2 * Aic94xx SAS/SATA driver hardware interface.
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This file is part of the aic94xx driver.
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <linux/pci.h>
28 #include <linux/delay.h>
29 #include <linux/module.h>
32 #include "aic94xx_reg.h"
33 #include "aic94xx_hwi.h"
34 #include "aic94xx_seq.h"
35 #include "aic94xx_dump.h"
39 /* ---------- Initialization ---------- */
41 static void asd_get_user_sas_addr(struct asd_ha_struct
*asd_ha
)
43 extern char sas_addr_str
[];
44 /* If the user has specified a WWN it overrides other settings
46 if (sas_addr_str
[0] != '\0')
47 asd_destringify_sas_addr(asd_ha
->hw_prof
.sas_addr
,
49 else if (asd_ha
->hw_prof
.sas_addr
[0] != 0)
50 asd_stringify_sas_addr(sas_addr_str
, asd_ha
->hw_prof
.sas_addr
);
53 static void asd_propagate_sas_addr(struct asd_ha_struct
*asd_ha
)
57 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
58 if (asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
[0] == 0)
60 /* Set a phy's address only if it has none.
62 ASD_DPRINTK("setting phy%d addr to %llx\n", i
,
63 SAS_ADDR(asd_ha
->hw_prof
.sas_addr
));
64 memcpy(asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
,
65 asd_ha
->hw_prof
.sas_addr
, SAS_ADDR_SIZE
);
69 /* ---------- PHY initialization ---------- */
71 static void asd_init_phy_identify(struct asd_phy
*phy
)
73 phy
->identify_frame
= phy
->id_frm_tok
->vaddr
;
75 memset(phy
->identify_frame
, 0, sizeof(*phy
->identify_frame
));
77 phy
->identify_frame
->dev_type
= SAS_END_DEV
;
78 if (phy
->sas_phy
.role
& PHY_ROLE_INITIATOR
)
79 phy
->identify_frame
->initiator_bits
= phy
->sas_phy
.iproto
;
80 if (phy
->sas_phy
.role
& PHY_ROLE_TARGET
)
81 phy
->identify_frame
->target_bits
= phy
->sas_phy
.tproto
;
82 memcpy(phy
->identify_frame
->sas_addr
, phy
->phy_desc
->sas_addr
,
84 phy
->identify_frame
->phy_id
= phy
->sas_phy
.id
;
87 static int asd_init_phy(struct asd_phy
*phy
)
89 struct asd_ha_struct
*asd_ha
= phy
->sas_phy
.ha
->lldd_ha
;
90 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
94 sas_phy
->iproto
= SAS_PROTO_ALL
;
96 sas_phy
->type
= PHY_TYPE_PHYSICAL
;
97 sas_phy
->role
= PHY_ROLE_INITIATOR
;
98 sas_phy
->oob_mode
= OOB_NOT_CONNECTED
;
99 sas_phy
->linkrate
= SAS_LINK_RATE_UNKNOWN
;
101 phy
->id_frm_tok
= asd_alloc_coherent(asd_ha
,
102 sizeof(*phy
->identify_frame
),
104 if (!phy
->id_frm_tok
) {
105 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy
->id
);
108 asd_init_phy_identify(phy
);
110 memset(phy
->frame_rcvd
, 0, sizeof(phy
->frame_rcvd
));
115 static void asd_init_ports(struct asd_ha_struct
*asd_ha
)
119 spin_lock_init(&asd_ha
->asd_ports_lock
);
120 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
121 struct asd_port
*asd_port
= &asd_ha
->asd_ports
[i
];
123 memset(asd_port
->sas_addr
, 0, SAS_ADDR_SIZE
);
124 memset(asd_port
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
125 asd_port
->phy_mask
= 0;
126 asd_port
->num_phys
= 0;
130 static int asd_init_phys(struct asd_ha_struct
*asd_ha
)
133 u8 phy_mask
= asd_ha
->hw_prof
.enabled_phys
;
135 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
136 struct asd_phy
*phy
= &asd_ha
->phys
[i
];
138 phy
->phy_desc
= &asd_ha
->hw_prof
.phy_desc
[i
];
139 phy
->asd_port
= NULL
;
141 phy
->sas_phy
.enabled
= 0;
143 phy
->sas_phy
.sas_addr
= &phy
->phy_desc
->sas_addr
[0];
144 phy
->sas_phy
.frame_rcvd
= &phy
->frame_rcvd
[0];
145 phy
->sas_phy
.ha
= &asd_ha
->sas_ha
;
146 phy
->sas_phy
.lldd_phy
= phy
;
149 /* Now enable and initialize only the enabled phys. */
150 for_each_phy(phy_mask
, phy_mask
, i
) {
151 int err
= asd_init_phy(&asd_ha
->phys
[i
]);
159 /* ---------- Sliding windows ---------- */
161 static int asd_init_sw(struct asd_ha_struct
*asd_ha
)
163 struct pci_dev
*pcidev
= asd_ha
->pcidev
;
168 err
= pci_read_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, &v
);
170 asd_printk("couldn't access conf. space of %s\n",
175 err
= pci_write_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, v
);
177 asd_printk("couldn't write to MBAR_KEY of %s\n",
182 /* Set sliding windows A, B and C to point to proper internal
185 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWA
, REG_BASE_ADDR
);
186 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWB
,
187 REG_BASE_ADDR_CSEQCIO
);
188 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWC
, REG_BASE_ADDR_EXSI
);
189 asd_ha
->io_handle
[0].swa_base
= REG_BASE_ADDR
;
190 asd_ha
->io_handle
[0].swb_base
= REG_BASE_ADDR_CSEQCIO
;
191 asd_ha
->io_handle
[0].swc_base
= REG_BASE_ADDR_EXSI
;
192 MBAR0_SWB_SIZE
= asd_ha
->io_handle
[0].len
- 0x80;
193 if (!asd_ha
->iospace
) {
194 /* MBAR1 will point to OCM (On Chip Memory) */
195 pci_write_config_dword(pcidev
, PCI_CONF_MBAR1
, OCM_BASE_ADDR
);
196 asd_ha
->io_handle
[1].swa_base
= OCM_BASE_ADDR
;
198 spin_lock_init(&asd_ha
->iolock
);
203 /* ---------- SCB initialization ---------- */
206 * asd_init_scbs - manually allocate the first SCB.
207 * @asd_ha: pointer to host adapter structure
209 * This allocates the very first SCB which would be sent to the
210 * sequencer for execution. Its bus address is written to
211 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
212 * the _next_ scb to be DMA-ed to the host adapter is read from the last
213 * SCB DMA-ed to the host adapter, we have to always stay one step
214 * ahead of the sequencer and keep one SCB already allocated.
216 static int asd_init_scbs(struct asd_ha_struct
*asd_ha
)
218 struct asd_seq_data
*seq
= &asd_ha
->seq
;
221 /* allocate the index array and bitmap */
222 asd_ha
->seq
.tc_index_bitmap_bits
= asd_ha
->hw_prof
.max_scbs
;
223 asd_ha
->seq
.tc_index_array
= kzalloc(asd_ha
->seq
.tc_index_bitmap_bits
*
224 sizeof(void *), GFP_KERNEL
);
225 if (!asd_ha
->seq
.tc_index_array
)
228 bitmap_bytes
= (asd_ha
->seq
.tc_index_bitmap_bits
+7)/8;
229 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
230 asd_ha
->seq
.tc_index_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
231 if (!asd_ha
->seq
.tc_index_bitmap
)
234 spin_lock_init(&seq
->tc_index_lock
);
236 seq
->next_scb
.size
= sizeof(struct scb
);
237 seq
->next_scb
.vaddr
= dma_pool_alloc(asd_ha
->scb_pool
, GFP_KERNEL
,
238 &seq
->next_scb
.dma_handle
);
239 if (!seq
->next_scb
.vaddr
) {
240 kfree(asd_ha
->seq
.tc_index_bitmap
);
241 kfree(asd_ha
->seq
.tc_index_array
);
242 asd_ha
->seq
.tc_index_bitmap
= NULL
;
243 asd_ha
->seq
.tc_index_array
= NULL
;
248 spin_lock_init(&seq
->pend_q_lock
);
249 INIT_LIST_HEAD(&seq
->pend_q
);
254 static inline void asd_get_max_scb_ddb(struct asd_ha_struct
*asd_ha
)
256 asd_ha
->hw_prof
.max_scbs
= asd_get_cmdctx_size(asd_ha
)/ASD_SCB_SIZE
;
257 asd_ha
->hw_prof
.max_ddbs
= asd_get_devctx_size(asd_ha
)/ASD_DDB_SIZE
;
258 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
259 asd_ha
->hw_prof
.max_scbs
,
260 asd_ha
->hw_prof
.max_ddbs
);
263 /* ---------- Done List initialization ---------- */
265 static void asd_dl_tasklet_handler(unsigned long);
267 static int asd_init_dl(struct asd_ha_struct
*asd_ha
)
269 asd_ha
->seq
.actual_dl
270 = asd_alloc_coherent(asd_ha
,
271 ASD_DL_SIZE
* sizeof(struct done_list_struct
),
273 if (!asd_ha
->seq
.actual_dl
)
275 asd_ha
->seq
.dl
= asd_ha
->seq
.actual_dl
->vaddr
;
276 asd_ha
->seq
.dl_toggle
= ASD_DEF_DL_TOGGLE
;
277 asd_ha
->seq
.dl_next
= 0;
278 tasklet_init(&asd_ha
->seq
.dl_tasklet
, asd_dl_tasklet_handler
,
279 (unsigned long) asd_ha
);
284 /* ---------- EDB and ESCB init ---------- */
286 static int asd_alloc_edbs(struct asd_ha_struct
*asd_ha
, gfp_t gfp_flags
)
288 struct asd_seq_data
*seq
= &asd_ha
->seq
;
291 seq
->edb_arr
= kmalloc(seq
->num_edbs
*sizeof(*seq
->edb_arr
), gfp_flags
);
295 for (i
= 0; i
< seq
->num_edbs
; i
++) {
296 seq
->edb_arr
[i
] = asd_alloc_coherent(asd_ha
, ASD_EDB_SIZE
,
298 if (!seq
->edb_arr
[i
])
300 memset(seq
->edb_arr
[i
]->vaddr
, 0, ASD_EDB_SIZE
);
303 ASD_DPRINTK("num_edbs:%d\n", seq
->num_edbs
);
308 for (i
-- ; i
>= 0; i
--)
309 asd_free_coherent(asd_ha
, seq
->edb_arr
[i
]);
316 static int asd_alloc_escbs(struct asd_ha_struct
*asd_ha
,
319 struct asd_seq_data
*seq
= &asd_ha
->seq
;
320 struct asd_ascb
*escb
;
323 seq
->escb_arr
= kmalloc(seq
->num_escbs
*sizeof(*seq
->escb_arr
),
328 escbs
= seq
->num_escbs
;
329 escb
= asd_ascb_alloc_list(asd_ha
, &escbs
, gfp_flags
);
331 asd_printk("couldn't allocate list of escbs\n");
334 seq
->num_escbs
-= escbs
; /* subtract what was not allocated */
335 ASD_DPRINTK("num_escbs:%d\n", seq
->num_escbs
);
337 for (i
= 0; i
< seq
->num_escbs
; i
++, escb
= list_entry(escb
->list
.next
,
340 seq
->escb_arr
[i
] = escb
;
341 escb
->scb
->header
.opcode
= EMPTY_SCB
;
346 kfree(seq
->escb_arr
);
347 seq
->escb_arr
= NULL
;
352 static void asd_assign_edbs2escbs(struct asd_ha_struct
*asd_ha
)
354 struct asd_seq_data
*seq
= &asd_ha
->seq
;
357 for (i
= 0; i
< seq
->num_escbs
; i
++) {
358 struct asd_ascb
*ascb
= seq
->escb_arr
[i
];
359 struct empty_scb
*escb
= &ascb
->scb
->escb
;
363 escb
->num_valid
= ASD_EDBS_PER_SCB
;
365 for (k
= 0; k
< ASD_EDBS_PER_SCB
; k
++) {
366 struct sg_el
*eb
= &escb
->eb
[k
];
367 struct asd_dma_tok
*edb
= seq
->edb_arr
[z
++];
369 memset(eb
, 0, sizeof(*eb
));
370 eb
->bus_addr
= cpu_to_le64(((u64
) edb
->dma_handle
));
371 eb
->size
= cpu_to_le32(((u32
) edb
->size
));
377 * asd_init_escbs -- allocate and initialize empty scbs
378 * @asd_ha: pointer to host adapter structure
380 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
381 * They transport sense data, etc.
383 static int asd_init_escbs(struct asd_ha_struct
*asd_ha
)
385 struct asd_seq_data
*seq
= &asd_ha
->seq
;
388 /* Allocate two empty data buffers (edb) per sequencer. */
389 int edbs
= 2*(1+asd_ha
->hw_prof
.num_phys
);
391 seq
->num_escbs
= (edbs
+ASD_EDBS_PER_SCB
-1)/ASD_EDBS_PER_SCB
;
392 seq
->num_edbs
= seq
->num_escbs
* ASD_EDBS_PER_SCB
;
394 err
= asd_alloc_edbs(asd_ha
, GFP_KERNEL
);
396 asd_printk("couldn't allocate edbs\n");
400 err
= asd_alloc_escbs(asd_ha
, GFP_KERNEL
);
402 asd_printk("couldn't allocate escbs\n");
406 asd_assign_edbs2escbs(asd_ha
);
407 /* In order to insure that normal SCBs do not overfill sequencer
408 * memory and leave no space for escbs (halting condition),
409 * we increment pending here by the number of escbs. However,
410 * escbs are never pending.
412 seq
->pending
= seq
->num_escbs
;
413 seq
->can_queue
= 1 + (asd_ha
->hw_prof
.max_scbs
- seq
->pending
)/2;
418 /* ---------- HW initialization ---------- */
421 * asd_chip_hardrst -- hard reset the chip
422 * @asd_ha: pointer to host adapter structure
424 * This takes 16 cycles and is synchronous to CFCLK, which runs
425 * at 200 MHz, so this should take at most 80 nanoseconds.
427 int asd_chip_hardrst(struct asd_ha_struct
*asd_ha
)
433 for (i
= 0 ; i
< 4 ; i
++) {
434 asd_write_reg_dword(asd_ha
, COMBIST
, HARDRST
);
439 reg
= asd_read_reg_dword(asd_ha
, CHIMINT
);
440 if (reg
& HARDRSTDET
) {
441 asd_write_reg_dword(asd_ha
, CHIMINT
,
442 HARDRSTDET
|PORRSTDET
);
445 } while (--count
> 0);
451 * asd_init_chip -- initialize the chip
452 * @asd_ha: pointer to host adapter structure
454 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
455 * microcode and starts the sequencers. The caller has to explicitly
456 * enable HA interrupts with asd_enable_ints(asd_ha).
458 static int asd_init_chip(struct asd_ha_struct
*asd_ha
)
462 err
= asd_chip_hardrst(asd_ha
);
464 asd_printk("couldn't hard reset %s\n",
465 pci_name(asd_ha
->pcidev
));
469 asd_disable_ints(asd_ha
);
471 err
= asd_init_seqs(asd_ha
);
473 asd_printk("couldn't init seqs for %s\n",
474 pci_name(asd_ha
->pcidev
));
478 err
= asd_start_seqs(asd_ha
);
480 asd_printk("coudln't start seqs for %s\n",
481 pci_name(asd_ha
->pcidev
));
488 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
490 static int max_devs
= 0;
491 module_param_named(max_devs
, max_devs
, int, S_IRUGO
);
492 MODULE_PARM_DESC(max_devs
, "\n"
493 "\tMaximum number of SAS devices to support (not LUs).\n"
494 "\tDefault: 2176, Maximum: 65663.\n");
496 static int max_cmnds
= 0;
497 module_param_named(max_cmnds
, max_cmnds
, int, S_IRUGO
);
498 MODULE_PARM_DESC(max_cmnds
, "\n"
499 "\tMaximum number of commands queuable.\n"
500 "\tDefault: 512, Maximum: 66047.\n");
502 static void asd_extend_devctx_ocm(struct asd_ha_struct
*asd_ha
)
504 unsigned long dma_addr
= OCM_BASE_ADDR
;
507 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
508 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, (dma_addr_t
) dma_addr
);
509 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
511 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
512 asd_ha
->hw_prof
.max_ddbs
+= MAX_DEVS
;
515 static int asd_extend_devctx(struct asd_ha_struct
*asd_ha
)
517 dma_addr_t dma_handle
;
518 unsigned long dma_addr
;
522 asd_extend_devctx_ocm(asd_ha
);
524 asd_ha
->hw_prof
.ddb_ext
= NULL
;
525 if (max_devs
<= asd_ha
->hw_prof
.max_ddbs
|| max_devs
> 0xFFFF) {
526 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
530 size
= (max_devs
- asd_ha
->hw_prof
.max_ddbs
+ 1) * ASD_DDB_SIZE
;
532 asd_ha
->hw_prof
.ddb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
533 if (!asd_ha
->hw_prof
.ddb_ext
) {
534 asd_printk("couldn't allocate memory for %d devices\n",
536 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
539 dma_handle
= asd_ha
->hw_prof
.ddb_ext
->dma_handle
;
540 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_DDB_SIZE
);
541 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
542 dma_handle
= (dma_addr_t
) dma_addr
;
543 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, dma_handle
);
544 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
546 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
548 asd_ha
->hw_prof
.max_ddbs
= max_devs
;
553 static int asd_extend_cmdctx(struct asd_ha_struct
*asd_ha
)
555 dma_addr_t dma_handle
;
556 unsigned long dma_addr
;
560 asd_ha
->hw_prof
.scb_ext
= NULL
;
561 if (max_cmnds
<= asd_ha
->hw_prof
.max_scbs
|| max_cmnds
> 0xFFFF) {
562 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
566 size
= (max_cmnds
- asd_ha
->hw_prof
.max_scbs
+ 1) * ASD_SCB_SIZE
;
568 asd_ha
->hw_prof
.scb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
569 if (!asd_ha
->hw_prof
.scb_ext
) {
570 asd_printk("couldn't allocate memory for %d commands\n",
572 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
575 dma_handle
= asd_ha
->hw_prof
.scb_ext
->dma_handle
;
576 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_SCB_SIZE
);
577 dma_addr
-= asd_ha
->hw_prof
.max_scbs
* ASD_SCB_SIZE
;
578 dma_handle
= (dma_addr_t
) dma_addr
;
579 asd_write_reg_addr(asd_ha
, CMDCTXBASE
, dma_handle
);
580 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
582 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
584 asd_ha
->hw_prof
.max_scbs
= max_cmnds
;
590 * asd_init_ctxmem -- initialize context memory
591 * asd_ha: pointer to host adapter structure
593 * This function sets the maximum number of SCBs and
594 * DDBs which can be used by the sequencer. This is normally
595 * 512 and 128 respectively. If support for more SCBs or more DDBs
596 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
597 * initialized here to extend context memory to point to host memory,
598 * thus allowing unlimited support for SCBs and DDBs -- only limited
601 static int asd_init_ctxmem(struct asd_ha_struct
*asd_ha
)
605 asd_get_max_scb_ddb(asd_ha
);
606 asd_extend_devctx(asd_ha
);
607 asd_extend_cmdctx(asd_ha
);
609 /* The kernel wants bitmaps to be unsigned long sized. */
610 bitmap_bytes
= (asd_ha
->hw_prof
.max_ddbs
+7)/8;
611 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
612 asd_ha
->hw_prof
.ddb_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
613 if (!asd_ha
->hw_prof
.ddb_bitmap
)
615 spin_lock_init(&asd_ha
->hw_prof
.ddb_lock
);
620 int asd_init_hw(struct asd_ha_struct
*asd_ha
)
625 err
= asd_init_sw(asd_ha
);
629 err
= pci_read_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
, &v
);
631 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
632 pci_name(asd_ha
->pcidev
));
635 pci_write_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
,
638 asd_printk("couldn't disable split completion timer of %s\n",
639 pci_name(asd_ha
->pcidev
));
643 err
= asd_read_ocm(asd_ha
);
645 asd_printk("couldn't read ocm(%d)\n", err
);
646 /* While suspicios, it is not an error that we
647 * couldn't read the OCM. */
650 err
= asd_read_flash(asd_ha
);
652 asd_printk("couldn't read flash(%d)\n", err
);
653 /* While suspicios, it is not an error that we
654 * couldn't read FLASH memory.
658 asd_init_ctxmem(asd_ha
);
660 asd_get_user_sas_addr(asd_ha
);
661 if (!asd_ha
->hw_prof
.sas_addr
[0]) {
662 asd_printk("No SAS Address provided for %s\n",
663 pci_name(asd_ha
->pcidev
));
668 asd_propagate_sas_addr(asd_ha
);
670 err
= asd_init_phys(asd_ha
);
672 asd_printk("couldn't initialize phys for %s\n",
673 pci_name(asd_ha
->pcidev
));
677 asd_init_ports(asd_ha
);
679 err
= asd_init_scbs(asd_ha
);
681 asd_printk("couldn't initialize scbs for %s\n",
682 pci_name(asd_ha
->pcidev
));
686 err
= asd_init_dl(asd_ha
);
688 asd_printk("couldn't initialize the done list:%d\n",
693 err
= asd_init_escbs(asd_ha
);
695 asd_printk("couldn't initialize escbs\n");
699 err
= asd_init_chip(asd_ha
);
701 asd_printk("couldn't init the chip\n");
708 /* ---------- Chip reset ---------- */
711 * asd_chip_reset -- reset the host adapter, etc
712 * @asd_ha: pointer to host adapter structure of interest
714 * Called from the ISR. Hard reset the chip. Let everything
715 * timeout. This should be no different than hot-unplugging the
716 * host adapter. Once everything times out we'll init the chip with
717 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
720 static void asd_chip_reset(struct asd_ha_struct
*asd_ha
)
722 struct sas_ha_struct
*sas_ha
= &asd_ha
->sas_ha
;
724 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha
->pcidev
));
725 asd_chip_hardrst(asd_ha
);
726 sas_ha
->notify_ha_event(sas_ha
, HAE_RESET
);
729 /* ---------- Done List Routines ---------- */
731 static void asd_dl_tasklet_handler(unsigned long data
)
733 struct asd_ha_struct
*asd_ha
= (struct asd_ha_struct
*) data
;
734 struct asd_seq_data
*seq
= &asd_ha
->seq
;
738 struct done_list_struct
*dl
= &seq
->dl
[seq
->dl_next
];
739 struct asd_ascb
*ascb
;
741 if ((dl
->toggle
& DL_TOGGLE_MASK
) != seq
->dl_toggle
)
745 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
746 ascb
= asd_tc_index_find(seq
, (int)le16_to_cpu(dl
->index
));
747 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
748 if (unlikely(!ascb
)) {
749 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
751 } else if (ascb
->scb
->header
.opcode
== EMPTY_SCB
) {
753 } else if (!ascb
->uldd_timer
&& !del_timer(&ascb
->timer
)) {
756 spin_lock_irqsave(&seq
->pend_q_lock
, flags
);
757 list_del_init(&ascb
->list
);
759 spin_unlock_irqrestore(&seq
->pend_q_lock
, flags
);
761 ascb
->tasklet_complete(ascb
, dl
);
764 seq
->dl_next
= (seq
->dl_next
+ 1) & (ASD_DL_SIZE
-1);
766 seq
->dl_toggle
^= DL_TOGGLE_MASK
;
770 /* ---------- Interrupt Service Routines ---------- */
773 * asd_process_donelist_isr -- schedule processing of done list entries
774 * @asd_ha: pointer to host adapter structure
776 static inline void asd_process_donelist_isr(struct asd_ha_struct
*asd_ha
)
778 tasklet_schedule(&asd_ha
->seq
.dl_tasklet
);
782 * asd_com_sas_isr -- process device communication interrupt (COMINT)
783 * @asd_ha: pointer to host adapter structure
785 static inline void asd_com_sas_isr(struct asd_ha_struct
*asd_ha
)
787 u32 comstat
= asd_read_reg_dword(asd_ha
, COMSTAT
);
789 /* clear COMSTAT int */
790 asd_write_reg_dword(asd_ha
, COMSTAT
, 0xFFFFFFFF);
792 if (comstat
& CSBUFPERR
) {
793 asd_printk("%s: command/status buffer dma parity error\n",
794 pci_name(asd_ha
->pcidev
));
795 } else if (comstat
& CSERR
) {
797 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
799 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
800 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
801 pci_name(asd_ha
->pcidev
),
803 asd_read_reg_dword(asd_ha
, CSDMAADR
),
804 asd_read_reg_dword(asd_ha
, CSDMAADR
+4));
805 asd_printk("CSBUFFER:\n");
806 for (i
= 0; i
< 8; i
++) {
807 asd_printk("%08x %08x %08x %08x\n",
808 asd_read_reg_dword(asd_ha
, CSBUFFER
),
809 asd_read_reg_dword(asd_ha
, CSBUFFER
+4),
810 asd_read_reg_dword(asd_ha
, CSBUFFER
+8),
811 asd_read_reg_dword(asd_ha
, CSBUFFER
+12));
813 asd_dump_seq_state(asd_ha
, 0);
814 } else if (comstat
& OVLYERR
) {
815 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
816 dmaerr
= (dmaerr
>> 8) & 0xFF;
817 asd_printk("%s: overlay dma error:0x%x\n",
818 pci_name(asd_ha
->pcidev
),
821 asd_chip_reset(asd_ha
);
824 static inline void asd_arp2_err(struct asd_ha_struct
*asd_ha
, u32 dchstatus
)
826 static const char *halt_code
[256] = {
827 "UNEXPECTED_INTERRUPT0",
828 "UNEXPECTED_INTERRUPT1",
829 "UNEXPECTED_INTERRUPT2",
830 "UNEXPECTED_INTERRUPT3",
831 "UNEXPECTED_INTERRUPT4",
832 "UNEXPECTED_INTERRUPT5",
833 "UNEXPECTED_INTERRUPT6",
834 "UNEXPECTED_INTERRUPT7",
835 "UNEXPECTED_INTERRUPT8",
836 "UNEXPECTED_INTERRUPT9",
837 "UNEXPECTED_INTERRUPT10",
838 [11 ... 19] = "unknown[11,19]",
839 "NO_FREE_SCB_AVAILABLE",
840 "INVALID_SCB_OPCODE",
841 "INVALID_MBX_OPCODE",
844 "ATA_TAG_TABLE_FAULT",
845 "ATA_TAG_MASK_FAULT",
846 "BAD_LINK_QUEUE_STATE",
847 "DMA2CHIM_QUEUE_ERROR",
848 "EMPTY_SCB_LIST_FULL",
850 "IN_USE_SCB_ON_FREE_LIST",
851 "BAD_OPEN_WAIT_STATE",
852 "INVALID_STP_AFFILIATION",
855 "TOO_MANY_EMPTIES_NEEDED",
856 "EMPTY_REQ_QUEUE_ERROR",
857 "Q_MONIRTT_MGMT_ERROR",
858 "TARGET_MODE_FLOW_ERROR",
859 "DEVICE_QUEUE_NOT_FOUND",
860 "START_IRTT_TIMER_ERROR",
861 "ABORT_TASK_ILLEGAL_REQ",
862 [43 ... 255] = "unknown[43,255]"
865 if (dchstatus
& CSEQINT
) {
866 u32 arp2int
= asd_read_reg_dword(asd_ha
, CARP2INT
);
868 if (arp2int
& (ARP2WAITTO
|ARP2ILLOPC
|ARP2PERR
|ARP2CIOPERR
)) {
869 asd_printk("%s: CSEQ arp2int:0x%x\n",
870 pci_name(asd_ha
->pcidev
),
872 } else if (arp2int
& ARP2HALTC
)
873 asd_printk("%s: CSEQ halted: %s\n",
874 pci_name(asd_ha
->pcidev
),
875 halt_code
[(arp2int
>>16)&0xFF]);
877 asd_printk("%s: CARP2INT:0x%x\n",
878 pci_name(asd_ha
->pcidev
),
881 if (dchstatus
& LSEQINT_MASK
) {
883 u8 lseq_mask
= dchstatus
& LSEQINT_MASK
;
885 for_each_sequencer(lseq_mask
, lseq_mask
, lseq
) {
886 u32 arp2int
= asd_read_reg_dword(asd_ha
,
888 if (arp2int
& (ARP2WAITTO
| ARP2ILLOPC
| ARP2PERR
890 asd_printk("%s: LSEQ%d arp2int:0x%x\n",
891 pci_name(asd_ha
->pcidev
),
893 /* XXX we should only do lseq reset */
894 } else if (arp2int
& ARP2HALTC
)
895 asd_printk("%s: LSEQ%d halted: %s\n",
896 pci_name(asd_ha
->pcidev
),
897 lseq
,halt_code
[(arp2int
>>16)&0xFF]);
899 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
900 pci_name(asd_ha
->pcidev
), lseq
,
904 asd_chip_reset(asd_ha
);
908 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
909 * @asd_ha: pointer to host adapter structure
911 static inline void asd_dch_sas_isr(struct asd_ha_struct
*asd_ha
)
913 u32 dchstatus
= asd_read_reg_dword(asd_ha
, DCHSTATUS
);
915 if (dchstatus
& CFIFTOERR
) {
916 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha
->pcidev
));
917 asd_chip_reset(asd_ha
);
919 asd_arp2_err(asd_ha
, dchstatus
);
923 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
924 * @asd_ha: pointer to host adapter structure
926 static inline void asd_rbi_exsi_isr(struct asd_ha_struct
*asd_ha
)
928 u32 stat0r
= asd_read_reg_dword(asd_ha
, ASISTAT0R
);
930 if (!(stat0r
& ASIERR
)) {
931 asd_printk("hmm, EXSI interrupted but no error?\n");
935 if (stat0r
& ASIFMTERR
) {
936 asd_printk("ASI SEEPROM format error for %s\n",
937 pci_name(asd_ha
->pcidev
));
938 } else if (stat0r
& ASISEECHKERR
) {
939 u32 stat1r
= asd_read_reg_dword(asd_ha
, ASISTAT1R
);
940 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
941 stat1r
& CHECKSUM_MASK
,
942 pci_name(asd_ha
->pcidev
));
944 u32 statr
= asd_read_reg_dword(asd_ha
, ASIERRSTATR
);
946 if (!(statr
& CPI2ASIMSTERR_MASK
)) {
947 ASD_DPRINTK("hmm, ASIERR?\n");
950 u32 addr
= asd_read_reg_dword(asd_ha
, ASIERRADDR
);
951 u32 data
= asd_read_reg_dword(asd_ha
, ASIERRDATAR
);
953 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
954 "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
955 "master id: 0x%x, master err: 0x%x\n",
956 pci_name(asd_ha
->pcidev
),
958 (statr
& CPI2ASIBYTECNT_MASK
) >> 16,
959 (statr
& CPI2ASIBYTEEN_MASK
) >> 12,
960 (statr
& CPI2ASITARGERR_MASK
) >> 8,
961 (statr
& CPI2ASITARGMID_MASK
) >> 4,
962 (statr
& CPI2ASIMSTERR_MASK
));
965 asd_chip_reset(asd_ha
);
969 * asd_hst_pcix_isr -- process host interface interrupts
970 * @asd_ha: pointer to host adapter structure
972 * Asserted on PCIX errors: target abort, etc.
974 static inline void asd_hst_pcix_isr(struct asd_ha_struct
*asd_ha
)
980 pci_read_config_word(asd_ha
->pcidev
, PCI_STATUS
, &status
);
981 pci_read_config_dword(asd_ha
->pcidev
, PCIX_STATUS
, &pcix_status
);
982 pci_read_config_dword(asd_ha
->pcidev
, ECC_CTRL_STAT
, &ecc_status
);
984 if (status
& PCI_STATUS_DETECTED_PARITY
)
985 asd_printk("parity error for %s\n", pci_name(asd_ha
->pcidev
));
986 else if (status
& PCI_STATUS_REC_MASTER_ABORT
)
987 asd_printk("master abort for %s\n", pci_name(asd_ha
->pcidev
));
988 else if (status
& PCI_STATUS_REC_TARGET_ABORT
)
989 asd_printk("target abort for %s\n", pci_name(asd_ha
->pcidev
));
990 else if (status
& PCI_STATUS_PARITY
)
991 asd_printk("data parity for %s\n", pci_name(asd_ha
->pcidev
));
992 else if (pcix_status
& RCV_SCE
) {
993 asd_printk("received split completion error for %s\n",
994 pci_name(asd_ha
->pcidev
));
995 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
996 /* XXX: Abort task? */
998 } else if (pcix_status
& UNEXP_SC
) {
999 asd_printk("unexpected split completion for %s\n",
1000 pci_name(asd_ha
->pcidev
));
1001 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
1004 } else if (pcix_status
& SC_DISCARD
)
1005 asd_printk("split completion discarded for %s\n",
1006 pci_name(asd_ha
->pcidev
));
1007 else if (ecc_status
& UNCOR_ECCERR
)
1008 asd_printk("uncorrectable ECC error for %s\n",
1009 pci_name(asd_ha
->pcidev
));
1010 asd_chip_reset(asd_ha
);
1014 * asd_hw_isr -- host adapter interrupt service routine
1016 * @dev_id: pointer to host adapter structure
1018 * The ISR processes done list entries and level 3 error handling.
1020 irqreturn_t
asd_hw_isr(int irq
, void *dev_id
)
1022 struct asd_ha_struct
*asd_ha
= dev_id
;
1023 u32 chimint
= asd_read_reg_dword(asd_ha
, CHIMINT
);
1028 asd_write_reg_dword(asd_ha
, CHIMINT
, chimint
);
1029 (void) asd_read_reg_dword(asd_ha
, CHIMINT
);
1031 if (chimint
& DLAVAIL
)
1032 asd_process_donelist_isr(asd_ha
);
1033 if (chimint
& COMINT
)
1034 asd_com_sas_isr(asd_ha
);
1035 if (chimint
& DEVINT
)
1036 asd_dch_sas_isr(asd_ha
);
1037 if (chimint
& INITERR
)
1038 asd_rbi_exsi_isr(asd_ha
);
1039 if (chimint
& HOSTERR
)
1040 asd_hst_pcix_isr(asd_ha
);
1045 /* ---------- SCB handling ---------- */
1047 static inline struct asd_ascb
*asd_ascb_alloc(struct asd_ha_struct
*asd_ha
,
1050 extern struct kmem_cache
*asd_ascb_cache
;
1051 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1052 struct asd_ascb
*ascb
;
1053 unsigned long flags
;
1055 ascb
= kmem_cache_zalloc(asd_ascb_cache
, gfp_flags
);
1058 ascb
->dma_scb
.size
= sizeof(struct scb
);
1059 ascb
->dma_scb
.vaddr
= dma_pool_alloc(asd_ha
->scb_pool
,
1061 &ascb
->dma_scb
.dma_handle
);
1062 if (!ascb
->dma_scb
.vaddr
) {
1063 kmem_cache_free(asd_ascb_cache
, ascb
);
1066 memset(ascb
->dma_scb
.vaddr
, 0, sizeof(struct scb
));
1067 asd_init_ascb(asd_ha
, ascb
);
1069 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
1070 ascb
->tc_index
= asd_tc_index_get(seq
, ascb
);
1071 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
1072 if (ascb
->tc_index
== -1)
1075 ascb
->scb
->header
.index
= cpu_to_le16((u16
)ascb
->tc_index
);
1080 dma_pool_free(asd_ha
->scb_pool
, ascb
->dma_scb
.vaddr
,
1081 ascb
->dma_scb
.dma_handle
);
1082 kmem_cache_free(asd_ascb_cache
, ascb
);
1083 ASD_DPRINTK("no index for ascb\n");
1088 * asd_ascb_alloc_list -- allocate a list of aSCBs
1089 * @asd_ha: pointer to host adapter structure
1090 * @num: pointer to integer number of aSCBs
1091 * @gfp_flags: GFP_ flags.
1093 * This is the only function which is used to allocate aSCBs.
1094 * It can allocate one or many. If more than one, then they form
1095 * a linked list in two ways: by their list field of the ascb struct
1096 * and by the next_scb field of the scb_header.
1098 * Returns NULL if no memory was available, else pointer to a list
1099 * of ascbs. When this function returns, @num would be the number
1100 * of SCBs which were not able to be allocated, 0 if all requested
1101 * were able to be allocated.
1103 struct asd_ascb
*asd_ascb_alloc_list(struct asd_ha_struct
1107 struct asd_ascb
*first
= NULL
;
1109 for ( ; *num
> 0; --*num
) {
1110 struct asd_ascb
*ascb
= asd_ascb_alloc(asd_ha
, gfp_flags
);
1117 struct asd_ascb
*last
= list_entry(first
->list
.prev
,
1120 list_add_tail(&ascb
->list
, &first
->list
);
1121 last
->scb
->header
.next_scb
=
1122 cpu_to_le64(((u64
)ascb
->dma_scb
.dma_handle
));
1130 * asd_swap_head_scb -- swap the head scb
1131 * @asd_ha: pointer to host adapter structure
1132 * @ascb: pointer to the head of an ascb list
1134 * The sequencer knows the DMA address of the next SCB to be DMAed to
1135 * the host adapter, from initialization or from the last list DMAed.
1136 * seq->next_scb keeps the address of this SCB. The sequencer will
1137 * DMA to the host adapter this list of SCBs. But the head (first
1138 * element) of this list is not known to the sequencer. Here we swap
1139 * the head of the list with the known SCB (memcpy()).
1140 * Only one memcpy() is required per list so it is in our interest
1141 * to keep the list of SCB as long as possible so that the ratio
1142 * of number of memcpy calls to the number of SCB DMA-ed is as small
1145 * LOCKING: called with the pending list lock held.
1147 static inline void asd_swap_head_scb(struct asd_ha_struct
*asd_ha
,
1148 struct asd_ascb
*ascb
)
1150 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1151 struct asd_ascb
*last
= list_entry(ascb
->list
.prev
,
1154 struct asd_dma_tok t
= ascb
->dma_scb
;
1156 memcpy(seq
->next_scb
.vaddr
, ascb
->scb
, sizeof(*ascb
->scb
));
1157 ascb
->dma_scb
= seq
->next_scb
;
1158 ascb
->scb
= ascb
->dma_scb
.vaddr
;
1160 last
->scb
->header
.next_scb
=
1161 cpu_to_le64(((u64
)seq
->next_scb
.dma_handle
));
1165 * asd_start_timers -- (add and) start timers of SCBs
1166 * @list: pointer to struct list_head of the scbs
1167 * @to: timeout in jiffies
1169 * If an SCB in the @list has no timer function, assign the default
1170 * one, then start the timer of the SCB. This function is
1171 * intended to be called from asd_post_ascb_list(), just prior to
1172 * posting the SCBs to the sequencer.
1174 static inline void asd_start_scb_timers(struct list_head
*list
)
1176 struct asd_ascb
*ascb
;
1177 list_for_each_entry(ascb
, list
, list
) {
1178 if (!ascb
->uldd_timer
) {
1179 ascb
->timer
.data
= (unsigned long) ascb
;
1180 ascb
->timer
.function
= asd_ascb_timedout
;
1181 ascb
->timer
.expires
= jiffies
+ AIC94XX_SCB_TIMEOUT
;
1182 add_timer(&ascb
->timer
);
1188 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1189 * @asd_ha: pointer to a host adapter structure
1190 * @ascb: pointer to the first aSCB in the list
1191 * @num: number of aSCBs in the list (to be posted)
1193 * See queueing comment in asd_post_escb_list().
1195 * Additional note on queuing: In order to minimize the ratio of memcpy()
1196 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1198 * Two cases are possible:
1199 * A) can_queue >= num,
1200 * B) can_queue < num.
1201 * Case A: we can send the whole batch at once. Increment "pending"
1202 * in the beginning of this function, when it is checked, in order to
1203 * eliminate races when this function is called by multiple processes.
1204 * Case B: should never happen if the managing layer considers
1207 int asd_post_ascb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1210 unsigned long flags
;
1214 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1215 can_queue
= asd_ha
->hw_prof
.max_scbs
- asd_ha
->seq
.pending
;
1216 if (can_queue
>= num
)
1217 asd_ha
->seq
.pending
+= num
;
1222 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1223 asd_printk("%s: scb queue full\n", pci_name(asd_ha
->pcidev
));
1224 return -SAS_QUEUE_FULL
;
1227 asd_swap_head_scb(asd_ha
, ascb
);
1229 __list_add(&list
, ascb
->list
.prev
, &ascb
->list
);
1231 asd_start_scb_timers(&list
);
1233 asd_ha
->seq
.scbpro
+= num
;
1234 list_splice_init(&list
, asd_ha
->seq
.pend_q
.prev
);
1235 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1236 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1242 * asd_post_escb_list -- post a list of 1 or more empty scb
1243 * @asd_ha: pointer to a host adapter structure
1244 * @ascb: pointer to the first empty SCB in the list
1245 * @num: number of aSCBs in the list (to be posted)
1247 * This is essentially the same as asd_post_ascb_list, but we do not
1248 * increment pending, add those to the pending list or get indexes.
1249 * See asd_init_escbs() and asd_init_post_escbs().
1251 * Since sending a list of ascbs is a superset of sending a single
1252 * ascb, this function exists to generalize this. More specifically,
1253 * when sending a list of those, we want to do only a _single_
1254 * memcpy() at swap head, as opposed to for each ascb sent (in the
1255 * case of sending them one by one). That is, we want to minimize the
1256 * ratio of memcpy() operations to the number of ascbs sent. The same
1257 * logic applies to asd_post_ascb_list().
1259 int asd_post_escb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1262 unsigned long flags
;
1264 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1265 asd_swap_head_scb(asd_ha
, ascb
);
1266 asd_ha
->seq
.scbpro
+= num
;
1267 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1268 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1273 /* ---------- LED ---------- */
1276 * asd_turn_led -- turn on/off an LED
1277 * @asd_ha: pointer to host adapter structure
1278 * @phy_id: the PHY id whose LED we want to manupulate
1279 * @op: 1 to turn on, 0 to turn off
1281 void asd_turn_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1283 if (phy_id
< ASD_MAX_PHYS
) {
1284 u32 v
= asd_read_reg_dword(asd_ha
, LmCONTROL(phy_id
));
1289 asd_write_reg_dword(asd_ha
, LmCONTROL(phy_id
), v
);
1294 * asd_control_led -- enable/disable an LED on the board
1295 * @asd_ha: pointer to host adapter structure
1296 * @phy_id: integer, the phy id
1297 * @op: integer, 1 to enable, 0 to disable the LED
1299 * First we output enable the LED, then we set the source
1300 * to be an external module.
1302 void asd_control_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1304 if (phy_id
< ASD_MAX_PHYS
) {
1307 v
= asd_read_reg_dword(asd_ha
, GPIOOER
);
1311 v
&= ~(1 << phy_id
);
1312 asd_write_reg_dword(asd_ha
, GPIOOER
, v
);
1314 v
= asd_read_reg_dword(asd_ha
, GPIOCNFGR
);
1318 v
&= ~(1 << phy_id
);
1319 asd_write_reg_dword(asd_ha
, GPIOCNFGR
, v
);
1323 /* ---------- PHY enable ---------- */
1325 static int asd_enable_phy(struct asd_ha_struct
*asd_ha
, int phy_id
)
1327 struct asd_phy
*phy
= &asd_ha
->phys
[phy_id
];
1329 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, INT_ENABLE_2
), 0);
1330 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, HOT_PLUG_DELAY
),
1331 HOTPLUG_DELAY_TIMEOUT
);
1333 /* Get defaults from manuf. sector */
1334 /* XXX we need defaults for those in case MS is broken. */
1335 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_0
),
1336 phy
->phy_desc
->phy_control_0
);
1337 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_1
),
1338 phy
->phy_desc
->phy_control_1
);
1339 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_2
),
1340 phy
->phy_desc
->phy_control_2
);
1341 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_3
),
1342 phy
->phy_desc
->phy_control_3
);
1344 asd_write_reg_dword(asd_ha
, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id
),
1345 ASD_COMINIT_TIMEOUT
);
1347 asd_write_reg_addr(asd_ha
, LmSEQ_TX_ID_ADDR_FRAME(phy_id
),
1348 phy
->id_frm_tok
->dma_handle
);
1350 asd_control_led(asd_ha
, phy_id
, 1);
1355 int asd_enable_phys(struct asd_ha_struct
*asd_ha
, const u8 phy_mask
)
1360 struct asd_ascb
*ascb
;
1361 struct asd_ascb
*ascb_list
;
1364 asd_printk("%s called with phy_mask of 0!?\n", __FUNCTION__
);
1368 for_each_phy(phy_mask
, phy_m
, i
) {
1370 asd_enable_phy(asd_ha
, i
);
1374 ascb_list
= asd_ascb_alloc_list(asd_ha
, &k
, GFP_KERNEL
);
1376 asd_printk("no memory for control phy ascb list\n");
1382 for_each_phy(phy_mask
, phy_m
, i
) {
1383 asd_build_control_phy(ascb
, i
, ENABLE_PHY
);
1384 ascb
= list_entry(ascb
->list
.next
, struct asd_ascb
, list
);
1386 ASD_DPRINTK("posting %d control phy scbs\n", num
);
1387 k
= asd_post_ascb_list(asd_ha
, ascb_list
, num
);
1389 asd_ascb_free_list(ascb_list
);