1 /* esp_scsi.c: ESP SCSI driver.
3 * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
32 #define DRV_MODULE_NAME "esp"
33 #define PFX DRV_MODULE_NAME ": "
34 #define DRV_VERSION "2.000"
35 #define DRV_MODULE_RELDATE "April 19, 2007"
37 /* SCSI bus reset settle time in seconds. */
38 static int esp_bus_reset_settle
= 3;
41 #define ESP_DEBUG_INTR 0x00000001
42 #define ESP_DEBUG_SCSICMD 0x00000002
43 #define ESP_DEBUG_RESET 0x00000004
44 #define ESP_DEBUG_MSGIN 0x00000008
45 #define ESP_DEBUG_MSGOUT 0x00000010
46 #define ESP_DEBUG_CMDDONE 0x00000020
47 #define ESP_DEBUG_DISCONNECT 0x00000040
48 #define ESP_DEBUG_DATASTART 0x00000080
49 #define ESP_DEBUG_DATADONE 0x00000100
50 #define ESP_DEBUG_RECONNECT 0x00000200
51 #define ESP_DEBUG_AUTOSENSE 0x00000400
53 #define esp_log_intr(f, a...) \
54 do { if (esp_debug & ESP_DEBUG_INTR) \
58 #define esp_log_reset(f, a...) \
59 do { if (esp_debug & ESP_DEBUG_RESET) \
63 #define esp_log_msgin(f, a...) \
64 do { if (esp_debug & ESP_DEBUG_MSGIN) \
68 #define esp_log_msgout(f, a...) \
69 do { if (esp_debug & ESP_DEBUG_MSGOUT) \
73 #define esp_log_cmddone(f, a...) \
74 do { if (esp_debug & ESP_DEBUG_CMDDONE) \
78 #define esp_log_disconnect(f, a...) \
79 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
83 #define esp_log_datastart(f, a...) \
84 do { if (esp_debug & ESP_DEBUG_DATASTART) \
88 #define esp_log_datadone(f, a...) \
89 do { if (esp_debug & ESP_DEBUG_DATADONE) \
93 #define esp_log_reconnect(f, a...) \
94 do { if (esp_debug & ESP_DEBUG_RECONNECT) \
98 #define esp_log_autosense(f, a...) \
99 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
103 #define esp_read8(REG) esp->ops->esp_read8(esp, REG)
104 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
106 static void esp_log_fill_regs(struct esp
*esp
,
107 struct esp_event_ent
*p
)
110 p
->seqreg
= esp
->seqreg
;
111 p
->sreg2
= esp
->sreg2
;
113 p
->select_state
= esp
->select_state
;
114 p
->event
= esp
->event
;
117 void scsi_esp_cmd(struct esp
*esp
, u8 val
)
119 struct esp_event_ent
*p
;
120 int idx
= esp
->esp_event_cur
;
122 p
= &esp
->esp_event_log
[idx
];
123 p
->type
= ESP_EVENT_TYPE_CMD
;
125 esp_log_fill_regs(esp
, p
);
127 esp
->esp_event_cur
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
129 esp_write8(val
, ESP_CMD
);
131 EXPORT_SYMBOL(scsi_esp_cmd
);
133 static void esp_event(struct esp
*esp
, u8 val
)
135 struct esp_event_ent
*p
;
136 int idx
= esp
->esp_event_cur
;
138 p
= &esp
->esp_event_log
[idx
];
139 p
->type
= ESP_EVENT_TYPE_EVENT
;
141 esp_log_fill_regs(esp
, p
);
143 esp
->esp_event_cur
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
148 static void esp_dump_cmd_log(struct esp
*esp
)
150 int idx
= esp
->esp_event_cur
;
153 printk(KERN_INFO PFX
"esp%d: Dumping command log\n",
154 esp
->host
->unique_id
);
156 struct esp_event_ent
*p
= &esp
->esp_event_log
[idx
];
158 printk(KERN_INFO PFX
"esp%d: ent[%d] %s ",
159 esp
->host
->unique_id
, idx
,
160 p
->type
== ESP_EVENT_TYPE_CMD
? "CMD" : "EVENT");
162 printk("val[%02x] sreg[%02x] seqreg[%02x] "
163 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
164 p
->val
, p
->sreg
, p
->seqreg
,
165 p
->sreg2
, p
->ireg
, p
->select_state
, p
->event
);
167 idx
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
168 } while (idx
!= stop
);
171 static void esp_flush_fifo(struct esp
*esp
)
173 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
174 if (esp
->rev
== ESP236
) {
177 while (esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
) {
179 printk(KERN_ALERT PFX
"esp%d: ESP_FF_BYTES "
181 esp
->host
->unique_id
);
189 static void hme_read_fifo(struct esp
*esp
)
191 int fcnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
195 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
196 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
198 if (esp
->sreg2
& ESP_STAT2_F1BYTE
) {
199 esp_write8(0, ESP_FDATA
);
200 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
201 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
206 static void esp_set_all_config3(struct esp
*esp
, u8 val
)
210 for (i
= 0; i
< ESP_MAX_TARGET
; i
++)
211 esp
->target
[i
].esp_config3
= val
;
214 /* Reset the ESP chip, _not_ the SCSI bus. */
215 static void esp_reset_esp(struct esp
*esp
)
217 u8 family_code
, version
;
219 /* Now reset the ESP chip */
220 scsi_esp_cmd(esp
, ESP_CMD_RC
);
221 scsi_esp_cmd(esp
, ESP_CMD_NULL
| ESP_CMD_DMA
);
222 scsi_esp_cmd(esp
, ESP_CMD_NULL
| ESP_CMD_DMA
);
224 /* Reload the configuration registers */
225 esp_write8(esp
->cfact
, ESP_CFACT
);
228 esp_write8(esp
->prev_stp
, ESP_STP
);
231 esp_write8(esp
->prev_soff
, ESP_SOFF
);
233 esp_write8(esp
->neg_defp
, ESP_TIMEO
);
235 /* This is the only point at which it is reliable to read
236 * the ID-code for a fast ESP chip variants.
238 esp
->max_period
= ((35 * esp
->ccycle
) / 1000);
239 if (esp
->rev
== FAST
) {
240 version
= esp_read8(ESP_UID
);
241 family_code
= (version
& 0xf8) >> 3;
242 if (family_code
== 0x02)
244 else if (family_code
== 0x0a)
245 esp
->rev
= FASHME
; /* Version is usually '5'. */
248 esp
->min_period
= ((4 * esp
->ccycle
) / 1000);
250 esp
->min_period
= ((5 * esp
->ccycle
) / 1000);
252 esp
->max_period
= (esp
->max_period
+ 3)>>2;
253 esp
->min_period
= (esp
->min_period
+ 3)>>2;
255 esp_write8(esp
->config1
, ESP_CFG1
);
262 esp_write8(esp
->config2
, ESP_CFG2
);
267 esp_write8(esp
->config2
, ESP_CFG2
);
268 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
269 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
273 esp
->config2
|= (ESP_CONFIG2_HME32
| ESP_CONFIG2_HMEFENAB
);
277 /* Fast 236 or HME */
278 esp_write8(esp
->config2
, ESP_CFG2
);
279 if (esp
->rev
== FASHME
) {
280 u8 cfg3
= esp
->target
[0].esp_config3
;
282 cfg3
|= ESP_CONFIG3_FCLOCK
| ESP_CONFIG3_OBPUSH
;
283 if (esp
->scsi_id
>= 8)
284 cfg3
|= ESP_CONFIG3_IDBIT3
;
285 esp_set_all_config3(esp
, cfg3
);
287 u32 cfg3
= esp
->target
[0].esp_config3
;
289 cfg3
|= ESP_CONFIG3_FCLK
;
290 esp_set_all_config3(esp
, cfg3
);
292 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
293 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
294 if (esp
->rev
== FASHME
) {
297 if (esp
->flags
& ESP_FLAG_DIFFERENTIAL
)
306 esp_write8(esp
->config2
, ESP_CFG2
);
307 esp_set_all_config3(esp
,
308 (esp
->target
[0].esp_config3
|
309 ESP_CONFIG3_FCLOCK
));
310 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
311 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
319 /* Eat any bitrot in the chip */
320 esp_read8(ESP_INTRPT
);
324 static void esp_map_dma(struct esp
*esp
, struct scsi_cmnd
*cmd
)
326 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
327 struct scatterlist
*sg
= scsi_sglist(cmd
);
328 int dir
= cmd
->sc_data_direction
;
334 spriv
->u
.num_sg
= esp
->ops
->map_sg(esp
, sg
, scsi_sg_count(cmd
), dir
);
335 spriv
->cur_residue
= sg_dma_len(sg
);
339 for (i
= 0; i
< spriv
->u
.num_sg
; i
++)
340 total
+= sg_dma_len(&sg
[i
]);
341 spriv
->tot_residue
= total
;
344 static dma_addr_t
esp_cur_dma_addr(struct esp_cmd_entry
*ent
,
345 struct scsi_cmnd
*cmd
)
347 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
349 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
350 return ent
->sense_dma
+
351 (ent
->sense_ptr
- cmd
->sense_buffer
);
354 return sg_dma_address(p
->cur_sg
) +
355 (sg_dma_len(p
->cur_sg
) -
359 static unsigned int esp_cur_dma_len(struct esp_cmd_entry
*ent
,
360 struct scsi_cmnd
*cmd
)
362 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
364 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
365 return SCSI_SENSE_BUFFERSIZE
-
366 (ent
->sense_ptr
- cmd
->sense_buffer
);
368 return p
->cur_residue
;
371 static void esp_advance_dma(struct esp
*esp
, struct esp_cmd_entry
*ent
,
372 struct scsi_cmnd
*cmd
, unsigned int len
)
374 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
376 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
377 ent
->sense_ptr
+= len
;
381 p
->cur_residue
-= len
;
382 p
->tot_residue
-= len
;
383 if (p
->cur_residue
< 0 || p
->tot_residue
< 0) {
384 printk(KERN_ERR PFX
"esp%d: Data transfer overflow.\n",
385 esp
->host
->unique_id
);
386 printk(KERN_ERR PFX
"esp%d: cur_residue[%d] tot_residue[%d] "
388 esp
->host
->unique_id
,
389 p
->cur_residue
, p
->tot_residue
, len
);
393 if (!p
->cur_residue
&& p
->tot_residue
) {
395 p
->cur_residue
= sg_dma_len(p
->cur_sg
);
399 static void esp_unmap_dma(struct esp
*esp
, struct scsi_cmnd
*cmd
)
401 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
402 int dir
= cmd
->sc_data_direction
;
407 esp
->ops
->unmap_sg(esp
, scsi_sglist(cmd
), spriv
->u
.num_sg
, dir
);
410 static void esp_save_pointers(struct esp
*esp
, struct esp_cmd_entry
*ent
)
412 struct scsi_cmnd
*cmd
= ent
->cmd
;
413 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
415 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
416 ent
->saved_sense_ptr
= ent
->sense_ptr
;
419 ent
->saved_cur_residue
= spriv
->cur_residue
;
420 ent
->saved_cur_sg
= spriv
->cur_sg
;
421 ent
->saved_tot_residue
= spriv
->tot_residue
;
424 static void esp_restore_pointers(struct esp
*esp
, struct esp_cmd_entry
*ent
)
426 struct scsi_cmnd
*cmd
= ent
->cmd
;
427 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
429 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
430 ent
->sense_ptr
= ent
->saved_sense_ptr
;
433 spriv
->cur_residue
= ent
->saved_cur_residue
;
434 spriv
->cur_sg
= ent
->saved_cur_sg
;
435 spriv
->tot_residue
= ent
->saved_tot_residue
;
438 static void esp_check_command_len(struct esp
*esp
, struct scsi_cmnd
*cmd
)
440 if (cmd
->cmd_len
== 6 ||
441 cmd
->cmd_len
== 10 ||
442 cmd
->cmd_len
== 12) {
443 esp
->flags
&= ~ESP_FLAG_DOING_SLOWCMD
;
445 esp
->flags
|= ESP_FLAG_DOING_SLOWCMD
;
449 static void esp_write_tgt_config3(struct esp
*esp
, int tgt
)
451 if (esp
->rev
> ESP100A
) {
452 u8 val
= esp
->target
[tgt
].esp_config3
;
454 if (val
!= esp
->prev_cfg3
) {
455 esp
->prev_cfg3
= val
;
456 esp_write8(val
, ESP_CFG3
);
461 static void esp_write_tgt_sync(struct esp
*esp
, int tgt
)
463 u8 off
= esp
->target
[tgt
].esp_offset
;
464 u8 per
= esp
->target
[tgt
].esp_period
;
466 if (off
!= esp
->prev_soff
) {
467 esp
->prev_soff
= off
;
468 esp_write8(off
, ESP_SOFF
);
470 if (per
!= esp
->prev_stp
) {
472 esp_write8(per
, ESP_STP
);
476 static u32
esp_dma_length_limit(struct esp
*esp
, u32 dma_addr
, u32 dma_len
)
478 if (esp
->rev
== FASHME
) {
479 /* Arbitrary segment boundaries, 24-bit counts. */
480 if (dma_len
> (1U << 24))
481 dma_len
= (1U << 24);
485 /* ESP chip limits other variants by 16-bits of transfer
486 * count. Actually on FAS100A and FAS236 we could get
487 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
488 * in the ESP_CFG2 register but that causes other unwanted
489 * changes so we don't use it currently.
491 if (dma_len
> (1U << 16))
492 dma_len
= (1U << 16);
494 /* All of the DMA variants hooked up to these chips
495 * cannot handle crossing a 24-bit address boundary.
497 base
= dma_addr
& ((1U << 24) - 1U);
498 end
= base
+ dma_len
;
499 if (end
> (1U << 24))
501 dma_len
= end
- base
;
506 static int esp_need_to_nego_wide(struct esp_target_data
*tp
)
508 struct scsi_target
*target
= tp
->starget
;
510 return spi_width(target
) != tp
->nego_goal_width
;
513 static int esp_need_to_nego_sync(struct esp_target_data
*tp
)
515 struct scsi_target
*target
= tp
->starget
;
517 /* When offset is zero, period is "don't care". */
518 if (!spi_offset(target
) && !tp
->nego_goal_offset
)
521 if (spi_offset(target
) == tp
->nego_goal_offset
&&
522 spi_period(target
) == tp
->nego_goal_period
)
528 static int esp_alloc_lun_tag(struct esp_cmd_entry
*ent
,
529 struct esp_lun_data
*lp
)
532 /* Non-tagged, slot already taken? */
533 if (lp
->non_tagged_cmd
)
537 /* We are being held by active tagged
543 /* Tagged commands completed, we can unplug
544 * the queue and run this untagged command.
547 } else if (lp
->num_tagged
) {
548 /* Plug the queue until num_tagged decreases
549 * to zero in esp_free_lun_tag.
555 lp
->non_tagged_cmd
= ent
;
558 /* Tagged command, see if blocked by a
561 if (lp
->non_tagged_cmd
|| lp
->hold
)
565 BUG_ON(lp
->tagged_cmds
[ent
->tag
[1]]);
567 lp
->tagged_cmds
[ent
->tag
[1]] = ent
;
573 static void esp_free_lun_tag(struct esp_cmd_entry
*ent
,
574 struct esp_lun_data
*lp
)
577 BUG_ON(lp
->tagged_cmds
[ent
->tag
[1]] != ent
);
578 lp
->tagged_cmds
[ent
->tag
[1]] = NULL
;
581 BUG_ON(lp
->non_tagged_cmd
!= ent
);
582 lp
->non_tagged_cmd
= NULL
;
586 /* When a contingent allegiance conditon is created, we force feed a
587 * REQUEST_SENSE command to the device to fetch the sense data. I
588 * tried many other schemes, relying on the scsi error handling layer
589 * to send out the REQUEST_SENSE automatically, but this was difficult
590 * to get right especially in the presence of applications like smartd
591 * which use SG_IO to send out their own REQUEST_SENSE commands.
593 static void esp_autosense(struct esp
*esp
, struct esp_cmd_entry
*ent
)
595 struct scsi_cmnd
*cmd
= ent
->cmd
;
596 struct scsi_device
*dev
= cmd
->device
;
604 if (!ent
->sense_ptr
) {
605 esp_log_autosense("esp%d: Doing auto-sense for "
607 esp
->host
->unique_id
, tgt
, lun
);
609 ent
->sense_ptr
= cmd
->sense_buffer
;
610 ent
->sense_dma
= esp
->ops
->map_single(esp
,
612 SCSI_SENSE_BUFFERSIZE
,
615 ent
->saved_sense_ptr
= ent
->sense_ptr
;
617 esp
->active_cmd
= ent
;
619 p
= esp
->command_block
;
620 esp
->msg_out_len
= 0;
622 *p
++ = IDENTIFY(0, lun
);
623 *p
++ = REQUEST_SENSE
;
624 *p
++ = ((dev
->scsi_level
<= SCSI_2
) ?
628 *p
++ = SCSI_SENSE_BUFFERSIZE
;
631 esp
->select_state
= ESP_SELECT_BASIC
;
634 if (esp
->rev
== FASHME
)
635 val
|= ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
;
636 esp_write8(val
, ESP_BUSID
);
638 esp_write_tgt_sync(esp
, tgt
);
639 esp_write_tgt_config3(esp
, tgt
);
641 val
= (p
- esp
->command_block
);
643 if (esp
->rev
== FASHME
)
644 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
645 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
646 val
, 16, 0, ESP_CMD_DMA
| ESP_CMD_SELA
);
649 static struct esp_cmd_entry
*find_and_prep_issuable_command(struct esp
*esp
)
651 struct esp_cmd_entry
*ent
;
653 list_for_each_entry(ent
, &esp
->queued_cmds
, list
) {
654 struct scsi_cmnd
*cmd
= ent
->cmd
;
655 struct scsi_device
*dev
= cmd
->device
;
656 struct esp_lun_data
*lp
= dev
->hostdata
;
658 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
664 if (!scsi_populate_tag_msg(cmd
, &ent
->tag
[0])) {
669 if (esp_alloc_lun_tag(ent
, lp
) < 0)
678 static void esp_maybe_execute_command(struct esp
*esp
)
680 struct esp_target_data
*tp
;
681 struct esp_lun_data
*lp
;
682 struct scsi_device
*dev
;
683 struct scsi_cmnd
*cmd
;
684 struct esp_cmd_entry
*ent
;
689 if (esp
->active_cmd
||
690 (esp
->flags
& ESP_FLAG_RESETTING
))
693 ent
= find_and_prep_issuable_command(esp
);
697 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
698 esp_autosense(esp
, ent
);
706 tp
= &esp
->target
[tgt
];
709 list_del(&ent
->list
);
710 list_add(&ent
->list
, &esp
->active_cmds
);
712 esp
->active_cmd
= ent
;
714 esp_map_dma(esp
, cmd
);
715 esp_save_pointers(esp
, ent
);
717 esp_check_command_len(esp
, cmd
);
719 p
= esp
->command_block
;
721 esp
->msg_out_len
= 0;
722 if (tp
->flags
& ESP_TGT_CHECK_NEGO
) {
723 /* Need to negotiate. If the target is broken
724 * go for synchronous transfers and non-wide.
726 if (tp
->flags
& ESP_TGT_BROKEN
) {
727 tp
->flags
&= ~ESP_TGT_DISCONNECT
;
728 tp
->nego_goal_period
= 0;
729 tp
->nego_goal_offset
= 0;
730 tp
->nego_goal_width
= 0;
731 tp
->nego_goal_tags
= 0;
734 /* If the settings are not changing, skip this. */
735 if (spi_width(tp
->starget
) == tp
->nego_goal_width
&&
736 spi_period(tp
->starget
) == tp
->nego_goal_period
&&
737 spi_offset(tp
->starget
) == tp
->nego_goal_offset
) {
738 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
742 if (esp
->rev
== FASHME
&& esp_need_to_nego_wide(tp
)) {
744 spi_populate_width_msg(&esp
->msg_out
[0],
745 (tp
->nego_goal_width
?
747 tp
->flags
|= ESP_TGT_NEGO_WIDE
;
748 } else if (esp_need_to_nego_sync(tp
)) {
750 spi_populate_sync_msg(&esp
->msg_out
[0],
751 tp
->nego_goal_period
,
752 tp
->nego_goal_offset
);
753 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
755 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
758 /* Process it like a slow command. */
759 if (tp
->flags
& (ESP_TGT_NEGO_WIDE
| ESP_TGT_NEGO_SYNC
))
760 esp
->flags
|= ESP_FLAG_DOING_SLOWCMD
;
764 /* If we don't have a lun-data struct yet, we're probing
765 * so do not disconnect. Also, do not disconnect unless
766 * we have a tag on this command.
768 if (lp
&& (tp
->flags
& ESP_TGT_DISCONNECT
) && ent
->tag
[0])
769 *p
++ = IDENTIFY(1, lun
);
771 *p
++ = IDENTIFY(0, lun
);
773 if (ent
->tag
[0] && esp
->rev
== ESP100
) {
774 /* ESP100 lacks select w/atn3 command, use select
777 esp
->flags
|= ESP_FLAG_DOING_SLOWCMD
;
780 if (!(esp
->flags
& ESP_FLAG_DOING_SLOWCMD
)) {
781 start_cmd
= ESP_CMD_DMA
| ESP_CMD_SELA
;
786 start_cmd
= ESP_CMD_DMA
| ESP_CMD_SA3
;
789 for (i
= 0; i
< cmd
->cmd_len
; i
++)
792 esp
->select_state
= ESP_SELECT_BASIC
;
794 esp
->cmd_bytes_left
= cmd
->cmd_len
;
795 esp
->cmd_bytes_ptr
= &cmd
->cmnd
[0];
798 for (i
= esp
->msg_out_len
- 1;
800 esp
->msg_out
[i
+ 2] = esp
->msg_out
[i
];
801 esp
->msg_out
[0] = ent
->tag
[0];
802 esp
->msg_out
[1] = ent
->tag
[1];
803 esp
->msg_out_len
+= 2;
806 start_cmd
= ESP_CMD_DMA
| ESP_CMD_SELAS
;
807 esp
->select_state
= ESP_SELECT_MSGOUT
;
810 if (esp
->rev
== FASHME
)
811 val
|= ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
;
812 esp_write8(val
, ESP_BUSID
);
814 esp_write_tgt_sync(esp
, tgt
);
815 esp_write_tgt_config3(esp
, tgt
);
817 val
= (p
- esp
->command_block
);
819 if (esp_debug
& ESP_DEBUG_SCSICMD
) {
820 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt
, lun
);
821 for (i
= 0; i
< cmd
->cmd_len
; i
++)
822 printk("%02x ", cmd
->cmnd
[i
]);
826 if (esp
->rev
== FASHME
)
827 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
828 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
829 val
, 16, 0, start_cmd
);
832 static struct esp_cmd_entry
*esp_get_ent(struct esp
*esp
)
834 struct list_head
*head
= &esp
->esp_cmd_pool
;
835 struct esp_cmd_entry
*ret
;
837 if (list_empty(head
)) {
838 ret
= kzalloc(sizeof(struct esp_cmd_entry
), GFP_ATOMIC
);
840 ret
= list_entry(head
->next
, struct esp_cmd_entry
, list
);
841 list_del(&ret
->list
);
842 memset(ret
, 0, sizeof(*ret
));
847 static void esp_put_ent(struct esp
*esp
, struct esp_cmd_entry
*ent
)
849 list_add(&ent
->list
, &esp
->esp_cmd_pool
);
852 static void esp_cmd_is_done(struct esp
*esp
, struct esp_cmd_entry
*ent
,
853 struct scsi_cmnd
*cmd
, unsigned int result
)
855 struct scsi_device
*dev
= cmd
->device
;
859 esp
->active_cmd
= NULL
;
860 esp_unmap_dma(esp
, cmd
);
861 esp_free_lun_tag(ent
, dev
->hostdata
);
862 cmd
->result
= result
;
865 complete(ent
->eh_done
);
869 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
870 esp
->ops
->unmap_single(esp
, ent
->sense_dma
,
871 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
872 ent
->sense_ptr
= NULL
;
874 /* Restore the message/status bytes to what we actually
875 * saw originally. Also, report that we are providing
878 cmd
->result
= ((DRIVER_SENSE
<< 24) |
880 (COMMAND_COMPLETE
<< 8) |
881 (SAM_STAT_CHECK_CONDITION
<< 0));
883 ent
->flags
&= ~ESP_CMD_FLAG_AUTOSENSE
;
884 if (esp_debug
& ESP_DEBUG_AUTOSENSE
) {
887 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
888 esp
->host
->unique_id
, tgt
, lun
);
889 for (i
= 0; i
< 18; i
++)
890 printk("%02x ", cmd
->sense_buffer
[i
]);
897 list_del(&ent
->list
);
898 esp_put_ent(esp
, ent
);
900 esp_maybe_execute_command(esp
);
903 static unsigned int compose_result(unsigned int status
, unsigned int message
,
904 unsigned int driver_code
)
906 return (status
| (message
<< 8) | (driver_code
<< 16));
909 static void esp_event_queue_full(struct esp
*esp
, struct esp_cmd_entry
*ent
)
911 struct scsi_device
*dev
= ent
->cmd
->device
;
912 struct esp_lun_data
*lp
= dev
->hostdata
;
914 scsi_track_queue_full(dev
, lp
->num_tagged
- 1);
917 static int esp_queuecommand(struct scsi_cmnd
*cmd
, void (*done
)(struct scsi_cmnd
*))
919 struct scsi_device
*dev
= cmd
->device
;
920 struct esp
*esp
= shost_priv(dev
->host
);
921 struct esp_cmd_priv
*spriv
;
922 struct esp_cmd_entry
*ent
;
924 ent
= esp_get_ent(esp
);
926 return SCSI_MLQUEUE_HOST_BUSY
;
930 cmd
->scsi_done
= done
;
932 spriv
= ESP_CMD_PRIV(cmd
);
933 spriv
->u
.dma_addr
= ~(dma_addr_t
)0x0;
935 list_add_tail(&ent
->list
, &esp
->queued_cmds
);
937 esp_maybe_execute_command(esp
);
942 static int esp_check_gross_error(struct esp
*esp
)
944 if (esp
->sreg
& ESP_STAT_SPAM
) {
945 /* Gross Error, could be one of:
946 * - top of fifo overwritten
947 * - top of command register overwritten
948 * - DMA programmed with wrong direction
949 * - improper phase change
951 printk(KERN_ERR PFX
"esp%d: Gross error sreg[%02x]\n",
952 esp
->host
->unique_id
, esp
->sreg
);
953 /* XXX Reset the chip. XXX */
959 static int esp_check_spur_intr(struct esp
*esp
)
964 /* The interrupt pending bit of the status register cannot
965 * be trusted on these revisions.
967 esp
->sreg
&= ~ESP_STAT_INTR
;
971 if (!(esp
->sreg
& ESP_STAT_INTR
)) {
972 esp
->ireg
= esp_read8(ESP_INTRPT
);
973 if (esp
->ireg
& ESP_INTR_SR
)
976 /* If the DMA is indicating interrupt pending and the
977 * ESP is not, the only possibility is a DMA error.
979 if (!esp
->ops
->dma_error(esp
)) {
980 printk(KERN_ERR PFX
"esp%d: Spurious irq, "
982 esp
->host
->unique_id
, esp
->sreg
);
986 printk(KERN_ERR PFX
"esp%d: DMA error\n",
987 esp
->host
->unique_id
);
989 /* XXX Reset the chip. XXX */
998 static void esp_schedule_reset(struct esp
*esp
)
1000 esp_log_reset("ESP: esp_schedule_reset() from %p\n",
1001 __builtin_return_address(0));
1002 esp
->flags
|= ESP_FLAG_RESETTING
;
1003 esp_event(esp
, ESP_EVENT_RESET
);
1006 /* In order to avoid having to add a special half-reconnected state
1007 * into the driver we just sit here and poll through the rest of
1008 * the reselection process to get the tag message bytes.
1010 static struct esp_cmd_entry
*esp_reconnect_with_tag(struct esp
*esp
,
1011 struct esp_lun_data
*lp
)
1013 struct esp_cmd_entry
*ent
;
1016 if (!lp
->num_tagged
) {
1017 printk(KERN_ERR PFX
"esp%d: Reconnect w/num_tagged==0\n",
1018 esp
->host
->unique_id
);
1022 esp_log_reconnect("ESP: reconnect tag, ");
1024 for (i
= 0; i
< ESP_QUICKIRQ_LIMIT
; i
++) {
1025 if (esp
->ops
->irq_pending(esp
))
1028 if (i
== ESP_QUICKIRQ_LIMIT
) {
1029 printk(KERN_ERR PFX
"esp%d: Reconnect IRQ1 timeout\n",
1030 esp
->host
->unique_id
);
1034 esp
->sreg
= esp_read8(ESP_STATUS
);
1035 esp
->ireg
= esp_read8(ESP_INTRPT
);
1037 esp_log_reconnect("IRQ(%d:%x:%x), ",
1038 i
, esp
->ireg
, esp
->sreg
);
1040 if (esp
->ireg
& ESP_INTR_DC
) {
1041 printk(KERN_ERR PFX
"esp%d: Reconnect, got disconnect.\n",
1042 esp
->host
->unique_id
);
1046 if ((esp
->sreg
& ESP_STAT_PMASK
) != ESP_MIP
) {
1047 printk(KERN_ERR PFX
"esp%d: Reconnect, not MIP sreg[%02x].\n",
1048 esp
->host
->unique_id
, esp
->sreg
);
1052 /* DMA in the tag bytes... */
1053 esp
->command_block
[0] = 0xff;
1054 esp
->command_block
[1] = 0xff;
1055 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
1056 2, 2, 1, ESP_CMD_DMA
| ESP_CMD_TI
);
1058 /* ACK the msssage. */
1059 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1061 for (i
= 0; i
< ESP_RESELECT_TAG_LIMIT
; i
++) {
1062 if (esp
->ops
->irq_pending(esp
)) {
1063 esp
->sreg
= esp_read8(ESP_STATUS
);
1064 esp
->ireg
= esp_read8(ESP_INTRPT
);
1065 if (esp
->ireg
& ESP_INTR_FDONE
)
1070 if (i
== ESP_RESELECT_TAG_LIMIT
) {
1071 printk(KERN_ERR PFX
"esp%d: Reconnect IRQ2 timeout\n",
1072 esp
->host
->unique_id
);
1075 esp
->ops
->dma_drain(esp
);
1076 esp
->ops
->dma_invalidate(esp
);
1078 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1079 i
, esp
->ireg
, esp
->sreg
,
1080 esp
->command_block
[0],
1081 esp
->command_block
[1]);
1083 if (esp
->command_block
[0] < SIMPLE_QUEUE_TAG
||
1084 esp
->command_block
[0] > ORDERED_QUEUE_TAG
) {
1085 printk(KERN_ERR PFX
"esp%d: Reconnect, bad tag "
1087 esp
->host
->unique_id
, esp
->command_block
[0]);
1091 ent
= lp
->tagged_cmds
[esp
->command_block
[1]];
1093 printk(KERN_ERR PFX
"esp%d: Reconnect, no entry for "
1095 esp
->host
->unique_id
, esp
->command_block
[1]);
1102 static int esp_reconnect(struct esp
*esp
)
1104 struct esp_cmd_entry
*ent
;
1105 struct esp_target_data
*tp
;
1106 struct esp_lun_data
*lp
;
1107 struct scsi_device
*dev
;
1110 BUG_ON(esp
->active_cmd
);
1111 if (esp
->rev
== FASHME
) {
1112 /* FASHME puts the target and lun numbers directly
1115 target
= esp
->fifo
[0];
1116 lun
= esp
->fifo
[1] & 0x7;
1118 u8 bits
= esp_read8(ESP_FDATA
);
1120 /* Older chips put the lun directly into the fifo, but
1121 * the target is given as a sample of the arbitration
1122 * lines on the bus at reselection time. So we should
1123 * see the ID of the ESP and the one reconnecting target
1124 * set in the bitmap.
1126 if (!(bits
& esp
->scsi_id_mask
))
1128 bits
&= ~esp
->scsi_id_mask
;
1129 if (!bits
|| (bits
& (bits
- 1)))
1132 target
= ffs(bits
) - 1;
1133 lun
= (esp_read8(ESP_FDATA
) & 0x7);
1135 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1136 if (esp
->rev
== ESP100
) {
1137 u8 ireg
= esp_read8(ESP_INTRPT
);
1138 /* This chip has a bug during reselection that can
1139 * cause a spurious illegal-command interrupt, which
1140 * we simply ACK here. Another possibility is a bus
1141 * reset so we must check for that.
1143 if (ireg
& ESP_INTR_SR
)
1146 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1149 esp_write_tgt_sync(esp
, target
);
1150 esp_write_tgt_config3(esp
, target
);
1152 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1154 if (esp
->rev
== FASHME
)
1155 esp_write8(target
| ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
,
1158 tp
= &esp
->target
[target
];
1159 dev
= __scsi_device_lookup_by_target(tp
->starget
, lun
);
1161 printk(KERN_ERR PFX
"esp%d: Reconnect, no lp "
1162 "tgt[%u] lun[%u]\n",
1163 esp
->host
->unique_id
, target
, lun
);
1168 ent
= lp
->non_tagged_cmd
;
1170 ent
= esp_reconnect_with_tag(esp
, lp
);
1175 esp
->active_cmd
= ent
;
1177 if (ent
->flags
& ESP_CMD_FLAG_ABORT
) {
1178 esp
->msg_out
[0] = ABORT_TASK_SET
;
1179 esp
->msg_out_len
= 1;
1180 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1183 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1184 esp_restore_pointers(esp
, ent
);
1185 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1189 esp_schedule_reset(esp
);
1193 static int esp_finish_select(struct esp
*esp
)
1195 struct esp_cmd_entry
*ent
;
1196 struct scsi_cmnd
*cmd
;
1197 u8 orig_select_state
;
1199 orig_select_state
= esp
->select_state
;
1201 /* No longer selecting. */
1202 esp
->select_state
= ESP_SELECT_NONE
;
1204 esp
->seqreg
= esp_read8(ESP_SSTEP
) & ESP_STEP_VBITS
;
1205 ent
= esp
->active_cmd
;
1208 if (esp
->ops
->dma_error(esp
)) {
1209 /* If we see a DMA error during or as a result of selection,
1212 esp_schedule_reset(esp
);
1213 esp_cmd_is_done(esp
, ent
, cmd
, (DID_ERROR
<< 16));
1217 esp
->ops
->dma_invalidate(esp
);
1219 if (esp
->ireg
== (ESP_INTR_RSEL
| ESP_INTR_FDONE
)) {
1220 struct esp_target_data
*tp
= &esp
->target
[cmd
->device
->id
];
1222 /* Carefully back out of the selection attempt. Release
1223 * resources (such as DMA mapping & TAG) and reset state (such
1224 * as message out and command delivery variables).
1226 if (!(ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
)) {
1227 esp_unmap_dma(esp
, cmd
);
1228 esp_free_lun_tag(ent
, cmd
->device
->hostdata
);
1229 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_NEGO_WIDE
);
1230 esp
->flags
&= ~ESP_FLAG_DOING_SLOWCMD
;
1231 esp
->cmd_bytes_ptr
= NULL
;
1232 esp
->cmd_bytes_left
= 0;
1234 esp
->ops
->unmap_single(esp
, ent
->sense_dma
,
1235 SCSI_SENSE_BUFFERSIZE
,
1237 ent
->sense_ptr
= NULL
;
1240 /* Now that the state is unwound properly, put back onto
1241 * the issue queue. This command is no longer active.
1243 list_del(&ent
->list
);
1244 list_add(&ent
->list
, &esp
->queued_cmds
);
1245 esp
->active_cmd
= NULL
;
1247 /* Return value ignored by caller, it directly invokes
1253 if (esp
->ireg
== ESP_INTR_DC
) {
1254 struct scsi_device
*dev
= cmd
->device
;
1256 /* Disconnect. Make sure we re-negotiate sync and
1257 * wide parameters if this target starts responding
1258 * again in the future.
1260 esp
->target
[dev
->id
].flags
|= ESP_TGT_CHECK_NEGO
;
1262 scsi_esp_cmd(esp
, ESP_CMD_ESEL
);
1263 esp_cmd_is_done(esp
, ent
, cmd
, (DID_BAD_TARGET
<< 16));
1267 if (esp
->ireg
== (ESP_INTR_FDONE
| ESP_INTR_BSERV
)) {
1268 /* Selection successful. On pre-FAST chips we have
1269 * to do a NOP and possibly clean out the FIFO.
1271 if (esp
->rev
<= ESP236
) {
1272 int fcnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
1274 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1278 ((esp
->sreg
& ESP_STAT_PMASK
) != ESP_DIP
)))
1279 esp_flush_fifo(esp
);
1282 /* If we are doing a slow command, negotiation, etc.
1283 * we'll do the right thing as we transition to the
1286 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1290 printk("ESP: Unexpected selection completion ireg[%x].\n",
1292 esp_schedule_reset(esp
);
1296 static int esp_data_bytes_sent(struct esp
*esp
, struct esp_cmd_entry
*ent
,
1297 struct scsi_cmnd
*cmd
)
1299 int fifo_cnt
, ecount
, bytes_sent
, flush_fifo
;
1301 fifo_cnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
1302 if (esp
->prev_cfg3
& ESP_CONFIG3_EWIDE
)
1306 if (!(esp
->sreg
& ESP_STAT_TCNT
)) {
1307 ecount
= ((unsigned int)esp_read8(ESP_TCLOW
) |
1308 (((unsigned int)esp_read8(ESP_TCMED
)) << 8));
1309 if (esp
->rev
== FASHME
)
1310 ecount
|= ((unsigned int)esp_read8(FAS_RLO
)) << 16;
1313 bytes_sent
= esp
->data_dma_len
;
1314 bytes_sent
-= ecount
;
1316 if (!(ent
->flags
& ESP_CMD_FLAG_WRITE
))
1317 bytes_sent
-= fifo_cnt
;
1320 if (!esp
->prev_soff
) {
1321 /* Synchronous data transfer, always flush fifo. */
1324 if (esp
->rev
== ESP100
) {
1327 /* ESP100 has a chip bug where in the synchronous data
1328 * phase it can mistake a final long REQ pulse from the
1329 * target as an extra data byte. Fun.
1331 * To detect this case we resample the status register
1332 * and fifo flags. If we're still in a data phase and
1333 * we see spurious chunks in the fifo, we return error
1334 * to the caller which should reset and set things up
1335 * such that we only try future transfers to this
1336 * target in synchronous mode.
1338 esp
->sreg
= esp_read8(ESP_STATUS
);
1339 phase
= esp
->sreg
& ESP_STAT_PMASK
;
1340 fflags
= esp_read8(ESP_FFLAGS
);
1342 if ((phase
== ESP_DOP
&&
1343 (fflags
& ESP_FF_ONOTZERO
)) ||
1344 (phase
== ESP_DIP
&&
1345 (fflags
& ESP_FF_FBYTES
)))
1348 if (!(ent
->flags
& ESP_CMD_FLAG_WRITE
))
1353 esp_flush_fifo(esp
);
1358 static void esp_setsync(struct esp
*esp
, struct esp_target_data
*tp
,
1359 u8 scsi_period
, u8 scsi_offset
,
1360 u8 esp_stp
, u8 esp_soff
)
1362 spi_period(tp
->starget
) = scsi_period
;
1363 spi_offset(tp
->starget
) = scsi_offset
;
1364 spi_width(tp
->starget
) = (tp
->flags
& ESP_TGT_WIDE
) ? 1 : 0;
1368 esp_soff
|= esp
->radelay
;
1369 if (esp
->rev
>= FAS236
) {
1370 u8 bit
= ESP_CONFIG3_FSCSI
;
1371 if (esp
->rev
>= FAS100A
)
1372 bit
= ESP_CONFIG3_FAST
;
1374 if (scsi_period
< 50) {
1375 if (esp
->rev
== FASHME
)
1376 esp_soff
&= ~esp
->radelay
;
1377 tp
->esp_config3
|= bit
;
1379 tp
->esp_config3
&= ~bit
;
1381 esp
->prev_cfg3
= tp
->esp_config3
;
1382 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
1386 tp
->esp_period
= esp
->prev_stp
= esp_stp
;
1387 tp
->esp_offset
= esp
->prev_soff
= esp_soff
;
1389 esp_write8(esp_soff
, ESP_SOFF
);
1390 esp_write8(esp_stp
, ESP_STP
);
1392 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_CHECK_NEGO
);
1394 spi_display_xfer_agreement(tp
->starget
);
1397 static void esp_msgin_reject(struct esp
*esp
)
1399 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1400 struct scsi_cmnd
*cmd
= ent
->cmd
;
1401 struct esp_target_data
*tp
;
1404 tgt
= cmd
->device
->id
;
1405 tp
= &esp
->target
[tgt
];
1407 if (tp
->flags
& ESP_TGT_NEGO_WIDE
) {
1408 tp
->flags
&= ~(ESP_TGT_NEGO_WIDE
| ESP_TGT_WIDE
);
1410 if (!esp_need_to_nego_sync(tp
)) {
1411 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
1412 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1415 spi_populate_sync_msg(&esp
->msg_out
[0],
1416 tp
->nego_goal_period
,
1417 tp
->nego_goal_offset
);
1418 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
1419 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1424 if (tp
->flags
& ESP_TGT_NEGO_SYNC
) {
1425 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_CHECK_NEGO
);
1428 esp_setsync(esp
, tp
, 0, 0, 0, 0);
1429 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1433 esp
->msg_out
[0] = ABORT_TASK_SET
;
1434 esp
->msg_out_len
= 1;
1435 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1438 static void esp_msgin_sdtr(struct esp
*esp
, struct esp_target_data
*tp
)
1440 u8 period
= esp
->msg_in
[3];
1441 u8 offset
= esp
->msg_in
[4];
1444 if (!(tp
->flags
& ESP_TGT_NEGO_SYNC
))
1451 int rounded_up
, one_clock
;
1453 if (period
> esp
->max_period
) {
1454 period
= offset
= 0;
1457 if (period
< esp
->min_period
)
1460 one_clock
= esp
->ccycle
/ 1000;
1461 rounded_up
= (period
<< 2);
1462 rounded_up
= (rounded_up
+ one_clock
- 1) / one_clock
;
1464 if (stp
&& esp
->rev
>= FAS236
) {
1472 esp_setsync(esp
, tp
, period
, offset
, stp
, offset
);
1476 esp
->msg_out
[0] = MESSAGE_REJECT
;
1477 esp
->msg_out_len
= 1;
1478 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1482 tp
->nego_goal_period
= period
;
1483 tp
->nego_goal_offset
= offset
;
1485 spi_populate_sync_msg(&esp
->msg_out
[0],
1486 tp
->nego_goal_period
,
1487 tp
->nego_goal_offset
);
1488 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1491 static void esp_msgin_wdtr(struct esp
*esp
, struct esp_target_data
*tp
)
1493 int size
= 8 << esp
->msg_in
[3];
1496 if (esp
->rev
!= FASHME
)
1499 if (size
!= 8 && size
!= 16)
1502 if (!(tp
->flags
& ESP_TGT_NEGO_WIDE
))
1505 cfg3
= tp
->esp_config3
;
1507 tp
->flags
|= ESP_TGT_WIDE
;
1508 cfg3
|= ESP_CONFIG3_EWIDE
;
1510 tp
->flags
&= ~ESP_TGT_WIDE
;
1511 cfg3
&= ~ESP_CONFIG3_EWIDE
;
1513 tp
->esp_config3
= cfg3
;
1514 esp
->prev_cfg3
= cfg3
;
1515 esp_write8(cfg3
, ESP_CFG3
);
1517 tp
->flags
&= ~ESP_TGT_NEGO_WIDE
;
1519 spi_period(tp
->starget
) = 0;
1520 spi_offset(tp
->starget
) = 0;
1521 if (!esp_need_to_nego_sync(tp
)) {
1522 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
1523 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1526 spi_populate_sync_msg(&esp
->msg_out
[0],
1527 tp
->nego_goal_period
,
1528 tp
->nego_goal_offset
);
1529 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
1530 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1535 esp
->msg_out
[0] = MESSAGE_REJECT
;
1536 esp
->msg_out_len
= 1;
1537 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1540 static void esp_msgin_extended(struct esp
*esp
)
1542 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1543 struct scsi_cmnd
*cmd
= ent
->cmd
;
1544 struct esp_target_data
*tp
;
1545 int tgt
= cmd
->device
->id
;
1547 tp
= &esp
->target
[tgt
];
1548 if (esp
->msg_in
[2] == EXTENDED_SDTR
) {
1549 esp_msgin_sdtr(esp
, tp
);
1552 if (esp
->msg_in
[2] == EXTENDED_WDTR
) {
1553 esp_msgin_wdtr(esp
, tp
);
1557 printk("ESP: Unexpected extended msg type %x\n",
1560 esp
->msg_out
[0] = ABORT_TASK_SET
;
1561 esp
->msg_out_len
= 1;
1562 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1565 /* Analyze msgin bytes received from target so far. Return non-zero
1566 * if there are more bytes needed to complete the message.
1568 static int esp_msgin_process(struct esp
*esp
)
1570 u8 msg0
= esp
->msg_in
[0];
1571 int len
= esp
->msg_in_len
;
1575 printk("ESP: Unexpected msgin identify\n");
1580 case EXTENDED_MESSAGE
:
1583 if (len
< esp
->msg_in
[1] + 2)
1585 esp_msgin_extended(esp
);
1588 case IGNORE_WIDE_RESIDUE
: {
1589 struct esp_cmd_entry
*ent
;
1590 struct esp_cmd_priv
*spriv
;
1594 if (esp
->msg_in
[1] != 1)
1597 ent
= esp
->active_cmd
;
1598 spriv
= ESP_CMD_PRIV(ent
->cmd
);
1600 if (spriv
->cur_residue
== sg_dma_len(spriv
->cur_sg
)) {
1602 spriv
->cur_residue
= 1;
1604 spriv
->cur_residue
++;
1605 spriv
->tot_residue
++;
1610 case RESTORE_POINTERS
:
1611 esp_restore_pointers(esp
, esp
->active_cmd
);
1614 esp_save_pointers(esp
, esp
->active_cmd
);
1617 case COMMAND_COMPLETE
:
1619 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1621 ent
->message
= msg0
;
1622 esp_event(esp
, ESP_EVENT_FREE_BUS
);
1623 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1626 case MESSAGE_REJECT
:
1627 esp_msgin_reject(esp
);
1632 esp
->msg_out
[0] = MESSAGE_REJECT
;
1633 esp
->msg_out_len
= 1;
1634 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1639 static int esp_process_event(struct esp
*esp
)
1645 switch (esp
->event
) {
1646 case ESP_EVENT_CHECK_PHASE
:
1647 switch (esp
->sreg
& ESP_STAT_PMASK
) {
1649 esp_event(esp
, ESP_EVENT_DATA_OUT
);
1652 esp_event(esp
, ESP_EVENT_DATA_IN
);
1655 esp_flush_fifo(esp
);
1656 scsi_esp_cmd(esp
, ESP_CMD_ICCSEQ
);
1657 esp_event(esp
, ESP_EVENT_STATUS
);
1658 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1662 esp_event(esp
, ESP_EVENT_MSGOUT
);
1666 esp_event(esp
, ESP_EVENT_MSGIN
);
1670 esp_event(esp
, ESP_EVENT_CMD_START
);
1674 printk("ESP: Unexpected phase, sreg=%02x\n",
1676 esp_schedule_reset(esp
);
1682 case ESP_EVENT_DATA_IN
:
1686 case ESP_EVENT_DATA_OUT
: {
1687 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1688 struct scsi_cmnd
*cmd
= ent
->cmd
;
1689 dma_addr_t dma_addr
= esp_cur_dma_addr(ent
, cmd
);
1690 unsigned int dma_len
= esp_cur_dma_len(ent
, cmd
);
1692 if (esp
->rev
== ESP100
)
1693 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1696 ent
->flags
|= ESP_CMD_FLAG_WRITE
;
1698 ent
->flags
&= ~ESP_CMD_FLAG_WRITE
;
1700 dma_len
= esp_dma_length_limit(esp
, dma_addr
, dma_len
);
1701 esp
->data_dma_len
= dma_len
;
1704 printk(KERN_ERR PFX
"esp%d: DMA length is zero!\n",
1705 esp
->host
->unique_id
);
1706 printk(KERN_ERR PFX
"esp%d: cur adr[%08llx] len[%08x]\n",
1707 esp
->host
->unique_id
,
1708 (unsigned long long)esp_cur_dma_addr(ent
, cmd
),
1709 esp_cur_dma_len(ent
, cmd
));
1710 esp_schedule_reset(esp
);
1714 esp_log_datastart("ESP: start data addr[%08llx] len[%u] "
1716 (unsigned long long)dma_addr
, dma_len
, write
);
1718 esp
->ops
->send_dma_cmd(esp
, dma_addr
, dma_len
, dma_len
,
1719 write
, ESP_CMD_DMA
| ESP_CMD_TI
);
1720 esp_event(esp
, ESP_EVENT_DATA_DONE
);
1723 case ESP_EVENT_DATA_DONE
: {
1724 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1725 struct scsi_cmnd
*cmd
= ent
->cmd
;
1728 if (esp
->ops
->dma_error(esp
)) {
1729 printk("ESP: data done, DMA error, resetting\n");
1730 esp_schedule_reset(esp
);
1734 if (ent
->flags
& ESP_CMD_FLAG_WRITE
) {
1735 /* XXX parity errors, etc. XXX */
1737 esp
->ops
->dma_drain(esp
);
1739 esp
->ops
->dma_invalidate(esp
);
1741 if (esp
->ireg
!= ESP_INTR_BSERV
) {
1742 /* We should always see exactly a bus-service
1743 * interrupt at the end of a successful transfer.
1745 printk("ESP: data done, not BSERV, resetting\n");
1746 esp_schedule_reset(esp
);
1750 bytes_sent
= esp_data_bytes_sent(esp
, ent
, cmd
);
1752 esp_log_datadone("ESP: data done flgs[%x] sent[%d]\n",
1753 ent
->flags
, bytes_sent
);
1755 if (bytes_sent
< 0) {
1756 /* XXX force sync mode for this target XXX */
1757 esp_schedule_reset(esp
);
1761 esp_advance_dma(esp
, ent
, cmd
, bytes_sent
);
1762 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1767 case ESP_EVENT_STATUS
: {
1768 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1770 if (esp
->ireg
& ESP_INTR_FDONE
) {
1771 ent
->status
= esp_read8(ESP_FDATA
);
1772 ent
->message
= esp_read8(ESP_FDATA
);
1773 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1774 } else if (esp
->ireg
== ESP_INTR_BSERV
) {
1775 ent
->status
= esp_read8(ESP_FDATA
);
1776 ent
->message
= 0xff;
1777 esp_event(esp
, ESP_EVENT_MSGIN
);
1781 if (ent
->message
!= COMMAND_COMPLETE
) {
1782 printk("ESP: Unexpected message %x in status\n",
1784 esp_schedule_reset(esp
);
1788 esp_event(esp
, ESP_EVENT_FREE_BUS
);
1789 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1792 case ESP_EVENT_FREE_BUS
: {
1793 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1794 struct scsi_cmnd
*cmd
= ent
->cmd
;
1796 if (ent
->message
== COMMAND_COMPLETE
||
1797 ent
->message
== DISCONNECT
)
1798 scsi_esp_cmd(esp
, ESP_CMD_ESEL
);
1800 if (ent
->message
== COMMAND_COMPLETE
) {
1801 esp_log_cmddone("ESP: Command done status[%x] "
1803 ent
->status
, ent
->message
);
1804 if (ent
->status
== SAM_STAT_TASK_SET_FULL
)
1805 esp_event_queue_full(esp
, ent
);
1807 if (ent
->status
== SAM_STAT_CHECK_CONDITION
&&
1808 !(ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
)) {
1809 ent
->flags
|= ESP_CMD_FLAG_AUTOSENSE
;
1810 esp_autosense(esp
, ent
);
1812 esp_cmd_is_done(esp
, ent
, cmd
,
1813 compose_result(ent
->status
,
1817 } else if (ent
->message
== DISCONNECT
) {
1818 esp_log_disconnect("ESP: Disconnecting tgt[%d] "
1821 ent
->tag
[0], ent
->tag
[1]);
1823 esp
->active_cmd
= NULL
;
1824 esp_maybe_execute_command(esp
);
1826 printk("ESP: Unexpected message %x in freebus\n",
1828 esp_schedule_reset(esp
);
1831 if (esp
->active_cmd
)
1832 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1835 case ESP_EVENT_MSGOUT
: {
1836 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1838 if (esp_debug
& ESP_DEBUG_MSGOUT
) {
1840 printk("ESP: Sending message [ ");
1841 for (i
= 0; i
< esp
->msg_out_len
; i
++)
1842 printk("%02x ", esp
->msg_out
[i
]);
1846 if (esp
->rev
== FASHME
) {
1849 /* Always use the fifo. */
1850 for (i
= 0; i
< esp
->msg_out_len
; i
++) {
1851 esp_write8(esp
->msg_out
[i
], ESP_FDATA
);
1852 esp_write8(0, ESP_FDATA
);
1854 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1856 if (esp
->msg_out_len
== 1) {
1857 esp_write8(esp
->msg_out
[0], ESP_FDATA
);
1858 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1861 memcpy(esp
->command_block
,
1865 esp
->ops
->send_dma_cmd(esp
,
1866 esp
->command_block_dma
,
1870 ESP_CMD_DMA
|ESP_CMD_TI
);
1873 esp_event(esp
, ESP_EVENT_MSGOUT_DONE
);
1876 case ESP_EVENT_MSGOUT_DONE
:
1877 if (esp
->rev
== FASHME
) {
1878 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1880 if (esp
->msg_out_len
> 1)
1881 esp
->ops
->dma_invalidate(esp
);
1884 if (!(esp
->ireg
& ESP_INTR_DC
)) {
1885 if (esp
->rev
!= FASHME
)
1886 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1888 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1890 case ESP_EVENT_MSGIN
:
1891 if (esp
->ireg
& ESP_INTR_BSERV
) {
1892 if (esp
->rev
== FASHME
) {
1893 if (!(esp_read8(ESP_STATUS2
) &
1895 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1897 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1898 if (esp
->rev
== ESP100
)
1899 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1901 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1902 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1905 if (esp
->ireg
& ESP_INTR_FDONE
) {
1908 if (esp
->rev
== FASHME
)
1911 val
= esp_read8(ESP_FDATA
);
1912 esp
->msg_in
[esp
->msg_in_len
++] = val
;
1914 esp_log_msgin("ESP: Got msgin byte %x\n", val
);
1916 if (!esp_msgin_process(esp
))
1917 esp
->msg_in_len
= 0;
1919 if (esp
->rev
== FASHME
)
1920 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1922 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1924 if (esp
->event
!= ESP_EVENT_FREE_BUS
)
1925 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1927 printk("ESP: MSGIN neither BSERV not FDON, resetting");
1928 esp_schedule_reset(esp
);
1932 case ESP_EVENT_CMD_START
:
1933 memcpy(esp
->command_block
, esp
->cmd_bytes_ptr
,
1934 esp
->cmd_bytes_left
);
1935 if (esp
->rev
== FASHME
)
1936 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1937 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
1938 esp
->cmd_bytes_left
, 16, 0,
1939 ESP_CMD_DMA
| ESP_CMD_TI
);
1940 esp_event(esp
, ESP_EVENT_CMD_DONE
);
1941 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1943 case ESP_EVENT_CMD_DONE
:
1944 esp
->ops
->dma_invalidate(esp
);
1945 if (esp
->ireg
& ESP_INTR_BSERV
) {
1946 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1949 esp_schedule_reset(esp
);
1953 case ESP_EVENT_RESET
:
1954 scsi_esp_cmd(esp
, ESP_CMD_RS
);
1958 printk("ESP: Unexpected event %x, resetting\n",
1960 esp_schedule_reset(esp
);
1967 static void esp_reset_cleanup_one(struct esp
*esp
, struct esp_cmd_entry
*ent
)
1969 struct scsi_cmnd
*cmd
= ent
->cmd
;
1971 esp_unmap_dma(esp
, cmd
);
1972 esp_free_lun_tag(ent
, cmd
->device
->hostdata
);
1973 cmd
->result
= DID_RESET
<< 16;
1975 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
1976 esp
->ops
->unmap_single(esp
, ent
->sense_dma
,
1977 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
1978 ent
->sense_ptr
= NULL
;
1981 cmd
->scsi_done(cmd
);
1982 list_del(&ent
->list
);
1983 esp_put_ent(esp
, ent
);
1986 static void esp_clear_hold(struct scsi_device
*dev
, void *data
)
1988 struct esp_lun_data
*lp
= dev
->hostdata
;
1990 BUG_ON(lp
->num_tagged
);
1994 static void esp_reset_cleanup(struct esp
*esp
)
1996 struct esp_cmd_entry
*ent
, *tmp
;
1999 list_for_each_entry_safe(ent
, tmp
, &esp
->queued_cmds
, list
) {
2000 struct scsi_cmnd
*cmd
= ent
->cmd
;
2002 list_del(&ent
->list
);
2003 cmd
->result
= DID_RESET
<< 16;
2004 cmd
->scsi_done(cmd
);
2005 esp_put_ent(esp
, ent
);
2008 list_for_each_entry_safe(ent
, tmp
, &esp
->active_cmds
, list
) {
2009 if (ent
== esp
->active_cmd
)
2010 esp
->active_cmd
= NULL
;
2011 esp_reset_cleanup_one(esp
, ent
);
2014 BUG_ON(esp
->active_cmd
!= NULL
);
2016 /* Force renegotiation of sync/wide transfers. */
2017 for (i
= 0; i
< ESP_MAX_TARGET
; i
++) {
2018 struct esp_target_data
*tp
= &esp
->target
[i
];
2022 tp
->esp_config3
&= ~(ESP_CONFIG3_EWIDE
|
2025 tp
->flags
&= ~ESP_TGT_WIDE
;
2026 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2029 starget_for_each_device(tp
->starget
, NULL
,
2032 esp
->flags
&= ~ESP_FLAG_RESETTING
;
2035 /* Runs under host->lock */
2036 static void __esp_interrupt(struct esp
*esp
)
2038 int finish_reset
, intr_done
;
2041 esp
->sreg
= esp_read8(ESP_STATUS
);
2043 if (esp
->flags
& ESP_FLAG_RESETTING
) {
2046 if (esp_check_gross_error(esp
))
2049 finish_reset
= esp_check_spur_intr(esp
);
2050 if (finish_reset
< 0)
2054 esp
->ireg
= esp_read8(ESP_INTRPT
);
2056 if (esp
->ireg
& ESP_INTR_SR
)
2060 esp_reset_cleanup(esp
);
2061 if (esp
->eh_reset
) {
2062 complete(esp
->eh_reset
);
2063 esp
->eh_reset
= NULL
;
2068 phase
= (esp
->sreg
& ESP_STAT_PMASK
);
2069 if (esp
->rev
== FASHME
) {
2070 if (((phase
!= ESP_DIP
&& phase
!= ESP_DOP
) &&
2071 esp
->select_state
== ESP_SELECT_NONE
&&
2072 esp
->event
!= ESP_EVENT_STATUS
&&
2073 esp
->event
!= ESP_EVENT_DATA_DONE
) ||
2074 (esp
->ireg
& ESP_INTR_RSEL
)) {
2075 esp
->sreg2
= esp_read8(ESP_STATUS2
);
2076 if (!(esp
->sreg2
& ESP_STAT2_FEMPTY
) ||
2077 (esp
->sreg2
& ESP_STAT2_F1BYTE
))
2082 esp_log_intr("ESP: intr sreg[%02x] seqreg[%02x] "
2083 "sreg2[%02x] ireg[%02x]\n",
2084 esp
->sreg
, esp
->seqreg
, esp
->sreg2
, esp
->ireg
);
2088 if (esp
->ireg
& (ESP_INTR_S
| ESP_INTR_SATN
| ESP_INTR_IC
)) {
2089 printk("ESP: unexpected IREG %02x\n", esp
->ireg
);
2090 if (esp
->ireg
& ESP_INTR_IC
)
2091 esp_dump_cmd_log(esp
);
2093 esp_schedule_reset(esp
);
2095 if (!(esp
->ireg
& ESP_INTR_RSEL
)) {
2096 /* Some combination of FDONE, BSERV, DC. */
2097 if (esp
->select_state
!= ESP_SELECT_NONE
)
2098 intr_done
= esp_finish_select(esp
);
2099 } else if (esp
->ireg
& ESP_INTR_RSEL
) {
2100 if (esp
->active_cmd
)
2101 (void) esp_finish_select(esp
);
2102 intr_done
= esp_reconnect(esp
);
2106 intr_done
= esp_process_event(esp
);
2109 irqreturn_t
scsi_esp_intr(int irq
, void *dev_id
)
2111 struct esp
*esp
= dev_id
;
2112 unsigned long flags
;
2115 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2117 if (esp
->ops
->irq_pending(esp
)) {
2122 __esp_interrupt(esp
);
2123 if (!(esp
->flags
& ESP_FLAG_QUICKIRQ_CHECK
))
2125 esp
->flags
&= ~ESP_FLAG_QUICKIRQ_CHECK
;
2127 for (i
= 0; i
< ESP_QUICKIRQ_LIMIT
; i
++) {
2128 if (esp
->ops
->irq_pending(esp
))
2131 if (i
== ESP_QUICKIRQ_LIMIT
)
2135 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2139 EXPORT_SYMBOL(scsi_esp_intr
);
2141 static void esp_get_revision(struct esp
*esp
)
2145 esp
->config1
= (ESP_CONFIG1_PENABLE
| (esp
->scsi_id
& 7));
2146 esp
->config2
= (ESP_CONFIG2_SCSI2ENAB
| ESP_CONFIG2_REGPARITY
);
2147 esp_write8(esp
->config2
, ESP_CFG2
);
2149 val
= esp_read8(ESP_CFG2
);
2150 val
&= ~ESP_CONFIG2_MAGIC
;
2151 if (val
!= (ESP_CONFIG2_SCSI2ENAB
| ESP_CONFIG2_REGPARITY
)) {
2152 /* If what we write to cfg2 does not come back, cfg2 is not
2153 * implemented, therefore this must be a plain esp100.
2158 esp_set_all_config3(esp
, 5);
2160 esp_write8(esp
->config2
, ESP_CFG2
);
2161 esp_write8(0, ESP_CFG3
);
2162 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
2164 val
= esp_read8(ESP_CFG3
);
2166 /* The cfg2 register is implemented, however
2167 * cfg3 is not, must be esp100a.
2171 esp_set_all_config3(esp
, 0);
2173 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
2175 /* All of cfg{1,2,3} implemented, must be one of
2176 * the fas variants, figure out which one.
2178 if (esp
->cfact
== 0 || esp
->cfact
> ESP_CCF_F5
) {
2180 esp
->sync_defp
= SYNC_DEFP_FAST
;
2185 esp_write8(esp
->config2
, ESP_CFG2
);
2190 static void esp_init_swstate(struct esp
*esp
)
2194 INIT_LIST_HEAD(&esp
->queued_cmds
);
2195 INIT_LIST_HEAD(&esp
->active_cmds
);
2196 INIT_LIST_HEAD(&esp
->esp_cmd_pool
);
2198 /* Start with a clear state, domain validation (via ->slave_configure,
2199 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2202 for (i
= 0 ; i
< ESP_MAX_TARGET
; i
++) {
2203 esp
->target
[i
].flags
= 0;
2204 esp
->target
[i
].nego_goal_period
= 0;
2205 esp
->target
[i
].nego_goal_offset
= 0;
2206 esp
->target
[i
].nego_goal_width
= 0;
2207 esp
->target
[i
].nego_goal_tags
= 0;
2211 /* This places the ESP into a known state at boot time. */
2212 static void esp_bootup_reset(struct esp
*esp
)
2217 esp
->ops
->reset_dma(esp
);
2222 /* Reset the SCSI bus, but tell ESP not to generate an irq */
2223 val
= esp_read8(ESP_CFG1
);
2224 val
|= ESP_CONFIG1_SRRDISAB
;
2225 esp_write8(val
, ESP_CFG1
);
2227 scsi_esp_cmd(esp
, ESP_CMD_RS
);
2230 esp_write8(esp
->config1
, ESP_CFG1
);
2232 /* Eat any bitrot in the chip and we are done... */
2233 esp_read8(ESP_INTRPT
);
2236 static void esp_set_clock_params(struct esp
*esp
)
2241 /* This is getting messy but it has to be done correctly or else
2242 * you get weird behavior all over the place. We are trying to
2243 * basically figure out three pieces of information.
2245 * a) Clock Conversion Factor
2247 * This is a representation of the input crystal clock frequency
2248 * going into the ESP on this machine. Any operation whose timing
2249 * is longer than 400ns depends on this value being correct. For
2250 * example, you'll get blips for arbitration/selection during high
2251 * load or with multiple targets if this is not set correctly.
2253 * b) Selection Time-Out
2255 * The ESP isn't very bright and will arbitrate for the bus and try
2256 * to select a target forever if you let it. This value tells the
2257 * ESP when it has taken too long to negotiate and that it should
2258 * interrupt the CPU so we can see what happened. The value is
2259 * computed as follows (from NCR/Symbios chip docs).
2261 * (Time Out Period) * (Input Clock)
2262 * STO = ----------------------------------
2263 * (8192) * (Clock Conversion Factor)
2265 * We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2267 * c) Imperical constants for synchronous offset and transfer period
2270 * This entails the smallest and largest sync period we could ever
2271 * handle on this ESP.
2275 ccf
= ((fmhz
/ 1000000) + 4) / 5;
2279 /* If we can't find anything reasonable, just assume 20MHZ.
2280 * This is the clock frequency of the older sun4c's where I've
2281 * been unable to find the clock-frequency PROM property. All
2282 * other machines provide useful values it seems.
2284 if (fmhz
<= 5000000 || ccf
< 1 || ccf
> 8) {
2289 esp
->cfact
= (ccf
== 8 ? 0 : ccf
);
2291 esp
->ccycle
= ESP_MHZ_TO_CYCLE(fmhz
);
2292 esp
->ctick
= ESP_TICK(ccf
, esp
->ccycle
);
2293 esp
->neg_defp
= ESP_NEG_DEFP(fmhz
, ccf
);
2294 esp
->sync_defp
= SYNC_DEFP_SLOW
;
2297 static const char *esp_chip_names
[] = {
2307 static struct scsi_transport_template
*esp_transport_template
;
2309 int scsi_esp_register(struct esp
*esp
, struct device
*dev
)
2311 static int instance
;
2314 esp
->host
->transportt
= esp_transport_template
;
2315 esp
->host
->max_lun
= ESP_MAX_LUN
;
2316 esp
->host
->cmd_per_lun
= 2;
2317 esp
->host
->unique_id
= instance
;
2319 esp_set_clock_params(esp
);
2321 esp_get_revision(esp
);
2323 esp_init_swstate(esp
);
2325 esp_bootup_reset(esp
);
2327 printk(KERN_INFO PFX
"esp%u, regs[%1p:%1p] irq[%u]\n",
2328 esp
->host
->unique_id
, esp
->regs
, esp
->dma_regs
,
2330 printk(KERN_INFO PFX
"esp%u is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2331 esp
->host
->unique_id
, esp_chip_names
[esp
->rev
],
2332 esp
->cfreq
/ 1000000, esp
->cfact
, esp
->scsi_id
);
2334 /* Let the SCSI bus reset settle. */
2335 ssleep(esp_bus_reset_settle
);
2337 err
= scsi_add_host(esp
->host
, dev
);
2343 scsi_scan_host(esp
->host
);
2347 EXPORT_SYMBOL(scsi_esp_register
);
2349 void scsi_esp_unregister(struct esp
*esp
)
2351 scsi_remove_host(esp
->host
);
2353 EXPORT_SYMBOL(scsi_esp_unregister
);
2355 static int esp_slave_alloc(struct scsi_device
*dev
)
2357 struct esp
*esp
= shost_priv(dev
->host
);
2358 struct esp_target_data
*tp
= &esp
->target
[dev
->id
];
2359 struct esp_lun_data
*lp
;
2361 lp
= kzalloc(sizeof(*lp
), GFP_KERNEL
);
2366 tp
->starget
= dev
->sdev_target
;
2368 spi_min_period(tp
->starget
) = esp
->min_period
;
2369 spi_max_offset(tp
->starget
) = 15;
2371 if (esp
->flags
& ESP_FLAG_WIDE_CAPABLE
)
2372 spi_max_width(tp
->starget
) = 1;
2374 spi_max_width(tp
->starget
) = 0;
2379 static int esp_slave_configure(struct scsi_device
*dev
)
2381 struct esp
*esp
= shost_priv(dev
->host
);
2382 struct esp_target_data
*tp
= &esp
->target
[dev
->id
];
2383 int goal_tags
, queue_depth
;
2387 if (dev
->tagged_supported
) {
2388 /* XXX make this configurable somehow XXX */
2389 goal_tags
= ESP_DEFAULT_TAGS
;
2391 if (goal_tags
> ESP_MAX_TAG
)
2392 goal_tags
= ESP_MAX_TAG
;
2395 queue_depth
= goal_tags
;
2396 if (queue_depth
< dev
->host
->cmd_per_lun
)
2397 queue_depth
= dev
->host
->cmd_per_lun
;
2400 scsi_set_tag_type(dev
, MSG_ORDERED_TAG
);
2401 scsi_activate_tcq(dev
, queue_depth
);
2403 scsi_deactivate_tcq(dev
, queue_depth
);
2405 tp
->flags
|= ESP_TGT_DISCONNECT
;
2407 if (!spi_initial_dv(dev
->sdev_target
))
2413 static void esp_slave_destroy(struct scsi_device
*dev
)
2415 struct esp_lun_data
*lp
= dev
->hostdata
;
2418 dev
->hostdata
= NULL
;
2421 static int esp_eh_abort_handler(struct scsi_cmnd
*cmd
)
2423 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2424 struct esp_cmd_entry
*ent
, *tmp
;
2425 struct completion eh_done
;
2426 unsigned long flags
;
2428 /* XXX This helps a lot with debugging but might be a bit
2429 * XXX much for the final driver.
2431 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2432 printk(KERN_ERR PFX
"esp%d: Aborting command [%p:%02x]\n",
2433 esp
->host
->unique_id
, cmd
, cmd
->cmnd
[0]);
2434 ent
= esp
->active_cmd
;
2436 printk(KERN_ERR PFX
"esp%d: Current command [%p:%02x]\n",
2437 esp
->host
->unique_id
, ent
->cmd
, ent
->cmd
->cmnd
[0]);
2438 list_for_each_entry(ent
, &esp
->queued_cmds
, list
) {
2439 printk(KERN_ERR PFX
"esp%d: Queued command [%p:%02x]\n",
2440 esp
->host
->unique_id
, ent
->cmd
, ent
->cmd
->cmnd
[0]);
2442 list_for_each_entry(ent
, &esp
->active_cmds
, list
) {
2443 printk(KERN_ERR PFX
"esp%d: Active command [%p:%02x]\n",
2444 esp
->host
->unique_id
, ent
->cmd
, ent
->cmd
->cmnd
[0]);
2446 esp_dump_cmd_log(esp
);
2447 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2449 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2452 list_for_each_entry(tmp
, &esp
->queued_cmds
, list
) {
2453 if (tmp
->cmd
== cmd
) {
2460 /* Easiest case, we didn't even issue the command
2461 * yet so it is trivial to abort.
2463 list_del(&ent
->list
);
2465 cmd
->result
= DID_ABORT
<< 16;
2466 cmd
->scsi_done(cmd
);
2468 esp_put_ent(esp
, ent
);
2473 init_completion(&eh_done
);
2475 ent
= esp
->active_cmd
;
2476 if (ent
&& ent
->cmd
== cmd
) {
2477 /* Command is the currently active command on
2478 * the bus. If we already have an output message
2481 if (esp
->msg_out_len
)
2484 /* Send out an abort, encouraging the target to
2485 * go to MSGOUT phase by asserting ATN.
2487 esp
->msg_out
[0] = ABORT_TASK_SET
;
2488 esp
->msg_out_len
= 1;
2489 ent
->eh_done
= &eh_done
;
2491 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
2493 /* The command is disconnected. This is not easy to
2494 * abort. For now we fail and let the scsi error
2495 * handling layer go try a scsi bus reset or host
2498 * What we could do is put together a scsi command
2499 * solely for the purpose of sending an abort message
2500 * to the target. Coming up with all the code to
2501 * cook up scsi commands, special case them everywhere,
2502 * etc. is for questionable gain and it would be better
2503 * if the generic scsi error handling layer could do at
2504 * least some of that for us.
2506 * Anyways this is an area for potential future improvement
2512 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2514 if (!wait_for_completion_timeout(&eh_done
, 5 * HZ
)) {
2515 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2516 ent
->eh_done
= NULL
;
2517 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2525 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2529 /* XXX This might be a good location to set ESP_TGT_BROKEN
2530 * XXX since we know which target/lun in particular is
2531 * XXX causing trouble.
2533 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2537 static int esp_eh_bus_reset_handler(struct scsi_cmnd
*cmd
)
2539 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2540 struct completion eh_reset
;
2541 unsigned long flags
;
2543 init_completion(&eh_reset
);
2545 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2547 esp
->eh_reset
= &eh_reset
;
2549 /* XXX This is too simple... We should add lots of
2550 * XXX checks here so that if we find that the chip is
2551 * XXX very wedged we return failure immediately so
2552 * XXX that we can perform a full chip reset.
2554 esp
->flags
|= ESP_FLAG_RESETTING
;
2555 scsi_esp_cmd(esp
, ESP_CMD_RS
);
2557 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2559 ssleep(esp_bus_reset_settle
);
2561 if (!wait_for_completion_timeout(&eh_reset
, 5 * HZ
)) {
2562 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2563 esp
->eh_reset
= NULL
;
2564 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2572 /* All bets are off, reset the entire device. */
2573 static int esp_eh_host_reset_handler(struct scsi_cmnd
*cmd
)
2575 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2576 unsigned long flags
;
2578 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2579 esp_bootup_reset(esp
);
2580 esp_reset_cleanup(esp
);
2581 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2583 ssleep(esp_bus_reset_settle
);
2588 static const char *esp_info(struct Scsi_Host
*host
)
2593 struct scsi_host_template scsi_esp_template
= {
2594 .module
= THIS_MODULE
,
2597 .queuecommand
= esp_queuecommand
,
2598 .slave_alloc
= esp_slave_alloc
,
2599 .slave_configure
= esp_slave_configure
,
2600 .slave_destroy
= esp_slave_destroy
,
2601 .eh_abort_handler
= esp_eh_abort_handler
,
2602 .eh_bus_reset_handler
= esp_eh_bus_reset_handler
,
2603 .eh_host_reset_handler
= esp_eh_host_reset_handler
,
2606 .sg_tablesize
= SG_ALL
,
2607 .use_clustering
= ENABLE_CLUSTERING
,
2608 .max_sectors
= 0xffff,
2609 .skip_settle_delay
= 1,
2611 EXPORT_SYMBOL(scsi_esp_template
);
2613 static void esp_get_signalling(struct Scsi_Host
*host
)
2615 struct esp
*esp
= shost_priv(host
);
2616 enum spi_signal_type type
;
2618 if (esp
->flags
& ESP_FLAG_DIFFERENTIAL
)
2619 type
= SPI_SIGNAL_HVD
;
2621 type
= SPI_SIGNAL_SE
;
2623 spi_signalling(host
) = type
;
2626 static void esp_set_offset(struct scsi_target
*target
, int offset
)
2628 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2629 struct esp
*esp
= shost_priv(host
);
2630 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2632 tp
->nego_goal_offset
= offset
;
2633 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2636 static void esp_set_period(struct scsi_target
*target
, int period
)
2638 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2639 struct esp
*esp
= shost_priv(host
);
2640 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2642 tp
->nego_goal_period
= period
;
2643 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2646 static void esp_set_width(struct scsi_target
*target
, int width
)
2648 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2649 struct esp
*esp
= shost_priv(host
);
2650 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2652 tp
->nego_goal_width
= (width
? 1 : 0);
2653 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2656 static struct spi_function_template esp_transport_ops
= {
2657 .set_offset
= esp_set_offset
,
2659 .set_period
= esp_set_period
,
2661 .set_width
= esp_set_width
,
2663 .get_signalling
= esp_get_signalling
,
2666 static int __init
esp_init(void)
2668 BUILD_BUG_ON(sizeof(struct scsi_pointer
) <
2669 sizeof(struct esp_cmd_priv
));
2671 esp_transport_template
= spi_attach_transport(&esp_transport_ops
);
2672 if (!esp_transport_template
)
2678 static void __exit
esp_exit(void)
2680 spi_release_transport(esp_transport_template
);
2683 MODULE_DESCRIPTION("ESP SCSI driver core");
2684 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2685 MODULE_LICENSE("GPL");
2686 MODULE_VERSION(DRV_VERSION
);
2688 module_param(esp_bus_reset_settle
, int, 0);
2689 MODULE_PARM_DESC(esp_bus_reset_settle
,
2690 "ESP scsi bus reset delay in seconds");
2692 module_param(esp_debug
, int, 0);
2693 MODULE_PARM_DESC(esp_debug
,
2694 "ESP bitmapped debugging message enable value:\n"
2695 " 0x00000001 Log interrupt events\n"
2696 " 0x00000002 Log scsi commands\n"
2697 " 0x00000004 Log resets\n"
2698 " 0x00000008 Log message in events\n"
2699 " 0x00000010 Log message out events\n"
2700 " 0x00000020 Log command completion\n"
2701 " 0x00000040 Log disconnects\n"
2702 " 0x00000080 Log data start\n"
2703 " 0x00000100 Log data done\n"
2704 " 0x00000200 Log reconnects\n"
2705 " 0x00000400 Log auto-sense data\n"
2708 module_init(esp_init
);
2709 module_exit(esp_exit
);