2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
4 * Copyright (C) 2003, 2007 IC Plus Corp
9 * Sundance Technology, Inc.
11 * craig_rich@sundanceti.com
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
20 * http://www.icplus.com.tw
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/mii.h>
26 #include <linux/mutex.h>
28 #include <asm/div64.h>
30 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
31 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
32 #define IPG_RESET_MASK \
33 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
34 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
37 #define ipg_w32(val32,reg) iowrite32((val32), ioaddr + (reg))
38 #define ipg_w16(val16,reg) iowrite16((val16), ioaddr + (reg))
39 #define ipg_w8(val8,reg) iowrite8((val8), ioaddr + (reg))
41 #define ipg_r32(reg) ioread32(ioaddr + (reg))
42 #define ipg_r16(reg) ioread16(ioaddr + (reg))
43 #define ipg_r8(reg) ioread8(ioaddr + (reg))
45 #define JUMBO_FRAME_4k_ONLY
51 #define DRV_NAME "ipg"
53 MODULE_AUTHOR("IC Plus Corp. 2003");
54 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver "
56 MODULE_LICENSE("GPL");
58 static const char *ipg_brand_name
[] = {
59 "IC PLUS IP1000 1000/100/10 based NIC",
60 "Sundance Technology ST2021 based NIC",
61 "Tamarack Microelectronics TC9020/9021 based NIC",
62 "Tamarack Microelectronics TC9020/9021 based NIC",
67 static struct pci_device_id ipg_pci_tbl
[] __devinitdata
= {
68 { PCI_VDEVICE(SUNDANCE
, 0x1023), 0 },
69 { PCI_VDEVICE(SUNDANCE
, 0x2021), 1 },
70 { PCI_VDEVICE(SUNDANCE
, 0x1021), 2 },
71 { PCI_VDEVICE(DLINK
, 0x9021), 3 },
72 { PCI_VDEVICE(DLINK
, 0x4000), 4 },
73 { PCI_VDEVICE(DLINK
, 0x4020), 5 },
77 MODULE_DEVICE_TABLE(pci
, ipg_pci_tbl
);
79 static inline void __iomem
*ipg_ioaddr(struct net_device
*dev
)
81 struct ipg_nic_private
*sp
= netdev_priv(dev
);
86 static void ipg_dump_rfdlist(struct net_device
*dev
)
88 struct ipg_nic_private
*sp
= netdev_priv(dev
);
89 void __iomem
*ioaddr
= sp
->ioaddr
;
93 IPG_DEBUG_MSG("_dump_rfdlist\n");
95 printk(KERN_INFO
"rx_current = %2.2x\n", sp
->rx_current
);
96 printk(KERN_INFO
"rx_dirty = %2.2x\n", sp
->rx_dirty
);
97 printk(KERN_INFO
"RFDList start address = %16.16lx\n",
98 (unsigned long) sp
->rxd_map
);
99 printk(KERN_INFO
"RFDListPtr register = %8.8x%8.8x\n",
100 ipg_r32(IPG_RFDLISTPTR1
), ipg_r32(IPG_RFDLISTPTR0
));
102 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
103 offset
= (u32
) &sp
->rxd
[i
].next_desc
- (u32
) sp
->rxd
;
104 printk(KERN_INFO
"%2.2x %4.4x RFDNextPtr = %16.16lx\n", i
,
105 offset
, (unsigned long) sp
->rxd
[i
].next_desc
);
106 offset
= (u32
) &sp
->rxd
[i
].rfs
- (u32
) sp
->rxd
;
107 printk(KERN_INFO
"%2.2x %4.4x RFS = %16.16lx\n", i
,
108 offset
, (unsigned long) sp
->rxd
[i
].rfs
);
109 offset
= (u32
) &sp
->rxd
[i
].frag_info
- (u32
) sp
->rxd
;
110 printk(KERN_INFO
"%2.2x %4.4x frag_info = %16.16lx\n", i
,
111 offset
, (unsigned long) sp
->rxd
[i
].frag_info
);
115 static void ipg_dump_tfdlist(struct net_device
*dev
)
117 struct ipg_nic_private
*sp
= netdev_priv(dev
);
118 void __iomem
*ioaddr
= sp
->ioaddr
;
122 IPG_DEBUG_MSG("_dump_tfdlist\n");
124 printk(KERN_INFO
"tx_current = %2.2x\n", sp
->tx_current
);
125 printk(KERN_INFO
"tx_dirty = %2.2x\n", sp
->tx_dirty
);
126 printk(KERN_INFO
"TFDList start address = %16.16lx\n",
127 (unsigned long) sp
->txd_map
);
128 printk(KERN_INFO
"TFDListPtr register = %8.8x%8.8x\n",
129 ipg_r32(IPG_TFDLISTPTR1
), ipg_r32(IPG_TFDLISTPTR0
));
131 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
132 offset
= (u32
) &sp
->txd
[i
].next_desc
- (u32
) sp
->txd
;
133 printk(KERN_INFO
"%2.2x %4.4x TFDNextPtr = %16.16lx\n", i
,
134 offset
, (unsigned long) sp
->txd
[i
].next_desc
);
136 offset
= (u32
) &sp
->txd
[i
].tfc
- (u32
) sp
->txd
;
137 printk(KERN_INFO
"%2.2x %4.4x TFC = %16.16lx\n", i
,
138 offset
, (unsigned long) sp
->txd
[i
].tfc
);
139 offset
= (u32
) &sp
->txd
[i
].frag_info
- (u32
) sp
->txd
;
140 printk(KERN_INFO
"%2.2x %4.4x frag_info = %16.16lx\n", i
,
141 offset
, (unsigned long) sp
->txd
[i
].frag_info
);
146 static void ipg_write_phy_ctl(void __iomem
*ioaddr
, u8 data
)
148 ipg_w8(IPG_PC_RSVD_MASK
& data
, PHY_CTRL
);
149 ndelay(IPG_PC_PHYCTRLWAIT_NS
);
152 static void ipg_drive_phy_ctl_low_high(void __iomem
*ioaddr
, u8 data
)
154 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| data
);
155 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| data
);
158 static void send_three_state(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
160 phyctrlpolarity
|= (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
;
162 ipg_drive_phy_ctl_low_high(ioaddr
, phyctrlpolarity
);
165 static void send_end(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
167 ipg_w8((IPG_PC_MGMTCLK_LO
| (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
|
168 phyctrlpolarity
) & IPG_PC_RSVD_MASK
, PHY_CTRL
);
171 static u16
read_phy_bit(void __iomem
* ioaddr
, u8 phyctrlpolarity
)
175 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| phyctrlpolarity
);
177 bit_data
= ((ipg_r8(PHY_CTRL
) & IPG_PC_MGMTDATA
) >> 1) & 1;
179 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| phyctrlpolarity
);
185 * Read a register from the Physical Layer device located
186 * on the IPG NIC, using the IPG PHYCTRL register.
188 static int mdio_read(struct net_device
* dev
, int phy_id
, int phy_reg
)
190 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
192 * The GMII mangement frame structure for a read is as follows:
194 * |Preamble|st|op|phyad|regad|ta| data |idle|
195 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
197 * <32 1s> = 32 consecutive logic 1 values
198 * A = bit of Physical Layer device address (MSB first)
199 * R = bit of register address (MSB first)
200 * z = High impedance state
201 * D = bit of read data (MSB first)
203 * Transmission order is 'Preamble' field first, bits transmitted
204 * left to right (first to last).
210 { GMII_PREAMBLE
, 32 }, /* Preamble */
211 { GMII_ST
, 2 }, /* ST */
212 { GMII_READ
, 2 }, /* OP */
213 { phy_id
, 5 }, /* PHYAD */
214 { phy_reg
, 5 }, /* REGAD */
215 { 0x0000, 2 }, /* TA */
216 { 0x0000, 16 }, /* DATA */
217 { 0x0000, 1 } /* IDLE */
222 polarity
= ipg_r8(PHY_CTRL
);
223 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
225 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
226 for (j
= 0; j
< 5; j
++) {
227 for (i
= 0; i
< p
[j
].len
; i
++) {
228 /* For each variable length field, the MSB must be
229 * transmitted first. Rotate through the field bits,
230 * starting with the MSB, and move each bit into the
231 * the 1st (2^1) bit position (this is the bit position
232 * corresponding to the MgmtData bit of the PhyCtrl
233 * register for the IPG).
237 * First write a '0' to bit 1 of the PhyCtrl
238 * register, then write a '1' to bit 1 of the
241 * To do this, right shift the MSB of ST by the value:
242 * [field length - 1 - #ST bits already written]
243 * then left shift this result by 1.
245 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
246 data
&= IPG_PC_MGMTDATA
;
247 data
|= polarity
| IPG_PC_MGMTDIR
;
249 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
253 send_three_state(ioaddr
, polarity
);
255 read_phy_bit(ioaddr
, polarity
);
258 * For a read cycle, the bits for the next two fields (TA and
259 * DATA) are driven by the PHY (the IPG reads these bits).
261 for (i
= 0; i
< p
[6].len
; i
++) {
263 (read_phy_bit(ioaddr
, polarity
) << (p
[6].len
- 1 - i
));
266 send_three_state(ioaddr
, polarity
);
267 send_three_state(ioaddr
, polarity
);
268 send_three_state(ioaddr
, polarity
);
269 send_end(ioaddr
, polarity
);
271 /* Return the value of the DATA field. */
276 * Write to a register from the Physical Layer device located
277 * on the IPG NIC, using the IPG PHYCTRL register.
279 static void mdio_write(struct net_device
*dev
, int phy_id
, int phy_reg
, int val
)
281 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
283 * The GMII mangement frame structure for a read is as follows:
285 * |Preamble|st|op|phyad|regad|ta| data |idle|
286 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
288 * <32 1s> = 32 consecutive logic 1 values
289 * A = bit of Physical Layer device address (MSB first)
290 * R = bit of register address (MSB first)
291 * z = High impedance state
292 * D = bit of write data (MSB first)
294 * Transmission order is 'Preamble' field first, bits transmitted
295 * left to right (first to last).
301 { GMII_PREAMBLE
, 32 }, /* Preamble */
302 { GMII_ST
, 2 }, /* ST */
303 { GMII_WRITE
, 2 }, /* OP */
304 { phy_id
, 5 }, /* PHYAD */
305 { phy_reg
, 5 }, /* REGAD */
306 { 0x0002, 2 }, /* TA */
307 { val
& 0xffff, 16 }, /* DATA */
308 { 0x0000, 1 } /* IDLE */
313 polarity
= ipg_r8(PHY_CTRL
);
314 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
316 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
317 for (j
= 0; j
< 7; j
++) {
318 for (i
= 0; i
< p
[j
].len
; i
++) {
319 /* For each variable length field, the MSB must be
320 * transmitted first. Rotate through the field bits,
321 * starting with the MSB, and move each bit into the
322 * the 1st (2^1) bit position (this is the bit position
323 * corresponding to the MgmtData bit of the PhyCtrl
324 * register for the IPG).
328 * First write a '0' to bit 1 of the PhyCtrl
329 * register, then write a '1' to bit 1 of the
332 * To do this, right shift the MSB of ST by the value:
333 * [field length - 1 - #ST bits already written]
334 * then left shift this result by 1.
336 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
337 data
&= IPG_PC_MGMTDATA
;
338 data
|= polarity
| IPG_PC_MGMTDIR
;
340 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
344 /* The last cycle is a tri-state, so read from the PHY. */
345 for (j
= 7; j
< 8; j
++) {
346 for (i
= 0; i
< p
[j
].len
; i
++) {
347 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| polarity
);
349 p
[j
].field
|= ((ipg_r8(PHY_CTRL
) &
350 IPG_PC_MGMTDATA
) >> 1) << (p
[j
].len
- 1 - i
);
352 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| polarity
);
357 /* Set LED_Mode JES20040127EEPROM */
358 static void ipg_set_led_mode(struct net_device
*dev
)
360 struct ipg_nic_private
*sp
= netdev_priv(dev
);
361 void __iomem
*ioaddr
= sp
->ioaddr
;
364 mode
= ipg_r32(ASIC_CTRL
);
365 mode
&= ~(IPG_AC_LED_MODE_BIT_1
| IPG_AC_LED_MODE
| IPG_AC_LED_SPEED
);
367 if ((sp
->LED_Mode
& 0x03) > 1)
368 mode
|= IPG_AC_LED_MODE_BIT_1
; /* Write Asic Control Bit 29 */
370 if ((sp
->LED_Mode
& 0x01) == 1)
371 mode
|= IPG_AC_LED_MODE
; /* Write Asic Control Bit 14 */
373 if ((sp
->LED_Mode
& 0x08) == 8)
374 mode
|= IPG_AC_LED_SPEED
; /* Write Asic Control Bit 27 */
376 ipg_w32(mode
, ASIC_CTRL
);
379 /* Set PHYSet JES20040127EEPROM */
380 static void ipg_set_phy_set(struct net_device
*dev
)
382 struct ipg_nic_private
*sp
= netdev_priv(dev
);
383 void __iomem
*ioaddr
= sp
->ioaddr
;
386 physet
= ipg_r8(PHY_SET
);
387 physet
&= ~(IPG_PS_MEM_LENB9B
| IPG_PS_MEM_LEN9
| IPG_PS_NON_COMPDET
);
388 physet
|= ((sp
->LED_Mode
& 0x70) >> 4);
389 ipg_w8(physet
, PHY_SET
);
392 static int ipg_reset(struct net_device
*dev
, u32 resetflags
)
394 /* Assert functional resets via the IPG AsicCtrl
395 * register as specified by the 'resetflags' input
398 void __iomem
*ioaddr
= ipg_ioaddr(dev
); //JES20040127EEPROM:
399 unsigned int timeout_count
= 0;
401 IPG_DEBUG_MSG("_reset\n");
403 ipg_w32(ipg_r32(ASIC_CTRL
) | resetflags
, ASIC_CTRL
);
405 /* Delay added to account for problem with 10Mbps reset. */
406 mdelay(IPG_AC_RESETWAIT
);
408 while (IPG_AC_RESET_BUSY
& ipg_r32(ASIC_CTRL
)) {
409 mdelay(IPG_AC_RESETWAIT
);
410 if (++timeout_count
> IPG_AC_RESET_TIMEOUT
)
413 /* Set LED Mode in Asic Control JES20040127EEPROM */
414 ipg_set_led_mode(dev
);
416 /* Set PHYSet Register Value JES20040127EEPROM */
417 ipg_set_phy_set(dev
);
421 /* Find the GMII PHY address. */
422 static int ipg_find_phyaddr(struct net_device
*dev
)
424 unsigned int phyaddr
, i
;
426 for (i
= 0; i
< 32; i
++) {
429 /* Search for the correct PHY address among 32 possible. */
430 phyaddr
= (IPG_NIC_PHY_ADDRESS
+ i
) % 32;
432 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
436 status
= mdio_read(dev
, phyaddr
, MII_BMSR
);
438 if ((status
!= 0xFFFF) && (status
!= 0))
446 * Configure IPG based on result of IEEE 802.3 PHY
449 static int ipg_config_autoneg(struct net_device
*dev
)
451 struct ipg_nic_private
*sp
= netdev_priv(dev
);
452 void __iomem
*ioaddr
= sp
->ioaddr
;
453 unsigned int txflowcontrol
;
454 unsigned int rxflowcontrol
;
455 unsigned int fullduplex
;
461 IPG_DEBUG_MSG("_config_autoneg\n");
463 asicctrl
= ipg_r32(ASIC_CTRL
);
464 phyctrl
= ipg_r8(PHY_CTRL
);
465 mac_ctrl_val
= ipg_r32(MAC_CTRL
);
467 /* Set flags for use in resolving auto-negotation, assuming
468 * non-1000Mbps, half duplex, no flow control.
475 /* To accomodate a problem in 10Mbps operation,
476 * set a global flag if PHY running in 10Mbps mode.
480 printk(KERN_INFO
"%s: Link speed = ", dev
->name
);
482 /* Determine actual speed of operation. */
483 switch (phyctrl
& IPG_PC_LINK_SPEED
) {
484 case IPG_PC_LINK_SPEED_10MBPS
:
486 printk(KERN_INFO
"%s: 10Mbps operational mode enabled.\n",
490 case IPG_PC_LINK_SPEED_100MBPS
:
491 printk("100Mbps.\n");
493 case IPG_PC_LINK_SPEED_1000MBPS
:
494 printk("1000Mbps.\n");
498 printk("undefined!\n");
502 if (phyctrl
& IPG_PC_DUPLEX_STATUS
) {
508 /* Configure full duplex, and flow control. */
509 if (fullduplex
== 1) {
510 /* Configure IPG for full duplex operation. */
511 printk(KERN_INFO
"%s: setting full duplex, ", dev
->name
);
513 mac_ctrl_val
|= IPG_MC_DUPLEX_SELECT_FD
;
515 if (txflowcontrol
== 1) {
516 printk("TX flow control");
517 mac_ctrl_val
|= IPG_MC_TX_FLOW_CONTROL_ENABLE
;
519 printk("no TX flow control");
520 mac_ctrl_val
&= ~IPG_MC_TX_FLOW_CONTROL_ENABLE
;
523 if (rxflowcontrol
== 1) {
524 printk(", RX flow control.");
525 mac_ctrl_val
|= IPG_MC_RX_FLOW_CONTROL_ENABLE
;
527 printk(", no RX flow control.");
528 mac_ctrl_val
&= ~IPG_MC_RX_FLOW_CONTROL_ENABLE
;
533 /* Configure IPG for half duplex operation. */
534 printk(KERN_INFO
"%s: setting half duplex, "
535 "no TX flow control, no RX flow control.\n", dev
->name
);
537 mac_ctrl_val
&= ~IPG_MC_DUPLEX_SELECT_FD
&
538 ~IPG_MC_TX_FLOW_CONTROL_ENABLE
&
539 ~IPG_MC_RX_FLOW_CONTROL_ENABLE
;
541 ipg_w32(mac_ctrl_val
, MAC_CTRL
);
545 /* Determine and configure multicast operation and set
546 * receive mode for IPG.
548 static void ipg_nic_set_multicast_list(struct net_device
*dev
)
550 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
551 struct dev_mc_list
*mc_list_ptr
;
552 unsigned int hashindex
;
556 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
558 receivemode
= IPG_RM_RECEIVEUNICAST
| IPG_RM_RECEIVEBROADCAST
;
560 if (dev
->flags
& IFF_PROMISC
) {
561 /* NIC to be configured in promiscuous mode. */
562 receivemode
= IPG_RM_RECEIVEALLFRAMES
;
563 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
564 (dev
->flags
& IFF_MULTICAST
&
565 (dev
->mc_count
> IPG_MULTICAST_HASHTABLE_SIZE
))) {
566 /* NIC to be configured to receive all multicast
568 receivemode
|= IPG_RM_RECEIVEMULTICAST
;
569 } else if (dev
->flags
& IFF_MULTICAST
& (dev
->mc_count
> 0)) {
570 /* NIC to be configured to receive selected
571 * multicast addresses. */
572 receivemode
|= IPG_RM_RECEIVEMULTICASTHASH
;
575 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
576 * The IPG applies a cyclic-redundancy-check (the same CRC
577 * used to calculate the frame data FCS) to the destination
578 * address all incoming multicast frames whose destination
579 * address has the multicast bit set. The least significant
580 * 6 bits of the CRC result are used as an addressing index
581 * into the hash table. If the value of the bit addressed by
582 * this index is a 1, the frame is passed to the host system.
585 /* Clear hashtable. */
586 hashtable
[0] = 0x00000000;
587 hashtable
[1] = 0x00000000;
589 /* Cycle through all multicast addresses to filter. */
590 for (mc_list_ptr
= dev
->mc_list
;
591 mc_list_ptr
!= NULL
; mc_list_ptr
= mc_list_ptr
->next
) {
592 /* Calculate CRC result for each multicast address. */
593 hashindex
= crc32_le(0xffffffff, mc_list_ptr
->dmi_addr
,
596 /* Use only the least significant 6 bits. */
597 hashindex
= hashindex
& 0x3F;
599 /* Within "hashtable", set bit number "hashindex"
602 set_bit(hashindex
, (void *)hashtable
);
605 /* Write the value of the hashtable, to the 4, 16 bit
606 * HASHTABLE IPG registers.
608 ipg_w32(hashtable
[0], HASHTABLE_0
);
609 ipg_w32(hashtable
[1], HASHTABLE_1
);
611 ipg_w8(IPG_RM_RSVD_MASK
& receivemode
, RECEIVE_MODE
);
613 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE
));
616 static int ipg_io_config(struct net_device
*dev
)
618 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
622 IPG_DEBUG_MSG("_io_config\n");
624 origmacctrl
= ipg_r32(MAC_CTRL
);
626 restoremacctrl
= origmacctrl
| IPG_MC_STATISTICS_ENABLE
;
628 /* Based on compilation option, determine if FCS is to be
629 * stripped on receive frames by IPG.
631 if (!IPG_STRIP_FCS_ON_RX
)
632 restoremacctrl
|= IPG_MC_RCV_FCS
;
634 /* Determine if transmitter and/or receiver are
635 * enabled so we may restore MACCTRL correctly.
637 if (origmacctrl
& IPG_MC_TX_ENABLED
)
638 restoremacctrl
|= IPG_MC_TX_ENABLE
;
640 if (origmacctrl
& IPG_MC_RX_ENABLED
)
641 restoremacctrl
|= IPG_MC_RX_ENABLE
;
643 /* Transmitter and receiver must be disabled before setting
646 ipg_w32((origmacctrl
& (IPG_MC_RX_DISABLE
| IPG_MC_TX_DISABLE
)) &
647 IPG_MC_RSVD_MASK
, MAC_CTRL
);
649 /* Now that transmitter and receiver are disabled, write
652 ipg_w32((origmacctrl
& IPG_MC_IFS_96BIT
) & IPG_MC_RSVD_MASK
, MAC_CTRL
);
654 /* Set RECEIVEMODE register. */
655 ipg_nic_set_multicast_list(dev
);
657 ipg_w16(IPG_MAX_RXFRAME_SIZE
, MAX_FRAME_SIZE
);
659 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE
, RX_DMA_POLL_PERIOD
);
660 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE
, RX_DMA_URGENT_THRESH
);
661 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE
, RX_DMA_BURST_THRESH
);
662 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE
, TX_DMA_POLL_PERIOD
);
663 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE
, TX_DMA_URGENT_THRESH
);
664 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE
, TX_DMA_BURST_THRESH
);
665 ipg_w16((IPG_IE_HOST_ERROR
| IPG_IE_TX_DMA_COMPLETE
|
666 IPG_IE_TX_COMPLETE
| IPG_IE_INT_REQUESTED
|
667 IPG_IE_UPDATE_STATS
| IPG_IE_LINK_EVENT
|
668 IPG_IE_RX_DMA_COMPLETE
| IPG_IE_RX_DMA_PRIORITY
), INT_ENABLE
);
669 ipg_w16(IPG_FLOWONTHRESH_VALUE
, FLOW_ON_THRESH
);
670 ipg_w16(IPG_FLOWOFFTHRESH_VALUE
, FLOW_OFF_THRESH
);
672 /* IPG multi-frag frame bug workaround.
673 * Per silicon revision B3 eratta.
675 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0200, DEBUG_CTRL
);
677 /* IPG TX poll now bug workaround.
678 * Per silicon revision B3 eratta.
680 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0010, DEBUG_CTRL
);
682 /* IPG RX poll now bug workaround.
683 * Per silicon revision B3 eratta.
685 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0020, DEBUG_CTRL
);
687 /* Now restore MACCTRL to original setting. */
688 ipg_w32(IPG_MC_RSVD_MASK
& restoremacctrl
, MAC_CTRL
);
690 /* Disable unused RMON statistics. */
691 ipg_w32(IPG_RZ_ALL
, RMON_STATISTICS_MASK
);
693 /* Disable unused MIB statistics. */
694 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD
| IPG_SM_MACCONTROLFRAMESRCVD
|
695 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK
| IPG_SM_TXJUMBOFRAMES
|
696 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK
| IPG_SM_RXJUMBOFRAMES
|
697 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK
|
698 IPG_SM_UDPCHECKSUMERRORS
| IPG_SM_TCPCHECKSUMERRORS
|
699 IPG_SM_IPCHECKSUMERRORS
, STATISTICS_MASK
);
705 * Create a receive buffer within system memory and update
706 * NIC private structure appropriately.
708 static int ipg_get_rxbuff(struct net_device
*dev
, int entry
)
710 struct ipg_nic_private
*sp
= netdev_priv(dev
);
711 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
715 IPG_DEBUG_MSG("_get_rxbuff\n");
717 skb
= netdev_alloc_skb(dev
, IPG_RXSUPPORT_SIZE
+ NET_IP_ALIGN
);
719 sp
->RxBuff
[entry
] = NULL
;
723 /* Adjust the data start location within the buffer to
724 * align IP address field to a 16 byte boundary.
726 skb_reserve(skb
, NET_IP_ALIGN
);
728 /* Associate the receive buffer with the IPG NIC. */
731 /* Save the address of the sk_buff structure. */
732 sp
->RxBuff
[entry
] = skb
;
734 rxfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
735 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
));
737 /* Set the RFD fragment length. */
738 rxfragsize
= IPG_RXFRAG_SIZE
;
739 rxfd
->frag_info
|= cpu_to_le64((rxfragsize
<< 48) & IPG_RFI_FRAGLEN
);
744 static int init_rfdlist(struct net_device
*dev
)
746 struct ipg_nic_private
*sp
= netdev_priv(dev
);
747 void __iomem
*ioaddr
= sp
->ioaddr
;
750 IPG_DEBUG_MSG("_init_rfdlist\n");
752 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
753 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
756 pci_unmap_single(sp
->pdev
,
757 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
758 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
759 IPG_DEV_KFREE_SKB(sp
->RxBuff
[i
]);
760 sp
->RxBuff
[i
] = NULL
;
763 /* Clear out the RFS field. */
764 rxfd
->rfs
= 0x0000000000000000;
766 if (ipg_get_rxbuff(dev
, i
) < 0) {
768 * A receive buffer was not ready, break the
771 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
773 /* Just in case we cannot allocate a single RFD.
777 printk(KERN_ERR
"%s: No memory available"
778 " for RFD list.\n", dev
->name
);
783 rxfd
->next_desc
= cpu_to_le64(sp
->rxd_map
+
784 sizeof(struct ipg_rx
)*(i
+ 1));
786 sp
->rxd
[i
- 1].next_desc
= cpu_to_le64(sp
->rxd_map
);
791 /* Write the location of the RFDList to the IPG. */
792 ipg_w32((u32
) sp
->rxd_map
, RFD_LIST_PTR_0
);
793 ipg_w32(0x00000000, RFD_LIST_PTR_1
);
798 static void init_tfdlist(struct net_device
*dev
)
800 struct ipg_nic_private
*sp
= netdev_priv(dev
);
801 void __iomem
*ioaddr
= sp
->ioaddr
;
804 IPG_DEBUG_MSG("_init_tfdlist\n");
806 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
807 struct ipg_tx
*txfd
= sp
->txd
+ i
;
809 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
812 IPG_DEV_KFREE_SKB(sp
->TxBuff
[i
]);
813 sp
->TxBuff
[i
] = NULL
;
816 txfd
->next_desc
= cpu_to_le64(sp
->txd_map
+
817 sizeof(struct ipg_tx
)*(i
+ 1));
819 sp
->txd
[i
- 1].next_desc
= cpu_to_le64(sp
->txd_map
);
824 /* Write the location of the TFDList to the IPG. */
825 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
827 ipg_w32((u32
) sp
->txd_map
, TFD_LIST_PTR_0
);
828 ipg_w32(0x00000000, TFD_LIST_PTR_1
);
830 sp
->ResetCurrentTFD
= 1;
834 * Free all transmit buffers which have already been transfered
835 * via DMA to the IPG.
837 static void ipg_nic_txfree(struct net_device
*dev
)
839 struct ipg_nic_private
*sp
= netdev_priv(dev
);
840 void __iomem
*ioaddr
= sp
->ioaddr
;
843 unsigned int released
, pending
;
845 txd_map
= (u64
)sp
->txd_map
;
846 curr
= ipg_r32(TFD_LIST_PTR_0
) -
847 do_div(txd_map
, sizeof(struct ipg_tx
)) - 1;
849 IPG_DEBUG_MSG("_nic_txfree\n");
851 pending
= sp
->tx_current
- sp
->tx_dirty
;
853 for (released
= 0; released
< pending
; released
++) {
854 unsigned int dirty
= sp
->tx_dirty
% IPG_TFDLIST_LENGTH
;
855 struct sk_buff
*skb
= sp
->TxBuff
[dirty
];
856 struct ipg_tx
*txfd
= sp
->txd
+ dirty
;
858 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd
->tfc
);
860 /* Look at each TFD's TFC field beginning
861 * at the last freed TFD up to the current TFD.
862 * If the TFDDone bit is set, free the associated
868 /* Setup TFDDONE for compatible issue. */
869 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TFDDONE
);
871 /* Free the transmit buffer. */
873 pci_unmap_single(sp
->pdev
,
874 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
875 skb
->len
, PCI_DMA_TODEVICE
);
877 IPG_DEV_KFREE_SKB(skb
);
879 sp
->TxBuff
[dirty
] = NULL
;
883 sp
->tx_dirty
+= released
;
885 if (netif_queue_stopped(dev
) &&
886 (sp
->tx_current
!= (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))) {
887 netif_wake_queue(dev
);
891 static void ipg_tx_timeout(struct net_device
*dev
)
893 struct ipg_nic_private
*sp
= netdev_priv(dev
);
894 void __iomem
*ioaddr
= sp
->ioaddr
;
896 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
| IPG_AC_NETWORK
|
899 spin_lock_irq(&sp
->lock
);
901 /* Re-configure after DMA reset. */
902 if (ipg_io_config(dev
) < 0) {
903 printk(KERN_INFO
"%s: Error during re-configuration.\n",
909 spin_unlock_irq(&sp
->lock
);
911 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) & IPG_MC_RSVD_MASK
,
916 * For TxComplete interrupts, free all transmit
917 * buffers which have already been transfered via DMA
920 static void ipg_nic_txcleanup(struct net_device
*dev
)
922 struct ipg_nic_private
*sp
= netdev_priv(dev
);
923 void __iomem
*ioaddr
= sp
->ioaddr
;
926 IPG_DEBUG_MSG("_nic_txcleanup\n");
928 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
929 /* Reading the TXSTATUS register clears the
930 * TX_COMPLETE interrupt.
932 u32 txstatusdword
= ipg_r32(TX_STATUS
);
934 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword
);
936 /* Check for Transmit errors. Error bits only valid if
937 * TX_COMPLETE bit in the TXSTATUS register is a 1.
939 if (!(txstatusdword
& IPG_TS_TX_COMPLETE
))
942 /* If in 10Mbps mode, indicate transmit is ready. */
943 if (sp
->tenmbpsmode
) {
944 netif_wake_queue(dev
);
947 /* Transmit error, increment stat counters. */
948 if (txstatusdword
& IPG_TS_TX_ERROR
) {
949 IPG_DEBUG_MSG("Transmit error.\n");
950 sp
->stats
.tx_errors
++;
953 /* Late collision, re-enable transmitter. */
954 if (txstatusdword
& IPG_TS_LATE_COLLISION
) {
955 IPG_DEBUG_MSG("Late collision on transmit.\n");
956 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
957 IPG_MC_RSVD_MASK
, MAC_CTRL
);
960 /* Maximum collisions, re-enable transmitter. */
961 if (txstatusdword
& IPG_TS_TX_MAX_COLL
) {
962 IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
963 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
964 IPG_MC_RSVD_MASK
, MAC_CTRL
);
967 /* Transmit underrun, reset and re-enable
970 if (txstatusdword
& IPG_TS_TX_UNDERRUN
) {
971 IPG_DEBUG_MSG("Transmitter underrun.\n");
972 sp
->stats
.tx_fifo_errors
++;
973 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
|
974 IPG_AC_NETWORK
| IPG_AC_FIFO
);
976 /* Re-configure after DMA reset. */
977 if (ipg_io_config(dev
) < 0) {
979 "%s: Error during re-configuration.\n",
984 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
985 IPG_MC_RSVD_MASK
, MAC_CTRL
);
992 /* Provides statistical information about the IPG NIC. */
993 struct net_device_stats
*ipg_nic_get_stats(struct net_device
*dev
)
995 struct ipg_nic_private
*sp
= netdev_priv(dev
);
996 void __iomem
*ioaddr
= sp
->ioaddr
;
1000 IPG_DEBUG_MSG("_nic_get_stats\n");
1002 /* Check to see if the NIC has been initialized via nic_open,
1003 * before trying to read statistic registers.
1005 if (!test_bit(__LINK_STATE_START
, &dev
->state
))
1008 sp
->stats
.rx_packets
+= ipg_r32(IPG_FRAMESRCVDOK
);
1009 sp
->stats
.tx_packets
+= ipg_r32(IPG_FRAMESXMTDOK
);
1010 sp
->stats
.rx_bytes
+= ipg_r32(IPG_OCTETRCVOK
);
1011 sp
->stats
.tx_bytes
+= ipg_r32(IPG_OCTETXMTOK
);
1012 temp1
= ipg_r16(IPG_FRAMESLOSTRXERRORS
);
1013 sp
->stats
.rx_errors
+= temp1
;
1014 sp
->stats
.rx_missed_errors
+= temp1
;
1015 temp1
= ipg_r32(IPG_SINGLECOLFRAMES
) + ipg_r32(IPG_MULTICOLFRAMES
) +
1016 ipg_r32(IPG_LATECOLLISIONS
);
1017 temp2
= ipg_r16(IPG_CARRIERSENSEERRORS
);
1018 sp
->stats
.collisions
+= temp1
;
1019 sp
->stats
.tx_dropped
+= ipg_r16(IPG_FRAMESABORTXSCOLLS
);
1020 sp
->stats
.tx_errors
+= ipg_r16(IPG_FRAMESWEXDEFERRAL
) +
1021 ipg_r32(IPG_FRAMESWDEFERREDXMT
) + temp1
+ temp2
;
1022 sp
->stats
.multicast
+= ipg_r32(IPG_MCSTOCTETRCVDOK
);
1024 /* detailed tx_errors */
1025 sp
->stats
.tx_carrier_errors
+= temp2
;
1027 /* detailed rx_errors */
1028 sp
->stats
.rx_length_errors
+= ipg_r16(IPG_INRANGELENGTHERRORS
) +
1029 ipg_r16(IPG_FRAMETOOLONGERRRORS
);
1030 sp
->stats
.rx_crc_errors
+= ipg_r16(IPG_FRAMECHECKSEQERRORS
);
1032 /* Unutilized IPG statistic registers. */
1033 ipg_r32(IPG_MCSTFRAMESRCVDOK
);
1038 /* Restore used receive buffers. */
1039 static int ipg_nic_rxrestore(struct net_device
*dev
)
1041 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1042 const unsigned int curr
= sp
->rx_current
;
1043 unsigned int dirty
= sp
->rx_dirty
;
1045 IPG_DEBUG_MSG("_nic_rxrestore\n");
1047 for (dirty
= sp
->rx_dirty
; curr
- dirty
> 0; dirty
++) {
1048 unsigned int entry
= dirty
% IPG_RFDLIST_LENGTH
;
1050 /* rx_copybreak may poke hole here and there. */
1051 if (sp
->RxBuff
[entry
])
1054 /* Generate a new receive buffer to replace the
1055 * current buffer (which will be released by the
1058 if (ipg_get_rxbuff(dev
, entry
) < 0) {
1059 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1064 /* Reset the RFS field. */
1065 sp
->rxd
[entry
].rfs
= 0x0000000000000000;
1067 sp
->rx_dirty
= dirty
;
1074 /* use jumboindex and jumbosize to control jumbo frame status
1075 initial status is jumboindex=-1 and jumbosize=0
1076 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1077 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1078 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1079 previous receiving and need to continue dumping the current one
1087 Frame_NoStart_NoEnd
= 0,
1088 Frame_WithStart
= 1,
1090 Frame_WithStart_WithEnd
= 11
1093 inline void ipg_nic_rx_free_skb(struct net_device
*dev
)
1095 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1096 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1098 if (sp
->RxBuff
[entry
]) {
1099 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1101 pci_unmap_single(sp
->pdev
,
1102 le64_to_cpu(rxfd
->frag_info
& ~IPG_RFI_FRAGLEN
),
1103 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1104 IPG_DEV_KFREE_SKB(sp
->RxBuff
[entry
]);
1105 sp
->RxBuff
[entry
] = NULL
;
1109 inline int ipg_nic_rx_check_frame_type(struct net_device
*dev
)
1111 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1112 struct ipg_rx
*rxfd
= sp
->rxd
+ (sp
->rx_current
% IPG_RFDLIST_LENGTH
);
1113 int type
= Frame_NoStart_NoEnd
;
1115 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
)
1116 type
+= Frame_WithStart
;
1117 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
)
1118 type
+= Frame_WithEnd
;
1122 inline int ipg_nic_rx_check_error(struct net_device
*dev
)
1124 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1125 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1126 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1128 if (IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1129 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1130 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1131 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
))) {
1132 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1133 (unsigned long) rxfd
->rfs
);
1135 /* Increment general receive error statistic. */
1136 sp
->stats
.rx_errors
++;
1138 /* Increment detailed receive error statistics. */
1139 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1140 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1142 sp
->stats
.rx_fifo_errors
++;
1145 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1146 IPG_DEBUG_MSG("RX runt occured.\n");
1147 sp
->stats
.rx_length_errors
++;
1150 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1151 * error count handled by a IPG statistic register.
1154 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1155 IPG_DEBUG_MSG("RX alignment error occured.\n");
1156 sp
->stats
.rx_frame_errors
++;
1159 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1160 * handled by a IPG statistic register.
1163 /* Free the memory associated with the RX
1164 * buffer since it is erroneous and we will
1165 * not pass it to higher layer processes.
1167 if (sp
->RxBuff
[entry
]) {
1168 pci_unmap_single(sp
->pdev
,
1169 le64_to_cpu(rxfd
->frag_info
& ~IPG_RFI_FRAGLEN
),
1170 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1172 IPG_DEV_KFREE_SKB(sp
->RxBuff
[entry
]);
1173 sp
->RxBuff
[entry
] = NULL
;
1177 return NormalPacket
;
1180 static void ipg_nic_rx_with_start_and_end(struct net_device
*dev
,
1181 struct ipg_nic_private
*sp
,
1182 struct ipg_rx
*rxfd
, unsigned entry
)
1184 struct SJumbo
*jumbo
= &sp
->Jumbo
;
1185 struct sk_buff
*skb
;
1188 if (jumbo
->FoundStart
) {
1189 IPG_DEV_KFREE_SKB(jumbo
->skb
);
1190 jumbo
->FoundStart
= 0;
1191 jumbo
->CurrentSize
= 0;
1195 // 1: found error, 0 no error
1196 if (ipg_nic_rx_check_error(dev
) != NormalPacket
)
1199 skb
= sp
->RxBuff
[entry
];
1203 // accept this frame and send to upper layer
1204 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1205 if (framelen
> IPG_RXFRAG_SIZE
)
1206 framelen
= IPG_RXFRAG_SIZE
;
1208 skb_put(skb
, framelen
);
1209 skb
->protocol
= eth_type_trans(skb
, dev
);
1210 skb
->ip_summed
= CHECKSUM_NONE
;
1212 dev
->last_rx
= jiffies
;
1213 sp
->RxBuff
[entry
] = NULL
;
1216 static void ipg_nic_rx_with_start(struct net_device
*dev
,
1217 struct ipg_nic_private
*sp
,
1218 struct ipg_rx
*rxfd
, unsigned entry
)
1220 struct SJumbo
*jumbo
= &sp
->Jumbo
;
1221 struct pci_dev
*pdev
= sp
->pdev
;
1222 struct sk_buff
*skb
;
1224 // 1: found error, 0 no error
1225 if (ipg_nic_rx_check_error(dev
) != NormalPacket
)
1228 // accept this frame and send to upper layer
1229 skb
= sp
->RxBuff
[entry
];
1233 if (jumbo
->FoundStart
)
1234 IPG_DEV_KFREE_SKB(jumbo
->skb
);
1236 pci_unmap_single(pdev
, le64_to_cpu(rxfd
->frag_info
& ~IPG_RFI_FRAGLEN
),
1237 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1239 skb_put(skb
, IPG_RXFRAG_SIZE
);
1241 jumbo
->FoundStart
= 1;
1242 jumbo
->CurrentSize
= IPG_RXFRAG_SIZE
;
1245 sp
->RxBuff
[entry
] = NULL
;
1246 dev
->last_rx
= jiffies
;
1249 static void ipg_nic_rx_with_end(struct net_device
*dev
,
1250 struct ipg_nic_private
*sp
,
1251 struct ipg_rx
*rxfd
, unsigned entry
)
1253 struct SJumbo
*jumbo
= &sp
->Jumbo
;
1255 //1: found error, 0 no error
1256 if (ipg_nic_rx_check_error(dev
) == NormalPacket
) {
1257 struct sk_buff
*skb
= sp
->RxBuff
[entry
];
1262 if (jumbo
->FoundStart
) {
1263 int framelen
, endframelen
;
1265 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1267 endframeLen
= framelen
- jumbo
->CurrentSize
;
1269 if (framelen > IPG_RXFRAG_SIZE)
1270 framelen=IPG_RXFRAG_SIZE;
1272 if (framelen
> IPG_RXSUPPORT_SIZE
)
1273 IPG_DEV_KFREE_SKB(jumbo
->skb
);
1275 memcpy(skb_put(jumbo
->skb
, endframeLen
),
1276 skb
->data
, endframeLen
);
1278 jumbo
->skb
->protocol
=
1279 eth_type_trans(jumbo
->skb
, dev
);
1281 jumbo
->skb
->ip_summed
= CHECKSUM_NONE
;
1282 netif_rx(jumbo
->skb
);
1286 dev
->last_rx
= jiffies
;
1287 jumbo
->FoundStart
= 0;
1288 jumbo
->CurrentSize
= 0;
1291 ipg_nic_rx_free_skb(dev
);
1293 IPG_DEV_KFREE_SKB(jumbo
->skb
);
1294 jumbo
->FoundStart
= 0;
1295 jumbo
->CurrentSize
= 0;
1300 static void ipg_nic_rx_no_start_no_end(struct net_device
*dev
,
1301 struct ipg_nic_private
*sp
,
1302 struct ipg_rx
*rxfd
, unsigned entry
)
1304 struct SJumbo
*jumbo
= &sp
->Jumbo
;
1306 //1: found error, 0 no error
1307 if (ipg_nic_rx_check_error(dev
) == NormalPacket
) {
1308 struct sk_buff
*skb
= sp
->RxBuff
[entry
];
1311 if (jumbo
->FoundStart
) {
1312 jumbo
->CurrentSize
+= IPG_RXFRAG_SIZE
;
1313 if (jumbo
->CurrentSize
<= IPG_RXSUPPORT_SIZE
) {
1314 memcpy(skb_put(jumbo
->skb
,
1316 skb
->data
, IPG_RXFRAG_SIZE
);
1319 dev
->last_rx
= jiffies
;
1320 ipg_nic_rx_free_skb(dev
);
1323 IPG_DEV_KFREE_SKB(jumbo
->skb
);
1324 jumbo
->FoundStart
= 0;
1325 jumbo
->CurrentSize
= 0;
1330 static int ipg_nic_rx(struct net_device
*dev
)
1332 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1333 unsigned int curr
= sp
->rx_current
;
1334 void __iomem
*ioaddr
= sp
->ioaddr
;
1337 IPG_DEBUG_MSG("_nic_rx\n");
1339 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1340 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1341 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1343 if (!(rxfd
->rfs
& le64_to_cpu(IPG_RFS_RFDDONE
)))
1346 switch (ipg_nic_rx_check_frame_type(dev
)) {
1347 case Frame_WithStart_WithEnd
:
1348 ipg_nic_rx_with_start_and_end(dev
, tp
, rxfd
, entry
);
1350 case Frame_WithStart
:
1351 ipg_nic_rx_with_start(dev
, tp
, rxfd
, entry
);
1354 ipg_nic_rx_with_end(dev
, tp
, rxfd
, entry
);
1356 case Frame_NoStart_NoEnd
:
1357 ipg_nic_rx_no_start_no_end(dev
, tp
, rxfd
, entry
);
1362 sp
->rx_current
= curr
;
1364 if (i
== IPG_MAXRFDPROCESS_COUNT
) {
1365 /* There are more RFDs to process, however the
1366 * allocated amount of RFD processing time has
1367 * expired. Assert Interrupt Requested to make
1368 * sure we come back to process the remaining RFDs.
1370 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1373 ipg_nic_rxrestore(dev
);
1379 static int ipg_nic_rx(struct net_device
*dev
)
1381 /* Transfer received Ethernet frames to higher network layers. */
1382 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1383 unsigned int curr
= sp
->rx_current
;
1384 void __iomem
*ioaddr
= sp
->ioaddr
;
1385 struct ipg_rx
*rxfd
;
1388 IPG_DEBUG_MSG("_nic_rx\n");
1390 #define __RFS_MASK \
1391 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1393 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1394 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1395 struct sk_buff
*skb
= sp
->RxBuff
[entry
];
1396 unsigned int framelen
;
1398 rxfd
= sp
->rxd
+ entry
;
1400 if (((rxfd
->rfs
& __RFS_MASK
) != __RFS_MASK
) || !skb
)
1403 /* Get received frame length. */
1404 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1406 /* Check for jumbo frame arrival with too small
1409 if (framelen
> IPG_RXFRAG_SIZE
) {
1411 ("RFS FrameLen > allocated fragment size.\n");
1413 framelen
= IPG_RXFRAG_SIZE
;
1416 if ((IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1417 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1418 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1419 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
)))) {
1421 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1422 (unsigned long int) rxfd
->rfs
);
1424 /* Increment general receive error statistic. */
1425 sp
->stats
.rx_errors
++;
1427 /* Increment detailed receive error statistics. */
1428 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1429 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1430 sp
->stats
.rx_fifo_errors
++;
1433 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1434 IPG_DEBUG_MSG("RX runt occured.\n");
1435 sp
->stats
.rx_length_errors
++;
1438 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXOVERSIZEDFRAME
) ;
1439 /* Do nothing, error count handled by a IPG
1440 * statistic register.
1443 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1444 IPG_DEBUG_MSG("RX alignment error occured.\n");
1445 sp
->stats
.rx_frame_errors
++;
1448 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFCSERROR
) ;
1449 /* Do nothing, error count handled by a IPG
1450 * statistic register.
1453 /* Free the memory associated with the RX
1454 * buffer since it is erroneous and we will
1455 * not pass it to higher layer processes.
1458 __le64 info
= rxfd
->frag_info
;
1460 pci_unmap_single(sp
->pdev
,
1461 le64_to_cpu(info
) & ~IPG_RFI_FRAGLEN
,
1462 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1464 IPG_DEV_KFREE_SKB(skb
);
1468 /* Adjust the new buffer length to accomodate the size
1469 * of the received frame.
1471 skb_put(skb
, framelen
);
1473 /* Set the buffer's protocol field to Ethernet. */
1474 skb
->protocol
= eth_type_trans(skb
, dev
);
1476 /* If the frame contains an IP/TCP/UDP frame,
1477 * determine if upper layer must check IP/TCP/UDP
1480 * NOTE: DO NOT RELY ON THE TCP/UDP CHECKSUM
1481 * VERIFICATION FOR SILICON REVISIONS B3
1484 if ((le64_to_cpu(rxfd->rfs &
1485 (IPG_RFS_TCPDETECTED | IPG_RFS_UDPDETECTED |
1486 IPG_RFS_IPDETECTED))) &&
1487 !(le64_to_cpu(rxfd->rfs &
1488 (IPG_RFS_TCPERROR | IPG_RFS_UDPERROR |
1489 IPG_RFS_IPERROR)))) {
1490 * Indicate IP checksums were performed
1493 skb->ip_summed = CHECKSUM_UNNECESSARY;
1497 /* The IPG encountered an error with (or
1498 * there were no) IP/TCP/UDP checksums.
1499 * This may or may not indicate an invalid
1500 * IP/TCP/UDP frame was received. Let the
1501 * upper layer decide.
1503 skb
->ip_summed
= CHECKSUM_NONE
;
1506 /* Hand off frame for higher layer processing.
1507 * The function netif_rx() releases the sk_buff
1508 * when processing completes.
1512 /* Record frame receive time (jiffies = Linux
1513 * kernel current time stamp).
1515 dev
->last_rx
= jiffies
;
1518 /* Assure RX buffer is not reused by IPG. */
1519 sp
->RxBuff
[entry
] = NULL
;
1523 * If there are more RFDs to proces and the allocated amount of RFD
1524 * processing time has expired, assert Interrupt Requested to make
1525 * sure we come back to process the remaining RFDs.
1527 if (i
== IPG_MAXRFDPROCESS_COUNT
)
1528 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1531 /* Check if the RFD list contained no receive frame data. */
1533 sp
->EmptyRFDListCount
++;
1535 while ((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RFDDONE
) &&
1536 !((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
) &&
1537 (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
))) {
1538 unsigned int entry
= curr
++ % IPG_RFDLIST_LENGTH
;
1540 rxfd
= sp
->rxd
+ entry
;
1542 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1544 /* An unexpected event, additional code needed to handle
1545 * properly. So for the time being, just disregard the
1549 /* Free the memory associated with the RX
1550 * buffer since it is erroneous and we will
1551 * not pass it to higher layer processes.
1553 if (sp
->RxBuff
[entry
]) {
1554 pci_unmap_single(sp
->pdev
,
1555 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1556 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1557 IPG_DEV_KFREE_SKB(sp
->RxBuff
[entry
]);
1560 /* Assure RX buffer is not reused by IPG. */
1561 sp
->RxBuff
[entry
] = NULL
;
1564 sp
->rx_current
= curr
;
1566 /* Check to see if there are a minimum number of used
1567 * RFDs before restoring any (should improve performance.)
1569 if ((curr
- sp
->rx_dirty
) >= IPG_MINUSEDRFDSTOFREE
)
1570 ipg_nic_rxrestore(dev
);
1576 static void ipg_reset_after_host_error(struct work_struct
*work
)
1578 struct ipg_nic_private
*sp
=
1579 container_of(work
, struct ipg_nic_private
, task
.work
);
1580 struct net_device
*dev
= sp
->dev
;
1582 IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp
->ioaddr
+ IPG_DMACTRL
));
1585 * Acknowledge HostError interrupt by resetting
1588 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1593 if (ipg_io_config(dev
) < 0) {
1594 printk(KERN_INFO
"%s: Cannot recover from PCI error.\n",
1596 schedule_delayed_work(&sp
->task
, HZ
);
1600 static irqreturn_t
ipg_interrupt_handler(int irq
, void *dev_inst
)
1602 struct net_device
*dev
= dev_inst
;
1603 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1604 void __iomem
*ioaddr
= sp
->ioaddr
;
1605 unsigned int handled
= 0;
1608 IPG_DEBUG_MSG("_interrupt_handler\n");
1611 ipg_nic_rxrestore(dev
);
1613 /* Get interrupt source information, and acknowledge
1614 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1615 * IntRequested, MacControlFrame, LinkEvent) interrupts
1616 * if issued. Also, all IPG interrupts are disabled by
1617 * reading IntStatusAck.
1619 status
= ipg_r16(INT_STATUS_ACK
);
1621 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status
);
1623 /* Shared IRQ of remove event. */
1624 if (!(status
& IPG_IS_RSVD_MASK
))
1629 if (unlikely(!netif_running(dev
)))
1632 spin_lock(&sp
->lock
);
1634 /* If RFDListEnd interrupt, restore all used RFDs. */
1635 if (status
& IPG_IS_RFD_LIST_END
) {
1636 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1638 /* The RFD list end indicates an RFD was encountered
1639 * with a 0 NextPtr, or with an RFDDone bit set to 1
1640 * (indicating the RFD is not read for use by the
1641 * IPG.) Try to restore all RFDs.
1643 ipg_nic_rxrestore(dev
);
1646 /* Increment the RFDlistendCount counter. */
1647 sp
->RFDlistendCount
++;
1651 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1652 * IntRequested interrupt, process received frames. */
1653 if ((status
& IPG_IS_RX_DMA_PRIORITY
) ||
1654 (status
& IPG_IS_RFD_LIST_END
) ||
1655 (status
& IPG_IS_RX_DMA_COMPLETE
) ||
1656 (status
& IPG_IS_INT_REQUESTED
)) {
1658 /* Increment the RFD list checked counter if interrupted
1659 * only to check the RFD list. */
1660 if (status
& (~(IPG_IS_RX_DMA_PRIORITY
| IPG_IS_RFD_LIST_END
|
1661 IPG_IS_RX_DMA_COMPLETE
| IPG_IS_INT_REQUESTED
) &
1662 (IPG_IS_HOST_ERROR
| IPG_IS_TX_DMA_COMPLETE
|
1663 IPG_IS_LINK_EVENT
| IPG_IS_TX_COMPLETE
|
1664 IPG_IS_UPDATE_STATS
)))
1665 sp
->RFDListCheckedCount
++;
1671 /* If TxDMAComplete interrupt, free used TFDs. */
1672 if (status
& IPG_IS_TX_DMA_COMPLETE
)
1673 ipg_nic_txfree(dev
);
1675 /* TxComplete interrupts indicate one of numerous actions.
1676 * Determine what action to take based on TXSTATUS register.
1678 if (status
& IPG_IS_TX_COMPLETE
)
1679 ipg_nic_txcleanup(dev
);
1681 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1682 if (status
& IPG_IS_UPDATE_STATS
)
1683 ipg_nic_get_stats(dev
);
1685 /* If HostError interrupt, reset IPG. */
1686 if (status
& IPG_IS_HOST_ERROR
) {
1687 IPG_DDEBUG_MSG("HostError Interrupt\n");
1689 schedule_delayed_work(&sp
->task
, 0);
1692 /* If LinkEvent interrupt, resolve autonegotiation. */
1693 if (status
& IPG_IS_LINK_EVENT
) {
1694 if (ipg_config_autoneg(dev
) < 0)
1695 printk(KERN_INFO
"%s: Auto-negotiation error.\n",
1699 /* If MACCtrlFrame interrupt, do nothing. */
1700 if (status
& IPG_IS_MAC_CTRL_FRAME
)
1701 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1703 /* If RxComplete interrupt, do nothing. */
1704 if (status
& IPG_IS_RX_COMPLETE
)
1705 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1707 /* If RxEarly interrupt, do nothing. */
1708 if (status
& IPG_IS_RX_EARLY
)
1709 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1712 /* Re-enable IPG interrupts. */
1713 ipg_w16(IPG_IE_TX_DMA_COMPLETE
| IPG_IE_RX_DMA_COMPLETE
|
1714 IPG_IE_HOST_ERROR
| IPG_IE_INT_REQUESTED
| IPG_IE_TX_COMPLETE
|
1715 IPG_IE_LINK_EVENT
| IPG_IE_UPDATE_STATS
, INT_ENABLE
);
1717 spin_unlock(&sp
->lock
);
1719 return IRQ_RETVAL(handled
);
1722 static void ipg_rx_clear(struct ipg_nic_private
*sp
)
1726 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
1727 if (sp
->RxBuff
[i
]) {
1728 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
1730 IPG_DEV_KFREE_SKB(sp
->RxBuff
[i
]);
1731 sp
->RxBuff
[i
] = NULL
;
1732 pci_unmap_single(sp
->pdev
,
1733 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1734 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1739 static void ipg_tx_clear(struct ipg_nic_private
*sp
)
1743 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
1744 if (sp
->TxBuff
[i
]) {
1745 struct ipg_tx
*txfd
= sp
->txd
+ i
;
1747 pci_unmap_single(sp
->pdev
,
1748 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
1749 sp
->TxBuff
[i
]->len
, PCI_DMA_TODEVICE
);
1751 IPG_DEV_KFREE_SKB(sp
->TxBuff
[i
]);
1753 sp
->TxBuff
[i
] = NULL
;
1758 static int ipg_nic_open(struct net_device
*dev
)
1760 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1761 void __iomem
*ioaddr
= sp
->ioaddr
;
1762 struct pci_dev
*pdev
= sp
->pdev
;
1765 IPG_DEBUG_MSG("_nic_open\n");
1767 sp
->rx_buf_sz
= IPG_RXSUPPORT_SIZE
;
1769 /* Check for interrupt line conflicts, and request interrupt
1772 * IMPORTANT: Disable IPG interrupts prior to registering
1775 ipg_w16(0x0000, INT_ENABLE
);
1777 /* Register the interrupt line to be used by the IPG within
1780 rc
= request_irq(pdev
->irq
, &ipg_interrupt_handler
, IRQF_SHARED
,
1783 printk(KERN_INFO
"%s: Error when requesting interrupt.\n",
1788 dev
->irq
= pdev
->irq
;
1792 sp
->rxd
= dma_alloc_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
,
1793 &sp
->rxd_map
, GFP_KERNEL
);
1795 goto err_free_irq_0
;
1797 sp
->txd
= dma_alloc_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
,
1798 &sp
->txd_map
, GFP_KERNEL
);
1802 rc
= init_rfdlist(dev
);
1804 printk(KERN_INFO
"%s: Error during configuration.\n",
1811 rc
= ipg_io_config(dev
);
1813 printk(KERN_INFO
"%s: Error during configuration.\n",
1815 goto err_release_tfdlist_3
;
1818 /* Resolve autonegotiation. */
1819 if (ipg_config_autoneg(dev
) < 0)
1820 printk(KERN_INFO
"%s: Auto-negotiation error.\n", dev
->name
);
1823 /* initialize JUMBO Frame control variable */
1824 sp
->Jumbo
.FoundStart
= 0;
1825 sp
->Jumbo
.CurrentSize
= 0;
1827 dev
->mtu
= IPG_TXFRAG_SIZE
;
1830 /* Enable transmit and receive operation of the IPG. */
1831 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_RX_ENABLE
| IPG_MC_TX_ENABLE
) &
1832 IPG_MC_RSVD_MASK
, MAC_CTRL
);
1834 netif_start_queue(dev
);
1838 err_release_tfdlist_3
:
1842 dma_free_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1844 dma_free_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1846 free_irq(pdev
->irq
, dev
);
1850 static int ipg_nic_stop(struct net_device
*dev
)
1852 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1853 void __iomem
*ioaddr
= sp
->ioaddr
;
1854 struct pci_dev
*pdev
= sp
->pdev
;
1856 IPG_DEBUG_MSG("_nic_stop\n");
1858 netif_stop_queue(dev
);
1860 IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp
->RFDlistendCount
);
1861 IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp
->rxdCheckedCount
);
1862 IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp
->EmptyRFDListCount
);
1863 IPG_DUMPTFDLIST(dev
);
1866 (void) ipg_r16(INT_STATUS_ACK
);
1868 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1870 synchronize_irq(pdev
->irq
);
1871 } while (ipg_r16(INT_ENABLE
) & IPG_IE_RSVD_MASK
);
1877 pci_free_consistent(pdev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1878 pci_free_consistent(pdev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1880 free_irq(pdev
->irq
, dev
);
1885 static int ipg_nic_hard_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1887 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1888 void __iomem
*ioaddr
= sp
->ioaddr
;
1889 unsigned int entry
= sp
->tx_current
% IPG_TFDLIST_LENGTH
;
1890 unsigned long flags
;
1891 struct ipg_tx
*txfd
;
1893 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1895 /* If in 10Mbps mode, stop the transmit queue so
1896 * no more transmit frames are accepted.
1898 if (sp
->tenmbpsmode
)
1899 netif_stop_queue(dev
);
1901 if (sp
->ResetCurrentTFD
) {
1902 sp
->ResetCurrentTFD
= 0;
1906 txfd
= sp
->txd
+ entry
;
1908 sp
->TxBuff
[entry
] = skb
;
1910 /* Clear all TFC fields, except TFDDONE. */
1911 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
1913 /* Specify the TFC field within the TFD. */
1914 txfd
->tfc
|= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED
|
1915 (IPG_TFC_FRAMEID
& cpu_to_le64(sp
->tx_current
)) |
1916 (IPG_TFC_FRAGCOUNT
& (1 << 24)));
1918 /* Request TxComplete interrupts at an interval defined
1919 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1920 * Request TxComplete interrupt for every frame
1921 * if in 10Mbps mode to accomodate problem with 10Mbps
1924 if (sp
->tenmbpsmode
)
1925 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXINDICATE
);
1926 else if (!((sp
->tx_current
- sp
->tx_dirty
+ 1) >
1927 IPG_FRAMESBETWEENTXDMACOMPLETES
)) {
1928 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXDMAINDICATE
);
1930 /* Based on compilation option, determine if FCS is to be
1931 * appended to transmit frame by IPG.
1933 if (!(IPG_APPEND_FCS_ON_TX
))
1934 txfd
->tfc
|= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE
);
1936 /* Based on compilation option, determine if IP, TCP and/or
1937 * UDP checksums are to be added to transmit frame by IPG.
1939 if (IPG_ADD_IPCHECKSUM_ON_TX
)
1940 txfd
->tfc
|= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE
);
1942 if (IPG_ADD_TCPCHECKSUM_ON_TX
)
1943 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE
);
1945 if (IPG_ADD_UDPCHECKSUM_ON_TX
)
1946 txfd
->tfc
|= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE
);
1948 /* Based on compilation option, determine if VLAN tag info is to be
1949 * inserted into transmit frame by IPG.
1951 if (IPG_INSERT_MANUAL_VLAN_TAG
) {
1952 txfd
->tfc
|= cpu_to_le64(IPG_TFC_VLANTAGINSERT
|
1953 ((u64
) IPG_MANUAL_VLAN_VID
<< 32) |
1954 ((u64
) IPG_MANUAL_VLAN_CFI
<< 44) |
1955 ((u64
) IPG_MANUAL_VLAN_USERPRIORITY
<< 45));
1958 /* The fragment start location within system memory is defined
1959 * by the sk_buff structure's data field. The physical address
1960 * of this location within the system's virtual memory space
1961 * is determined using the IPG_HOST2BUS_MAP function.
1963 txfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
1964 skb
->len
, PCI_DMA_TODEVICE
));
1966 /* The length of the fragment within system memory is defined by
1967 * the sk_buff structure's len field.
1969 txfd
->frag_info
|= cpu_to_le64(IPG_TFI_FRAGLEN
&
1970 ((u64
) (skb
->len
& 0xffff) << 48));
1972 /* Clear the TFDDone bit last to indicate the TFD is ready
1973 * for transfer to the IPG.
1975 txfd
->tfc
&= cpu_to_le64(~IPG_TFC_TFDDONE
);
1977 spin_lock_irqsave(&sp
->lock
, flags
);
1983 ipg_w32(IPG_DC_TX_DMA_POLL_NOW
, DMA_CTRL
);
1985 if (sp
->tx_current
== (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))
1986 netif_wake_queue(dev
);
1988 spin_unlock_irqrestore(&sp
->lock
, flags
);
1990 return NETDEV_TX_OK
;
1993 static void ipg_set_phy_default_param(unsigned char rev
,
1994 struct net_device
*dev
, int phy_address
)
1996 unsigned short length
;
1997 unsigned char revision
;
1998 unsigned short *phy_param
;
1999 unsigned short address
, value
;
2001 phy_param
= &DefaultPhyParam
[0];
2002 length
= *phy_param
& 0x00FF;
2003 revision
= (unsigned char)((*phy_param
) >> 8);
2005 while (length
!= 0) {
2006 if (rev
== revision
) {
2007 while (length
> 1) {
2008 address
= *phy_param
;
2009 value
= *(phy_param
+ 1);
2011 mdio_write(dev
, phy_address
, address
, value
);
2016 phy_param
+= length
/ 2;
2017 length
= *phy_param
& 0x00FF;
2018 revision
= (unsigned char)((*phy_param
) >> 8);
2024 /* JES20040127EEPROM */
2025 static int read_eeprom(struct net_device
*dev
, int eep_addr
)
2027 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
2032 value
= IPG_EC_EEPROM_READOPCODE
| (eep_addr
& 0xff);
2033 ipg_w16(value
, EEPROM_CTRL
);
2035 for (i
= 0; i
< 1000; i
++) {
2039 data
= ipg_r16(EEPROM_CTRL
);
2040 if (!(data
& IPG_EC_EEPROM_BUSY
)) {
2041 ret
= ipg_r16(EEPROM_DATA
);
2048 static void ipg_init_mii(struct net_device
*dev
)
2050 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2051 struct mii_if_info
*mii_if
= &sp
->mii_if
;
2055 mii_if
->mdio_read
= mdio_read
;
2056 mii_if
->mdio_write
= mdio_write
;
2057 mii_if
->phy_id_mask
= 0x1f;
2058 mii_if
->reg_num_mask
= 0x1f;
2060 mii_if
->phy_id
= phyaddr
= ipg_find_phyaddr(dev
);
2062 if (phyaddr
!= 0x1f) {
2063 u16 mii_phyctrl
, mii_1000cr
;
2066 mii_1000cr
= mdio_read(dev
, phyaddr
, MII_CTRL1000
);
2067 mii_1000cr
|= ADVERTISE_1000FULL
| ADVERTISE_1000HALF
|
2068 GMII_PHY_1000BASETCONTROL_PreferMaster
;
2069 mdio_write(dev
, phyaddr
, MII_CTRL1000
, mii_1000cr
);
2071 mii_phyctrl
= mdio_read(dev
, phyaddr
, MII_BMCR
);
2073 /* Set default phyparam */
2074 pci_read_config_byte(sp
->pdev
, PCI_REVISION_ID
, &revisionid
);
2075 ipg_set_phy_default_param(revisionid
, dev
, phyaddr
);
2078 mii_phyctrl
|= BMCR_RESET
| BMCR_ANRESTART
;
2079 mdio_write(dev
, phyaddr
, MII_BMCR
, mii_phyctrl
);
2084 static int ipg_hw_init(struct net_device
*dev
)
2086 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2087 void __iomem
*ioaddr
= sp
->ioaddr
;
2091 /* Read/Write and Reset EEPROM Value Jesse20040128EEPROM_VALUE */
2092 /* Read LED Mode Configuration from EEPROM */
2093 sp
->LED_Mode
= read_eeprom(dev
, 6);
2095 /* Reset all functions within the IPG. Do not assert
2096 * RST_OUT as not compatible with some PHYs.
2098 rc
= ipg_reset(dev
, IPG_RESET_MASK
);
2104 /* Read MAC Address from EEPROM */
2105 for (i
= 0; i
< 3; i
++)
2106 sp
->station_addr
[i
] = read_eeprom(dev
, 16 + i
);
2108 for (i
= 0; i
< 3; i
++)
2109 ipg_w16(sp
->station_addr
[i
], STATION_ADDRESS_0
+ 2*i
);
2111 /* Set station address in ethernet_device structure. */
2112 dev
->dev_addr
[0] = ipg_r16(STATION_ADDRESS_0
) & 0x00ff;
2113 dev
->dev_addr
[1] = (ipg_r16(STATION_ADDRESS_0
) & 0xff00) >> 8;
2114 dev
->dev_addr
[2] = ipg_r16(STATION_ADDRESS_1
) & 0x00ff;
2115 dev
->dev_addr
[3] = (ipg_r16(STATION_ADDRESS_1
) & 0xff00) >> 8;
2116 dev
->dev_addr
[4] = ipg_r16(STATION_ADDRESS_2
) & 0x00ff;
2117 dev
->dev_addr
[5] = (ipg_r16(STATION_ADDRESS_2
) & 0xff00) >> 8;
2122 static int ipg_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2124 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2127 mutex_lock(&sp
->mii_mutex
);
2128 rc
= generic_mii_ioctl(&sp
->mii_if
, if_mii(ifr
), cmd
, NULL
);
2129 mutex_unlock(&sp
->mii_mutex
);
2134 static int ipg_nic_change_mtu(struct net_device
*dev
, int new_mtu
)
2136 /* Function to accomodate changes to Maximum Transfer Unit
2137 * (or MTU) of IPG NIC. Cannot use default function since
2138 * the default will not allow for MTU > 1500 bytes.
2141 IPG_DEBUG_MSG("_nic_change_mtu\n");
2143 /* Check that the new MTU value is between 68 (14 byte header, 46
2144 * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
2145 * corresponds to the MAXFRAMESIZE register in the IPG.
2147 if ((new_mtu
< 68) || (new_mtu
> IPG_MAX_RXFRAME_SIZE
))
2155 static int ipg_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2157 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2160 mutex_lock(&sp
->mii_mutex
);
2161 rc
= mii_ethtool_gset(&sp
->mii_if
, cmd
);
2162 mutex_unlock(&sp
->mii_mutex
);
2167 static int ipg_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2169 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2172 mutex_lock(&sp
->mii_mutex
);
2173 rc
= mii_ethtool_sset(&sp
->mii_if
, cmd
);
2174 mutex_unlock(&sp
->mii_mutex
);
2179 static int ipg_nway_reset(struct net_device
*dev
)
2181 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2184 mutex_lock(&sp
->mii_mutex
);
2185 rc
= mii_nway_restart(&sp
->mii_if
);
2186 mutex_unlock(&sp
->mii_mutex
);
2191 static struct ethtool_ops ipg_ethtool_ops
= {
2192 .get_settings
= ipg_get_settings
,
2193 .set_settings
= ipg_set_settings
,
2194 .nway_reset
= ipg_nway_reset
,
2197 static void ipg_remove(struct pci_dev
*pdev
)
2199 struct net_device
*dev
= pci_get_drvdata(pdev
);
2200 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2202 IPG_DEBUG_MSG("_remove\n");
2204 /* Un-register Ethernet device. */
2205 unregister_netdev(dev
);
2207 pci_iounmap(pdev
, sp
->ioaddr
);
2209 pci_release_regions(pdev
);
2212 pci_disable_device(pdev
);
2213 pci_set_drvdata(pdev
, NULL
);
2216 static int __devinit
ipg_probe(struct pci_dev
*pdev
,
2217 const struct pci_device_id
*id
)
2219 unsigned int i
= id
->driver_data
;
2220 struct ipg_nic_private
*sp
;
2221 struct net_device
*dev
;
2222 void __iomem
*ioaddr
;
2225 rc
= pci_enable_device(pdev
);
2229 printk(KERN_INFO
"%s: %s\n", pci_name(pdev
), ipg_brand_name
[i
]);
2231 pci_set_master(pdev
);
2233 rc
= pci_set_dma_mask(pdev
, DMA_40BIT_MASK
);
2235 rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
2237 printk(KERN_ERR
"%s: DMA config failed.\n",
2244 * Initialize net device.
2246 dev
= alloc_etherdev(sizeof(struct ipg_nic_private
));
2248 printk(KERN_ERR
"%s: alloc_etherdev failed\n", pci_name(pdev
));
2253 sp
= netdev_priv(dev
);
2254 spin_lock_init(&sp
->lock
);
2255 mutex_init(&sp
->mii_mutex
);
2257 /* Declare IPG NIC functions for Ethernet device methods.
2259 dev
->open
= &ipg_nic_open
;
2260 dev
->stop
= &ipg_nic_stop
;
2261 dev
->hard_start_xmit
= &ipg_nic_hard_start_xmit
;
2262 dev
->get_stats
= &ipg_nic_get_stats
;
2263 dev
->set_multicast_list
= &ipg_nic_set_multicast_list
;
2264 dev
->do_ioctl
= ipg_ioctl
;
2265 dev
->tx_timeout
= ipg_tx_timeout
;
2266 dev
->change_mtu
= &ipg_nic_change_mtu
;
2268 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2269 SET_ETHTOOL_OPS(dev
, &ipg_ethtool_ops
);
2271 rc
= pci_request_regions(pdev
, DRV_NAME
);
2273 goto err_free_dev_1
;
2275 ioaddr
= pci_iomap(pdev
, 1, pci_resource_len(pdev
, 1));
2277 printk(KERN_ERR
"%s cannot map MMIO\n", pci_name(pdev
));
2279 goto err_release_regions_2
;
2282 /* Save the pointer to the PCI device information. */
2283 sp
->ioaddr
= ioaddr
;
2287 INIT_DELAYED_WORK(&sp
->task
, ipg_reset_after_host_error
);
2289 pci_set_drvdata(pdev
, dev
);
2291 rc
= ipg_hw_init(dev
);
2295 rc
= register_netdev(dev
);
2299 printk(KERN_INFO
"Ethernet device registered as: %s\n", dev
->name
);
2304 pci_iounmap(pdev
, ioaddr
);
2305 err_release_regions_2
:
2306 pci_release_regions(pdev
);
2310 pci_disable_device(pdev
);
2314 static struct pci_driver ipg_pci_driver
= {
2315 .name
= IPG_DRIVER_NAME
,
2316 .id_table
= ipg_pci_tbl
,
2318 .remove
= __devexit_p(ipg_remove
),
2321 static int __init
ipg_init_module(void)
2323 return pci_register_driver(&ipg_pci_driver
);
2326 static void __exit
ipg_exit_module(void)
2328 pci_unregister_driver(&ipg_pci_driver
);
2331 module_init(ipg_init_module
);
2332 module_exit(ipg_exit_module
);