fs: use kmem_cache_zalloc instead
[pv_ops_mirror.git] / drivers / scsi / libsas / sas_expander.c
blob8727436b222d340f269556d2b7054a31416700c6
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
28 #include "sas_internal.h"
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37 u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
40 /* ---------- SMP task management ---------- */
42 static void smp_task_timedout(unsigned long _task)
44 struct sas_task *task = (void *) _task;
45 unsigned long flags;
47 spin_lock_irqsave(&task->task_state_lock, flags);
48 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
49 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
50 spin_unlock_irqrestore(&task->task_state_lock, flags);
52 complete(&task->completion);
55 static void smp_task_done(struct sas_task *task)
57 if (!del_timer(&task->timer))
58 return;
59 complete(&task->completion);
62 /* Give it some long enough timeout. In seconds. */
63 #define SMP_TIMEOUT 10
65 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
66 void *resp, int resp_size)
68 int res, retry;
69 struct sas_task *task = NULL;
70 struct sas_internal *i =
71 to_sas_internal(dev->port->ha->core.shost->transportt);
73 for (retry = 0; retry < 3; retry++) {
74 task = sas_alloc_task(GFP_KERNEL);
75 if (!task)
76 return -ENOMEM;
78 task->dev = dev;
79 task->task_proto = dev->tproto;
80 sg_init_one(&task->smp_task.smp_req, req, req_size);
81 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83 task->task_done = smp_task_done;
85 task->timer.data = (unsigned long) task;
86 task->timer.function = smp_task_timedout;
87 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
88 add_timer(&task->timer);
90 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92 if (res) {
93 del_timer(&task->timer);
94 SAS_DPRINTK("executing SMP task failed:%d\n", res);
95 goto ex_err;
98 wait_for_completion(&task->completion);
99 res = -ETASK;
100 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
101 SAS_DPRINTK("smp task timed out or aborted\n");
102 i->dft->lldd_abort_task(task);
103 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
104 SAS_DPRINTK("SMP task aborted and not done\n");
105 goto ex_err;
108 if (task->task_status.resp == SAS_TASK_COMPLETE &&
109 task->task_status.stat == SAM_GOOD) {
110 res = 0;
111 break;
112 } else {
113 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
114 "status 0x%x\n", __FUNCTION__,
115 SAS_ADDR(dev->sas_addr),
116 task->task_status.resp,
117 task->task_status.stat);
118 sas_free_task(task);
119 task = NULL;
122 ex_err:
123 BUG_ON(retry == 3 && task != NULL);
124 if (task != NULL) {
125 sas_free_task(task);
127 return res;
130 /* ---------- Allocations ---------- */
132 static inline void *alloc_smp_req(int size)
134 u8 *p = kzalloc(size, GFP_KERNEL);
135 if (p)
136 p[0] = SMP_REQUEST;
137 return p;
140 static inline void *alloc_smp_resp(int size)
142 return kzalloc(size, GFP_KERNEL);
145 /* ---------- Expander configuration ---------- */
147 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
148 void *disc_resp)
150 struct expander_device *ex = &dev->ex_dev;
151 struct ex_phy *phy = &ex->ex_phy[phy_id];
152 struct smp_resp *resp = disc_resp;
153 struct discover_resp *dr = &resp->disc;
154 struct sas_rphy *rphy = dev->rphy;
155 int rediscover = (phy->phy != NULL);
157 if (!rediscover) {
158 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
160 /* FIXME: error_handling */
161 BUG_ON(!phy->phy);
164 switch (resp->result) {
165 case SMP_RESP_PHY_VACANT:
166 phy->phy_state = PHY_VACANT;
167 return;
168 default:
169 phy->phy_state = PHY_NOT_PRESENT;
170 return;
171 case SMP_RESP_FUNC_ACC:
172 phy->phy_state = PHY_EMPTY; /* do not know yet */
173 break;
176 phy->phy_id = phy_id;
177 phy->attached_dev_type = dr->attached_dev_type;
178 phy->linkrate = dr->linkrate;
179 phy->attached_sata_host = dr->attached_sata_host;
180 phy->attached_sata_dev = dr->attached_sata_dev;
181 phy->attached_sata_ps = dr->attached_sata_ps;
182 phy->attached_iproto = dr->iproto << 1;
183 phy->attached_tproto = dr->tproto << 1;
184 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
185 phy->attached_phy_id = dr->attached_phy_id;
186 phy->phy_change_count = dr->change_count;
187 phy->routing_attr = dr->routing_attr;
188 phy->virtual = dr->virtual;
189 phy->last_da_index = -1;
191 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
192 phy->phy->identify.target_port_protocols = phy->attached_tproto;
193 phy->phy->identify.phy_identifier = phy_id;
194 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
195 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
196 phy->phy->minimum_linkrate = dr->pmin_linkrate;
197 phy->phy->maximum_linkrate = dr->pmax_linkrate;
198 phy->phy->negotiated_linkrate = phy->linkrate;
200 if (!rediscover)
201 sas_phy_add(phy->phy);
203 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
204 SAS_ADDR(dev->sas_addr), phy->phy_id,
205 phy->routing_attr == TABLE_ROUTING ? 'T' :
206 phy->routing_attr == DIRECT_ROUTING ? 'D' :
207 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
208 SAS_ADDR(phy->attached_sas_addr));
210 return;
213 #define DISCOVER_REQ_SIZE 16
214 #define DISCOVER_RESP_SIZE 56
216 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
217 u8 *disc_resp, int single)
219 int i, res;
221 disc_req[9] = single;
222 for (i = 1 ; i < 3; i++) {
223 struct discover_resp *dr;
225 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
226 disc_resp, DISCOVER_RESP_SIZE);
227 if (res)
228 return res;
229 /* This is detecting a failure to transmit inital
230 * dev to host FIS as described in section G.5 of
231 * sas-2 r 04b */
232 dr = &((struct smp_resp *)disc_resp)->disc;
233 if (!(dr->attached_dev_type == 0 &&
234 dr->attached_sata_dev))
235 break;
236 /* In order to generate the dev to host FIS, we
237 * send a link reset to the expander port */
238 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
239 /* Wait for the reset to trigger the negotiation */
240 msleep(500);
242 sas_set_ex_phy(dev, single, disc_resp);
243 return 0;
246 static int sas_ex_phy_discover(struct domain_device *dev, int single)
248 struct expander_device *ex = &dev->ex_dev;
249 int res = 0;
250 u8 *disc_req;
251 u8 *disc_resp;
253 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
254 if (!disc_req)
255 return -ENOMEM;
257 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
258 if (!disc_resp) {
259 kfree(disc_req);
260 return -ENOMEM;
263 disc_req[1] = SMP_DISCOVER;
265 if (0 <= single && single < ex->num_phys) {
266 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
267 } else {
268 int i;
270 for (i = 0; i < ex->num_phys; i++) {
271 res = sas_ex_phy_discover_helper(dev, disc_req,
272 disc_resp, i);
273 if (res)
274 goto out_err;
277 out_err:
278 kfree(disc_resp);
279 kfree(disc_req);
280 return res;
283 static int sas_expander_discover(struct domain_device *dev)
285 struct expander_device *ex = &dev->ex_dev;
286 int res = -ENOMEM;
288 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
289 if (!ex->ex_phy)
290 return -ENOMEM;
292 res = sas_ex_phy_discover(dev, -1);
293 if (res)
294 goto out_err;
296 return 0;
297 out_err:
298 kfree(ex->ex_phy);
299 ex->ex_phy = NULL;
300 return res;
303 #define MAX_EXPANDER_PHYS 128
305 static void ex_assign_report_general(struct domain_device *dev,
306 struct smp_resp *resp)
308 struct report_general_resp *rg = &resp->rg;
310 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
311 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
312 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
313 dev->ex_dev.conf_route_table = rg->conf_route_table;
314 dev->ex_dev.configuring = rg->configuring;
315 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
318 #define RG_REQ_SIZE 8
319 #define RG_RESP_SIZE 32
321 static int sas_ex_general(struct domain_device *dev)
323 u8 *rg_req;
324 struct smp_resp *rg_resp;
325 int res;
326 int i;
328 rg_req = alloc_smp_req(RG_REQ_SIZE);
329 if (!rg_req)
330 return -ENOMEM;
332 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
333 if (!rg_resp) {
334 kfree(rg_req);
335 return -ENOMEM;
338 rg_req[1] = SMP_REPORT_GENERAL;
340 for (i = 0; i < 5; i++) {
341 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
342 RG_RESP_SIZE);
344 if (res) {
345 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
346 SAS_ADDR(dev->sas_addr), res);
347 goto out;
348 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
349 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
350 SAS_ADDR(dev->sas_addr), rg_resp->result);
351 res = rg_resp->result;
352 goto out;
355 ex_assign_report_general(dev, rg_resp);
357 if (dev->ex_dev.configuring) {
358 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
359 SAS_ADDR(dev->sas_addr));
360 schedule_timeout_interruptible(5*HZ);
361 } else
362 break;
364 out:
365 kfree(rg_req);
366 kfree(rg_resp);
367 return res;
370 static void ex_assign_manuf_info(struct domain_device *dev, void
371 *_mi_resp)
373 u8 *mi_resp = _mi_resp;
374 struct sas_rphy *rphy = dev->rphy;
375 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
377 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
378 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
379 memcpy(edev->product_rev, mi_resp + 36,
380 SAS_EXPANDER_PRODUCT_REV_LEN);
382 if (mi_resp[8] & 1) {
383 memcpy(edev->component_vendor_id, mi_resp + 40,
384 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
385 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
386 edev->component_revision_id = mi_resp[50];
390 #define MI_REQ_SIZE 8
391 #define MI_RESP_SIZE 64
393 static int sas_ex_manuf_info(struct domain_device *dev)
395 u8 *mi_req;
396 u8 *mi_resp;
397 int res;
399 mi_req = alloc_smp_req(MI_REQ_SIZE);
400 if (!mi_req)
401 return -ENOMEM;
403 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
404 if (!mi_resp) {
405 kfree(mi_req);
406 return -ENOMEM;
409 mi_req[1] = SMP_REPORT_MANUF_INFO;
411 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
412 if (res) {
413 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
414 SAS_ADDR(dev->sas_addr), res);
415 goto out;
416 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
417 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
418 SAS_ADDR(dev->sas_addr), mi_resp[2]);
419 goto out;
422 ex_assign_manuf_info(dev, mi_resp);
423 out:
424 kfree(mi_req);
425 kfree(mi_resp);
426 return res;
429 #define PC_REQ_SIZE 44
430 #define PC_RESP_SIZE 8
432 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
433 enum phy_func phy_func,
434 struct sas_phy_linkrates *rates)
436 u8 *pc_req;
437 u8 *pc_resp;
438 int res;
440 pc_req = alloc_smp_req(PC_REQ_SIZE);
441 if (!pc_req)
442 return -ENOMEM;
444 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
445 if (!pc_resp) {
446 kfree(pc_req);
447 return -ENOMEM;
450 pc_req[1] = SMP_PHY_CONTROL;
451 pc_req[9] = phy_id;
452 pc_req[10]= phy_func;
453 if (rates) {
454 pc_req[32] = rates->minimum_linkrate << 4;
455 pc_req[33] = rates->maximum_linkrate << 4;
458 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
460 kfree(pc_resp);
461 kfree(pc_req);
462 return res;
465 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
467 struct expander_device *ex = &dev->ex_dev;
468 struct ex_phy *phy = &ex->ex_phy[phy_id];
470 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
471 phy->linkrate = SAS_PHY_DISABLED;
474 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
476 struct expander_device *ex = &dev->ex_dev;
477 int i;
479 for (i = 0; i < ex->num_phys; i++) {
480 struct ex_phy *phy = &ex->ex_phy[i];
482 if (phy->phy_state == PHY_VACANT ||
483 phy->phy_state == PHY_NOT_PRESENT)
484 continue;
486 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
487 sas_ex_disable_phy(dev, i);
491 static int sas_dev_present_in_domain(struct asd_sas_port *port,
492 u8 *sas_addr)
494 struct domain_device *dev;
496 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
497 return 1;
498 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
499 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
500 return 1;
502 return 0;
505 #define RPEL_REQ_SIZE 16
506 #define RPEL_RESP_SIZE 32
507 int sas_smp_get_phy_events(struct sas_phy *phy)
509 int res;
510 u8 *req;
511 u8 *resp;
512 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
513 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
515 req = alloc_smp_req(RPEL_REQ_SIZE);
516 if (!req)
517 return -ENOMEM;
519 resp = alloc_smp_resp(RPEL_RESP_SIZE);
520 if (!resp) {
521 kfree(req);
522 return -ENOMEM;
525 req[1] = SMP_REPORT_PHY_ERR_LOG;
526 req[9] = phy->number;
528 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
529 resp, RPEL_RESP_SIZE);
531 if (!res)
532 goto out;
534 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
535 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
536 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
537 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
539 out:
540 kfree(resp);
541 return res;
545 #ifdef CONFIG_SCSI_SAS_ATA
547 #define RPS_REQ_SIZE 16
548 #define RPS_RESP_SIZE 60
550 static int sas_get_report_phy_sata(struct domain_device *dev,
551 int phy_id,
552 struct smp_resp *rps_resp)
554 int res;
555 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
556 u8 *resp = (u8 *)rps_resp;
558 if (!rps_req)
559 return -ENOMEM;
561 rps_req[1] = SMP_REPORT_PHY_SATA;
562 rps_req[9] = phy_id;
564 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
565 rps_resp, RPS_RESP_SIZE);
567 /* 0x34 is the FIS type for the D2H fis. There's a potential
568 * standards cockup here. sas-2 explicitly specifies the FIS
569 * should be encoded so that FIS type is in resp[24].
570 * However, some expanders endian reverse this. Undo the
571 * reversal here */
572 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
573 int i;
575 for (i = 0; i < 5; i++) {
576 int j = 24 + (i*4);
577 u8 a, b;
578 a = resp[j + 0];
579 b = resp[j + 1];
580 resp[j + 0] = resp[j + 3];
581 resp[j + 1] = resp[j + 2];
582 resp[j + 2] = b;
583 resp[j + 3] = a;
587 kfree(rps_req);
588 return res;
590 #endif
592 static void sas_ex_get_linkrate(struct domain_device *parent,
593 struct domain_device *child,
594 struct ex_phy *parent_phy)
596 struct expander_device *parent_ex = &parent->ex_dev;
597 struct sas_port *port;
598 int i;
600 child->pathways = 0;
602 port = parent_phy->port;
604 for (i = 0; i < parent_ex->num_phys; i++) {
605 struct ex_phy *phy = &parent_ex->ex_phy[i];
607 if (phy->phy_state == PHY_VACANT ||
608 phy->phy_state == PHY_NOT_PRESENT)
609 continue;
611 if (SAS_ADDR(phy->attached_sas_addr) ==
612 SAS_ADDR(child->sas_addr)) {
614 child->min_linkrate = min(parent->min_linkrate,
615 phy->linkrate);
616 child->max_linkrate = max(parent->max_linkrate,
617 phy->linkrate);
618 child->pathways++;
619 sas_port_add_phy(port, phy->phy);
622 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
623 child->pathways = min(child->pathways, parent->pathways);
626 static struct domain_device *sas_ex_discover_end_dev(
627 struct domain_device *parent, int phy_id)
629 struct expander_device *parent_ex = &parent->ex_dev;
630 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
631 struct domain_device *child = NULL;
632 struct sas_rphy *rphy;
633 int res;
635 if (phy->attached_sata_host || phy->attached_sata_ps)
636 return NULL;
638 child = kzalloc(sizeof(*child), GFP_KERNEL);
639 if (!child)
640 return NULL;
642 child->parent = parent;
643 child->port = parent->port;
644 child->iproto = phy->attached_iproto;
645 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
646 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
647 if (!phy->port) {
648 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
649 if (unlikely(!phy->port))
650 goto out_err;
651 if (unlikely(sas_port_add(phy->port) != 0)) {
652 sas_port_free(phy->port);
653 goto out_err;
656 sas_ex_get_linkrate(parent, child, phy);
658 #ifdef CONFIG_SCSI_SAS_ATA
659 if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
660 child->dev_type = SATA_DEV;
661 if (phy->attached_tproto & SAS_PROTO_STP)
662 child->tproto = phy->attached_tproto;
663 if (phy->attached_sata_dev)
664 child->tproto |= SATA_DEV;
665 res = sas_get_report_phy_sata(parent, phy_id,
666 &child->sata_dev.rps_resp);
667 if (res) {
668 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
669 "0x%x\n", SAS_ADDR(parent->sas_addr),
670 phy_id, res);
671 goto out_free;
673 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
674 sizeof(struct dev_to_host_fis));
676 rphy = sas_end_device_alloc(phy->port);
677 if (unlikely(!rphy))
678 goto out_free;
680 sas_init_dev(child);
682 child->rphy = rphy;
684 spin_lock_irq(&parent->port->dev_list_lock);
685 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
686 spin_unlock_irq(&parent->port->dev_list_lock);
688 res = sas_discover_sata(child);
689 if (res) {
690 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
691 "%016llx:0x%x returned 0x%x\n",
692 SAS_ADDR(child->sas_addr),
693 SAS_ADDR(parent->sas_addr), phy_id, res);
694 goto out_list_del;
696 } else
697 #endif
698 if (phy->attached_tproto & SAS_PROTO_SSP) {
699 child->dev_type = SAS_END_DEV;
700 rphy = sas_end_device_alloc(phy->port);
701 /* FIXME: error handling */
702 if (unlikely(!rphy))
703 goto out_free;
704 child->tproto = phy->attached_tproto;
705 sas_init_dev(child);
707 child->rphy = rphy;
708 sas_fill_in_rphy(child, rphy);
710 spin_lock_irq(&parent->port->dev_list_lock);
711 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
712 spin_unlock_irq(&parent->port->dev_list_lock);
714 res = sas_discover_end_dev(child);
715 if (res) {
716 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
717 "at %016llx:0x%x returned 0x%x\n",
718 SAS_ADDR(child->sas_addr),
719 SAS_ADDR(parent->sas_addr), phy_id, res);
720 goto out_list_del;
722 } else {
723 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
724 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
725 phy_id);
726 goto out_free;
729 list_add_tail(&child->siblings, &parent_ex->children);
730 return child;
732 out_list_del:
733 sas_rphy_free(child->rphy);
734 child->rphy = NULL;
735 list_del(&child->dev_list_node);
736 out_free:
737 sas_port_delete(phy->port);
738 out_err:
739 phy->port = NULL;
740 kfree(child);
741 return NULL;
744 /* See if this phy is part of a wide port */
745 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
747 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
748 int i;
750 for (i = 0; i < parent->ex_dev.num_phys; i++) {
751 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
753 if (ephy == phy)
754 continue;
756 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
757 SAS_ADDR_SIZE) && ephy->port) {
758 sas_port_add_phy(ephy->port, phy->phy);
759 phy->phy_state = PHY_DEVICE_DISCOVERED;
760 return 0;
764 return -ENODEV;
767 static struct domain_device *sas_ex_discover_expander(
768 struct domain_device *parent, int phy_id)
770 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
771 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
772 struct domain_device *child = NULL;
773 struct sas_rphy *rphy;
774 struct sas_expander_device *edev;
775 struct asd_sas_port *port;
776 int res;
778 if (phy->routing_attr == DIRECT_ROUTING) {
779 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
780 "allowed\n",
781 SAS_ADDR(parent->sas_addr), phy_id,
782 SAS_ADDR(phy->attached_sas_addr),
783 phy->attached_phy_id);
784 return NULL;
786 child = kzalloc(sizeof(*child), GFP_KERNEL);
787 if (!child)
788 return NULL;
790 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
791 /* FIXME: better error handling */
792 BUG_ON(sas_port_add(phy->port) != 0);
795 switch (phy->attached_dev_type) {
796 case EDGE_DEV:
797 rphy = sas_expander_alloc(phy->port,
798 SAS_EDGE_EXPANDER_DEVICE);
799 break;
800 case FANOUT_DEV:
801 rphy = sas_expander_alloc(phy->port,
802 SAS_FANOUT_EXPANDER_DEVICE);
803 break;
804 default:
805 rphy = NULL; /* shut gcc up */
806 BUG();
808 port = parent->port;
809 child->rphy = rphy;
810 edev = rphy_to_expander_device(rphy);
811 child->dev_type = phy->attached_dev_type;
812 child->parent = parent;
813 child->port = port;
814 child->iproto = phy->attached_iproto;
815 child->tproto = phy->attached_tproto;
816 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
817 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
818 sas_ex_get_linkrate(parent, child, phy);
819 edev->level = parent_ex->level + 1;
820 parent->port->disc.max_level = max(parent->port->disc.max_level,
821 edev->level);
822 sas_init_dev(child);
823 sas_fill_in_rphy(child, rphy);
824 sas_rphy_add(rphy);
826 spin_lock_irq(&parent->port->dev_list_lock);
827 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
828 spin_unlock_irq(&parent->port->dev_list_lock);
830 res = sas_discover_expander(child);
831 if (res) {
832 kfree(child);
833 return NULL;
835 list_add_tail(&child->siblings, &parent->ex_dev.children);
836 return child;
839 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
841 struct expander_device *ex = &dev->ex_dev;
842 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
843 struct domain_device *child = NULL;
844 int res = 0;
846 /* Phy state */
847 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
848 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
849 res = sas_ex_phy_discover(dev, phy_id);
850 if (res)
851 return res;
854 /* Parent and domain coherency */
855 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
856 SAS_ADDR(dev->port->sas_addr))) {
857 sas_add_parent_port(dev, phy_id);
858 return 0;
860 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
861 SAS_ADDR(dev->parent->sas_addr))) {
862 sas_add_parent_port(dev, phy_id);
863 if (ex_phy->routing_attr == TABLE_ROUTING)
864 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
865 return 0;
868 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
869 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
871 if (ex_phy->attached_dev_type == NO_DEVICE) {
872 if (ex_phy->routing_attr == DIRECT_ROUTING) {
873 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
874 sas_configure_routing(dev, ex_phy->attached_sas_addr);
876 return 0;
877 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
878 return 0;
880 if (ex_phy->attached_dev_type != SAS_END_DEV &&
881 ex_phy->attached_dev_type != FANOUT_DEV &&
882 ex_phy->attached_dev_type != EDGE_DEV) {
883 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
884 "phy 0x%x\n", ex_phy->attached_dev_type,
885 SAS_ADDR(dev->sas_addr),
886 phy_id);
887 return 0;
890 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
891 if (res) {
892 SAS_DPRINTK("configure routing for dev %016llx "
893 "reported 0x%x. Forgotten\n",
894 SAS_ADDR(ex_phy->attached_sas_addr), res);
895 sas_disable_routing(dev, ex_phy->attached_sas_addr);
896 return res;
899 res = sas_ex_join_wide_port(dev, phy_id);
900 if (!res) {
901 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
902 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
903 return res;
906 switch (ex_phy->attached_dev_type) {
907 case SAS_END_DEV:
908 child = sas_ex_discover_end_dev(dev, phy_id);
909 break;
910 case FANOUT_DEV:
911 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
912 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
913 "attached to ex %016llx phy 0x%x\n",
914 SAS_ADDR(ex_phy->attached_sas_addr),
915 ex_phy->attached_phy_id,
916 SAS_ADDR(dev->sas_addr),
917 phy_id);
918 sas_ex_disable_phy(dev, phy_id);
919 break;
920 } else
921 memcpy(dev->port->disc.fanout_sas_addr,
922 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
923 /* fallthrough */
924 case EDGE_DEV:
925 child = sas_ex_discover_expander(dev, phy_id);
926 break;
927 default:
928 break;
931 if (child) {
932 int i;
934 for (i = 0; i < ex->num_phys; i++) {
935 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
936 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
937 continue;
939 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
940 SAS_ADDR(child->sas_addr))
941 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
945 return res;
948 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
950 struct expander_device *ex = &dev->ex_dev;
951 int i;
953 for (i = 0; i < ex->num_phys; i++) {
954 struct ex_phy *phy = &ex->ex_phy[i];
956 if (phy->phy_state == PHY_VACANT ||
957 phy->phy_state == PHY_NOT_PRESENT)
958 continue;
960 if ((phy->attached_dev_type == EDGE_DEV ||
961 phy->attached_dev_type == FANOUT_DEV) &&
962 phy->routing_attr == SUBTRACTIVE_ROUTING) {
964 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
966 return 1;
969 return 0;
972 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
974 struct expander_device *ex = &dev->ex_dev;
975 struct domain_device *child;
976 u8 sub_addr[8] = {0, };
978 list_for_each_entry(child, &ex->children, siblings) {
979 if (child->dev_type != EDGE_DEV &&
980 child->dev_type != FANOUT_DEV)
981 continue;
982 if (sub_addr[0] == 0) {
983 sas_find_sub_addr(child, sub_addr);
984 continue;
985 } else {
986 u8 s2[8];
988 if (sas_find_sub_addr(child, s2) &&
989 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
991 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
992 "diverges from subtractive "
993 "boundary %016llx\n",
994 SAS_ADDR(dev->sas_addr),
995 SAS_ADDR(child->sas_addr),
996 SAS_ADDR(s2),
997 SAS_ADDR(sub_addr));
999 sas_ex_disable_port(child, s2);
1003 return 0;
1006 * sas_ex_discover_devices -- discover devices attached to this expander
1007 * dev: pointer to the expander domain device
1008 * single: if you want to do a single phy, else set to -1;
1010 * Configure this expander for use with its devices and register the
1011 * devices of this expander.
1013 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1015 struct expander_device *ex = &dev->ex_dev;
1016 int i = 0, end = ex->num_phys;
1017 int res = 0;
1019 if (0 <= single && single < end) {
1020 i = single;
1021 end = i+1;
1024 for ( ; i < end; i++) {
1025 struct ex_phy *ex_phy = &ex->ex_phy[i];
1027 if (ex_phy->phy_state == PHY_VACANT ||
1028 ex_phy->phy_state == PHY_NOT_PRESENT ||
1029 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1030 continue;
1032 switch (ex_phy->linkrate) {
1033 case SAS_PHY_DISABLED:
1034 case SAS_PHY_RESET_PROBLEM:
1035 case SAS_SATA_PORT_SELECTOR:
1036 continue;
1037 default:
1038 res = sas_ex_discover_dev(dev, i);
1039 if (res)
1040 break;
1041 continue;
1045 if (!res)
1046 sas_check_level_subtractive_boundary(dev);
1048 return res;
1051 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1053 struct expander_device *ex = &dev->ex_dev;
1054 int i;
1055 u8 *sub_sas_addr = NULL;
1057 if (dev->dev_type != EDGE_DEV)
1058 return 0;
1060 for (i = 0; i < ex->num_phys; i++) {
1061 struct ex_phy *phy = &ex->ex_phy[i];
1063 if (phy->phy_state == PHY_VACANT ||
1064 phy->phy_state == PHY_NOT_PRESENT)
1065 continue;
1067 if ((phy->attached_dev_type == FANOUT_DEV ||
1068 phy->attached_dev_type == EDGE_DEV) &&
1069 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1071 if (!sub_sas_addr)
1072 sub_sas_addr = &phy->attached_sas_addr[0];
1073 else if (SAS_ADDR(sub_sas_addr) !=
1074 SAS_ADDR(phy->attached_sas_addr)) {
1076 SAS_DPRINTK("ex %016llx phy 0x%x "
1077 "diverges(%016llx) on subtractive "
1078 "boundary(%016llx). Disabled\n",
1079 SAS_ADDR(dev->sas_addr), i,
1080 SAS_ADDR(phy->attached_sas_addr),
1081 SAS_ADDR(sub_sas_addr));
1082 sas_ex_disable_phy(dev, i);
1086 return 0;
1089 static void sas_print_parent_topology_bug(struct domain_device *child,
1090 struct ex_phy *parent_phy,
1091 struct ex_phy *child_phy)
1093 static const char ra_char[] = {
1094 [DIRECT_ROUTING] = 'D',
1095 [SUBTRACTIVE_ROUTING] = 'S',
1096 [TABLE_ROUTING] = 'T',
1098 static const char *ex_type[] = {
1099 [EDGE_DEV] = "edge",
1100 [FANOUT_DEV] = "fanout",
1102 struct domain_device *parent = child->parent;
1104 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1105 "has %c:%c routing link!\n",
1107 ex_type[parent->dev_type],
1108 SAS_ADDR(parent->sas_addr),
1109 parent_phy->phy_id,
1111 ex_type[child->dev_type],
1112 SAS_ADDR(child->sas_addr),
1113 child_phy->phy_id,
1115 ra_char[parent_phy->routing_attr],
1116 ra_char[child_phy->routing_attr]);
1119 static int sas_check_eeds(struct domain_device *child,
1120 struct ex_phy *parent_phy,
1121 struct ex_phy *child_phy)
1123 int res = 0;
1124 struct domain_device *parent = child->parent;
1126 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1127 res = -ENODEV;
1128 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1129 "phy S:0x%x, while there is a fanout ex %016llx\n",
1130 SAS_ADDR(parent->sas_addr),
1131 parent_phy->phy_id,
1132 SAS_ADDR(child->sas_addr),
1133 child_phy->phy_id,
1134 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1135 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1136 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1137 SAS_ADDR_SIZE);
1138 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1139 SAS_ADDR_SIZE);
1140 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1141 SAS_ADDR(parent->sas_addr)) ||
1142 (SAS_ADDR(parent->port->disc.eeds_a) ==
1143 SAS_ADDR(child->sas_addr)))
1145 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1146 SAS_ADDR(parent->sas_addr)) ||
1147 (SAS_ADDR(parent->port->disc.eeds_b) ==
1148 SAS_ADDR(child->sas_addr))))
1150 else {
1151 res = -ENODEV;
1152 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1153 "phy 0x%x link forms a third EEDS!\n",
1154 SAS_ADDR(parent->sas_addr),
1155 parent_phy->phy_id,
1156 SAS_ADDR(child->sas_addr),
1157 child_phy->phy_id);
1160 return res;
1163 /* Here we spill over 80 columns. It is intentional.
1165 static int sas_check_parent_topology(struct domain_device *child)
1167 struct expander_device *child_ex = &child->ex_dev;
1168 struct expander_device *parent_ex;
1169 int i;
1170 int res = 0;
1172 if (!child->parent)
1173 return 0;
1175 if (child->parent->dev_type != EDGE_DEV &&
1176 child->parent->dev_type != FANOUT_DEV)
1177 return 0;
1179 parent_ex = &child->parent->ex_dev;
1181 for (i = 0; i < parent_ex->num_phys; i++) {
1182 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1183 struct ex_phy *child_phy;
1185 if (parent_phy->phy_state == PHY_VACANT ||
1186 parent_phy->phy_state == PHY_NOT_PRESENT)
1187 continue;
1189 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1190 continue;
1192 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1194 switch (child->parent->dev_type) {
1195 case EDGE_DEV:
1196 if (child->dev_type == FANOUT_DEV) {
1197 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1198 child_phy->routing_attr != TABLE_ROUTING) {
1199 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1200 res = -ENODEV;
1202 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1203 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1204 res = sas_check_eeds(child, parent_phy, child_phy);
1205 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1206 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1207 res = -ENODEV;
1209 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1210 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1211 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1212 res = -ENODEV;
1214 break;
1215 case FANOUT_DEV:
1216 if (parent_phy->routing_attr != TABLE_ROUTING ||
1217 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1218 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1219 res = -ENODEV;
1221 break;
1222 default:
1223 break;
1227 return res;
1230 #define RRI_REQ_SIZE 16
1231 #define RRI_RESP_SIZE 44
1233 static int sas_configure_present(struct domain_device *dev, int phy_id,
1234 u8 *sas_addr, int *index, int *present)
1236 int i, res = 0;
1237 struct expander_device *ex = &dev->ex_dev;
1238 struct ex_phy *phy = &ex->ex_phy[phy_id];
1239 u8 *rri_req;
1240 u8 *rri_resp;
1242 *present = 0;
1243 *index = 0;
1245 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1246 if (!rri_req)
1247 return -ENOMEM;
1249 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1250 if (!rri_resp) {
1251 kfree(rri_req);
1252 return -ENOMEM;
1255 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1256 rri_req[9] = phy_id;
1258 for (i = 0; i < ex->max_route_indexes ; i++) {
1259 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1260 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1261 RRI_RESP_SIZE);
1262 if (res)
1263 goto out;
1264 res = rri_resp[2];
1265 if (res == SMP_RESP_NO_INDEX) {
1266 SAS_DPRINTK("overflow of indexes: dev %016llx "
1267 "phy 0x%x index 0x%x\n",
1268 SAS_ADDR(dev->sas_addr), phy_id, i);
1269 goto out;
1270 } else if (res != SMP_RESP_FUNC_ACC) {
1271 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1272 "result 0x%x\n", __FUNCTION__,
1273 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1274 goto out;
1276 if (SAS_ADDR(sas_addr) != 0) {
1277 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1278 *index = i;
1279 if ((rri_resp[12] & 0x80) == 0x80)
1280 *present = 0;
1281 else
1282 *present = 1;
1283 goto out;
1284 } else if (SAS_ADDR(rri_resp+16) == 0) {
1285 *index = i;
1286 *present = 0;
1287 goto out;
1289 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1290 phy->last_da_index < i) {
1291 phy->last_da_index = i;
1292 *index = i;
1293 *present = 0;
1294 goto out;
1297 res = -1;
1298 out:
1299 kfree(rri_req);
1300 kfree(rri_resp);
1301 return res;
1304 #define CRI_REQ_SIZE 44
1305 #define CRI_RESP_SIZE 8
1307 static int sas_configure_set(struct domain_device *dev, int phy_id,
1308 u8 *sas_addr, int index, int include)
1310 int res;
1311 u8 *cri_req;
1312 u8 *cri_resp;
1314 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1315 if (!cri_req)
1316 return -ENOMEM;
1318 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1319 if (!cri_resp) {
1320 kfree(cri_req);
1321 return -ENOMEM;
1324 cri_req[1] = SMP_CONF_ROUTE_INFO;
1325 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1326 cri_req[9] = phy_id;
1327 if (SAS_ADDR(sas_addr) == 0 || !include)
1328 cri_req[12] |= 0x80;
1329 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1331 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1332 CRI_RESP_SIZE);
1333 if (res)
1334 goto out;
1335 res = cri_resp[2];
1336 if (res == SMP_RESP_NO_INDEX) {
1337 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1338 "index 0x%x\n",
1339 SAS_ADDR(dev->sas_addr), phy_id, index);
1341 out:
1342 kfree(cri_req);
1343 kfree(cri_resp);
1344 return res;
1347 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1348 u8 *sas_addr, int include)
1350 int index;
1351 int present;
1352 int res;
1354 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1355 if (res)
1356 return res;
1357 if (include ^ present)
1358 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1360 return res;
1364 * sas_configure_parent -- configure routing table of parent
1365 * parent: parent expander
1366 * child: child expander
1367 * sas_addr: SAS port identifier of device directly attached to child
1369 static int sas_configure_parent(struct domain_device *parent,
1370 struct domain_device *child,
1371 u8 *sas_addr, int include)
1373 struct expander_device *ex_parent = &parent->ex_dev;
1374 int res = 0;
1375 int i;
1377 if (parent->parent) {
1378 res = sas_configure_parent(parent->parent, parent, sas_addr,
1379 include);
1380 if (res)
1381 return res;
1384 if (ex_parent->conf_route_table == 0) {
1385 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1386 SAS_ADDR(parent->sas_addr));
1387 return 0;
1390 for (i = 0; i < ex_parent->num_phys; i++) {
1391 struct ex_phy *phy = &ex_parent->ex_phy[i];
1393 if ((phy->routing_attr == TABLE_ROUTING) &&
1394 (SAS_ADDR(phy->attached_sas_addr) ==
1395 SAS_ADDR(child->sas_addr))) {
1396 res = sas_configure_phy(parent, i, sas_addr, include);
1397 if (res)
1398 return res;
1402 return res;
1406 * sas_configure_routing -- configure routing
1407 * dev: expander device
1408 * sas_addr: port identifier of device directly attached to the expander device
1410 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1412 if (dev->parent)
1413 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1414 return 0;
1417 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1419 if (dev->parent)
1420 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1421 return 0;
1425 * sas_discover_expander -- expander discovery
1426 * @ex: pointer to expander domain device
1428 * See comment in sas_discover_sata().
1430 static int sas_discover_expander(struct domain_device *dev)
1432 int res;
1434 res = sas_notify_lldd_dev_found(dev);
1435 if (res)
1436 return res;
1438 res = sas_ex_general(dev);
1439 if (res)
1440 goto out_err;
1441 res = sas_ex_manuf_info(dev);
1442 if (res)
1443 goto out_err;
1445 res = sas_expander_discover(dev);
1446 if (res) {
1447 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1448 SAS_ADDR(dev->sas_addr), res);
1449 goto out_err;
1452 sas_check_ex_subtractive_boundary(dev);
1453 res = sas_check_parent_topology(dev);
1454 if (res)
1455 goto out_err;
1456 return 0;
1457 out_err:
1458 sas_notify_lldd_dev_gone(dev);
1459 return res;
1462 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1464 int res = 0;
1465 struct domain_device *dev;
1467 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1468 if (dev->dev_type == EDGE_DEV ||
1469 dev->dev_type == FANOUT_DEV) {
1470 struct sas_expander_device *ex =
1471 rphy_to_expander_device(dev->rphy);
1473 if (level == ex->level)
1474 res = sas_ex_discover_devices(dev, -1);
1475 else if (level > 0)
1476 res = sas_ex_discover_devices(port->port_dev, -1);
1481 return res;
1484 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1486 int res;
1487 int level;
1489 do {
1490 level = port->disc.max_level;
1491 res = sas_ex_level_discovery(port, level);
1492 mb();
1493 } while (level < port->disc.max_level);
1495 return res;
1498 int sas_discover_root_expander(struct domain_device *dev)
1500 int res;
1501 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1503 res = sas_rphy_add(dev->rphy);
1504 if (res)
1505 goto out_err;
1507 ex->level = dev->port->disc.max_level; /* 0 */
1508 res = sas_discover_expander(dev);
1509 if (res)
1510 goto out_err2;
1512 sas_ex_bfs_disc(dev->port);
1514 return res;
1516 out_err2:
1517 sas_rphy_remove(dev->rphy);
1518 out_err:
1519 return res;
1522 /* ---------- Domain revalidation ---------- */
1524 static int sas_get_phy_discover(struct domain_device *dev,
1525 int phy_id, struct smp_resp *disc_resp)
1527 int res;
1528 u8 *disc_req;
1530 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1531 if (!disc_req)
1532 return -ENOMEM;
1534 disc_req[1] = SMP_DISCOVER;
1535 disc_req[9] = phy_id;
1537 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1538 disc_resp, DISCOVER_RESP_SIZE);
1539 if (res)
1540 goto out;
1541 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1542 res = disc_resp->result;
1543 goto out;
1545 out:
1546 kfree(disc_req);
1547 return res;
1550 static int sas_get_phy_change_count(struct domain_device *dev,
1551 int phy_id, int *pcc)
1553 int res;
1554 struct smp_resp *disc_resp;
1556 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1557 if (!disc_resp)
1558 return -ENOMEM;
1560 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1561 if (!res)
1562 *pcc = disc_resp->disc.change_count;
1564 kfree(disc_resp);
1565 return res;
1568 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1569 int phy_id, u8 *attached_sas_addr)
1571 int res;
1572 struct smp_resp *disc_resp;
1573 struct discover_resp *dr;
1575 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1576 if (!disc_resp)
1577 return -ENOMEM;
1578 dr = &disc_resp->disc;
1580 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1581 if (!res) {
1582 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1583 if (dr->attached_dev_type == 0)
1584 memset(attached_sas_addr, 0, 8);
1586 kfree(disc_resp);
1587 return res;
1590 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1591 int from_phy)
1593 struct expander_device *ex = &dev->ex_dev;
1594 int res = 0;
1595 int i;
1597 for (i = from_phy; i < ex->num_phys; i++) {
1598 int phy_change_count = 0;
1600 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1601 if (res)
1602 goto out;
1603 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1604 ex->ex_phy[i].phy_change_count = phy_change_count;
1605 *phy_id = i;
1606 return 0;
1609 out:
1610 return res;
1613 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1615 int res;
1616 u8 *rg_req;
1617 struct smp_resp *rg_resp;
1619 rg_req = alloc_smp_req(RG_REQ_SIZE);
1620 if (!rg_req)
1621 return -ENOMEM;
1623 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1624 if (!rg_resp) {
1625 kfree(rg_req);
1626 return -ENOMEM;
1629 rg_req[1] = SMP_REPORT_GENERAL;
1631 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1632 RG_RESP_SIZE);
1633 if (res)
1634 goto out;
1635 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1636 res = rg_resp->result;
1637 goto out;
1640 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1641 out:
1642 kfree(rg_resp);
1643 kfree(rg_req);
1644 return res;
1647 static int sas_find_bcast_dev(struct domain_device *dev,
1648 struct domain_device **src_dev)
1650 struct expander_device *ex = &dev->ex_dev;
1651 int ex_change_count = -1;
1652 int res;
1654 res = sas_get_ex_change_count(dev, &ex_change_count);
1655 if (res)
1656 goto out;
1657 if (ex_change_count != -1 &&
1658 ex_change_count != ex->ex_change_count) {
1659 *src_dev = dev;
1660 ex->ex_change_count = ex_change_count;
1661 } else {
1662 struct domain_device *ch;
1664 list_for_each_entry(ch, &ex->children, siblings) {
1665 if (ch->dev_type == EDGE_DEV ||
1666 ch->dev_type == FANOUT_DEV) {
1667 res = sas_find_bcast_dev(ch, src_dev);
1668 if (src_dev)
1669 return res;
1673 out:
1674 return res;
1677 static void sas_unregister_ex_tree(struct domain_device *dev)
1679 struct expander_device *ex = &dev->ex_dev;
1680 struct domain_device *child, *n;
1682 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1683 if (child->dev_type == EDGE_DEV ||
1684 child->dev_type == FANOUT_DEV)
1685 sas_unregister_ex_tree(child);
1686 else
1687 sas_unregister_dev(child);
1689 sas_unregister_dev(dev);
1692 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1693 int phy_id)
1695 struct expander_device *ex_dev = &parent->ex_dev;
1696 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1697 struct domain_device *child, *n;
1699 list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1700 if (SAS_ADDR(child->sas_addr) ==
1701 SAS_ADDR(phy->attached_sas_addr)) {
1702 if (child->dev_type == EDGE_DEV ||
1703 child->dev_type == FANOUT_DEV)
1704 sas_unregister_ex_tree(child);
1705 else
1706 sas_unregister_dev(child);
1707 break;
1710 sas_disable_routing(parent, phy->attached_sas_addr);
1711 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1712 sas_port_delete_phy(phy->port, phy->phy);
1713 if (phy->port->num_phys == 0)
1714 sas_port_delete(phy->port);
1715 phy->port = NULL;
1718 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1719 const int level)
1721 struct expander_device *ex_root = &root->ex_dev;
1722 struct domain_device *child;
1723 int res = 0;
1725 list_for_each_entry(child, &ex_root->children, siblings) {
1726 if (child->dev_type == EDGE_DEV ||
1727 child->dev_type == FANOUT_DEV) {
1728 struct sas_expander_device *ex =
1729 rphy_to_expander_device(child->rphy);
1731 if (level > ex->level)
1732 res = sas_discover_bfs_by_root_level(child,
1733 level);
1734 else if (level == ex->level)
1735 res = sas_ex_discover_devices(child, -1);
1738 return res;
1741 static int sas_discover_bfs_by_root(struct domain_device *dev)
1743 int res;
1744 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1745 int level = ex->level+1;
1747 res = sas_ex_discover_devices(dev, -1);
1748 if (res)
1749 goto out;
1750 do {
1751 res = sas_discover_bfs_by_root_level(dev, level);
1752 mb();
1753 level += 1;
1754 } while (level <= dev->port->disc.max_level);
1755 out:
1756 return res;
1759 static int sas_discover_new(struct domain_device *dev, int phy_id)
1761 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1762 struct domain_device *child;
1763 int res;
1765 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1766 SAS_ADDR(dev->sas_addr), phy_id);
1767 res = sas_ex_phy_discover(dev, phy_id);
1768 if (res)
1769 goto out;
1770 res = sas_ex_discover_devices(dev, phy_id);
1771 if (res)
1772 goto out;
1773 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1774 if (SAS_ADDR(child->sas_addr) ==
1775 SAS_ADDR(ex_phy->attached_sas_addr)) {
1776 if (child->dev_type == EDGE_DEV ||
1777 child->dev_type == FANOUT_DEV)
1778 res = sas_discover_bfs_by_root(child);
1779 break;
1782 out:
1783 return res;
1786 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1788 struct expander_device *ex = &dev->ex_dev;
1789 struct ex_phy *phy = &ex->ex_phy[phy_id];
1790 u8 attached_sas_addr[8];
1791 int res;
1793 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1794 switch (res) {
1795 case SMP_RESP_NO_PHY:
1796 phy->phy_state = PHY_NOT_PRESENT;
1797 sas_unregister_devs_sas_addr(dev, phy_id);
1798 goto out; break;
1799 case SMP_RESP_PHY_VACANT:
1800 phy->phy_state = PHY_VACANT;
1801 sas_unregister_devs_sas_addr(dev, phy_id);
1802 goto out; break;
1803 case SMP_RESP_FUNC_ACC:
1804 break;
1807 if (SAS_ADDR(attached_sas_addr) == 0) {
1808 phy->phy_state = PHY_EMPTY;
1809 sas_unregister_devs_sas_addr(dev, phy_id);
1810 } else if (SAS_ADDR(attached_sas_addr) ==
1811 SAS_ADDR(phy->attached_sas_addr)) {
1812 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1813 SAS_ADDR(dev->sas_addr), phy_id);
1814 sas_ex_phy_discover(dev, phy_id);
1815 } else
1816 res = sas_discover_new(dev, phy_id);
1817 out:
1818 return res;
1821 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1823 struct expander_device *ex = &dev->ex_dev;
1824 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1825 int res = 0;
1826 int i;
1828 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1829 SAS_ADDR(dev->sas_addr), phy_id);
1831 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1832 for (i = 0; i < ex->num_phys; i++) {
1833 struct ex_phy *phy = &ex->ex_phy[i];
1835 if (i == phy_id)
1836 continue;
1837 if (SAS_ADDR(phy->attached_sas_addr) ==
1838 SAS_ADDR(changed_phy->attached_sas_addr)) {
1839 SAS_DPRINTK("phy%d part of wide port with "
1840 "phy%d\n", phy_id, i);
1841 goto out;
1844 res = sas_rediscover_dev(dev, phy_id);
1845 } else
1846 res = sas_discover_new(dev, phy_id);
1847 out:
1848 return res;
1852 * sas_revalidate_domain -- revalidate the domain
1853 * @port: port to the domain of interest
1855 * NOTE: this process _must_ quit (return) as soon as any connection
1856 * errors are encountered. Connection recovery is done elsewhere.
1857 * Discover process only interrogates devices in order to discover the
1858 * domain.
1860 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1862 int res;
1863 struct domain_device *dev = NULL;
1865 res = sas_find_bcast_dev(port_dev, &dev);
1866 if (res)
1867 goto out;
1868 if (dev) {
1869 struct expander_device *ex = &dev->ex_dev;
1870 int i = 0, phy_id;
1872 do {
1873 phy_id = -1;
1874 res = sas_find_bcast_phy(dev, &phy_id, i);
1875 if (phy_id == -1)
1876 break;
1877 res = sas_rediscover(dev, phy_id);
1878 i = phy_id + 1;
1879 } while (i < ex->num_phys);
1881 out:
1882 return res;
1885 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1886 struct request *req)
1888 struct domain_device *dev;
1889 int ret, type;
1890 struct request *rsp = req->next_rq;
1892 if (!rsp) {
1893 printk("%s: space for a smp response is missing\n",
1894 __FUNCTION__);
1895 return -EINVAL;
1898 /* no rphy means no smp target support (ie aic94xx host) */
1899 if (!rphy) {
1900 printk("%s: can we send a smp request to a host?\n",
1901 __FUNCTION__);
1902 return -EINVAL;
1904 type = rphy->identify.device_type;
1906 if (type != SAS_EDGE_EXPANDER_DEVICE &&
1907 type != SAS_FANOUT_EXPANDER_DEVICE) {
1908 printk("%s: can we send a smp request to a device?\n",
1909 __FUNCTION__);
1910 return -EINVAL;
1913 dev = sas_find_dev_by_rphy(rphy);
1914 if (!dev) {
1915 printk("%s: fail to find a domain_device?\n", __FUNCTION__);
1916 return -EINVAL;
1919 /* do we need to support multiple segments? */
1920 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
1921 printk("%s: multiple segments req %u %u, rsp %u %u\n",
1922 __FUNCTION__, req->bio->bi_vcnt, req->data_len,
1923 rsp->bio->bi_vcnt, rsp->data_len);
1924 return -EINVAL;
1927 ret = smp_execute_task(dev, bio_data(req->bio), req->data_len,
1928 bio_data(rsp->bio), rsp->data_len);
1930 return ret;