avoid a possible race */
3217 buffer_info
->time_stamp
= jiffies
;
3219 pci_map_single(adapter
->pdev
,
3223 if (pci_dma_mapping_error(buffer_info
->dma
)) {
3224 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
3225 adapter
->tx_dma_failed
++;
3228 buffer_info
->next_to_watch
= i
;
3234 if (i
== tx_ring
->count
)
3238 for (f
= 0; f
< nr_frags
; f
++) {
3239 struct skb_frag_struct
*frag
;
3241 frag
= &skb_shinfo(skb
)->frags
[f
];
3243 offset
= frag
->page_offset
;
3246 buffer_info
= &tx_ring
->buffer_info
[i
];
3247 size
= min(len
, max_per_txd
);
3248 /* Workaround for premature desc write-backs
3249 * in TSO mode. Append 4-byte sentinel desc */
3250 if (mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8)
3253 buffer_info
->length
= size
;
3254 buffer_info
->time_stamp
= jiffies
;
3256 pci_map_page(adapter
->pdev
,
3261 if (pci_dma_mapping_error(buffer_info
->dma
)) {
3262 dev_err(&adapter
->pdev
->dev
,
3263 "TX DMA page map failed\n");
3264 adapter
->tx_dma_failed
++;
3268 buffer_info
->next_to_watch
= i
;
3275 if (i
== tx_ring
->count
)
3281 i
= tx_ring
->count
- 1;
3285 tx_ring
->buffer_info
[i
].skb
= skb
;
3286 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3291 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3292 int tx_flags
, int count
)
3294 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3295 struct e1000_tx_desc
*tx_desc
= NULL
;
3296 struct e1000_buffer
*buffer_info
;
3297 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3300 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
3301 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3303 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3305 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
3306 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3309 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
3310 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3311 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3314 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
3315 txd_lower
|= E1000_TXD_CMD_VLE
;
3316 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3319 i
= tx_ring
->next_to_use
;
3322 buffer_info
= &tx_ring
->buffer_info
[i
];
3323 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3324 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3325 tx_desc
->lower
.data
=
3326 cpu_to_le32(txd_lower
| buffer_info
->length
);
3327 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3330 if (i
== tx_ring
->count
)
3334 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3336 /* Force memory writes to complete before letting h/w
3337 * know there are new descriptors to fetch. (Only
3338 * applicable for weak-ordered memory model archs,
3339 * such as IA-64). */
3342 tx_ring
->next_to_use
= i
;
3343 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
3344 /* we need this if more than one processor can write to our tail
3345 * at a time, it synchronizes IO on IA64/Altix systems */
3349 #define MINIMUM_DHCP_PACKET_SIZE 282
3350 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
3351 struct sk_buff
*skb
)
3353 struct e1000_hw
*hw
= &adapter
->hw
;
3356 if (vlan_tx_tag_present(skb
)) {
3357 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
)
3358 && (adapter
->hw
.mng_cookie
.status
&
3359 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
3363 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
3366 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
3370 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
3373 if (ip
->protocol
!= IPPROTO_UDP
)
3376 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
3377 if (ntohs(udp
->dest
) != 67)
3380 offset
= (u8
*)udp
+ 8 - skb
->data
;
3381 length
= skb
->len
- offset
;
3382 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
3388 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3390 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3392 netif_stop_queue(netdev
);
3393 /* Herbert's original patch had:
3394 * smp_mb__after_netif_stop_queue();
3395 * but since that doesn't exist yet, just open code it. */
3398 /* We need to check again in a case another CPU has just
3399 * made room available. */
3400 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
3404 netif_start_queue(netdev
);
3405 ++adapter
->restart_queue
;
3409 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3411 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3413 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
3415 return __e1000_maybe_stop_tx(netdev
, size
);
3418 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3419 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3421 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3422 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3424 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
3425 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3426 unsigned int tx_flags
= 0;
3427 unsigned int len
= skb
->len
- skb
->data_len
;
3428 unsigned long irq_flags
;
3429 unsigned int nr_frags
;
3435 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
3436 dev_kfree_skb_any(skb
);
3437 return NETDEV_TX_OK
;
3440 if (skb
->len
<= 0) {
3441 dev_kfree_skb_any(skb
);
3442 return NETDEV_TX_OK
;
3445 mss
= skb_shinfo(skb
)->gso_size
;
3446 /* The controller does a simple calculation to
3447 * make sure there is enough room in the FIFO before
3448 * initiating the DMA for each buffer. The calc is:
3449 * 4 = ceil(buffer len/mss). To make sure we don't
3450 * overrun the FIFO, adjust the max buffer len if mss
3454 max_per_txd
= min(mss
<< 2, max_per_txd
);
3455 max_txd_pwr
= fls(max_per_txd
) - 1;
3457 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3458 * points to just header, pull a few bytes of payload from
3459 * frags into skb->data */
3460 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3461 if (skb
->data_len
&& (hdr_len
== len
)) {
3462 unsigned int pull_size
;
3464 pull_size
= min((unsigned int)4, skb
->data_len
);
3465 if (!__pskb_pull_tail(skb
, pull_size
)) {
3467 "__pskb_pull_tail failed.\n");
3468 dev_kfree_skb_any(skb
);
3469 return NETDEV_TX_OK
;
3471 len
= skb
->len
- skb
->data_len
;
3475 /* reserve a descriptor for the offload context */
3476 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3480 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3482 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3483 for (f
= 0; f
< nr_frags
; f
++)
3484 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3487 if (adapter
->hw
.mac
.tx_pkt_filtering
)
3488 e1000_transfer_dhcp_info(adapter
, skb
);
3490 if (!spin_trylock_irqsave(&adapter
->tx_queue_lock
, irq_flags
))
3491 /* Collision - tell upper layer to requeue */
3492 return NETDEV_TX_LOCKED
;
3494 /* need: count + 2 desc gap to keep tail from touching
3495 * head, otherwise try next time */
3496 if (e1000_maybe_stop_tx(netdev
, count
+ 2)) {
3497 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3498 return NETDEV_TX_BUSY
;
3501 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3502 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3503 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3506 first
= tx_ring
->next_to_use
;
3508 tso
= e1000_tso(adapter
, skb
);
3510 dev_kfree_skb_any(skb
);
3511 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3512 return NETDEV_TX_OK
;
3516 tx_flags
|= E1000_TX_FLAGS_TSO
;
3517 else if (e1000_tx_csum(adapter
, skb
))
3518 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3520 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3521 * 82571 hardware supports TSO capabilities for IPv6 as well...
3522 * no longer assume, we must. */
3523 if (skb
->protocol
== htons(ETH_P_IP
))
3524 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3526 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
3528 /* handle pci_map_single() error in e1000_tx_map */
3529 dev_kfree_skb_any(skb
);
3530 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3531 return NETDEV_TX_OK
;
3534 e1000_tx_queue(adapter
, tx_flags
, count
);
3536 netdev
->trans_start
= jiffies
;
3538 /* Make sure there is space in the ring for the next send. */
3539 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
3541 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3542 return NETDEV_TX_OK
;
3546 * e1000_tx_timeout - Respond to a Tx Hang
3547 * @netdev: network interface device structure
3549 static void e1000_tx_timeout(struct net_device
*netdev
)
3551 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3553 /* Do the reset outside of interrupt context */
3554 adapter
->tx_timeout_count
++;
3555 schedule_work(&adapter
->reset_task
);
3558 static void e1000_reset_task(struct work_struct
*work
)
3560 struct e1000_adapter
*adapter
;
3561 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
3563 e1000e_reinit_locked(adapter
);
3567 * e1000_get_stats - Get System Network Statistics
3568 * @netdev: network interface device structure
3570 * Returns the address of the device statistics structure.
3571 * The statistics are actually updated from the timer callback.
3573 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3575 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3577 /* only return the current stats */
3578 return &adapter
->net_stats
;
3582 * e1000_change_mtu - Change the Maximum Transfer Unit
3583 * @netdev: network interface device structure
3584 * @new_mtu: new value for maximum frame size
3586 * Returns 0 on success, negative on failure
3588 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3590 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3591 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3593 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
3594 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3595 ndev_err(netdev
, "Invalid MTU setting\n");
3599 /* Jumbo frame size limits */
3600 if (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3601 if (!(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
3602 ndev_err(netdev
, "Jumbo Frames not supported.\n");
3605 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
3606 ndev_err(netdev
, "Jumbo Frames not supported.\n");
3611 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3612 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3613 ndev_err(netdev
, "MTU > 9216 not supported.\n");
3617 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3619 /* e1000e_down has a dependency on max_frame_size */
3620 adapter
->hw
.mac
.max_frame_size
= max_frame
;
3621 if (netif_running(netdev
))
3622 e1000e_down(adapter
);
3624 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3625 * means we reserve 2 more, this pushes us to allocate from the next
3627 * i.e. RXBUFFER_2048 --> size-4096 slab
3628 * however with the new *_jumbo* routines, jumbo receives will use
3629 * fragmented skbs */
3631 if (max_frame
<= 256)
3632 adapter
->rx_buffer_len
= 256;
3633 else if (max_frame
<= 512)
3634 adapter
->rx_buffer_len
= 512;
3635 else if (max_frame
<= 1024)
3636 adapter
->rx_buffer_len
= 1024;
3637 else if (max_frame
<= 2048)
3638 adapter
->rx_buffer_len
= 2048;
3640 adapter
->rx_buffer_len
= 4096;
3642 /* adjust allocation if LPE protects us, and we aren't using SBP */
3643 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3644 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
3645 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
3648 ndev_info(netdev
, "changing MTU from %d to %d\n",
3649 netdev
->mtu
, new_mtu
);
3650 netdev
->mtu
= new_mtu
;
3652 if (netif_running(netdev
))
3655 e1000e_reset(adapter
);
3657 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3662 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
3665 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3666 struct mii_ioctl_data
*data
= if_mii(ifr
);
3667 unsigned long irq_flags
;
3669 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
3674 data
->phy_id
= adapter
->hw
.phy
.addr
;
3677 if (!capable(CAP_NET_ADMIN
))
3679 spin_lock_irqsave(&adapter
->stats_lock
, irq_flags
);
3680 if (e1e_rphy(&adapter
->hw
, data
->reg_num
& 0x1F,
3682 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
3685 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
3694 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3700 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
3706 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3708 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3709 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3710 struct e1000_hw
*hw
= &adapter
->hw
;
3711 u32 ctrl
, ctrl_ext
, rctl
, status
;
3712 u32 wufc
= adapter
->wol
;
3715 netif_device_detach(netdev
);
3717 if (netif_running(netdev
)) {
3718 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3719 e1000e_down(adapter
);
3720 e1000_free_irq(adapter
);
3723 retval
= pci_save_state(pdev
);
3727 status
= er32(STATUS
);
3728 if (status
& E1000_STATUS_LU
)
3729 wufc
&= ~E1000_WUFC_LNKC
;
3732 e1000_setup_rctl(adapter
);
3733 e1000_set_multi(netdev
);
3735 /* turn on all-multi mode if wake on multicast is enabled */
3736 if (wufc
& E1000_WUFC_MC
) {
3738 rctl
|= E1000_RCTL_MPE
;
3743 /* advertise wake from D3Cold */
3744 #define E1000_CTRL_ADVD3WUC 0x00100000
3745 /* phy power management enable */
3746 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3747 ctrl
|= E1000_CTRL_ADVD3WUC
|
3748 E1000_CTRL_EN_PHY_PWR_MGMT
;
3751 if (adapter
->hw
.media_type
== e1000_media_type_fiber
||
3752 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
3753 /* keep the laser running in D3 */
3754 ctrl_ext
= er32(CTRL_EXT
);
3755 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
3756 ew32(CTRL_EXT
, ctrl_ext
);
3759 /* Allow time for pending master requests to run */
3760 e1000e_disable_pcie_master(&adapter
->hw
);
3762 ew32(WUC
, E1000_WUC_PME_EN
);
3764 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3765 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3769 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3770 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3773 e1000_release_manageability(adapter
);
3775 /* make sure adapter isn't asleep if manageability is enabled */
3776 if (adapter
->flags
& FLAG_MNG_PT_ENABLED
) {
3777 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3778 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3781 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
3782 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
3784 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3785 * would have already happened in close and is redundant. */
3786 e1000_release_hw_control(adapter
);
3788 pci_disable_device(pdev
);
3790 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3796 static int e1000_resume(struct pci_dev
*pdev
)
3798 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3799 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3800 struct e1000_hw
*hw
= &adapter
->hw
;
3803 pci_set_power_state(pdev
, PCI_D0
);
3804 pci_restore_state(pdev
);
3805 err
= pci_enable_device(pdev
);
3808 "Cannot enable PCI device from suspend\n");
3812 pci_set_master(pdev
);
3814 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3815 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3817 if (netif_running(netdev
)) {
3818 err
= e1000_request_irq(adapter
);
3823 e1000e_power_up_phy(adapter
);
3824 e1000e_reset(adapter
);
3827 e1000_init_manageability(adapter
);
3829 if (netif_running(netdev
))
3832 netif_device_attach(netdev
);
3834 /* If the controller has AMT, do not set DRV_LOAD until the interface
3835 * is up. For all other cases, let the f/w know that the h/w is now
3836 * under the control of the driver. */
3837 if (!(adapter
->flags
& FLAG_HAS_AMT
) || !e1000e_check_mng_mode(&adapter
->hw
))
3838 e1000_get_hw_control(adapter
);
3844 static void e1000_shutdown(struct pci_dev
*pdev
)
3846 e1000_suspend(pdev
, PMSG_SUSPEND
);
3849 #ifdef CONFIG_NET_POLL_CONTROLLER
3851 * Polling 'interrupt' - used by things like netconsole to send skbs
3852 * without having to re-enable interrupts. It's not called while
3853 * the interrupt routine is executing.
3855 static void e1000_netpoll(struct net_device
*netdev
)
3857 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3859 disable_irq(adapter
->pdev
->irq
);
3860 e1000_intr(adapter
->pdev
->irq
, netdev
);
3862 e1000_clean_tx_irq(adapter
);
3864 enable_irq(adapter
->pdev
->irq
);
3869 * e1000_io_error_detected - called when PCI error is detected
3870 * @pdev: Pointer to PCI device
3871 * @state: The current pci connection state
3873 * This function is called after a PCI bus error affecting
3874 * this device has been detected.
3876 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
3877 pci_channel_state_t state
)
3879 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3880 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3882 netif_device_detach(netdev
);
3884 if (netif_running(netdev
))
3885 e1000e_down(adapter
);
3886 pci_disable_device(pdev
);
3888 /* Request a slot slot reset. */
3889 return PCI_ERS_RESULT_NEED_RESET
;
3893 * e1000_io_slot_reset - called after the pci bus has been reset.
3894 * @pdev: Pointer to PCI device
3896 * Restart the card from scratch, as if from a cold-boot. Implementation
3897 * resembles the first-half of the e1000_resume routine.
3899 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
3901 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3902 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3903 struct e1000_hw
*hw
= &adapter
->hw
;
3905 if (pci_enable_device(pdev
)) {
3907 "Cannot re-enable PCI device after reset.\n");
3908 return PCI_ERS_RESULT_DISCONNECT
;
3910 pci_set_master(pdev
);
3912 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3913 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3915 e1000e_reset(adapter
);
3918 return PCI_ERS_RESULT_RECOVERED
;
3922 * e1000_io_resume - called when traffic can start flowing again.
3923 * @pdev: Pointer to PCI device
3925 * This callback is called when the error recovery driver tells us that
3926 * its OK to resume normal operation. Implementation resembles the
3927 * second-half of the e1000_resume routine.
3929 static void e1000_io_resume(struct pci_dev
*pdev
)
3931 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3932 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3934 e1000_init_manageability(adapter
);
3936 if (netif_running(netdev
)) {
3937 if (e1000e_up(adapter
)) {
3939 "can't bring device back up after reset\n");
3944 netif_device_attach(netdev
);
3946 /* If the controller has AMT, do not set DRV_LOAD until the interface
3947 * is up. For all other cases, let the f/w know that the h/w is now
3948 * under the control of the driver. */
3949 if (!(adapter
->flags
& FLAG_HAS_AMT
) ||
3950 !e1000e_check_mng_mode(&adapter
->hw
))
3951 e1000_get_hw_control(adapter
);
3955 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
3957 struct e1000_hw
*hw
= &adapter
->hw
;
3958 struct net_device
*netdev
= adapter
->netdev
;
3961 /* print bus type/speed/width info */
3962 ndev_info(netdev
, "(PCI Express:2.5GB/s:%s) "
3963 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3965 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
3968 netdev
->dev_addr
[0], netdev
->dev_addr
[1],
3969 netdev
->dev_addr
[2], netdev
->dev_addr
[3],
3970 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
3971 ndev_info(netdev
, "Intel(R) PRO/%s Network Connection\n",
3972 (hw
->phy
.type
== e1000_phy_ife
)
3973 ? "10/100" : "1000");
3974 e1000e_read_part_num(hw
, &part_num
);
3975 ndev_info(netdev
, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3976 hw
->mac
.type
, hw
->phy
.type
,
3977 (part_num
>> 8), (part_num
& 0xff));
3981 * e1000_probe - Device Initialization Routine
3982 * @pdev: PCI device information struct
3983 * @ent: entry in e1000_pci_tbl
3985 * Returns 0 on success, negative on failure
3987 * e1000_probe initializes an adapter identified by a pci_dev structure.
3988 * The OS initialization, configuring of the adapter private structure,
3989 * and a hardware reset occur.
3991 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
3992 const struct pci_device_id
*ent
)
3994 struct net_device
*netdev
;
3995 struct e1000_adapter
*adapter
;
3996 struct e1000_hw
*hw
;
3997 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
3998 unsigned long mmio_start
, mmio_len
;
3999 unsigned long flash_start
, flash_len
;
4001 static int cards_found
;
4002 int i
, err
, pci_using_dac
;
4003 u16 eeprom_data
= 0;
4004 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
4006 err
= pci_enable_device(pdev
);
4011 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
4013 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
4017 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
4019 err
= pci_set_consistent_dma_mask(pdev
,
4022 dev_err(&pdev
->dev
, "No usable DMA "
4023 "configuration, aborting\n");
4029 err
= pci_request_regions(pdev
, e1000e_driver_name
);
4033 pci_set_master(pdev
);
4036 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
4038 goto err_alloc_etherdev
;
4040 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
4042 pci_set_drvdata(pdev
, netdev
);
4043 adapter
= netdev_priv(netdev
);
4045 adapter
->netdev
= netdev
;
4046 adapter
->pdev
= pdev
;
4048 adapter
->pba
= ei
->pba
;
4049 adapter
->flags
= ei
->flags
;
4050 adapter
->hw
.adapter
= adapter
;
4051 adapter
->hw
.mac
.type
= ei
->mac
;
4052 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
4054 mmio_start
= pci_resource_start(pdev
, 0);
4055 mmio_len
= pci_resource_len(pdev
, 0);
4058 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
4059 if (!adapter
->hw
.hw_addr
)
4062 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
4063 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
4064 flash_start
= pci_resource_start(pdev
, 1);
4065 flash_len
= pci_resource_len(pdev
, 1);
4066 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
4067 if (!adapter
->hw
.flash_address
)
4071 /* construct the net_device struct */
4072 netdev
->open
= &e1000_open
;
4073 netdev
->stop
= &e1000_close
;
4074 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
4075 netdev
->get_stats
= &e1000_get_stats
;
4076 netdev
->set_multicast_list
= &e1000_set_multi
;
4077 netdev
->set_mac_address
= &e1000_set_mac
;
4078 netdev
->change_mtu
= &e1000_change_mtu
;
4079 netdev
->do_ioctl
= &e1000_ioctl
;
4080 e1000e_set_ethtool_ops(netdev
);
4081 netdev
->tx_timeout
= &e1000_tx_timeout
;
4082 netdev
->watchdog_timeo
= 5 * HZ
;
4083 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
4084 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
4085 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
4086 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
4087 #ifdef CONFIG_NET_POLL_CONTROLLER
4088 netdev
->poll_controller
= e1000_netpoll
;
4090 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
4092 netdev
->mem_start
= mmio_start
;
4093 netdev
->mem_end
= mmio_start
+ mmio_len
;
4095 adapter
->bd_number
= cards_found
++;
4097 /* setup adapter struct */
4098 err
= e1000_sw_init(adapter
);
4104 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
4105 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
4106 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
4108 err
= ei
->get_invariants(adapter
);
4112 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
4114 adapter
->hw
.phy
.wait_for_link
= 0;
4116 /* Copper options */
4117 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
4118 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
4119 adapter
->hw
.phy
.disable_polarity_correction
= 0;
4120 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
4123 if (e1000_check_reset_block(&adapter
->hw
))
4125 "PHY reset is blocked due to SOL/IDER session.\n");
4127 netdev
->features
= NETIF_F_SG
|
4129 NETIF_F_HW_VLAN_TX
|
4132 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
4133 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
4135 netdev
->features
|= NETIF_F_TSO
;
4136 netdev
->features
|= NETIF_F_TSO6
;
4139 netdev
->features
|= NETIF_F_HIGHDMA
;
4141 /* We should not be using LLTX anymore, but we are still TX faster with
4143 netdev
->features
|= NETIF_F_LLTX
;
4145 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
4146 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
4148 /* before reading the NVM, reset the controller to
4149 * put the device in a known good starting state */
4150 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
4153 * systems with ASPM and others may see the checksum fail on the first
4154 * attempt. Let's give it a few tries
4157 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
4160 ndev_err(netdev
, "The NVM Checksum Is Not Valid\n");
4166 /* copy the MAC address out of the NVM */
4167 if (e1000e_read_mac_addr(&adapter
->hw
))
4168 ndev_err(netdev
, "NVM Read Error while reading MAC address\n");
4170 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
4171 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
4173 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
4174 ndev_err(netdev
, "Invalid MAC Address: "
4175 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4176 netdev
->perm_addr
[0], netdev
->perm_addr
[1],
4177 netdev
->perm_addr
[2], netdev
->perm_addr
[3],
4178 netdev
->perm_addr
[4], netdev
->perm_addr
[5]);
4183 init_timer(&adapter
->watchdog_timer
);
4184 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
4185 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
4187 init_timer(&adapter
->phy_info_timer
);
4188 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
4189 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
4191 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
4192 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
4194 e1000e_check_options(adapter
);
4196 /* Initialize link parameters. User can change them with ethtool */
4197 adapter
->hw
.mac
.autoneg
= 1;
4198 adapter
->fc_autoneg
= 1;
4199 adapter
->hw
.mac
.original_fc
= e1000_fc_default
;
4200 adapter
->hw
.mac
.fc
= e1000_fc_default
;
4201 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
4203 /* ring size defaults */
4204 adapter
->rx_ring
->count
= 256;
4205 adapter
->tx_ring
->count
= 256;
4208 * Initial Wake on LAN setting - If APM wake is enabled in
4209 * the EEPROM, enable the ACPI Magic Packet filter
4211 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
4212 /* APME bit in EEPROM is mapped to WUC.APME */
4213 eeprom_data
= er32(WUC
);
4214 eeprom_apme_mask
= E1000_WUC_APME
;
4215 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
4216 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
4217 (adapter
->hw
.bus
.func
== 1))
4218 e1000_read_nvm(&adapter
->hw
,
4219 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
4221 e1000_read_nvm(&adapter
->hw
,
4222 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
4225 /* fetch WoL from EEPROM */
4226 if (eeprom_data
& eeprom_apme_mask
)
4227 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
4230 * now that we have the eeprom settings, apply the special cases
4231 * where the eeprom may be wrong or the board simply won't support
4232 * wake on lan on a particular port
4234 if (!(adapter
->flags
& FLAG_HAS_WOL
))
4235 adapter
->eeprom_wol
= 0;
4237 /* initialize the wol settings based on the eeprom settings */
4238 adapter
->wol
= adapter
->eeprom_wol
;
4240 /* reset the hardware with the new settings */
4241 e1000e_reset(adapter
);
4243 /* If the controller has AMT, do not set DRV_LOAD until the interface
4244 * is up. For all other cases, let the f/w know that the h/w is now
4245 * under the control of the driver. */
4246 if (!(adapter
->flags
& FLAG_HAS_AMT
) ||
4247 !e1000e_check_mng_mode(&adapter
->hw
))
4248 e1000_get_hw_control(adapter
);
4250 /* tell the stack to leave us alone until e1000_open() is called */
4251 netif_carrier_off(netdev
);
4252 netif_stop_queue(netdev
);
4254 strcpy(netdev
->name
, "eth%d");
4255 err
= register_netdev(netdev
);
4259 e1000_print_device_info(adapter
);
4265 e1000_release_hw_control(adapter
);
4267 if (!e1000_check_reset_block(&adapter
->hw
))
4268 e1000_phy_hw_reset(&adapter
->hw
);
4270 if (adapter
->hw
.flash_address
)
4271 iounmap(adapter
->hw
.flash_address
);
4274 kfree(adapter
->tx_ring
);
4275 kfree(adapter
->rx_ring
);
4277 iounmap(adapter
->hw
.hw_addr
);
4279 free_netdev(netdev
);
4281 pci_release_regions(pdev
);
4284 pci_disable_device(pdev
);
4289 * e1000_remove - Device Removal Routine
4290 * @pdev: PCI device information struct
4292 * e1000_remove is called by the PCI subsystem to alert the driver
4293 * that it should release a PCI device. The could be caused by a
4294 * Hot-Plug event, or because the driver is going to be removed from
4297 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
4299 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4300 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4302 /* flush_scheduled work may reschedule our watchdog task, so
4303 * explicitly disable watchdog tasks from being rescheduled */
4304 set_bit(__E1000_DOWN
, &adapter
->state
);
4305 del_timer_sync(&adapter
->watchdog_timer
);
4306 del_timer_sync(&adapter
->phy_info_timer
);
4308 flush_scheduled_work();
4310 e1000_release_manageability(adapter
);
4312 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4313 * would have already happened in close and is redundant. */
4314 e1000_release_hw_control(adapter
);
4316 unregister_netdev(netdev
);
4318 if (!e1000_check_reset_block(&adapter
->hw
))
4319 e1000_phy_hw_reset(&adapter
->hw
);
4321 kfree(adapter
->tx_ring
);
4322 kfree(adapter
->rx_ring
);
4324 iounmap(adapter
->hw
.hw_addr
);
4325 if (adapter
->hw
.flash_address
)
4326 iounmap(adapter
->hw
.flash_address
);
4327 pci_release_regions(pdev
);
4329 free_netdev(netdev
);
4331 pci_disable_device(pdev
);
4334 /* PCI Error Recovery (ERS) */
4335 static struct pci_error_handlers e1000_err_handler
= {
4336 .error_detected
= e1000_io_error_detected
,
4337 .slot_reset
= e1000_io_slot_reset
,
4338 .resume
= e1000_io_resume
,
4341 static struct pci_device_id e1000_pci_tbl
[] = {
4343 * Support for 82571/2/3, es2lan and ich8 will be phased in
4346 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4347 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4348 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4349 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4350 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4351 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4352 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4353 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4354 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4355 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4356 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4357 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4358 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4359 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4360 board_80003es2lan },
4361 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4362 board_80003es2lan },
4363 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4364 board_80003es2lan },
4365 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4366 board_80003es2lan },
4367 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4368 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4369 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4370 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4371 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4372 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4373 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4376 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
4377 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
4378 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
4379 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
4380 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
4382 { } /* terminate list */
4384 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
4386 /* PCI Device API Driver */
4387 static struct pci_driver e1000_driver
= {
4388 .name
= e1000e_driver_name
,
4389 .id_table
= e1000_pci_tbl
,
4390 .probe
= e1000_probe
,
4391 .remove
= __devexit_p(e1000_remove
),
4393 /* Power Managment Hooks */
4394 .suspend
= e1000_suspend
,
4395 .resume
= e1000_resume
,
4397 .shutdown
= e1000_shutdown
,
4398 .err_handler
= &e1000_err_handler
4402 * e1000_init_module - Driver Registration Routine
4404 * e1000_init_module is the first routine called when the driver is
4405 * loaded. All it does is register with the PCI subsystem.
4407 static int __init
e1000_init_module(void)
4410 printk(KERN_INFO
"%s: Intel(R) PRO/1000 Network Driver - %s\n",
4411 e1000e_driver_name
, e1000e_driver_version
);
4412 printk(KERN_INFO
"%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4413 e1000e_driver_name
);
4414 ret
= pci_register_driver(&e1000_driver
);
4418 module_init(e1000_init_module
);
4421 * e1000_exit_module - Driver Exit Cleanup Routine
4423 * e1000_exit_module is called just before the driver is removed
4426 static void __exit
e1000_exit_module(void)
4428 pci_unregister_driver(&e1000_driver
);
4430 module_exit(e1000_exit_module
);
4433 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4434 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4435 MODULE_LICENSE("GPL");
4436 MODULE_VERSION(DRV_VERSION
);