1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
33 #include "ixgbe_common.h"
34 #include "ixgbe_phy.h"
36 static s32
ixgbe_clear_hw_cntrs(struct ixgbe_hw
*hw
);
38 static s32
ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw
*hw
);
39 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
41 static u16
ixgbe_calc_eeprom_checksum(struct ixgbe_hw
*hw
);
43 static s32
ixgbe_clear_vfta(struct ixgbe_hw
*hw
);
44 static s32
ixgbe_init_rx_addrs(struct ixgbe_hw
*hw
);
45 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
46 static void ixgbe_add_mc_addr(struct ixgbe_hw
*hw
, u8
*mc_addr
);
49 * ixgbe_start_hw - Prepare hardware for TX/RX
50 * @hw: pointer to hardware structure
52 * Starts the hardware by filling the bus info structure and media type, clears
53 * all on chip counters, initializes receive address registers, multicast
54 * table, VLAN filter table, calls routine to set up link and flow control
55 * settings, and leaves transmit and receive units disabled and uninitialized
57 s32
ixgbe_start_hw(struct ixgbe_hw
*hw
)
61 /* Set the media type */
62 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
64 /* Identify the PHY */
65 ixgbe_identify_phy(hw
);
68 * Store MAC address from RAR0, clear receive address registers, and
69 * clear the multicast table
71 ixgbe_init_rx_addrs(hw
);
73 /* Clear the VLAN filter table */
77 hw
->phy
.ops
.setup(hw
);
79 /* Clear statistics registers */
80 ixgbe_clear_hw_cntrs(hw
);
82 /* Set No Snoop Disable */
83 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
84 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
85 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
87 /* Clear adapter stopped flag */
88 hw
->adapter_stopped
= false;
94 * ixgbe_init_hw - Generic hardware initialization
95 * @hw: pointer to hardware structure
97 * Initialize the hardware by reseting the hardware, filling the bus info
98 * structure and media type, clears all on chip counters, initializes receive
99 * address registers, multicast table, VLAN filter table, calls routine to set
100 * up link and flow control settings, and leaves transmit and receive units
101 * disabled and uninitialized
103 s32
ixgbe_init_hw(struct ixgbe_hw
*hw
)
105 /* Reset the hardware */
106 hw
->mac
.ops
.reset(hw
);
115 * ixgbe_clear_hw_cntrs - Generic clear hardware counters
116 * @hw: pointer to hardware structure
118 * Clears all hardware statistics counters by reading them from the hardware
119 * Statistics counters are clear on read.
121 static s32
ixgbe_clear_hw_cntrs(struct ixgbe_hw
*hw
)
125 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
126 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
127 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
128 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
129 for (i
= 0; i
< 8; i
++)
130 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
132 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
133 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
134 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
135 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
136 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
137 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
138 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
140 for (i
= 0; i
< 8; i
++) {
141 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
142 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
143 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
144 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
147 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
148 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
149 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
150 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
151 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
152 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
153 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
154 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
155 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
156 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
157 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
158 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
159 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
160 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
161 for (i
= 0; i
< 8; i
++)
162 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
163 IXGBE_READ_REG(hw
, IXGBE_RUC
);
164 IXGBE_READ_REG(hw
, IXGBE_RFC
);
165 IXGBE_READ_REG(hw
, IXGBE_ROC
);
166 IXGBE_READ_REG(hw
, IXGBE_RJC
);
167 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
168 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
169 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
170 IXGBE_READ_REG(hw
, IXGBE_TORL
);
171 IXGBE_READ_REG(hw
, IXGBE_TORH
);
172 IXGBE_READ_REG(hw
, IXGBE_TPR
);
173 IXGBE_READ_REG(hw
, IXGBE_TPT
);
174 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
175 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
176 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
177 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
178 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
179 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
180 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
181 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
182 for (i
= 0; i
< 16; i
++) {
183 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
184 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
185 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
186 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
193 * ixgbe_get_mac_addr - Generic get MAC address
194 * @hw: pointer to hardware structure
195 * @mac_addr: Adapter MAC address
197 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
198 * A reset of the adapter must be performed prior to calling this function
199 * in order for the MAC address to have been loaded from the EEPROM into RAR0
201 s32
ixgbe_get_mac_addr(struct ixgbe_hw
*hw
, u8
*mac_addr
)
207 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
208 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
210 for (i
= 0; i
< 4; i
++)
211 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
213 for (i
= 0; i
< 2; i
++)
214 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
219 s32
ixgbe_read_part_num(struct ixgbe_hw
*hw
, u32
*part_num
)
224 ret_val
= ixgbe_read_eeprom(hw
, IXGBE_PBANUM0_PTR
, &data
);
226 hw_dbg(hw
, "NVM Read Error\n");
229 *part_num
= (u32
)(data
<< 16);
231 ret_val
= ixgbe_read_eeprom(hw
, IXGBE_PBANUM1_PTR
, &data
);
233 hw_dbg(hw
, "NVM Read Error\n");
242 * ixgbe_stop_adapter - Generic stop TX/RX units
243 * @hw: pointer to hardware structure
245 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
246 * disables transmit and receive units. The adapter_stopped flag is used by
247 * the shared code and drivers to determine if the adapter is in a stopped
248 * state and should not touch the hardware.
250 s32
ixgbe_stop_adapter(struct ixgbe_hw
*hw
)
252 u32 number_of_queues
;
257 * Set the adapter_stopped flag so other driver functions stop touching
260 hw
->adapter_stopped
= true;
262 /* Disable the receive unit */
263 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
264 reg_val
&= ~(IXGBE_RXCTRL_RXEN
);
265 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, reg_val
);
268 /* Clear interrupt mask to stop from interrupts being generated */
269 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
271 /* Clear any pending interrupts */
272 IXGBE_READ_REG(hw
, IXGBE_EICR
);
274 /* Disable the transmit unit. Each queue must be disabled. */
275 number_of_queues
= hw
->mac
.num_tx_queues
;
276 for (i
= 0; i
< number_of_queues
; i
++) {
277 reg_val
= IXGBE_READ_REG(hw
, IXGBE_TXDCTL(i
));
278 if (reg_val
& IXGBE_TXDCTL_ENABLE
) {
279 reg_val
&= ~IXGBE_TXDCTL_ENABLE
;
280 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), reg_val
);
288 * ixgbe_led_on - Turns on the software controllable LEDs.
289 * @hw: pointer to hardware structure
290 * @index: led number to turn on
292 s32
ixgbe_led_on(struct ixgbe_hw
*hw
, u32 index
)
294 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
296 /* To turn on the LED, set mode to ON. */
297 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
298 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
299 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
305 * ixgbe_led_off - Turns off the software controllable LEDs.
306 * @hw: pointer to hardware structure
307 * @index: led number to turn off
309 s32
ixgbe_led_off(struct ixgbe_hw
*hw
, u32 index
)
311 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
313 /* To turn off the LED, set mode to OFF. */
314 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
315 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
316 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
323 * ixgbe_init_eeprom - Initialize EEPROM params
324 * @hw: pointer to hardware structure
326 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
327 * ixgbe_hw struct in order to set up EEPROM access.
329 s32
ixgbe_init_eeprom(struct ixgbe_hw
*hw
)
331 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
335 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
336 eeprom
->type
= ixgbe_eeprom_none
;
339 * Check for EEPROM present first.
340 * If not present leave as none
342 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
343 if (eec
& IXGBE_EEC_PRES
) {
344 eeprom
->type
= ixgbe_eeprom_spi
;
347 * SPI EEPROM is assumed here. This code would need to
348 * change if a future EEPROM is not SPI.
350 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
351 IXGBE_EEC_SIZE_SHIFT
);
352 eeprom
->word_size
= 1 << (eeprom_size
+
353 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
356 if (eec
& IXGBE_EEC_ADDR_SIZE
)
357 eeprom
->address_bits
= 16;
359 eeprom
->address_bits
= 8;
360 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: "
361 "%d\n", eeprom
->type
, eeprom
->word_size
,
362 eeprom
->address_bits
);
369 * ixgbe_read_eeprom - Read EEPROM word using EERD
370 * @hw: pointer to hardware structure
371 * @offset: offset of word in the EEPROM to read
372 * @data: word read from the EEPROM
374 * Reads a 16 bit word from the EEPROM using the EERD register.
376 s32
ixgbe_read_eeprom(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
381 eerd
= (offset
<< IXGBE_EEPROM_READ_ADDR_SHIFT
) +
382 IXGBE_EEPROM_READ_REG_START
;
384 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
385 status
= ixgbe_poll_eeprom_eerd_done(hw
);
388 *data
= (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
389 IXGBE_EEPROM_READ_REG_DATA
);
391 hw_dbg(hw
, "Eeprom read timed out\n");
397 * ixgbe_poll_eeprom_eerd_done - Poll EERD status
398 * @hw: pointer to hardware structure
400 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
402 static s32
ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw
*hw
)
406 s32 status
= IXGBE_ERR_EEPROM
;
408 for (i
= 0; i
< IXGBE_EERD_ATTEMPTS
; i
++) {
409 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
410 if (reg
& IXGBE_EEPROM_READ_REG_DONE
) {
420 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
421 * @hw: pointer to hardware structure
423 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
425 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
427 s32 status
= IXGBE_ERR_EEPROM
;
432 /* Set timeout value based on size of EEPROM */
433 timeout
= hw
->eeprom
.word_size
+ 1;
435 /* Get SMBI software semaphore between device drivers first */
436 for (i
= 0; i
< timeout
; i
++) {
438 * If the SMBI bit is 0 when we read it, then the bit will be
439 * set and we have the semaphore
441 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
442 if (!(swsm
& IXGBE_SWSM_SMBI
)) {
449 /* Now get the semaphore between SW/FW through the SWESMBI bit */
451 for (i
= 0; i
< timeout
; i
++) {
452 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
454 /* Set the SW EEPROM semaphore bit to request access */
455 swsm
|= IXGBE_SWSM_SWESMBI
;
456 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
459 * If we set the bit successfully then we got the
462 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
463 if (swsm
& IXGBE_SWSM_SWESMBI
)
470 * Release semaphores and return error if SW EEPROM semaphore
471 * was not granted because we don't have access to the EEPROM
474 hw_dbg(hw
, "Driver can't access the Eeprom - Semaphore "
476 ixgbe_release_eeprom_semaphore(hw
);
477 status
= IXGBE_ERR_EEPROM
;
485 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
486 * @hw: pointer to hardware structure
488 * This function clears hardware semaphore bits.
490 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
494 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
496 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
497 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
498 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
502 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
503 * @hw: pointer to hardware structure
505 static u16
ixgbe_calc_eeprom_checksum(struct ixgbe_hw
*hw
)
514 /* Include 0x0-0x3F in the checksum */
515 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
516 if (ixgbe_read_eeprom(hw
, i
, &word
) != 0) {
517 hw_dbg(hw
, "EEPROM read failed\n");
523 /* Include all data from pointers except for the fw pointer */
524 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
525 ixgbe_read_eeprom(hw
, i
, &pointer
);
527 /* Make sure the pointer seems valid */
528 if (pointer
!= 0xFFFF && pointer
!= 0) {
529 ixgbe_read_eeprom(hw
, pointer
, &length
);
531 if (length
!= 0xFFFF && length
!= 0) {
532 for (j
= pointer
+1; j
<= pointer
+length
; j
++) {
533 ixgbe_read_eeprom(hw
, j
, &word
);
540 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
546 * ixgbe_validate_eeprom_checksum - Validate EEPROM checksum
547 * @hw: pointer to hardware structure
548 * @checksum_val: calculated checksum
550 * Performs checksum calculation and validates the EEPROM checksum. If the
551 * caller does not need checksum_val, the value can be NULL.
553 s32
ixgbe_validate_eeprom_checksum(struct ixgbe_hw
*hw
, u16
*checksum_val
)
557 u16 read_checksum
= 0;
560 * Read the first word from the EEPROM. If this times out or fails, do
561 * not continue or we could be in for a very long wait while every
564 status
= ixgbe_read_eeprom(hw
, 0, &checksum
);
567 checksum
= ixgbe_calc_eeprom_checksum(hw
);
569 ixgbe_read_eeprom(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
572 * Verify read checksum from EEPROM is the same as
573 * calculated checksum
575 if (read_checksum
!= checksum
)
576 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
578 /* If the user cares, return the calculated checksum */
580 *checksum_val
= checksum
;
582 hw_dbg(hw
, "EEPROM read failed\n");
589 * ixgbe_validate_mac_addr - Validate MAC address
590 * @mac_addr: pointer to MAC address.
592 * Tests a MAC address to ensure it is a valid Individual Address
594 s32
ixgbe_validate_mac_addr(u8
*mac_addr
)
598 /* Make sure it is not a multicast address */
599 if (IXGBE_IS_MULTICAST(mac_addr
))
600 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
601 /* Not a broadcast address */
602 else if (IXGBE_IS_BROADCAST(mac_addr
))
603 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
604 /* Reject the zero address */
605 else if (mac_addr
[0] == 0 && mac_addr
[1] == 0 && mac_addr
[2] == 0 &&
606 mac_addr
[3] == 0 && mac_addr
[4] == 0 && mac_addr
[5] == 0)
607 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
613 * ixgbe_set_rar - Set RX address register
614 * @hw: pointer to hardware structure
615 * @addr: Address to put into receive address register
616 * @index: Receive address register to write
617 * @vind: Vind to set RAR to
618 * @enable_addr: set flag that address is active
620 * Puts an ethernet address into a receive address register.
622 s32
ixgbe_set_rar(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vind
,
625 u32 rar_low
, rar_high
;
628 * HW expects these in little endian so we reverse the byte order from
629 * network order (big endian) to little endian
631 rar_low
= ((u32
)addr
[0] |
632 ((u32
)addr
[1] << 8) |
633 ((u32
)addr
[2] << 16) |
634 ((u32
)addr
[3] << 24));
636 rar_high
= ((u32
)addr
[4] |
637 ((u32
)addr
[5] << 8) |
638 ((vind
<< IXGBE_RAH_VIND_SHIFT
) & IXGBE_RAH_VIND_MASK
));
640 if (enable_addr
!= 0)
641 rar_high
|= IXGBE_RAH_AV
;
643 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
644 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
650 * ixgbe_init_rx_addrs - Initializes receive address filters.
651 * @hw: pointer to hardware structure
653 * Places the MAC address in receive address register 0 and clears the rest
654 * of the receive addresss registers. Clears the multicast table. Assumes
655 * the receiver is in reset when the routine is called.
657 static s32
ixgbe_init_rx_addrs(struct ixgbe_hw
*hw
)
660 u32 rar_entries
= hw
->mac
.num_rx_addrs
;
663 * If the current mac address is valid, assume it is a software override
664 * to the permanent address.
665 * Otherwise, use the permanent address from the eeprom.
667 if (ixgbe_validate_mac_addr(hw
->mac
.addr
) ==
668 IXGBE_ERR_INVALID_MAC_ADDR
) {
669 /* Get the MAC address from the RAR0 for later reference */
670 ixgbe_get_mac_addr(hw
, hw
->mac
.addr
);
672 hw_dbg(hw
, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
673 hw
->mac
.addr
[0], hw
->mac
.addr
[1],
675 hw_dbg(hw
, "%.2X %.2X %.2X\n", hw
->mac
.addr
[3],
676 hw
->mac
.addr
[4], hw
->mac
.addr
[5]);
678 /* Setup the receive address. */
679 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
680 hw_dbg(hw
, " New MAC Addr =%.2X %.2X %.2X ",
681 hw
->mac
.addr
[0], hw
->mac
.addr
[1],
683 hw_dbg(hw
, "%.2X %.2X %.2X\n", hw
->mac
.addr
[3],
684 hw
->mac
.addr
[4], hw
->mac
.addr
[5]);
686 ixgbe_set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
689 hw
->addr_ctrl
.rar_used_count
= 1;
691 /* Zero out the other receive addresses. */
692 hw_dbg(hw
, "Clearing RAR[1-15]\n");
693 for (i
= 1; i
< rar_entries
; i
++) {
694 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
695 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
699 hw
->addr_ctrl
.mc_addr_in_rar_count
= 0;
700 hw
->addr_ctrl
.mta_in_use
= 0;
701 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
703 hw_dbg(hw
, " Clearing MTA\n");
704 for (i
= 0; i
< IXGBE_MC_TBL_SIZE
; i
++)
705 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
711 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
712 * @hw: pointer to hardware structure
713 * @mc_addr: the multicast address
715 * Extracts the 12 bits, from a multicast address, to determine which
716 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
717 * incoming rx multicast addresses, to determine the bit-vector to check in
718 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
719 * by the MO field of the MCSTCTRL. The MO field is set during initalization
722 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
726 switch (hw
->mac
.mc_filter_type
) {
727 case 0: /* use bits [47:36] of the address */
728 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
730 case 1: /* use bits [46:35] of the address */
731 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
733 case 2: /* use bits [45:34] of the address */
734 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
736 case 3: /* use bits [43:32] of the address */
737 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
739 default: /* Invalid mc_filter_type */
740 hw_dbg(hw
, "MC filter type param set incorrectly\n");
744 /* vector can only be 12-bits or boundary will be exceeded */
750 * ixgbe_set_mta - Set bit-vector in multicast table
751 * @hw: pointer to hardware structure
752 * @hash_value: Multicast address hash value
754 * Sets the bit-vector in the multicast table.
756 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
763 hw
->addr_ctrl
.mta_in_use
++;
765 vector
= ixgbe_mta_vector(hw
, mc_addr
);
766 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
769 * The MTA is a register array of 128 32-bit registers. It is treated
770 * like an array of 4096 bits. We want to set bit
771 * BitArray[vector_value]. So we figure out what register the bit is
772 * in, read it, OR in the new bit, then write back the new value. The
773 * register is determined by the upper 7 bits of the vector value and
774 * the bit within that register are determined by the lower 5 bits of
777 vector_reg
= (vector
>> 5) & 0x7F;
778 vector_bit
= vector
& 0x1F;
779 mta_reg
= IXGBE_READ_REG(hw
, IXGBE_MTA(vector_reg
));
780 mta_reg
|= (1 << vector_bit
);
781 IXGBE_WRITE_REG(hw
, IXGBE_MTA(vector_reg
), mta_reg
);
785 * ixgbe_add_mc_addr - Adds a multicast address.
786 * @hw: pointer to hardware structure
787 * @mc_addr: new multicast address
789 * Adds it to unused receive address register or to the multicast table.
791 static void ixgbe_add_mc_addr(struct ixgbe_hw
*hw
, u8
*mc_addr
)
793 u32 rar_entries
= hw
->mac
.num_rx_addrs
;
795 hw_dbg(hw
, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
796 mc_addr
[0], mc_addr
[1], mc_addr
[2],
797 mc_addr
[3], mc_addr
[4], mc_addr
[5]);
800 * Place this multicast address in the RAR if there is room,
801 * else put it in the MTA
803 if (hw
->addr_ctrl
.rar_used_count
< rar_entries
) {
804 ixgbe_set_rar(hw
, hw
->addr_ctrl
.rar_used_count
,
805 mc_addr
, 0, IXGBE_RAH_AV
);
806 hw_dbg(hw
, "Added a multicast address to RAR[%d]\n",
807 hw
->addr_ctrl
.rar_used_count
);
808 hw
->addr_ctrl
.rar_used_count
++;
809 hw
->addr_ctrl
.mc_addr_in_rar_count
++;
811 ixgbe_set_mta(hw
, mc_addr
);
814 hw_dbg(hw
, "ixgbe_add_mc_addr Complete\n");
818 * ixgbe_update_mc_addr_list - Updates MAC list of multicast addresses
819 * @hw: pointer to hardware structure
820 * @mc_addr_list: the list of new multicast addresses
821 * @mc_addr_count: number of addresses
822 * @pad: number of bytes between addresses in the list
824 * The given list replaces any existing list. Clears the MC addrs from receive
825 * address registers and the multicast table. Uses unsed receive address
826 * registers for the first multicast addresses, and hashes the rest into the
829 s32
ixgbe_update_mc_addr_list(struct ixgbe_hw
*hw
, u8
*mc_addr_list
,
830 u32 mc_addr_count
, u32 pad
)
833 u32 rar_entries
= hw
->mac
.num_rx_addrs
;
836 * Set the new number of MC addresses that we are being requested to
839 hw
->addr_ctrl
.num_mc_addrs
= mc_addr_count
;
840 hw
->addr_ctrl
.rar_used_count
-= hw
->addr_ctrl
.mc_addr_in_rar_count
;
841 hw
->addr_ctrl
.mc_addr_in_rar_count
= 0;
842 hw
->addr_ctrl
.mta_in_use
= 0;
844 /* Zero out the other receive addresses. */
845 hw_dbg(hw
, "Clearing RAR[1-15]\n");
846 for (i
= hw
->addr_ctrl
.rar_used_count
; i
< rar_entries
; i
++) {
847 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
848 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
852 hw_dbg(hw
, " Clearing MTA\n");
853 for (i
= 0; i
< IXGBE_MC_TBL_SIZE
; i
++)
854 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
856 /* Add the new addresses */
857 for (i
= 0; i
< mc_addr_count
; i
++) {
858 hw_dbg(hw
, " Adding the multicast addresses:\n");
859 ixgbe_add_mc_addr(hw
, mc_addr_list
+
860 (i
* (IXGBE_ETH_LENGTH_OF_ADDRESS
+ pad
)));
864 if (hw
->addr_ctrl
.mta_in_use
> 0)
865 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
866 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
868 hw_dbg(hw
, "ixgbe_update_mc_addr_list Complete\n");
873 * ixgbe_clear_vfta - Clear VLAN filter table
874 * @hw: pointer to hardware structure
876 * Clears the VLAN filer table, and the VMDq index associated with the filter
878 static s32
ixgbe_clear_vfta(struct ixgbe_hw
*hw
)
883 for (offset
= 0; offset
< IXGBE_VLAN_FILTER_TBL_SIZE
; offset
++)
884 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
886 for (vlanbyte
= 0; vlanbyte
< 4; vlanbyte
++)
887 for (offset
= 0; offset
< IXGBE_VLAN_FILTER_TBL_SIZE
; offset
++)
888 IXGBE_WRITE_REG(hw
, IXGBE_VFTAVIND(vlanbyte
, offset
),
895 * ixgbe_set_vfta - Set VLAN filter table
896 * @hw: pointer to hardware structure
897 * @vlan: VLAN id to write to VLAN filter
898 * @vind: VMDq output index that maps queue to VLAN id in VFTA
899 * @vlan_on: boolean flag to turn on/off VLAN in VFTA
901 * Turn on/off specified VLAN in the VLAN filter table.
903 s32
ixgbe_set_vfta(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
911 /* Determine 32-bit word position in array */
912 VftaIndex
= (vlan
>> 5) & 0x7F; /* upper seven bits */
914 /* Determine the location of the (VMD) queue index */
915 VftaByte
= ((vlan
>> 3) & 0x03); /* bits (4:3) indicating byte array */
916 BitOffset
= (vlan
& 0x7) << 2; /* lower 3 bits indicate nibble */
918 /* Set the nibble for VMD queue index */
919 VftaReg
= IXGBE_READ_REG(hw
, IXGBE_VFTAVIND(VftaByte
, VftaIndex
));
920 VftaReg
&= (~(0x0F << BitOffset
));
921 VftaReg
|= (vind
<< BitOffset
);
922 IXGBE_WRITE_REG(hw
, IXGBE_VFTAVIND(VftaByte
, VftaIndex
), VftaReg
);
924 /* Determine the location of the bit for this VLAN id */
925 BitOffset
= vlan
& 0x1F; /* lower five bits */
927 VftaReg
= IXGBE_READ_REG(hw
, IXGBE_VFTA(VftaIndex
));
929 /* Turn on this VLAN id */
930 VftaReg
|= (1 << BitOffset
);
932 /* Turn off this VLAN id */
933 VftaReg
&= ~(1 << BitOffset
);
934 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(VftaIndex
), VftaReg
);
940 * ixgbe_setup_fc - Configure flow control settings
941 * @hw: pointer to hardware structure
942 * @packetbuf_num: packet buffer number (0-7)
944 * Configures the flow control settings based on SW configuration.
945 * This function is used for 802.3x flow control configuration only.
947 s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
952 if (packetbuf_num
< 0 || packetbuf_num
> 7)
953 hw_dbg(hw
, "Invalid packet buffer number [%d], expected range"
954 "is 0-7\n", packetbuf_num
);
956 frctl_reg
= IXGBE_READ_REG(hw
, IXGBE_FCTRL
);
957 frctl_reg
&= ~(IXGBE_FCTRL_RFCE
| IXGBE_FCTRL_RPFCE
);
959 rmcs_reg
= IXGBE_READ_REG(hw
, IXGBE_RMCS
);
960 rmcs_reg
&= ~(IXGBE_RMCS_TFCE_PRIORITY
| IXGBE_RMCS_TFCE_802_3X
);
963 * We want to save off the original Flow Control configuration just in
964 * case we get disconnected and then reconnected into a different hub
965 * or switch with different Flow Control capabilities.
967 hw
->fc
.type
= hw
->fc
.original_type
;
970 * The possible values of the "flow_control" parameter are:
971 * 0: Flow control is completely disabled
972 * 1: Rx flow control is enabled (we can receive pause frames but not
973 * send pause frames).
974 * 2: Tx flow control is enabled (we can send pause frames but we do not
975 * support receiving pause frames)
976 * 3: Both Rx and TX flow control (symmetric) are enabled.
979 switch (hw
->fc
.type
) {
982 case ixgbe_fc_rx_pause
:
984 * RX Flow control is enabled,
985 * and TX Flow control is disabled.
987 frctl_reg
|= IXGBE_FCTRL_RFCE
;
989 case ixgbe_fc_tx_pause
:
991 * TX Flow control is enabled, and RX Flow control is disabled,
992 * by a software over-ride.
994 rmcs_reg
|= IXGBE_RMCS_TFCE_802_3X
;
998 * Flow control (both RX and TX) is enabled by a software
1001 frctl_reg
|= IXGBE_FCTRL_RFCE
;
1002 rmcs_reg
|= IXGBE_RMCS_TFCE_802_3X
;
1005 /* We should never get here. The value should be 0-3. */
1006 hw_dbg(hw
, "Flow control param set incorrectly\n");
1010 /* Enable 802.3x based flow control settings. */
1011 IXGBE_WRITE_REG(hw
, IXGBE_FCTRL
, frctl_reg
);
1012 IXGBE_WRITE_REG(hw
, IXGBE_RMCS
, rmcs_reg
);
1015 * We need to set up the Receive Threshold high and low water
1016 * marks as well as (optionally) enabling the transmission of
1019 if (hw
->fc
.type
& ixgbe_fc_tx_pause
) {
1020 if (hw
->fc
.send_xon
) {
1021 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL(packetbuf_num
),
1022 (hw
->fc
.low_water
| IXGBE_FCRTL_XONE
));
1024 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL(packetbuf_num
),
1027 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH(packetbuf_num
),
1028 (hw
->fc
.high_water
)|IXGBE_FCRTH_FCEN
);
1031 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(0), hw
->fc
.pause_time
);
1032 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, (hw
->fc
.pause_time
>> 1));
1038 * ixgbe_disable_pcie_master - Disable PCI-express master access
1039 * @hw: pointer to hardware structure
1041 * Disables PCI-Express master access and verifies there are no pending
1042 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1043 * bit hasn't caused the master requests to be disabled, else 0
1044 * is returned signifying master requests disabled.
1046 s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
1050 s32 status
= IXGBE_ERR_MASTER_REQUESTS_PENDING
;
1052 ctrl
= IXGBE_READ_REG(hw
, IXGBE_CTRL
);
1053 ctrl
|= IXGBE_CTRL_GIO_DIS
;
1054 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, ctrl
);
1056 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
1057 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
)) {
1069 * ixgbe_acquire_swfw_sync - Aquire SWFW semaphore
1070 * @hw: pointer to hardware structure
1071 * @mask: Mask to specify wich semaphore to acquire
1073 * Aquires the SWFW semaphore throught the GSSR register for the specified
1074 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1076 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
1080 u32 fwmask
= mask
<< 5;
1084 if (ixgbe_get_eeprom_semaphore(hw
))
1085 return -IXGBE_ERR_SWFW_SYNC
;
1087 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
1088 if (!(gssr
& (fwmask
| swmask
)))
1092 * Firmware currently using resource (fwmask) or other software
1093 * thread currently using resource (swmask)
1095 ixgbe_release_eeprom_semaphore(hw
);
1101 hw_dbg(hw
, "Driver can't access resource, GSSR timeout.\n");
1102 return -IXGBE_ERR_SWFW_SYNC
;
1106 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
1108 ixgbe_release_eeprom_semaphore(hw
);
1113 * ixgbe_release_swfw_sync - Release SWFW semaphore
1114 * @hw: pointer to hardware structure
1115 * @mask: Mask to specify wich semaphore to release
1117 * Releases the SWFW semaphore throught the GSSR register for the specified
1118 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1120 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
1125 ixgbe_get_eeprom_semaphore(hw
);
1127 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
1129 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
1131 ixgbe_release_eeprom_semaphore(hw
);
1135 * ixgbe_read_analog_reg8- Reads 8 bit 82598 Atlas analog register
1136 * @hw: pointer to hardware structure
1137 * @reg: analog register to read
1140 * Performs write operation to analog register specified.
1142 s32
ixgbe_read_analog_reg8(struct ixgbe_hw
*hw
, u32 reg
, u8
*val
)
1146 IXGBE_WRITE_REG(hw
, IXGBE_ATLASCTL
,
1147 IXGBE_ATLASCTL_WRITE_CMD
| (reg
<< 8));
1148 IXGBE_WRITE_FLUSH(hw
);
1150 atlas_ctl
= IXGBE_READ_REG(hw
, IXGBE_ATLASCTL
);
1151 *val
= (u8
)atlas_ctl
;
1157 * ixgbe_write_analog_reg8- Writes 8 bit Atlas analog register
1158 * @hw: pointer to hardware structure
1159 * @reg: atlas register to write
1160 * @val: value to write
1162 * Performs write operation to Atlas analog register specified.
1164 s32
ixgbe_write_analog_reg8(struct ixgbe_hw
*hw
, u32 reg
, u8 val
)
1168 atlas_ctl
= (reg
<< 8) | val
;
1169 IXGBE_WRITE_REG(hw
, IXGBE_ATLASCTL
, atlas_ctl
);
1170 IXGBE_WRITE_FLUSH(hw
);