fs: use kmem_cache_zalloc instead
[pv_ops_mirror.git] / drivers / net / eepro100.c
blob1548a80f917d52650feb344369ab065b16122a4f
1 /* drivers/net/eepro100.c: An Intel i82557-559 Ethernet driver for Linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 The driver also contains updates by different kernel developers
6 (see incomplete list below).
7 Current maintainer is Andrey V. Savochkin <saw@saw.sw.com.sg>.
8 Please use this email address and linux-kernel mailing list for bug reports.
10 This software may be used and distributed according to the terms
11 of the GNU General Public License, incorporated herein by reference.
13 This driver is for the Intel EtherExpress Pro100 (Speedo3) design.
14 It should work with all i82557/558/559 boards.
16 Version history:
17 1998 Apr - 2000 Feb Andrey V. Savochkin <saw@saw.sw.com.sg>
18 Serious fixes for multicast filter list setting, TX timeout routine;
19 RX ring refilling logic; other stuff
20 2000 Feb Jeff Garzik <jgarzik@pobox.com>
21 Convert to new PCI driver interface
22 2000 Mar 24 Dragan Stancevic <visitor@valinux.com>
23 Disabled FC and ER, to avoid lockups when when we get FCP interrupts.
24 2000 Jul 17 Goutham Rao <goutham.rao@intel.com>
25 PCI DMA API fixes, adding pci_dma_sync_single calls where neccesary
26 2000 Aug 31 David Mosberger <davidm@hpl.hp.com>
27 rx_align support: enables rx DMA without causing unaligned accesses.
30 static const char * const version =
31 "eepro100.c:v1.09j-t 9/29/99 Donald Becker\n"
32 "eepro100.c: $Revision: 1.36 $ 2000/11/17 Modified by Andrey V. Savochkin <saw@saw.sw.com.sg> and others\n";
34 /* A few user-configurable values that apply to all boards.
35 First set is undocumented and spelled per Intel recommendations. */
37 static int congenb /* = 0 */; /* Enable congestion control in the DP83840. */
38 static int txfifo = 8; /* Tx FIFO threshold in 4 byte units, 0-15 */
39 static int rxfifo = 8; /* Rx FIFO threshold, default 32 bytes. */
40 /* Tx/Rx DMA burst length, 0-127, 0 == no preemption, tx==128 -> disabled. */
41 static int txdmacount = 128;
42 static int rxdmacount /* = 0 */;
44 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) || defined(__mips__) || \
45 defined(__arm__)
46 /* align rx buffers to 2 bytes so that IP header is aligned */
47 # define rx_align(skb) skb_reserve((skb), 2)
48 # define RxFD_ALIGNMENT __attribute__ ((aligned (2), packed))
49 #else
50 # define rx_align(skb)
51 # define RxFD_ALIGNMENT
52 #endif
54 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx method.
55 Lower values use more memory, but are faster. */
56 static int rx_copybreak = 200;
58 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
59 static int max_interrupt_work = 20;
61 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast) */
62 static int multicast_filter_limit = 64;
64 /* 'options' is used to pass a transceiver override or full-duplex flag
65 e.g. "options=16" for FD, "options=32" for 100mbps-only. */
66 static int full_duplex[] = {-1, -1, -1, -1, -1, -1, -1, -1};
67 static int options[] = {-1, -1, -1, -1, -1, -1, -1, -1};
69 /* A few values that may be tweaked. */
70 /* The ring sizes should be a power of two for efficiency. */
71 #define TX_RING_SIZE 64
72 #define RX_RING_SIZE 64
73 /* How much slots multicast filter setup may take.
74 Do not descrease without changing set_rx_mode() implementaion. */
75 #define TX_MULTICAST_SIZE 2
76 #define TX_MULTICAST_RESERV (TX_MULTICAST_SIZE*2)
77 /* Actual number of TX packets queued, must be
78 <= TX_RING_SIZE-TX_MULTICAST_RESERV. */
79 #define TX_QUEUE_LIMIT (TX_RING_SIZE-TX_MULTICAST_RESERV)
80 /* Hysteresis marking queue as no longer full. */
81 #define TX_QUEUE_UNFULL (TX_QUEUE_LIMIT-4)
83 /* Operational parameters that usually are not changed. */
85 /* Time in jiffies before concluding the transmitter is hung. */
86 #define TX_TIMEOUT (2*HZ)
87 /* Size of an pre-allocated Rx buffer: <Ethernet MTU> + slack.*/
88 #define PKT_BUF_SZ 1536
90 #include <linux/module.h>
92 #include <linux/kernel.h>
93 #include <linux/string.h>
94 #include <linux/errno.h>
95 #include <linux/ioport.h>
96 #include <linux/slab.h>
97 #include <linux/interrupt.h>
98 #include <linux/timer.h>
99 #include <linux/pci.h>
100 #include <linux/spinlock.h>
101 #include <linux/init.h>
102 #include <linux/mii.h>
103 #include <linux/delay.h>
104 #include <linux/bitops.h>
106 #include <asm/io.h>
107 #include <asm/uaccess.h>
108 #include <asm/irq.h>
110 #include <linux/netdevice.h>
111 #include <linux/etherdevice.h>
112 #include <linux/rtnetlink.h>
113 #include <linux/skbuff.h>
114 #include <linux/ethtool.h>
116 static int use_io;
117 static int debug = -1;
118 #define DEBUG_DEFAULT (NETIF_MSG_DRV | \
119 NETIF_MSG_HW | \
120 NETIF_MSG_RX_ERR | \
121 NETIF_MSG_TX_ERR)
122 #define DEBUG ((debug >= 0) ? (1<<debug)-1 : DEBUG_DEFAULT)
125 MODULE_AUTHOR("Maintainer: Andrey V. Savochkin <saw@saw.sw.com.sg>");
126 MODULE_DESCRIPTION("Intel i82557/i82558/i82559 PCI EtherExpressPro driver");
127 MODULE_LICENSE("GPL");
128 module_param(use_io, int, 0);
129 module_param(debug, int, 0);
130 module_param_array(options, int, NULL, 0);
131 module_param_array(full_duplex, int, NULL, 0);
132 module_param(congenb, int, 0);
133 module_param(txfifo, int, 0);
134 module_param(rxfifo, int, 0);
135 module_param(txdmacount, int, 0);
136 module_param(rxdmacount, int, 0);
137 module_param(rx_copybreak, int, 0);
138 module_param(max_interrupt_work, int, 0);
139 module_param(multicast_filter_limit, int, 0);
140 MODULE_PARM_DESC(debug, "debug level (0-6)");
141 MODULE_PARM_DESC(options, "Bits 0-3: transceiver type, bit 4: full duplex, bit 5: 100Mbps");
142 MODULE_PARM_DESC(full_duplex, "full duplex setting(s) (1)");
143 MODULE_PARM_DESC(congenb, "Enable congestion control (1)");
144 MODULE_PARM_DESC(txfifo, "Tx FIFO threshold in 4 byte units, (0-15)");
145 MODULE_PARM_DESC(rxfifo, "Rx FIFO threshold in 4 byte units, (0-15)");
146 MODULE_PARM_DESC(txdmacount, "Tx DMA burst length; 128 - disable (0-128)");
147 MODULE_PARM_DESC(rxdmacount, "Rx DMA burst length; 128 - disable (0-128)");
148 MODULE_PARM_DESC(rx_copybreak, "copy breakpoint for copy-only-tiny-frames");
149 MODULE_PARM_DESC(max_interrupt_work, "maximum events handled per interrupt");
150 MODULE_PARM_DESC(multicast_filter_limit, "maximum number of filtered multicast addresses");
152 #define RUN_AT(x) (jiffies + (x))
154 #define netdevice_start(dev)
155 #define netdevice_stop(dev)
156 #define netif_set_tx_timeout(dev, tf, tm) \
157 do { \
158 (dev)->tx_timeout = (tf); \
159 (dev)->watchdog_timeo = (tm); \
160 } while(0)
165 Theory of Operation
167 I. Board Compatibility
169 This device driver is designed for the Intel i82557 "Speedo3" chip, Intel's
170 single-chip fast Ethernet controller for PCI, as used on the Intel
171 EtherExpress Pro 100 adapter.
173 II. Board-specific settings
175 PCI bus devices are configured by the system at boot time, so no jumpers
176 need to be set on the board. The system BIOS should be set to assign the
177 PCI INTA signal to an otherwise unused system IRQ line. While it's
178 possible to share PCI interrupt lines, it negatively impacts performance and
179 only recent kernels support it.
181 III. Driver operation
183 IIIA. General
184 The Speedo3 is very similar to other Intel network chips, that is to say
185 "apparently designed on a different planet". This chips retains the complex
186 Rx and Tx descriptors and multiple buffers pointers as previous chips, but
187 also has simplified Tx and Rx buffer modes. This driver uses the "flexible"
188 Tx mode, but in a simplified lower-overhead manner: it associates only a
189 single buffer descriptor with each frame descriptor.
191 Despite the extra space overhead in each receive skbuff, the driver must use
192 the simplified Rx buffer mode to assure that only a single data buffer is
193 associated with each RxFD. The driver implements this by reserving space
194 for the Rx descriptor at the head of each Rx skbuff.
196 The Speedo-3 has receive and command unit base addresses that are added to
197 almost all descriptor pointers. The driver sets these to zero, so that all
198 pointer fields are absolute addresses.
200 The System Control Block (SCB) of some previous Intel chips exists on the
201 chip in both PCI I/O and memory space. This driver uses the I/O space
202 registers, but might switch to memory mapped mode to better support non-x86
203 processors.
205 IIIB. Transmit structure
207 The driver must use the complex Tx command+descriptor mode in order to
208 have a indirect pointer to the skbuff data section. Each Tx command block
209 (TxCB) is associated with two immediately appended Tx Buffer Descriptor
210 (TxBD). A fixed ring of these TxCB+TxBD pairs are kept as part of the
211 speedo_private data structure for each adapter instance.
213 The newer i82558 explicitly supports this structure, and can read the two
214 TxBDs in the same PCI burst as the TxCB.
216 This ring structure is used for all normal transmit packets, but the
217 transmit packet descriptors aren't long enough for most non-Tx commands such
218 as CmdConfigure. This is complicated by the possibility that the chip has
219 already loaded the link address in the previous descriptor. So for these
220 commands we convert the next free descriptor on the ring to a NoOp, and point
221 that descriptor's link to the complex command.
223 An additional complexity of these non-transmit commands are that they may be
224 added asynchronous to the normal transmit queue, so we disable interrupts
225 whenever the Tx descriptor ring is manipulated.
227 A notable aspect of these special configure commands is that they do
228 work with the normal Tx ring entry scavenge method. The Tx ring scavenge
229 is done at interrupt time using the 'dirty_tx' index, and checking for the
230 command-complete bit. While the setup frames may have the NoOp command on the
231 Tx ring marked as complete, but not have completed the setup command, this
232 is not a problem. The tx_ring entry can be still safely reused, as the
233 tx_skbuff[] entry is always empty for config_cmd and mc_setup frames.
235 Commands may have bits set e.g. CmdSuspend in the command word to either
236 suspend or stop the transmit/command unit. This driver always flags the last
237 command with CmdSuspend, erases the CmdSuspend in the previous command, and
238 then issues a CU_RESUME.
239 Note: Watch out for the potential race condition here: imagine
240 erasing the previous suspend
241 the chip processes the previous command
242 the chip processes the final command, and suspends
243 doing the CU_RESUME
244 the chip processes the next-yet-valid post-final-command.
245 So blindly sending a CU_RESUME is only safe if we do it immediately after
246 after erasing the previous CmdSuspend, without the possibility of an
247 intervening delay. Thus the resume command is always within the
248 interrupts-disabled region. This is a timing dependence, but handling this
249 condition in a timing-independent way would considerably complicate the code.
251 Note: In previous generation Intel chips, restarting the command unit was a
252 notoriously slow process. This is presumably no longer true.
254 IIIC. Receive structure
256 Because of the bus-master support on the Speedo3 this driver uses the new
257 SKBUFF_RX_COPYBREAK scheme, rather than a fixed intermediate receive buffer.
258 This scheme allocates full-sized skbuffs as receive buffers. The value
259 SKBUFF_RX_COPYBREAK is used as the copying breakpoint: it is chosen to
260 trade-off the memory wasted by passing the full-sized skbuff to the queue
261 layer for all frames vs. the copying cost of copying a frame to a
262 correctly-sized skbuff.
264 For small frames the copying cost is negligible (esp. considering that we
265 are pre-loading the cache with immediately useful header information), so we
266 allocate a new, minimally-sized skbuff. For large frames the copying cost
267 is non-trivial, and the larger copy might flush the cache of useful data, so
268 we pass up the skbuff the packet was received into.
270 IV. Notes
272 Thanks to Steve Williams of Intel for arranging the non-disclosure agreement
273 that stated that I could disclose the information. But I still resent
274 having to sign an Intel NDA when I'm helping Intel sell their own product!
278 static int speedo_found1(struct pci_dev *pdev, void __iomem *ioaddr, int fnd_cnt, int acpi_idle_state);
280 /* Offsets to the various registers.
281 All accesses need not be longword aligned. */
282 enum speedo_offsets {
283 SCBStatus = 0, SCBCmd = 2, /* Rx/Command Unit command and status. */
284 SCBIntmask = 3,
285 SCBPointer = 4, /* General purpose pointer. */
286 SCBPort = 8, /* Misc. commands and operands. */
287 SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
288 SCBCtrlMDI = 16, /* MDI interface control. */
289 SCBEarlyRx = 20, /* Early receive byte count. */
291 /* Commands that can be put in a command list entry. */
292 enum commands {
293 CmdNOp = 0, CmdIASetup = 0x10000, CmdConfigure = 0x20000,
294 CmdMulticastList = 0x30000, CmdTx = 0x40000, CmdTDR = 0x50000,
295 CmdDump = 0x60000, CmdDiagnose = 0x70000,
296 CmdSuspend = 0x40000000, /* Suspend after completion. */
297 CmdIntr = 0x20000000, /* Interrupt after completion. */
298 CmdTxFlex = 0x00080000, /* Use "Flexible mode" for CmdTx command. */
300 /* Clear CmdSuspend (1<<30) avoiding interference with the card access to the
301 status bits. Previous driver versions used separate 16 bit fields for
302 commands and statuses. --SAW
304 #if defined(__alpha__)
305 # define clear_suspend(cmd) clear_bit(30, &(cmd)->cmd_status);
306 #else
307 # if defined(__LITTLE_ENDIAN)
308 # define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x4000
309 # elif defined(__BIG_ENDIAN)
310 # define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x0040
311 # else
312 # error Unsupported byteorder
313 # endif
314 #endif
316 enum SCBCmdBits {
317 SCBMaskCmdDone=0x8000, SCBMaskRxDone=0x4000, SCBMaskCmdIdle=0x2000,
318 SCBMaskRxSuspend=0x1000, SCBMaskEarlyRx=0x0800, SCBMaskFlowCtl=0x0400,
319 SCBTriggerIntr=0x0200, SCBMaskAll=0x0100,
320 /* The rest are Rx and Tx commands. */
321 CUStart=0x0010, CUResume=0x0020, CUStatsAddr=0x0040, CUShowStats=0x0050,
322 CUCmdBase=0x0060, /* CU Base address (set to zero) . */
323 CUDumpStats=0x0070, /* Dump then reset stats counters. */
324 RxStart=0x0001, RxResume=0x0002, RxAbort=0x0004, RxAddrLoad=0x0006,
325 RxResumeNoResources=0x0007,
328 enum SCBPort_cmds {
329 PortReset=0, PortSelfTest=1, PortPartialReset=2, PortDump=3,
332 /* The Speedo3 Rx and Tx frame/buffer descriptors. */
333 struct descriptor { /* A generic descriptor. */
334 volatile s32 cmd_status; /* All command and status fields. */
335 u32 link; /* struct descriptor * */
336 unsigned char params[0];
339 /* The Speedo3 Rx and Tx buffer descriptors. */
340 struct RxFD { /* Receive frame descriptor. */
341 volatile s32 status;
342 u32 link; /* struct RxFD * */
343 u32 rx_buf_addr; /* void * */
344 u32 count;
345 } RxFD_ALIGNMENT;
347 /* Selected elements of the Tx/RxFD.status word. */
348 enum RxFD_bits {
349 RxComplete=0x8000, RxOK=0x2000,
350 RxErrCRC=0x0800, RxErrAlign=0x0400, RxErrTooBig=0x0200, RxErrSymbol=0x0010,
351 RxEth2Type=0x0020, RxNoMatch=0x0004, RxNoIAMatch=0x0002,
352 TxUnderrun=0x1000, StatusComplete=0x8000,
355 #define CONFIG_DATA_SIZE 22
356 struct TxFD { /* Transmit frame descriptor set. */
357 s32 status;
358 u32 link; /* void * */
359 u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
360 s32 count; /* # of TBD (=1), Tx start thresh., etc. */
361 /* This constitutes two "TBD" entries -- we only use one. */
362 #define TX_DESCR_BUF_OFFSET 16
363 u32 tx_buf_addr0; /* void *, frame to be transmitted. */
364 s32 tx_buf_size0; /* Length of Tx frame. */
365 u32 tx_buf_addr1; /* void *, frame to be transmitted. */
366 s32 tx_buf_size1; /* Length of Tx frame. */
367 /* the structure must have space for at least CONFIG_DATA_SIZE starting
368 * from tx_desc_addr field */
371 /* Multicast filter setting block. --SAW */
372 struct speedo_mc_block {
373 struct speedo_mc_block *next;
374 unsigned int tx;
375 dma_addr_t frame_dma;
376 unsigned int len;
377 struct descriptor frame __attribute__ ((__aligned__(16)));
380 /* Elements of the dump_statistics block. This block must be lword aligned. */
381 struct speedo_stats {
382 u32 tx_good_frames;
383 u32 tx_coll16_errs;
384 u32 tx_late_colls;
385 u32 tx_underruns;
386 u32 tx_lost_carrier;
387 u32 tx_deferred;
388 u32 tx_one_colls;
389 u32 tx_multi_colls;
390 u32 tx_total_colls;
391 u32 rx_good_frames;
392 u32 rx_crc_errs;
393 u32 rx_align_errs;
394 u32 rx_resource_errs;
395 u32 rx_overrun_errs;
396 u32 rx_colls_errs;
397 u32 rx_runt_errs;
398 u32 done_marker;
401 enum Rx_ring_state_bits {
402 RrNoMem=1, RrPostponed=2, RrNoResources=4, RrOOMReported=8,
405 /* Do not change the position (alignment) of the first few elements!
406 The later elements are grouped for cache locality.
408 Unfortunately, all the positions have been shifted since there.
409 A new re-alignment is required. 2000/03/06 SAW */
410 struct speedo_private {
411 void __iomem *regs;
412 struct TxFD *tx_ring; /* Commands (usually CmdTxPacket). */
413 struct RxFD *rx_ringp[RX_RING_SIZE]; /* Rx descriptor, used as ring. */
414 /* The addresses of a Tx/Rx-in-place packets/buffers. */
415 struct sk_buff *tx_skbuff[TX_RING_SIZE];
416 struct sk_buff *rx_skbuff[RX_RING_SIZE];
417 /* Mapped addresses of the rings. */
418 dma_addr_t tx_ring_dma;
419 #define TX_RING_ELEM_DMA(sp, n) ((sp)->tx_ring_dma + (n)*sizeof(struct TxFD))
420 dma_addr_t rx_ring_dma[RX_RING_SIZE];
421 struct descriptor *last_cmd; /* Last command sent. */
422 unsigned int cur_tx, dirty_tx; /* The ring entries to be free()ed. */
423 spinlock_t lock; /* Group with Tx control cache line. */
424 u32 tx_threshold; /* The value for txdesc.count. */
425 struct RxFD *last_rxf; /* Last filled RX buffer. */
426 dma_addr_t last_rxf_dma;
427 unsigned int cur_rx, dirty_rx; /* The next free ring entry */
428 long last_rx_time; /* Last Rx, in jiffies, to handle Rx hang. */
429 struct net_device_stats stats;
430 struct speedo_stats *lstats;
431 dma_addr_t lstats_dma;
432 int chip_id;
433 struct pci_dev *pdev;
434 struct timer_list timer; /* Media selection timer. */
435 struct speedo_mc_block *mc_setup_head; /* Multicast setup frame list head. */
436 struct speedo_mc_block *mc_setup_tail; /* Multicast setup frame list tail. */
437 long in_interrupt; /* Word-aligned dev->interrupt */
438 unsigned char acpi_pwr;
439 signed char rx_mode; /* Current PROMISC/ALLMULTI setting. */
440 unsigned int tx_full:1; /* The Tx queue is full. */
441 unsigned int flow_ctrl:1; /* Use 802.3x flow control. */
442 unsigned int rx_bug:1; /* Work around receiver hang errata. */
443 unsigned char default_port:8; /* Last dev->if_port value. */
444 unsigned char rx_ring_state; /* RX ring status flags. */
445 unsigned short phy[2]; /* PHY media interfaces available. */
446 unsigned short partner; /* Link partner caps. */
447 struct mii_if_info mii_if; /* MII API hooks, info */
448 u32 msg_enable; /* debug message level */
451 /* The parameters for a CmdConfigure operation.
452 There are so many options that it would be difficult to document each bit.
453 We mostly use the default or recommended settings. */
454 static const char i82557_config_cmd[CONFIG_DATA_SIZE] = {
455 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
456 0, 0x2E, 0, 0x60, 0,
457 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
458 0x3f, 0x05, };
459 static const char i82558_config_cmd[CONFIG_DATA_SIZE] = {
460 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
461 0, 0x2E, 0, 0x60, 0x08, 0x88,
462 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
463 0x31, 0x05, };
465 /* PHY media interface chips. */
466 static const char * const phys[] = {
467 "None", "i82553-A/B", "i82553-C", "i82503",
468 "DP83840", "80c240", "80c24", "i82555",
469 "unknown-8", "unknown-9", "DP83840A", "unknown-11",
470 "unknown-12", "unknown-13", "unknown-14", "unknown-15", };
471 enum phy_chips { NonSuchPhy=0, I82553AB, I82553C, I82503, DP83840, S80C240,
472 S80C24, I82555, DP83840A=10, };
473 static const char is_mii[] = { 0, 1, 1, 0, 1, 1, 0, 1 };
474 #define EE_READ_CMD (6)
476 static int eepro100_init_one(struct pci_dev *pdev,
477 const struct pci_device_id *ent);
479 static int do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len);
480 static int mdio_read(struct net_device *dev, int phy_id, int location);
481 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
482 static int speedo_open(struct net_device *dev);
483 static void speedo_resume(struct net_device *dev);
484 static void speedo_timer(unsigned long data);
485 static void speedo_init_rx_ring(struct net_device *dev);
486 static void speedo_tx_timeout(struct net_device *dev);
487 static int speedo_start_xmit(struct sk_buff *skb, struct net_device *dev);
488 static void speedo_refill_rx_buffers(struct net_device *dev, int force);
489 static int speedo_rx(struct net_device *dev);
490 static void speedo_tx_buffer_gc(struct net_device *dev);
491 static irqreturn_t speedo_interrupt(int irq, void *dev_instance);
492 static int speedo_close(struct net_device *dev);
493 static struct net_device_stats *speedo_get_stats(struct net_device *dev);
494 static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
495 static void set_rx_mode(struct net_device *dev);
496 static void speedo_show_state(struct net_device *dev);
497 static const struct ethtool_ops ethtool_ops;
501 #ifdef honor_default_port
502 /* Optional driver feature to allow forcing the transceiver setting.
503 Not recommended. */
504 static int mii_ctrl[8] = { 0x3300, 0x3100, 0x0000, 0x0100,
505 0x2000, 0x2100, 0x0400, 0x3100};
506 #endif
508 /* How to wait for the command unit to accept a command.
509 Typically this takes 0 ticks. */
510 static inline unsigned char wait_for_cmd_done(struct net_device *dev,
511 struct speedo_private *sp)
513 int wait = 1000;
514 void __iomem *cmd_ioaddr = sp->regs + SCBCmd;
515 unsigned char r;
517 do {
518 udelay(1);
519 r = ioread8(cmd_ioaddr);
520 } while(r && --wait >= 0);
522 if (wait < 0)
523 printk(KERN_ALERT "%s: wait_for_cmd_done timeout!\n", dev->name);
524 return r;
527 static int __devinit eepro100_init_one (struct pci_dev *pdev,
528 const struct pci_device_id *ent)
530 void __iomem *ioaddr;
531 int irq, pci_bar;
532 int acpi_idle_state = 0, pm;
533 static int cards_found /* = 0 */;
534 unsigned long pci_base;
536 #ifndef MODULE
537 /* when built-in, we only print version if device is found */
538 static int did_version;
539 if (did_version++ == 0)
540 printk(version);
541 #endif
543 /* save power state before pci_enable_device overwrites it */
544 pm = pci_find_capability(pdev, PCI_CAP_ID_PM);
545 if (pm) {
546 u16 pwr_command;
547 pci_read_config_word(pdev, pm + PCI_PM_CTRL, &pwr_command);
548 acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK;
551 if (pci_enable_device(pdev))
552 goto err_out_free_mmio_region;
554 pci_set_master(pdev);
556 if (!request_region(pci_resource_start(pdev, 1),
557 pci_resource_len(pdev, 1), "eepro100")) {
558 dev_err(&pdev->dev, "eepro100: cannot reserve I/O ports\n");
559 goto err_out_none;
561 if (!request_mem_region(pci_resource_start(pdev, 0),
562 pci_resource_len(pdev, 0), "eepro100")) {
563 dev_err(&pdev->dev, "eepro100: cannot reserve MMIO region\n");
564 goto err_out_free_pio_region;
567 irq = pdev->irq;
568 pci_bar = use_io ? 1 : 0;
569 pci_base = pci_resource_start(pdev, pci_bar);
570 if (DEBUG & NETIF_MSG_PROBE)
571 printk("Found Intel i82557 PCI Speedo at %#lx, IRQ %d.\n",
572 pci_base, irq);
574 ioaddr = pci_iomap(pdev, pci_bar, 0);
575 if (!ioaddr) {
576 dev_err(&pdev->dev, "eepro100: cannot remap IO\n");
577 goto err_out_free_mmio_region;
580 if (speedo_found1(pdev, ioaddr, cards_found, acpi_idle_state) == 0)
581 cards_found++;
582 else
583 goto err_out_iounmap;
585 return 0;
587 err_out_iounmap: ;
588 pci_iounmap(pdev, ioaddr);
589 err_out_free_mmio_region:
590 release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
591 err_out_free_pio_region:
592 release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
593 err_out_none:
594 return -ENODEV;
597 #ifdef CONFIG_NET_POLL_CONTROLLER
599 * Polling 'interrupt' - used by things like netconsole to send skbs
600 * without having to re-enable interrupts. It's not called while
601 * the interrupt routine is executing.
604 static void poll_speedo (struct net_device *dev)
606 /* disable_irq is not very nice, but with the funny lockless design
607 we have no other choice. */
608 disable_irq(dev->irq);
609 speedo_interrupt (dev->irq, dev);
610 enable_irq(dev->irq);
612 #endif
614 static int __devinit speedo_found1(struct pci_dev *pdev,
615 void __iomem *ioaddr, int card_idx, int acpi_idle_state)
617 struct net_device *dev;
618 struct speedo_private *sp;
619 const char *product;
620 int i, option;
621 u16 eeprom[0x100];
622 int size;
623 void *tx_ring_space;
624 dma_addr_t tx_ring_dma;
625 DECLARE_MAC_BUF(mac);
627 size = TX_RING_SIZE * sizeof(struct TxFD) + sizeof(struct speedo_stats);
628 tx_ring_space = pci_alloc_consistent(pdev, size, &tx_ring_dma);
629 if (tx_ring_space == NULL)
630 return -1;
632 dev = alloc_etherdev(sizeof(struct speedo_private));
633 if (dev == NULL) {
634 printk(KERN_ERR "eepro100: Could not allocate ethernet device.\n");
635 pci_free_consistent(pdev, size, tx_ring_space, tx_ring_dma);
636 return -1;
639 SET_NETDEV_DEV(dev, &pdev->dev);
641 if (dev->mem_start > 0)
642 option = dev->mem_start;
643 else if (card_idx >= 0 && options[card_idx] >= 0)
644 option = options[card_idx];
645 else
646 option = 0;
648 rtnl_lock();
649 if (dev_alloc_name(dev, dev->name) < 0)
650 goto err_free_unlock;
652 /* Read the station address EEPROM before doing the reset.
653 Nominally his should even be done before accepting the device, but
654 then we wouldn't have a device name with which to report the error.
655 The size test is for 6 bit vs. 8 bit address serial EEPROMs.
658 void __iomem *iobase;
659 int read_cmd, ee_size;
660 u16 sum;
661 int j;
663 /* Use IO only to avoid postponed writes and satisfy EEPROM timing
664 requirements. */
665 iobase = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
666 if (!iobase)
667 goto err_free_unlock;
668 if ((do_eeprom_cmd(iobase, EE_READ_CMD << 24, 27) & 0xffe0000)
669 == 0xffe0000) {
670 ee_size = 0x100;
671 read_cmd = EE_READ_CMD << 24;
672 } else {
673 ee_size = 0x40;
674 read_cmd = EE_READ_CMD << 22;
677 for (j = 0, i = 0, sum = 0; i < ee_size; i++) {
678 u16 value = do_eeprom_cmd(iobase, read_cmd | (i << 16), 27);
679 eeprom[i] = value;
680 sum += value;
681 if (i < 3) {
682 dev->dev_addr[j++] = value;
683 dev->dev_addr[j++] = value >> 8;
686 if (sum != 0xBABA)
687 printk(KERN_WARNING "%s: Invalid EEPROM checksum %#4.4x, "
688 "check settings before activating this device!\n",
689 dev->name, sum);
690 /* Don't unregister_netdev(dev); as the EEPro may actually be
691 usable, especially if the MAC address is set later.
692 On the other hand, it may be unusable if MDI data is corrupted. */
694 pci_iounmap(pdev, iobase);
697 /* Reset the chip: stop Tx and Rx processes and clear counters.
698 This takes less than 10usec and will easily finish before the next
699 action. */
700 iowrite32(PortReset, ioaddr + SCBPort);
701 ioread32(ioaddr + SCBPort);
702 udelay(10);
704 if (eeprom[3] & 0x0100)
705 product = "OEM i82557/i82558 10/100 Ethernet";
706 else
707 product = pci_name(pdev);
709 printk(KERN_INFO "%s: %s, %s, IRQ %d.\n", dev->name, product,
710 print_mac(mac, dev->dev_addr), pdev->irq);
712 sp = netdev_priv(dev);
714 /* we must initialize this early, for mdio_{read,write} */
715 sp->regs = ioaddr;
717 #if 1 || defined(kernel_bloat)
718 /* OK, this is pure kernel bloat. I don't like it when other drivers
719 waste non-pageable kernel space to emit similar messages, but I need
720 them for bug reports. */
722 const char *connectors[] = {" RJ45", " BNC", " AUI", " MII"};
723 /* The self-test results must be paragraph aligned. */
724 volatile s32 *self_test_results;
725 int boguscnt = 16000; /* Timeout for set-test. */
726 if ((eeprom[3] & 0x03) != 0x03)
727 printk(KERN_INFO " Receiver lock-up bug exists -- enabling"
728 " work-around.\n");
729 printk(KERN_INFO " Board assembly %4.4x%2.2x-%3.3d, Physical"
730 " connectors present:",
731 eeprom[8], eeprom[9]>>8, eeprom[9] & 0xff);
732 for (i = 0; i < 4; i++)
733 if (eeprom[5] & (1<<i))
734 printk(connectors[i]);
735 printk("\n"KERN_INFO" Primary interface chip %s PHY #%d.\n",
736 phys[(eeprom[6]>>8)&15], eeprom[6] & 0x1f);
737 if (eeprom[7] & 0x0700)
738 printk(KERN_INFO " Secondary interface chip %s.\n",
739 phys[(eeprom[7]>>8)&7]);
740 if (((eeprom[6]>>8) & 0x3f) == DP83840
741 || ((eeprom[6]>>8) & 0x3f) == DP83840A) {
742 int mdi_reg23 = mdio_read(dev, eeprom[6] & 0x1f, 23) | 0x0422;
743 if (congenb)
744 mdi_reg23 |= 0x0100;
745 printk(KERN_INFO" DP83840 specific setup, setting register 23 to %4.4x.\n",
746 mdi_reg23);
747 mdio_write(dev, eeprom[6] & 0x1f, 23, mdi_reg23);
749 if ((option >= 0) && (option & 0x70)) {
750 printk(KERN_INFO " Forcing %dMbs %s-duplex operation.\n",
751 (option & 0x20 ? 100 : 10),
752 (option & 0x10 ? "full" : "half"));
753 mdio_write(dev, eeprom[6] & 0x1f, MII_BMCR,
754 ((option & 0x20) ? 0x2000 : 0) | /* 100mbps? */
755 ((option & 0x10) ? 0x0100 : 0)); /* Full duplex? */
758 /* Perform a system self-test. */
759 self_test_results = (s32*) ((((long) tx_ring_space) + 15) & ~0xf);
760 self_test_results[0] = 0;
761 self_test_results[1] = -1;
762 iowrite32(tx_ring_dma | PortSelfTest, ioaddr + SCBPort);
763 do {
764 udelay(10);
765 } while (self_test_results[1] == -1 && --boguscnt >= 0);
767 if (boguscnt < 0) { /* Test optimized out. */
768 printk(KERN_ERR "Self test failed, status %8.8x:\n"
769 KERN_ERR " Failure to initialize the i82557.\n"
770 KERN_ERR " Verify that the card is a bus-master"
771 " capable slot.\n",
772 self_test_results[1]);
773 } else
774 printk(KERN_INFO " General self-test: %s.\n"
775 KERN_INFO " Serial sub-system self-test: %s.\n"
776 KERN_INFO " Internal registers self-test: %s.\n"
777 KERN_INFO " ROM checksum self-test: %s (%#8.8x).\n",
778 self_test_results[1] & 0x1000 ? "failed" : "passed",
779 self_test_results[1] & 0x0020 ? "failed" : "passed",
780 self_test_results[1] & 0x0008 ? "failed" : "passed",
781 self_test_results[1] & 0x0004 ? "failed" : "passed",
782 self_test_results[0]);
784 #endif /* kernel_bloat */
786 iowrite32(PortReset, ioaddr + SCBPort);
787 ioread32(ioaddr + SCBPort);
788 udelay(10);
790 /* Return the chip to its original power state. */
791 pci_set_power_state(pdev, acpi_idle_state);
793 pci_set_drvdata (pdev, dev);
794 SET_NETDEV_DEV(dev, &pdev->dev);
796 dev->irq = pdev->irq;
798 sp->pdev = pdev;
799 sp->msg_enable = DEBUG;
800 sp->acpi_pwr = acpi_idle_state;
801 sp->tx_ring = tx_ring_space;
802 sp->tx_ring_dma = tx_ring_dma;
803 sp->lstats = (struct speedo_stats *)(sp->tx_ring + TX_RING_SIZE);
804 sp->lstats_dma = TX_RING_ELEM_DMA(sp, TX_RING_SIZE);
805 init_timer(&sp->timer); /* used in ioctl() */
806 spin_lock_init(&sp->lock);
808 sp->mii_if.full_duplex = option >= 0 && (option & 0x10) ? 1 : 0;
809 if (card_idx >= 0) {
810 if (full_duplex[card_idx] >= 0)
811 sp->mii_if.full_duplex = full_duplex[card_idx];
813 sp->default_port = option >= 0 ? (option & 0x0f) : 0;
815 sp->phy[0] = eeprom[6];
816 sp->phy[1] = eeprom[7];
818 sp->mii_if.phy_id = eeprom[6] & 0x1f;
819 sp->mii_if.phy_id_mask = 0x1f;
820 sp->mii_if.reg_num_mask = 0x1f;
821 sp->mii_if.dev = dev;
822 sp->mii_if.mdio_read = mdio_read;
823 sp->mii_if.mdio_write = mdio_write;
825 sp->rx_bug = (eeprom[3] & 0x03) == 3 ? 0 : 1;
826 if (((pdev->device > 0x1030 && (pdev->device < 0x103F)))
827 || (pdev->device == 0x2449) || (pdev->device == 0x2459)
828 || (pdev->device == 0x245D)) {
829 sp->chip_id = 1;
832 if (sp->rx_bug)
833 printk(KERN_INFO " Receiver lock-up workaround activated.\n");
835 /* The Speedo-specific entries in the device structure. */
836 dev->open = &speedo_open;
837 dev->hard_start_xmit = &speedo_start_xmit;
838 netif_set_tx_timeout(dev, &speedo_tx_timeout, TX_TIMEOUT);
839 dev->stop = &speedo_close;
840 dev->get_stats = &speedo_get_stats;
841 dev->set_multicast_list = &set_rx_mode;
842 dev->do_ioctl = &speedo_ioctl;
843 SET_ETHTOOL_OPS(dev, &ethtool_ops);
844 #ifdef CONFIG_NET_POLL_CONTROLLER
845 dev->poll_controller = &poll_speedo;
846 #endif
848 if (register_netdevice(dev))
849 goto err_free_unlock;
850 rtnl_unlock();
852 return 0;
854 err_free_unlock:
855 rtnl_unlock();
856 free_netdev(dev);
857 return -1;
860 static void do_slow_command(struct net_device *dev, struct speedo_private *sp, int cmd)
862 void __iomem *cmd_ioaddr = sp->regs + SCBCmd;
863 int wait = 0;
865 if (ioread8(cmd_ioaddr) == 0) break;
866 while(++wait <= 200);
867 if (wait > 100)
868 printk(KERN_ERR "Command %4.4x never accepted (%d polls)!\n",
869 ioread8(cmd_ioaddr), wait);
871 iowrite8(cmd, cmd_ioaddr);
873 for (wait = 0; wait <= 100; wait++)
874 if (ioread8(cmd_ioaddr) == 0) return;
875 for (; wait <= 20000; wait++)
876 if (ioread8(cmd_ioaddr) == 0) return;
877 else udelay(1);
878 printk(KERN_ERR "Command %4.4x was not accepted after %d polls!"
879 " Current status %8.8x.\n",
880 cmd, wait, ioread32(sp->regs + SCBStatus));
883 /* Serial EEPROM section.
884 A "bit" grungy, but we work our way through bit-by-bit :->. */
885 /* EEPROM_Ctrl bits. */
886 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
887 #define EE_CS 0x02 /* EEPROM chip select. */
888 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
889 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
890 #define EE_ENB (0x4800 | EE_CS)
891 #define EE_WRITE_0 0x4802
892 #define EE_WRITE_1 0x4806
893 #define EE_OFFSET SCBeeprom
895 /* The fixes for the code were kindly provided by Dragan Stancevic
896 <visitor@valinux.com> to strictly follow Intel specifications of EEPROM
897 access timing.
898 The publicly available sheet 64486302 (sec. 3.1) specifies 1us access
899 interval for serial EEPROM. However, it looks like that there is an
900 additional requirement dictating larger udelay's in the code below.
901 2000/05/24 SAW */
902 static int __devinit do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len)
904 unsigned retval = 0;
905 void __iomem *ee_addr = ioaddr + SCBeeprom;
907 iowrite16(EE_ENB, ee_addr); udelay(2);
908 iowrite16(EE_ENB | EE_SHIFT_CLK, ee_addr); udelay(2);
910 /* Shift the command bits out. */
911 do {
912 short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
913 iowrite16(dataval, ee_addr); udelay(2);
914 iowrite16(dataval | EE_SHIFT_CLK, ee_addr); udelay(2);
915 retval = (retval << 1) | ((ioread16(ee_addr) & EE_DATA_READ) ? 1 : 0);
916 } while (--cmd_len >= 0);
917 iowrite16(EE_ENB, ee_addr); udelay(2);
919 /* Terminate the EEPROM access. */
920 iowrite16(EE_ENB & ~EE_CS, ee_addr);
921 return retval;
924 static int mdio_read(struct net_device *dev, int phy_id, int location)
926 struct speedo_private *sp = netdev_priv(dev);
927 void __iomem *ioaddr = sp->regs;
928 int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */
929 iowrite32(0x08000000 | (location<<16) | (phy_id<<21), ioaddr + SCBCtrlMDI);
930 do {
931 val = ioread32(ioaddr + SCBCtrlMDI);
932 if (--boguscnt < 0) {
933 printk(KERN_ERR " mdio_read() timed out with val = %8.8x.\n", val);
934 break;
936 } while (! (val & 0x10000000));
937 return val & 0xffff;
940 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
942 struct speedo_private *sp = netdev_priv(dev);
943 void __iomem *ioaddr = sp->regs;
944 int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */
945 iowrite32(0x04000000 | (location<<16) | (phy_id<<21) | value,
946 ioaddr + SCBCtrlMDI);
947 do {
948 val = ioread32(ioaddr + SCBCtrlMDI);
949 if (--boguscnt < 0) {
950 printk(KERN_ERR" mdio_write() timed out with val = %8.8x.\n", val);
951 break;
953 } while (! (val & 0x10000000));
956 static int
957 speedo_open(struct net_device *dev)
959 struct speedo_private *sp = netdev_priv(dev);
960 void __iomem *ioaddr = sp->regs;
961 int retval;
963 if (netif_msg_ifup(sp))
964 printk(KERN_DEBUG "%s: speedo_open() irq %d.\n", dev->name, dev->irq);
966 pci_set_power_state(sp->pdev, PCI_D0);
968 /* Set up the Tx queue early.. */
969 sp->cur_tx = 0;
970 sp->dirty_tx = 0;
971 sp->last_cmd = NULL;
972 sp->tx_full = 0;
973 sp->in_interrupt = 0;
975 /* .. we can safely take handler calls during init. */
976 retval = request_irq(dev->irq, &speedo_interrupt, IRQF_SHARED, dev->name, dev);
977 if (retval) {
978 return retval;
981 dev->if_port = sp->default_port;
983 #ifdef oh_no_you_dont_unless_you_honour_the_options_passed_in_to_us
984 /* Retrigger negotiation to reset previous errors. */
985 if ((sp->phy[0] & 0x8000) == 0) {
986 int phy_addr = sp->phy[0] & 0x1f ;
987 /* Use 0x3300 for restarting NWay, other values to force xcvr:
988 0x0000 10-HD
989 0x0100 10-FD
990 0x2000 100-HD
991 0x2100 100-FD
993 #ifdef honor_default_port
994 mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]);
995 #else
996 mdio_write(dev, phy_addr, MII_BMCR, 0x3300);
997 #endif
999 #endif
1001 speedo_init_rx_ring(dev);
1003 /* Fire up the hardware. */
1004 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1005 speedo_resume(dev);
1007 netdevice_start(dev);
1008 netif_start_queue(dev);
1010 /* Setup the chip and configure the multicast list. */
1011 sp->mc_setup_head = NULL;
1012 sp->mc_setup_tail = NULL;
1013 sp->flow_ctrl = sp->partner = 0;
1014 sp->rx_mode = -1; /* Invalid -> always reset the mode. */
1015 set_rx_mode(dev);
1016 if ((sp->phy[0] & 0x8000) == 0)
1017 sp->mii_if.advertising = mdio_read(dev, sp->phy[0] & 0x1f, MII_ADVERTISE);
1019 mii_check_link(&sp->mii_if);
1021 if (netif_msg_ifup(sp)) {
1022 printk(KERN_DEBUG "%s: Done speedo_open(), status %8.8x.\n",
1023 dev->name, ioread16(ioaddr + SCBStatus));
1026 /* Set the timer. The timer serves a dual purpose:
1027 1) to monitor the media interface (e.g. link beat) and perhaps switch
1028 to an alternate media type
1029 2) to monitor Rx activity, and restart the Rx process if the receiver
1030 hangs. */
1031 sp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */
1032 sp->timer.data = (unsigned long)dev;
1033 sp->timer.function = &speedo_timer; /* timer handler */
1034 add_timer(&sp->timer);
1036 /* No need to wait for the command unit to accept here. */
1037 if ((sp->phy[0] & 0x8000) == 0)
1038 mdio_read(dev, sp->phy[0] & 0x1f, MII_BMCR);
1040 return 0;
1043 /* Start the chip hardware after a full reset. */
1044 static void speedo_resume(struct net_device *dev)
1046 struct speedo_private *sp = netdev_priv(dev);
1047 void __iomem *ioaddr = sp->regs;
1049 /* Start with a Tx threshold of 256 (0x..20.... 8 byte units). */
1050 sp->tx_threshold = 0x01208000;
1052 /* Set the segment registers to '0'. */
1053 if (wait_for_cmd_done(dev, sp) != 0) {
1054 iowrite32(PortPartialReset, ioaddr + SCBPort);
1055 udelay(10);
1058 iowrite32(0, ioaddr + SCBPointer);
1059 ioread32(ioaddr + SCBPointer); /* Flush to PCI. */
1060 udelay(10); /* Bogus, but it avoids the bug. */
1062 /* Note: these next two operations can take a while. */
1063 do_slow_command(dev, sp, RxAddrLoad);
1064 do_slow_command(dev, sp, CUCmdBase);
1066 /* Load the statistics block and rx ring addresses. */
1067 iowrite32(sp->lstats_dma, ioaddr + SCBPointer);
1068 ioread32(ioaddr + SCBPointer); /* Flush to PCI */
1070 iowrite8(CUStatsAddr, ioaddr + SCBCmd);
1071 sp->lstats->done_marker = 0;
1072 wait_for_cmd_done(dev, sp);
1074 if (sp->rx_ringp[sp->cur_rx % RX_RING_SIZE] == NULL) {
1075 if (netif_msg_rx_err(sp))
1076 printk(KERN_DEBUG "%s: NULL cur_rx in speedo_resume().\n",
1077 dev->name);
1078 } else {
1079 iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
1080 ioaddr + SCBPointer);
1081 ioread32(ioaddr + SCBPointer); /* Flush to PCI */
1084 /* Note: RxStart should complete instantly. */
1085 do_slow_command(dev, sp, RxStart);
1086 do_slow_command(dev, sp, CUDumpStats);
1088 /* Fill the first command with our physical address. */
1090 struct descriptor *ias_cmd;
1092 ias_cmd =
1093 (struct descriptor *)&sp->tx_ring[sp->cur_tx++ % TX_RING_SIZE];
1094 /* Avoid a bug(?!) here by marking the command already completed. */
1095 ias_cmd->cmd_status = cpu_to_le32((CmdSuspend | CmdIASetup) | 0xa000);
1096 ias_cmd->link =
1097 cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
1098 memcpy(ias_cmd->params, dev->dev_addr, 6);
1099 if (sp->last_cmd)
1100 clear_suspend(sp->last_cmd);
1101 sp->last_cmd = ias_cmd;
1104 /* Start the chip's Tx process and unmask interrupts. */
1105 iowrite32(TX_RING_ELEM_DMA(sp, sp->dirty_tx % TX_RING_SIZE),
1106 ioaddr + SCBPointer);
1107 /* We are not ACK-ing FCP and ER in the interrupt handler yet so they should
1108 remain masked --Dragan */
1109 iowrite16(CUStart | SCBMaskEarlyRx | SCBMaskFlowCtl, ioaddr + SCBCmd);
1113 * Sometimes the receiver stops making progress. This routine knows how to
1114 * get it going again, without losing packets or being otherwise nasty like
1115 * a chip reset would be. Previously the driver had a whole sequence
1116 * of if RxSuspended, if it's no buffers do one thing, if it's no resources,
1117 * do another, etc. But those things don't really matter. Separate logic
1118 * in the ISR provides for allocating buffers--the other half of operation
1119 * is just making sure the receiver is active. speedo_rx_soft_reset does that.
1120 * This problem with the old, more involved algorithm is shown up under
1121 * ping floods on the order of 60K packets/second on a 100Mbps fdx network.
1123 static void
1124 speedo_rx_soft_reset(struct net_device *dev)
1126 struct speedo_private *sp = netdev_priv(dev);
1127 struct RxFD *rfd;
1128 void __iomem *ioaddr;
1130 ioaddr = sp->regs;
1131 if (wait_for_cmd_done(dev, sp) != 0) {
1132 printk("%s: previous command stalled\n", dev->name);
1133 return;
1136 * Put the hardware into a known state.
1138 iowrite8(RxAbort, ioaddr + SCBCmd);
1140 rfd = sp->rx_ringp[sp->cur_rx % RX_RING_SIZE];
1142 rfd->rx_buf_addr = 0xffffffff;
1144 if (wait_for_cmd_done(dev, sp) != 0) {
1145 printk("%s: RxAbort command stalled\n", dev->name);
1146 return;
1148 iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
1149 ioaddr + SCBPointer);
1150 iowrite8(RxStart, ioaddr + SCBCmd);
1154 /* Media monitoring and control. */
1155 static void speedo_timer(unsigned long data)
1157 struct net_device *dev = (struct net_device *)data;
1158 struct speedo_private *sp = netdev_priv(dev);
1159 void __iomem *ioaddr = sp->regs;
1160 int phy_num = sp->phy[0] & 0x1f;
1162 /* We have MII and lost link beat. */
1163 if ((sp->phy[0] & 0x8000) == 0) {
1164 int partner = mdio_read(dev, phy_num, MII_LPA);
1165 if (partner != sp->partner) {
1166 int flow_ctrl = sp->mii_if.advertising & partner & 0x0400 ? 1 : 0;
1167 if (netif_msg_link(sp)) {
1168 printk(KERN_DEBUG "%s: Link status change.\n", dev->name);
1169 printk(KERN_DEBUG "%s: Old partner %x, new %x, adv %x.\n",
1170 dev->name, sp->partner, partner, sp->mii_if.advertising);
1172 sp->partner = partner;
1173 if (flow_ctrl != sp->flow_ctrl) {
1174 sp->flow_ctrl = flow_ctrl;
1175 sp->rx_mode = -1; /* Trigger a reload. */
1179 mii_check_link(&sp->mii_if);
1180 if (netif_msg_timer(sp)) {
1181 printk(KERN_DEBUG "%s: Media control tick, status %4.4x.\n",
1182 dev->name, ioread16(ioaddr + SCBStatus));
1184 if (sp->rx_mode < 0 ||
1185 (sp->rx_bug && jiffies - sp->last_rx_time > 2*HZ)) {
1186 /* We haven't received a packet in a Long Time. We might have been
1187 bitten by the receiver hang bug. This can be cleared by sending
1188 a set multicast list command. */
1189 if (netif_msg_timer(sp))
1190 printk(KERN_DEBUG "%s: Sending a multicast list set command"
1191 " from a timer routine,"
1192 " m=%d, j=%ld, l=%ld.\n",
1193 dev->name, sp->rx_mode, jiffies, sp->last_rx_time);
1194 set_rx_mode(dev);
1196 /* We must continue to monitor the media. */
1197 sp->timer.expires = RUN_AT(2*HZ); /* 2.0 sec. */
1198 add_timer(&sp->timer);
1201 static void speedo_show_state(struct net_device *dev)
1203 struct speedo_private *sp = netdev_priv(dev);
1204 int i;
1206 if (netif_msg_pktdata(sp)) {
1207 printk(KERN_DEBUG "%s: Tx ring dump, Tx queue %u / %u:\n",
1208 dev->name, sp->cur_tx, sp->dirty_tx);
1209 for (i = 0; i < TX_RING_SIZE; i++)
1210 printk(KERN_DEBUG "%s: %c%c%2d %8.8x.\n", dev->name,
1211 i == sp->dirty_tx % TX_RING_SIZE ? '*' : ' ',
1212 i == sp->cur_tx % TX_RING_SIZE ? '=' : ' ',
1213 i, sp->tx_ring[i].status);
1215 printk(KERN_DEBUG "%s: Printing Rx ring"
1216 " (next to receive into %u, dirty index %u).\n",
1217 dev->name, sp->cur_rx, sp->dirty_rx);
1218 for (i = 0; i < RX_RING_SIZE; i++)
1219 printk(KERN_DEBUG "%s: %c%c%c%2d %8.8x.\n", dev->name,
1220 sp->rx_ringp[i] == sp->last_rxf ? 'l' : ' ',
1221 i == sp->dirty_rx % RX_RING_SIZE ? '*' : ' ',
1222 i == sp->cur_rx % RX_RING_SIZE ? '=' : ' ',
1223 i, (sp->rx_ringp[i] != NULL) ?
1224 (unsigned)sp->rx_ringp[i]->status : 0);
1227 #if 0
1229 void __iomem *ioaddr = sp->regs;
1230 int phy_num = sp->phy[0] & 0x1f;
1231 for (i = 0; i < 16; i++) {
1232 /* FIXME: what does it mean? --SAW */
1233 if (i == 6) i = 21;
1234 printk(KERN_DEBUG "%s: PHY index %d register %d is %4.4x.\n",
1235 dev->name, phy_num, i, mdio_read(dev, phy_num, i));
1238 #endif
1242 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1243 static void
1244 speedo_init_rx_ring(struct net_device *dev)
1246 struct speedo_private *sp = netdev_priv(dev);
1247 struct RxFD *rxf, *last_rxf = NULL;
1248 dma_addr_t last_rxf_dma = 0 /* to shut up the compiler */;
1249 int i;
1251 sp->cur_rx = 0;
1253 for (i = 0; i < RX_RING_SIZE; i++) {
1254 struct sk_buff *skb;
1255 skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
1256 if (skb)
1257 rx_align(skb); /* Align IP on 16 byte boundary */
1258 sp->rx_skbuff[i] = skb;
1259 if (skb == NULL)
1260 break; /* OK. Just initially short of Rx bufs. */
1261 skb->dev = dev; /* Mark as being used by this device. */
1262 rxf = (struct RxFD *)skb->data;
1263 sp->rx_ringp[i] = rxf;
1264 sp->rx_ring_dma[i] =
1265 pci_map_single(sp->pdev, rxf,
1266 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_BIDIRECTIONAL);
1267 skb_reserve(skb, sizeof(struct RxFD));
1268 if (last_rxf) {
1269 last_rxf->link = cpu_to_le32(sp->rx_ring_dma[i]);
1270 pci_dma_sync_single_for_device(sp->pdev, last_rxf_dma,
1271 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1273 last_rxf = rxf;
1274 last_rxf_dma = sp->rx_ring_dma[i];
1275 rxf->status = cpu_to_le32(0x00000001); /* '1' is flag value only. */
1276 rxf->link = 0; /* None yet. */
1277 /* This field unused by i82557. */
1278 rxf->rx_buf_addr = 0xffffffff;
1279 rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
1280 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[i],
1281 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1283 sp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1284 /* Mark the last entry as end-of-list. */
1285 last_rxf->status = cpu_to_le32(0xC0000002); /* '2' is flag value only. */
1286 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[RX_RING_SIZE-1],
1287 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1288 sp->last_rxf = last_rxf;
1289 sp->last_rxf_dma = last_rxf_dma;
1292 static void speedo_purge_tx(struct net_device *dev)
1294 struct speedo_private *sp = netdev_priv(dev);
1295 int entry;
1297 while ((int)(sp->cur_tx - sp->dirty_tx) > 0) {
1298 entry = sp->dirty_tx % TX_RING_SIZE;
1299 if (sp->tx_skbuff[entry]) {
1300 sp->stats.tx_errors++;
1301 pci_unmap_single(sp->pdev,
1302 le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
1303 sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
1304 dev_kfree_skb_irq(sp->tx_skbuff[entry]);
1305 sp->tx_skbuff[entry] = NULL;
1307 sp->dirty_tx++;
1309 while (sp->mc_setup_head != NULL) {
1310 struct speedo_mc_block *t;
1311 if (netif_msg_tx_err(sp))
1312 printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
1313 pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
1314 sp->mc_setup_head->len, PCI_DMA_TODEVICE);
1315 t = sp->mc_setup_head->next;
1316 kfree(sp->mc_setup_head);
1317 sp->mc_setup_head = t;
1319 sp->mc_setup_tail = NULL;
1320 sp->tx_full = 0;
1321 netif_wake_queue(dev);
1324 static void reset_mii(struct net_device *dev)
1326 struct speedo_private *sp = netdev_priv(dev);
1328 /* Reset the MII transceiver, suggested by Fred Young @ scalable.com. */
1329 if ((sp->phy[0] & 0x8000) == 0) {
1330 int phy_addr = sp->phy[0] & 0x1f;
1331 int advertising = mdio_read(dev, phy_addr, MII_ADVERTISE);
1332 int mii_bmcr = mdio_read(dev, phy_addr, MII_BMCR);
1333 mdio_write(dev, phy_addr, MII_BMCR, 0x0400);
1334 mdio_write(dev, phy_addr, MII_BMSR, 0x0000);
1335 mdio_write(dev, phy_addr, MII_ADVERTISE, 0x0000);
1336 mdio_write(dev, phy_addr, MII_BMCR, 0x8000);
1337 #ifdef honor_default_port
1338 mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]);
1339 #else
1340 mdio_read(dev, phy_addr, MII_BMCR);
1341 mdio_write(dev, phy_addr, MII_BMCR, mii_bmcr);
1342 mdio_write(dev, phy_addr, MII_ADVERTISE, advertising);
1343 #endif
1347 static void speedo_tx_timeout(struct net_device *dev)
1349 struct speedo_private *sp = netdev_priv(dev);
1350 void __iomem *ioaddr = sp->regs;
1351 int status = ioread16(ioaddr + SCBStatus);
1352 unsigned long flags;
1354 if (netif_msg_tx_err(sp)) {
1355 printk(KERN_WARNING "%s: Transmit timed out: status %4.4x "
1356 " %4.4x at %d/%d command %8.8x.\n",
1357 dev->name, status, ioread16(ioaddr + SCBCmd),
1358 sp->dirty_tx, sp->cur_tx,
1359 sp->tx_ring[sp->dirty_tx % TX_RING_SIZE].status);
1362 speedo_show_state(dev);
1363 #if 0
1364 if ((status & 0x00C0) != 0x0080
1365 && (status & 0x003C) == 0x0010) {
1366 /* Only the command unit has stopped. */
1367 printk(KERN_WARNING "%s: Trying to restart the transmitter...\n",
1368 dev->name);
1369 iowrite32(TX_RING_ELEM_DMA(sp, dirty_tx % TX_RING_SIZE]),
1370 ioaddr + SCBPointer);
1371 iowrite16(CUStart, ioaddr + SCBCmd);
1372 reset_mii(dev);
1373 } else {
1374 #else
1376 #endif
1377 del_timer_sync(&sp->timer);
1378 /* Reset the Tx and Rx units. */
1379 iowrite32(PortReset, ioaddr + SCBPort);
1380 /* We may get spurious interrupts here. But I don't think that they
1381 may do much harm. 1999/12/09 SAW */
1382 udelay(10);
1383 /* Disable interrupts. */
1384 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1385 synchronize_irq(dev->irq);
1386 speedo_tx_buffer_gc(dev);
1387 /* Free as much as possible.
1388 It helps to recover from a hang because of out-of-memory.
1389 It also simplifies speedo_resume() in case TX ring is full or
1390 close-to-be full. */
1391 speedo_purge_tx(dev);
1392 speedo_refill_rx_buffers(dev, 1);
1393 spin_lock_irqsave(&sp->lock, flags);
1394 speedo_resume(dev);
1395 sp->rx_mode = -1;
1396 dev->trans_start = jiffies;
1397 spin_unlock_irqrestore(&sp->lock, flags);
1398 set_rx_mode(dev); /* it takes the spinlock itself --SAW */
1399 /* Reset MII transceiver. Do it before starting the timer to serialize
1400 mdio_xxx operations. Yes, it's a paranoya :-) 2000/05/09 SAW */
1401 reset_mii(dev);
1402 sp->timer.expires = RUN_AT(2*HZ);
1403 add_timer(&sp->timer);
1405 return;
1408 static int
1409 speedo_start_xmit(struct sk_buff *skb, struct net_device *dev)
1411 struct speedo_private *sp = netdev_priv(dev);
1412 void __iomem *ioaddr = sp->regs;
1413 int entry;
1415 /* Prevent interrupts from changing the Tx ring from underneath us. */
1416 unsigned long flags;
1418 spin_lock_irqsave(&sp->lock, flags);
1420 /* Check if there are enough space. */
1421 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
1422 printk(KERN_ERR "%s: incorrect tbusy state, fixed.\n", dev->name);
1423 netif_stop_queue(dev);
1424 sp->tx_full = 1;
1425 spin_unlock_irqrestore(&sp->lock, flags);
1426 return 1;
1429 /* Calculate the Tx descriptor entry. */
1430 entry = sp->cur_tx++ % TX_RING_SIZE;
1432 sp->tx_skbuff[entry] = skb;
1433 sp->tx_ring[entry].status =
1434 cpu_to_le32(CmdSuspend | CmdTx | CmdTxFlex);
1435 if (!(entry & ((TX_RING_SIZE>>2)-1)))
1436 sp->tx_ring[entry].status |= cpu_to_le32(CmdIntr);
1437 sp->tx_ring[entry].link =
1438 cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
1439 sp->tx_ring[entry].tx_desc_addr =
1440 cpu_to_le32(TX_RING_ELEM_DMA(sp, entry) + TX_DESCR_BUF_OFFSET);
1441 /* The data region is always in one buffer descriptor. */
1442 sp->tx_ring[entry].count = cpu_to_le32(sp->tx_threshold);
1443 sp->tx_ring[entry].tx_buf_addr0 =
1444 cpu_to_le32(pci_map_single(sp->pdev, skb->data,
1445 skb->len, PCI_DMA_TODEVICE));
1446 sp->tx_ring[entry].tx_buf_size0 = cpu_to_le32(skb->len);
1448 /* workaround for hardware bug on 10 mbit half duplex */
1450 if ((sp->partner == 0) && (sp->chip_id == 1)) {
1451 wait_for_cmd_done(dev, sp);
1452 iowrite8(0 , ioaddr + SCBCmd);
1453 udelay(1);
1456 /* Trigger the command unit resume. */
1457 wait_for_cmd_done(dev, sp);
1458 clear_suspend(sp->last_cmd);
1459 /* We want the time window between clearing suspend flag on the previous
1460 command and resuming CU to be as small as possible.
1461 Interrupts in between are very undesired. --SAW */
1462 iowrite8(CUResume, ioaddr + SCBCmd);
1463 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
1465 /* Leave room for set_rx_mode(). If there is no more space than reserved
1466 for multicast filter mark the ring as full. */
1467 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
1468 netif_stop_queue(dev);
1469 sp->tx_full = 1;
1472 spin_unlock_irqrestore(&sp->lock, flags);
1474 dev->trans_start = jiffies;
1476 return 0;
1479 static void speedo_tx_buffer_gc(struct net_device *dev)
1481 unsigned int dirty_tx;
1482 struct speedo_private *sp = netdev_priv(dev);
1484 dirty_tx = sp->dirty_tx;
1485 while ((int)(sp->cur_tx - dirty_tx) > 0) {
1486 int entry = dirty_tx % TX_RING_SIZE;
1487 int status = le32_to_cpu(sp->tx_ring[entry].status);
1489 if (netif_msg_tx_done(sp))
1490 printk(KERN_DEBUG " scavenge candidate %d status %4.4x.\n",
1491 entry, status);
1492 if ((status & StatusComplete) == 0)
1493 break; /* It still hasn't been processed. */
1494 if (status & TxUnderrun)
1495 if (sp->tx_threshold < 0x01e08000) {
1496 if (netif_msg_tx_err(sp))
1497 printk(KERN_DEBUG "%s: TX underrun, threshold adjusted.\n",
1498 dev->name);
1499 sp->tx_threshold += 0x00040000;
1501 /* Free the original skb. */
1502 if (sp->tx_skbuff[entry]) {
1503 sp->stats.tx_packets++; /* Count only user packets. */
1504 sp->stats.tx_bytes += sp->tx_skbuff[entry]->len;
1505 pci_unmap_single(sp->pdev,
1506 le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
1507 sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
1508 dev_kfree_skb_irq(sp->tx_skbuff[entry]);
1509 sp->tx_skbuff[entry] = NULL;
1511 dirty_tx++;
1514 if (netif_msg_tx_err(sp) && (int)(sp->cur_tx - dirty_tx) > TX_RING_SIZE) {
1515 printk(KERN_ERR "out-of-sync dirty pointer, %d vs. %d,"
1516 " full=%d.\n",
1517 dirty_tx, sp->cur_tx, sp->tx_full);
1518 dirty_tx += TX_RING_SIZE;
1521 while (sp->mc_setup_head != NULL
1522 && (int)(dirty_tx - sp->mc_setup_head->tx - 1) > 0) {
1523 struct speedo_mc_block *t;
1524 if (netif_msg_tx_err(sp))
1525 printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
1526 pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
1527 sp->mc_setup_head->len, PCI_DMA_TODEVICE);
1528 t = sp->mc_setup_head->next;
1529 kfree(sp->mc_setup_head);
1530 sp->mc_setup_head = t;
1532 if (sp->mc_setup_head == NULL)
1533 sp->mc_setup_tail = NULL;
1535 sp->dirty_tx = dirty_tx;
1538 /* The interrupt handler does all of the Rx thread work and cleans up
1539 after the Tx thread. */
1540 static irqreturn_t speedo_interrupt(int irq, void *dev_instance)
1542 struct net_device *dev = (struct net_device *)dev_instance;
1543 struct speedo_private *sp;
1544 void __iomem *ioaddr;
1545 long boguscnt = max_interrupt_work;
1546 unsigned short status;
1547 unsigned int handled = 0;
1549 sp = netdev_priv(dev);
1550 ioaddr = sp->regs;
1552 #ifndef final_version
1553 /* A lock to prevent simultaneous entry on SMP machines. */
1554 if (test_and_set_bit(0, (void*)&sp->in_interrupt)) {
1555 printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n",
1556 dev->name);
1557 sp->in_interrupt = 0; /* Avoid halting machine. */
1558 return IRQ_NONE;
1560 #endif
1562 do {
1563 status = ioread16(ioaddr + SCBStatus);
1564 /* Acknowledge all of the current interrupt sources ASAP. */
1565 /* Will change from 0xfc00 to 0xff00 when we start handling
1566 FCP and ER interrupts --Dragan */
1567 iowrite16(status & 0xfc00, ioaddr + SCBStatus);
1569 if (netif_msg_intr(sp))
1570 printk(KERN_DEBUG "%s: interrupt status=%#4.4x.\n",
1571 dev->name, status);
1573 if ((status & 0xfc00) == 0)
1574 break;
1575 handled = 1;
1578 if ((status & 0x5000) || /* Packet received, or Rx error. */
1579 (sp->rx_ring_state&(RrNoMem|RrPostponed)) == RrPostponed)
1580 /* Need to gather the postponed packet. */
1581 speedo_rx(dev);
1583 /* Always check if all rx buffers are allocated. --SAW */
1584 speedo_refill_rx_buffers(dev, 0);
1586 spin_lock(&sp->lock);
1588 * The chip may have suspended reception for various reasons.
1589 * Check for that, and re-prime it should this be the case.
1591 switch ((status >> 2) & 0xf) {
1592 case 0: /* Idle */
1593 break;
1594 case 1: /* Suspended */
1595 case 2: /* No resources (RxFDs) */
1596 case 9: /* Suspended with no more RBDs */
1597 case 10: /* No resources due to no RBDs */
1598 case 12: /* Ready with no RBDs */
1599 speedo_rx_soft_reset(dev);
1600 break;
1601 case 3: case 5: case 6: case 7: case 8:
1602 case 11: case 13: case 14: case 15:
1603 /* these are all reserved values */
1604 break;
1608 /* User interrupt, Command/Tx unit interrupt or CU not active. */
1609 if (status & 0xA400) {
1610 speedo_tx_buffer_gc(dev);
1611 if (sp->tx_full
1612 && (int)(sp->cur_tx - sp->dirty_tx) < TX_QUEUE_UNFULL) {
1613 /* The ring is no longer full. */
1614 sp->tx_full = 0;
1615 netif_wake_queue(dev); /* Attention: under a spinlock. --SAW */
1619 spin_unlock(&sp->lock);
1621 if (--boguscnt < 0) {
1622 printk(KERN_ERR "%s: Too much work at interrupt, status=0x%4.4x.\n",
1623 dev->name, status);
1624 /* Clear all interrupt sources. */
1625 /* Will change from 0xfc00 to 0xff00 when we start handling
1626 FCP and ER interrupts --Dragan */
1627 iowrite16(0xfc00, ioaddr + SCBStatus);
1628 break;
1630 } while (1);
1632 if (netif_msg_intr(sp))
1633 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1634 dev->name, ioread16(ioaddr + SCBStatus));
1636 clear_bit(0, (void*)&sp->in_interrupt);
1637 return IRQ_RETVAL(handled);
1640 static inline struct RxFD *speedo_rx_alloc(struct net_device *dev, int entry)
1642 struct speedo_private *sp = netdev_priv(dev);
1643 struct RxFD *rxf;
1644 struct sk_buff *skb;
1645 /* Get a fresh skbuff to replace the consumed one. */
1646 skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
1647 if (skb)
1648 rx_align(skb); /* Align IP on 16 byte boundary */
1649 sp->rx_skbuff[entry] = skb;
1650 if (skb == NULL) {
1651 sp->rx_ringp[entry] = NULL;
1652 return NULL;
1654 rxf = sp->rx_ringp[entry] = (struct RxFD *)skb->data;
1655 sp->rx_ring_dma[entry] =
1656 pci_map_single(sp->pdev, rxf,
1657 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1658 skb->dev = dev;
1659 skb_reserve(skb, sizeof(struct RxFD));
1660 rxf->rx_buf_addr = 0xffffffff;
1661 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry],
1662 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1663 return rxf;
1666 static inline void speedo_rx_link(struct net_device *dev, int entry,
1667 struct RxFD *rxf, dma_addr_t rxf_dma)
1669 struct speedo_private *sp = netdev_priv(dev);
1670 rxf->status = cpu_to_le32(0xC0000001); /* '1' for driver use only. */
1671 rxf->link = 0; /* None yet. */
1672 rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
1673 sp->last_rxf->link = cpu_to_le32(rxf_dma);
1674 sp->last_rxf->status &= cpu_to_le32(~0xC0000000);
1675 pci_dma_sync_single_for_device(sp->pdev, sp->last_rxf_dma,
1676 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1677 sp->last_rxf = rxf;
1678 sp->last_rxf_dma = rxf_dma;
1681 static int speedo_refill_rx_buf(struct net_device *dev, int force)
1683 struct speedo_private *sp = netdev_priv(dev);
1684 int entry;
1685 struct RxFD *rxf;
1687 entry = sp->dirty_rx % RX_RING_SIZE;
1688 if (sp->rx_skbuff[entry] == NULL) {
1689 rxf = speedo_rx_alloc(dev, entry);
1690 if (rxf == NULL) {
1691 unsigned int forw;
1692 int forw_entry;
1693 if (netif_msg_rx_err(sp) || !(sp->rx_ring_state & RrOOMReported)) {
1694 printk(KERN_WARNING "%s: can't fill rx buffer (force %d)!\n",
1695 dev->name, force);
1696 sp->rx_ring_state |= RrOOMReported;
1698 speedo_show_state(dev);
1699 if (!force)
1700 return -1; /* Better luck next time! */
1701 /* Borrow an skb from one of next entries. */
1702 for (forw = sp->dirty_rx + 1; forw != sp->cur_rx; forw++)
1703 if (sp->rx_skbuff[forw % RX_RING_SIZE] != NULL)
1704 break;
1705 if (forw == sp->cur_rx)
1706 return -1;
1707 forw_entry = forw % RX_RING_SIZE;
1708 sp->rx_skbuff[entry] = sp->rx_skbuff[forw_entry];
1709 sp->rx_skbuff[forw_entry] = NULL;
1710 rxf = sp->rx_ringp[forw_entry];
1711 sp->rx_ringp[forw_entry] = NULL;
1712 sp->rx_ringp[entry] = rxf;
1714 } else {
1715 rxf = sp->rx_ringp[entry];
1717 speedo_rx_link(dev, entry, rxf, sp->rx_ring_dma[entry]);
1718 sp->dirty_rx++;
1719 sp->rx_ring_state &= ~(RrNoMem|RrOOMReported); /* Mark the progress. */
1720 return 0;
1723 static void speedo_refill_rx_buffers(struct net_device *dev, int force)
1725 struct speedo_private *sp = netdev_priv(dev);
1727 /* Refill the RX ring. */
1728 while ((int)(sp->cur_rx - sp->dirty_rx) > 0 &&
1729 speedo_refill_rx_buf(dev, force) != -1);
1732 static int
1733 speedo_rx(struct net_device *dev)
1735 struct speedo_private *sp = netdev_priv(dev);
1736 int entry = sp->cur_rx % RX_RING_SIZE;
1737 int rx_work_limit = sp->dirty_rx + RX_RING_SIZE - sp->cur_rx;
1738 int alloc_ok = 1;
1739 int npkts = 0;
1741 if (netif_msg_intr(sp))
1742 printk(KERN_DEBUG " In speedo_rx().\n");
1743 /* If we own the next entry, it's a new packet. Send it up. */
1744 while (sp->rx_ringp[entry] != NULL) {
1745 int status;
1746 int pkt_len;
1748 pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry],
1749 sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1750 status = le32_to_cpu(sp->rx_ringp[entry]->status);
1751 pkt_len = le32_to_cpu(sp->rx_ringp[entry]->count) & 0x3fff;
1753 if (!(status & RxComplete))
1754 break;
1756 if (--rx_work_limit < 0)
1757 break;
1759 /* Check for a rare out-of-memory case: the current buffer is
1760 the last buffer allocated in the RX ring. --SAW */
1761 if (sp->last_rxf == sp->rx_ringp[entry]) {
1762 /* Postpone the packet. It'll be reaped at an interrupt when this
1763 packet is no longer the last packet in the ring. */
1764 if (netif_msg_rx_err(sp))
1765 printk(KERN_DEBUG "%s: RX packet postponed!\n",
1766 dev->name);
1767 sp->rx_ring_state |= RrPostponed;
1768 break;
1771 if (netif_msg_rx_status(sp))
1772 printk(KERN_DEBUG " speedo_rx() status %8.8x len %d.\n", status,
1773 pkt_len);
1774 if ((status & (RxErrTooBig|RxOK|0x0f90)) != RxOK) {
1775 if (status & RxErrTooBig)
1776 printk(KERN_ERR "%s: Ethernet frame overran the Rx buffer, "
1777 "status %8.8x!\n", dev->name, status);
1778 else if (! (status & RxOK)) {
1779 /* There was a fatal error. This *should* be impossible. */
1780 sp->stats.rx_errors++;
1781 printk(KERN_ERR "%s: Anomalous event in speedo_rx(), "
1782 "status %8.8x.\n",
1783 dev->name, status);
1785 } else {
1786 struct sk_buff *skb;
1788 /* Check if the packet is long enough to just accept without
1789 copying to a properly sized skbuff. */
1790 if (pkt_len < rx_copybreak
1791 && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
1792 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1793 /* 'skb_put()' points to the start of sk_buff data area. */
1794 pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry],
1795 sizeof(struct RxFD) + pkt_len,
1796 PCI_DMA_FROMDEVICE);
1798 #if 1 || USE_IP_CSUM
1799 /* Packet is in one chunk -- we can copy + cksum. */
1800 skb_copy_to_linear_data(skb, sp->rx_skbuff[entry]->data, pkt_len);
1801 skb_put(skb, pkt_len);
1802 #else
1803 skb_copy_from_linear_data(sp->rx_skbuff[entry],
1804 skb_put(skb, pkt_len),
1805 pkt_len);
1806 #endif
1807 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry],
1808 sizeof(struct RxFD) + pkt_len,
1809 PCI_DMA_FROMDEVICE);
1810 npkts++;
1811 } else {
1812 /* Pass up the already-filled skbuff. */
1813 skb = sp->rx_skbuff[entry];
1814 if (skb == NULL) {
1815 printk(KERN_ERR "%s: Inconsistent Rx descriptor chain.\n",
1816 dev->name);
1817 break;
1819 sp->rx_skbuff[entry] = NULL;
1820 skb_put(skb, pkt_len);
1821 npkts++;
1822 sp->rx_ringp[entry] = NULL;
1823 pci_unmap_single(sp->pdev, sp->rx_ring_dma[entry],
1824 PKT_BUF_SZ + sizeof(struct RxFD),
1825 PCI_DMA_FROMDEVICE);
1827 skb->protocol = eth_type_trans(skb, dev);
1828 netif_rx(skb);
1829 dev->last_rx = jiffies;
1830 sp->stats.rx_packets++;
1831 sp->stats.rx_bytes += pkt_len;
1833 entry = (++sp->cur_rx) % RX_RING_SIZE;
1834 sp->rx_ring_state &= ~RrPostponed;
1835 /* Refill the recently taken buffers.
1836 Do it one-by-one to handle traffic bursts better. */
1837 if (alloc_ok && speedo_refill_rx_buf(dev, 0) == -1)
1838 alloc_ok = 0;
1841 /* Try hard to refill the recently taken buffers. */
1842 speedo_refill_rx_buffers(dev, 1);
1844 if (npkts)
1845 sp->last_rx_time = jiffies;
1847 return 0;
1850 static int
1851 speedo_close(struct net_device *dev)
1853 struct speedo_private *sp = netdev_priv(dev);
1854 void __iomem *ioaddr = sp->regs;
1855 int i;
1857 netdevice_stop(dev);
1858 netif_stop_queue(dev);
1860 if (netif_msg_ifdown(sp))
1861 printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x.\n",
1862 dev->name, ioread16(ioaddr + SCBStatus));
1864 /* Shut off the media monitoring timer. */
1865 del_timer_sync(&sp->timer);
1867 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1869 /* Shutting down the chip nicely fails to disable flow control. So.. */
1870 iowrite32(PortPartialReset, ioaddr + SCBPort);
1871 ioread32(ioaddr + SCBPort); /* flush posted write */
1873 * The chip requires a 10 microsecond quiet period. Wait here!
1875 udelay(10);
1877 free_irq(dev->irq, dev);
1878 speedo_show_state(dev);
1880 /* Free all the skbuffs in the Rx and Tx queues. */
1881 for (i = 0; i < RX_RING_SIZE; i++) {
1882 struct sk_buff *skb = sp->rx_skbuff[i];
1883 sp->rx_skbuff[i] = NULL;
1884 /* Clear the Rx descriptors. */
1885 if (skb) {
1886 pci_unmap_single(sp->pdev,
1887 sp->rx_ring_dma[i],
1888 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1889 dev_kfree_skb(skb);
1893 for (i = 0; i < TX_RING_SIZE; i++) {
1894 struct sk_buff *skb = sp->tx_skbuff[i];
1895 sp->tx_skbuff[i] = NULL;
1896 /* Clear the Tx descriptors. */
1897 if (skb) {
1898 pci_unmap_single(sp->pdev,
1899 le32_to_cpu(sp->tx_ring[i].tx_buf_addr0),
1900 skb->len, PCI_DMA_TODEVICE);
1901 dev_kfree_skb(skb);
1905 /* Free multicast setting blocks. */
1906 for (i = 0; sp->mc_setup_head != NULL; i++) {
1907 struct speedo_mc_block *t;
1908 t = sp->mc_setup_head->next;
1909 kfree(sp->mc_setup_head);
1910 sp->mc_setup_head = t;
1912 sp->mc_setup_tail = NULL;
1913 if (netif_msg_ifdown(sp))
1914 printk(KERN_DEBUG "%s: %d multicast blocks dropped.\n", dev->name, i);
1916 pci_set_power_state(sp->pdev, PCI_D2);
1918 return 0;
1921 /* The Speedo-3 has an especially awkward and unusable method of getting
1922 statistics out of the chip. It takes an unpredictable length of time
1923 for the dump-stats command to complete. To avoid a busy-wait loop we
1924 update the stats with the previous dump results, and then trigger a
1925 new dump.
1927 Oh, and incoming frames are dropped while executing dump-stats!
1929 static struct net_device_stats *
1930 speedo_get_stats(struct net_device *dev)
1932 struct speedo_private *sp = netdev_priv(dev);
1933 void __iomem *ioaddr = sp->regs;
1935 /* Update only if the previous dump finished. */
1936 if (sp->lstats->done_marker == le32_to_cpu(0xA007)) {
1937 sp->stats.tx_aborted_errors += le32_to_cpu(sp->lstats->tx_coll16_errs);
1938 sp->stats.tx_window_errors += le32_to_cpu(sp->lstats->tx_late_colls);
1939 sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_underruns);
1940 sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_lost_carrier);
1941 /*sp->stats.tx_deferred += le32_to_cpu(sp->lstats->tx_deferred);*/
1942 sp->stats.collisions += le32_to_cpu(sp->lstats->tx_total_colls);
1943 sp->stats.rx_crc_errors += le32_to_cpu(sp->lstats->rx_crc_errs);
1944 sp->stats.rx_frame_errors += le32_to_cpu(sp->lstats->rx_align_errs);
1945 sp->stats.rx_over_errors += le32_to_cpu(sp->lstats->rx_resource_errs);
1946 sp->stats.rx_fifo_errors += le32_to_cpu(sp->lstats->rx_overrun_errs);
1947 sp->stats.rx_length_errors += le32_to_cpu(sp->lstats->rx_runt_errs);
1948 sp->lstats->done_marker = 0x0000;
1949 if (netif_running(dev)) {
1950 unsigned long flags;
1951 /* Take a spinlock to make wait_for_cmd_done and sending the
1952 command atomic. --SAW */
1953 spin_lock_irqsave(&sp->lock, flags);
1954 wait_for_cmd_done(dev, sp);
1955 iowrite8(CUDumpStats, ioaddr + SCBCmd);
1956 spin_unlock_irqrestore(&sp->lock, flags);
1959 return &sp->stats;
1962 static void speedo_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1964 struct speedo_private *sp = netdev_priv(dev);
1965 strncpy(info->driver, "eepro100", sizeof(info->driver)-1);
1966 strncpy(info->version, version, sizeof(info->version)-1);
1967 if (sp->pdev)
1968 strcpy(info->bus_info, pci_name(sp->pdev));
1971 static int speedo_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1973 struct speedo_private *sp = netdev_priv(dev);
1974 spin_lock_irq(&sp->lock);
1975 mii_ethtool_gset(&sp->mii_if, ecmd);
1976 spin_unlock_irq(&sp->lock);
1977 return 0;
1980 static int speedo_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1982 struct speedo_private *sp = netdev_priv(dev);
1983 int res;
1984 spin_lock_irq(&sp->lock);
1985 res = mii_ethtool_sset(&sp->mii_if, ecmd);
1986 spin_unlock_irq(&sp->lock);
1987 return res;
1990 static int speedo_nway_reset(struct net_device *dev)
1992 struct speedo_private *sp = netdev_priv(dev);
1993 return mii_nway_restart(&sp->mii_if);
1996 static u32 speedo_get_link(struct net_device *dev)
1998 struct speedo_private *sp = netdev_priv(dev);
1999 return mii_link_ok(&sp->mii_if);
2002 static u32 speedo_get_msglevel(struct net_device *dev)
2004 struct speedo_private *sp = netdev_priv(dev);
2005 return sp->msg_enable;
2008 static void speedo_set_msglevel(struct net_device *dev, u32 v)
2010 struct speedo_private *sp = netdev_priv(dev);
2011 sp->msg_enable = v;
2014 static const struct ethtool_ops ethtool_ops = {
2015 .get_drvinfo = speedo_get_drvinfo,
2016 .get_settings = speedo_get_settings,
2017 .set_settings = speedo_set_settings,
2018 .nway_reset = speedo_nway_reset,
2019 .get_link = speedo_get_link,
2020 .get_msglevel = speedo_get_msglevel,
2021 .set_msglevel = speedo_set_msglevel,
2024 static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2026 struct speedo_private *sp = netdev_priv(dev);
2027 struct mii_ioctl_data *data = if_mii(rq);
2028 int phy = sp->phy[0] & 0x1f;
2029 int saved_acpi;
2030 int t;
2032 switch(cmd) {
2033 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2034 data->phy_id = phy;
2036 case SIOCGMIIREG: /* Read MII PHY register. */
2037 /* FIXME: these operations need to be serialized with MDIO
2038 access from the timeout handler.
2039 They are currently serialized only with MDIO access from the
2040 timer routine. 2000/05/09 SAW */
2041 saved_acpi = pci_set_power_state(sp->pdev, PCI_D0);
2042 t = del_timer_sync(&sp->timer);
2043 data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2044 if (t)
2045 add_timer(&sp->timer); /* may be set to the past --SAW */
2046 pci_set_power_state(sp->pdev, saved_acpi);
2047 return 0;
2049 case SIOCSMIIREG: /* Write MII PHY register. */
2050 if (!capable(CAP_NET_ADMIN))
2051 return -EPERM;
2052 saved_acpi = pci_set_power_state(sp->pdev, PCI_D0);
2053 t = del_timer_sync(&sp->timer);
2054 mdio_write(dev, data->phy_id, data->reg_num, data->val_in);
2055 if (t)
2056 add_timer(&sp->timer); /* may be set to the past --SAW */
2057 pci_set_power_state(sp->pdev, saved_acpi);
2058 return 0;
2059 default:
2060 return -EOPNOTSUPP;
2064 /* Set or clear the multicast filter for this adaptor.
2065 This is very ugly with Intel chips -- we usually have to execute an
2066 entire configuration command, plus process a multicast command.
2067 This is complicated. We must put a large configuration command and
2068 an arbitrarily-sized multicast command in the transmit list.
2069 To minimize the disruption -- the previous command might have already
2070 loaded the link -- we convert the current command block, normally a Tx
2071 command, into a no-op and link it to the new command.
2073 static void set_rx_mode(struct net_device *dev)
2075 struct speedo_private *sp = netdev_priv(dev);
2076 void __iomem *ioaddr = sp->regs;
2077 struct descriptor *last_cmd;
2078 char new_rx_mode;
2079 unsigned long flags;
2080 int entry, i;
2082 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2083 new_rx_mode = 3;
2084 } else if ((dev->flags & IFF_ALLMULTI) ||
2085 dev->mc_count > multicast_filter_limit) {
2086 new_rx_mode = 1;
2087 } else
2088 new_rx_mode = 0;
2090 if (netif_msg_rx_status(sp))
2091 printk(KERN_DEBUG "%s: set_rx_mode %d -> %d\n", dev->name,
2092 sp->rx_mode, new_rx_mode);
2094 if ((int)(sp->cur_tx - sp->dirty_tx) > TX_RING_SIZE - TX_MULTICAST_SIZE) {
2095 /* The Tx ring is full -- don't add anything! Hope the mode will be
2096 * set again later. */
2097 sp->rx_mode = -1;
2098 return;
2101 if (new_rx_mode != sp->rx_mode) {
2102 u8 *config_cmd_data;
2104 spin_lock_irqsave(&sp->lock, flags);
2105 entry = sp->cur_tx++ % TX_RING_SIZE;
2106 last_cmd = sp->last_cmd;
2107 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
2109 sp->tx_skbuff[entry] = NULL; /* Redundant. */
2110 sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdConfigure);
2111 sp->tx_ring[entry].link =
2112 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2113 config_cmd_data = (void *)&sp->tx_ring[entry].tx_desc_addr;
2114 /* Construct a full CmdConfig frame. */
2115 memcpy(config_cmd_data, i82558_config_cmd, CONFIG_DATA_SIZE);
2116 config_cmd_data[1] = (txfifo << 4) | rxfifo;
2117 config_cmd_data[4] = rxdmacount;
2118 config_cmd_data[5] = txdmacount + 0x80;
2119 config_cmd_data[15] |= (new_rx_mode & 2) ? 1 : 0;
2120 /* 0x80 doesn't disable FC 0x84 does.
2121 Disable Flow control since we are not ACK-ing any FC interrupts
2122 for now. --Dragan */
2123 config_cmd_data[19] = 0x84;
2124 config_cmd_data[19] |= sp->mii_if.full_duplex ? 0x40 : 0;
2125 config_cmd_data[21] = (new_rx_mode & 1) ? 0x0D : 0x05;
2126 if (sp->phy[0] & 0x8000) { /* Use the AUI port instead. */
2127 config_cmd_data[15] |= 0x80;
2128 config_cmd_data[8] = 0;
2130 /* Trigger the command unit resume. */
2131 wait_for_cmd_done(dev, sp);
2132 clear_suspend(last_cmd);
2133 iowrite8(CUResume, ioaddr + SCBCmd);
2134 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2135 netif_stop_queue(dev);
2136 sp->tx_full = 1;
2138 spin_unlock_irqrestore(&sp->lock, flags);
2141 if (new_rx_mode == 0 && dev->mc_count < 4) {
2142 /* The simple case of 0-3 multicast list entries occurs often, and
2143 fits within one tx_ring[] entry. */
2144 struct dev_mc_list *mclist;
2145 u16 *setup_params, *eaddrs;
2147 spin_lock_irqsave(&sp->lock, flags);
2148 entry = sp->cur_tx++ % TX_RING_SIZE;
2149 last_cmd = sp->last_cmd;
2150 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
2152 sp->tx_skbuff[entry] = NULL;
2153 sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdMulticastList);
2154 sp->tx_ring[entry].link =
2155 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2156 sp->tx_ring[entry].tx_desc_addr = 0; /* Really MC list count. */
2157 setup_params = (u16 *)&sp->tx_ring[entry].tx_desc_addr;
2158 *setup_params++ = cpu_to_le16(dev->mc_count*6);
2159 /* Fill in the multicast addresses. */
2160 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
2161 i++, mclist = mclist->next) {
2162 eaddrs = (u16 *)mclist->dmi_addr;
2163 *setup_params++ = *eaddrs++;
2164 *setup_params++ = *eaddrs++;
2165 *setup_params++ = *eaddrs++;
2168 wait_for_cmd_done(dev, sp);
2169 clear_suspend(last_cmd);
2170 /* Immediately trigger the command unit resume. */
2171 iowrite8(CUResume, ioaddr + SCBCmd);
2173 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2174 netif_stop_queue(dev);
2175 sp->tx_full = 1;
2177 spin_unlock_irqrestore(&sp->lock, flags);
2178 } else if (new_rx_mode == 0) {
2179 struct dev_mc_list *mclist;
2180 u16 *setup_params, *eaddrs;
2181 struct speedo_mc_block *mc_blk;
2182 struct descriptor *mc_setup_frm;
2183 int i;
2185 mc_blk = kmalloc(sizeof(*mc_blk) + 2 + multicast_filter_limit*6,
2186 GFP_ATOMIC);
2187 if (mc_blk == NULL) {
2188 printk(KERN_ERR "%s: Failed to allocate a setup frame.\n",
2189 dev->name);
2190 sp->rx_mode = -1; /* We failed, try again. */
2191 return;
2193 mc_blk->next = NULL;
2194 mc_blk->len = 2 + multicast_filter_limit*6;
2195 mc_blk->frame_dma =
2196 pci_map_single(sp->pdev, &mc_blk->frame, mc_blk->len,
2197 PCI_DMA_TODEVICE);
2198 mc_setup_frm = &mc_blk->frame;
2200 /* Fill the setup frame. */
2201 if (netif_msg_ifup(sp))
2202 printk(KERN_DEBUG "%s: Constructing a setup frame at %p.\n",
2203 dev->name, mc_setup_frm);
2204 mc_setup_frm->cmd_status =
2205 cpu_to_le32(CmdSuspend | CmdIntr | CmdMulticastList);
2206 /* Link set below. */
2207 setup_params = (u16 *)&mc_setup_frm->params;
2208 *setup_params++ = cpu_to_le16(dev->mc_count*6);
2209 /* Fill in the multicast addresses. */
2210 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
2211 i++, mclist = mclist->next) {
2212 eaddrs = (u16 *)mclist->dmi_addr;
2213 *setup_params++ = *eaddrs++;
2214 *setup_params++ = *eaddrs++;
2215 *setup_params++ = *eaddrs++;
2218 /* Disable interrupts while playing with the Tx Cmd list. */
2219 spin_lock_irqsave(&sp->lock, flags);
2221 if (sp->mc_setup_tail)
2222 sp->mc_setup_tail->next = mc_blk;
2223 else
2224 sp->mc_setup_head = mc_blk;
2225 sp->mc_setup_tail = mc_blk;
2226 mc_blk->tx = sp->cur_tx;
2228 entry = sp->cur_tx++ % TX_RING_SIZE;
2229 last_cmd = sp->last_cmd;
2230 sp->last_cmd = mc_setup_frm;
2232 /* Change the command to a NoOp, pointing to the CmdMulti command. */
2233 sp->tx_skbuff[entry] = NULL;
2234 sp->tx_ring[entry].status = cpu_to_le32(CmdNOp);
2235 sp->tx_ring[entry].link = cpu_to_le32(mc_blk->frame_dma);
2237 /* Set the link in the setup frame. */
2238 mc_setup_frm->link =
2239 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2241 pci_dma_sync_single_for_device(sp->pdev, mc_blk->frame_dma,
2242 mc_blk->len, PCI_DMA_TODEVICE);
2244 wait_for_cmd_done(dev, sp);
2245 clear_suspend(last_cmd);
2246 /* Immediately trigger the command unit resume. */
2247 iowrite8(CUResume, ioaddr + SCBCmd);
2249 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2250 netif_stop_queue(dev);
2251 sp->tx_full = 1;
2253 spin_unlock_irqrestore(&sp->lock, flags);
2255 if (netif_msg_rx_status(sp))
2256 printk(" CmdMCSetup frame length %d in entry %d.\n",
2257 dev->mc_count, entry);
2260 sp->rx_mode = new_rx_mode;
2263 #ifdef CONFIG_PM
2264 static int eepro100_suspend(struct pci_dev *pdev, pm_message_t state)
2266 struct net_device *dev = pci_get_drvdata (pdev);
2267 struct speedo_private *sp = netdev_priv(dev);
2268 void __iomem *ioaddr = sp->regs;
2270 pci_save_state(pdev);
2272 if (!netif_running(dev))
2273 return 0;
2275 del_timer_sync(&sp->timer);
2277 netif_device_detach(dev);
2278 iowrite32(PortPartialReset, ioaddr + SCBPort);
2280 /* XXX call pci_set_power_state ()? */
2281 pci_disable_device(pdev);
2282 pci_set_power_state (pdev, PCI_D3hot);
2283 return 0;
2286 static int eepro100_resume(struct pci_dev *pdev)
2288 struct net_device *dev = pci_get_drvdata (pdev);
2289 struct speedo_private *sp = netdev_priv(dev);
2290 void __iomem *ioaddr = sp->regs;
2291 int rc;
2293 pci_set_power_state(pdev, PCI_D0);
2294 pci_restore_state(pdev);
2296 rc = pci_enable_device(pdev);
2297 if (rc)
2298 return rc;
2300 pci_set_master(pdev);
2302 if (!netif_running(dev))
2303 return 0;
2305 /* I'm absolutely uncertain if this part of code may work.
2306 The problems are:
2307 - correct hardware reinitialization;
2308 - correct driver behavior between different steps of the
2309 reinitialization;
2310 - serialization with other driver calls.
2311 2000/03/08 SAW */
2312 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
2313 speedo_resume(dev);
2314 netif_device_attach(dev);
2315 sp->rx_mode = -1;
2316 sp->flow_ctrl = sp->partner = 0;
2317 set_rx_mode(dev);
2318 sp->timer.expires = RUN_AT(2*HZ);
2319 add_timer(&sp->timer);
2320 return 0;
2322 #endif /* CONFIG_PM */
2324 static void __devexit eepro100_remove_one (struct pci_dev *pdev)
2326 struct net_device *dev = pci_get_drvdata (pdev);
2327 struct speedo_private *sp = netdev_priv(dev);
2329 unregister_netdev(dev);
2331 release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
2332 release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
2334 pci_iounmap(pdev, sp->regs);
2335 pci_free_consistent(pdev, TX_RING_SIZE * sizeof(struct TxFD)
2336 + sizeof(struct speedo_stats),
2337 sp->tx_ring, sp->tx_ring_dma);
2338 pci_disable_device(pdev);
2339 free_netdev(dev);
2342 static struct pci_device_id eepro100_pci_tbl[] = {
2343 { PCI_VENDOR_ID_INTEL, 0x1229, PCI_ANY_ID, PCI_ANY_ID, },
2344 { PCI_VENDOR_ID_INTEL, 0x1209, PCI_ANY_ID, PCI_ANY_ID, },
2345 { PCI_VENDOR_ID_INTEL, 0x1029, PCI_ANY_ID, PCI_ANY_ID, },
2346 { PCI_VENDOR_ID_INTEL, 0x1030, PCI_ANY_ID, PCI_ANY_ID, },
2347 { PCI_VENDOR_ID_INTEL, 0x1031, PCI_ANY_ID, PCI_ANY_ID, },
2348 { PCI_VENDOR_ID_INTEL, 0x1032, PCI_ANY_ID, PCI_ANY_ID, },
2349 { PCI_VENDOR_ID_INTEL, 0x1033, PCI_ANY_ID, PCI_ANY_ID, },
2350 { PCI_VENDOR_ID_INTEL, 0x1034, PCI_ANY_ID, PCI_ANY_ID, },
2351 { PCI_VENDOR_ID_INTEL, 0x1035, PCI_ANY_ID, PCI_ANY_ID, },
2352 { PCI_VENDOR_ID_INTEL, 0x1036, PCI_ANY_ID, PCI_ANY_ID, },
2353 { PCI_VENDOR_ID_INTEL, 0x1037, PCI_ANY_ID, PCI_ANY_ID, },
2354 { PCI_VENDOR_ID_INTEL, 0x1038, PCI_ANY_ID, PCI_ANY_ID, },
2355 { PCI_VENDOR_ID_INTEL, 0x1039, PCI_ANY_ID, PCI_ANY_ID, },
2356 { PCI_VENDOR_ID_INTEL, 0x103A, PCI_ANY_ID, PCI_ANY_ID, },
2357 { PCI_VENDOR_ID_INTEL, 0x103B, PCI_ANY_ID, PCI_ANY_ID, },
2358 { PCI_VENDOR_ID_INTEL, 0x103C, PCI_ANY_ID, PCI_ANY_ID, },
2359 { PCI_VENDOR_ID_INTEL, 0x103D, PCI_ANY_ID, PCI_ANY_ID, },
2360 { PCI_VENDOR_ID_INTEL, 0x103E, PCI_ANY_ID, PCI_ANY_ID, },
2361 { PCI_VENDOR_ID_INTEL, 0x1050, PCI_ANY_ID, PCI_ANY_ID, },
2362 { PCI_VENDOR_ID_INTEL, 0x1059, PCI_ANY_ID, PCI_ANY_ID, },
2363 { PCI_VENDOR_ID_INTEL, 0x1227, PCI_ANY_ID, PCI_ANY_ID, },
2364 { PCI_VENDOR_ID_INTEL, 0x2449, PCI_ANY_ID, PCI_ANY_ID, },
2365 { PCI_VENDOR_ID_INTEL, 0x2459, PCI_ANY_ID, PCI_ANY_ID, },
2366 { PCI_VENDOR_ID_INTEL, 0x245D, PCI_ANY_ID, PCI_ANY_ID, },
2367 { PCI_VENDOR_ID_INTEL, 0x5200, PCI_ANY_ID, PCI_ANY_ID, },
2368 { PCI_VENDOR_ID_INTEL, 0x5201, PCI_ANY_ID, PCI_ANY_ID, },
2369 { 0,}
2371 MODULE_DEVICE_TABLE(pci, eepro100_pci_tbl);
2373 static struct pci_driver eepro100_driver = {
2374 .name = "eepro100",
2375 .id_table = eepro100_pci_tbl,
2376 .probe = eepro100_init_one,
2377 .remove = __devexit_p(eepro100_remove_one),
2378 #ifdef CONFIG_PM
2379 .suspend = eepro100_suspend,
2380 .resume = eepro100_resume,
2381 #endif /* CONFIG_PM */
2384 static int __init eepro100_init_module(void)
2386 #ifdef MODULE
2387 printk(version);
2388 #endif
2389 return pci_register_driver(&eepro100_driver);
2392 static void __exit eepro100_cleanup_module(void)
2394 pci_unregister_driver(&eepro100_driver);
2397 module_init(eepro100_init_module);
2398 module_exit(eepro100_cleanup_module);
2401 * Local variables:
2402 * compile-command: "gcc -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c eepro100.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`"
2403 * c-indent-level: 4
2404 * c-basic-offset: 4
2405 * tab-width: 4
2406 * End: