2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
28 #include "sas_internal.h"
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
34 static int sas_discover_expander(struct domain_device
*dev
);
35 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
36 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
37 u8
*sas_addr
, int include
);
38 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
40 /* ---------- SMP task management ---------- */
42 static void smp_task_timedout(unsigned long _task
)
44 struct sas_task
*task
= (void *) _task
;
47 spin_lock_irqsave(&task
->task_state_lock
, flags
);
48 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
))
49 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
50 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
52 complete(&task
->completion
);
55 static void smp_task_done(struct sas_task
*task
)
57 if (!del_timer(&task
->timer
))
59 complete(&task
->completion
);
62 /* Give it some long enough timeout. In seconds. */
63 #define SMP_TIMEOUT 10
65 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
66 void *resp
, int resp_size
)
69 struct sas_task
*task
= NULL
;
70 struct sas_internal
*i
=
71 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
73 for (retry
= 0; retry
< 3; retry
++) {
74 task
= sas_alloc_task(GFP_KERNEL
);
79 task
->task_proto
= dev
->tproto
;
80 sg_init_one(&task
->smp_task
.smp_req
, req
, req_size
);
81 sg_init_one(&task
->smp_task
.smp_resp
, resp
, resp_size
);
83 task
->task_done
= smp_task_done
;
85 task
->timer
.data
= (unsigned long) task
;
86 task
->timer
.function
= smp_task_timedout
;
87 task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
88 add_timer(&task
->timer
);
90 res
= i
->dft
->lldd_execute_task(task
, 1, GFP_KERNEL
);
93 del_timer(&task
->timer
);
94 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
98 wait_for_completion(&task
->completion
);
100 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
101 SAS_DPRINTK("smp task timed out or aborted\n");
102 i
->dft
->lldd_abort_task(task
);
103 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
104 SAS_DPRINTK("SMP task aborted and not done\n");
108 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
109 task
->task_status
.stat
== SAM_GOOD
) {
113 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
114 "status 0x%x\n", __FUNCTION__
,
115 SAS_ADDR(dev
->sas_addr
),
116 task
->task_status
.resp
,
117 task
->task_status
.stat
);
123 BUG_ON(retry
== 3 && task
!= NULL
);
130 /* ---------- Allocations ---------- */
132 static inline void *alloc_smp_req(int size
)
134 u8
*p
= kzalloc(size
, GFP_KERNEL
);
140 static inline void *alloc_smp_resp(int size
)
142 return kzalloc(size
, GFP_KERNEL
);
145 /* ---------- Expander configuration ---------- */
147 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
,
150 struct expander_device
*ex
= &dev
->ex_dev
;
151 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
152 struct smp_resp
*resp
= disc_resp
;
153 struct discover_resp
*dr
= &resp
->disc
;
154 struct sas_rphy
*rphy
= dev
->rphy
;
155 int rediscover
= (phy
->phy
!= NULL
);
158 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
160 /* FIXME: error_handling */
164 switch (resp
->result
) {
165 case SMP_RESP_PHY_VACANT
:
166 phy
->phy_state
= PHY_VACANT
;
169 phy
->phy_state
= PHY_NOT_PRESENT
;
171 case SMP_RESP_FUNC_ACC
:
172 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
176 phy
->phy_id
= phy_id
;
177 phy
->attached_dev_type
= dr
->attached_dev_type
;
178 phy
->linkrate
= dr
->linkrate
;
179 phy
->attached_sata_host
= dr
->attached_sata_host
;
180 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
181 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
182 phy
->attached_iproto
= dr
->iproto
<< 1;
183 phy
->attached_tproto
= dr
->tproto
<< 1;
184 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
185 phy
->attached_phy_id
= dr
->attached_phy_id
;
186 phy
->phy_change_count
= dr
->change_count
;
187 phy
->routing_attr
= dr
->routing_attr
;
188 phy
->virtual = dr
->virtual;
189 phy
->last_da_index
= -1;
191 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
192 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
193 phy
->phy
->identify
.phy_identifier
= phy_id
;
194 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
195 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
196 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
197 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
198 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
201 sas_phy_add(phy
->phy
);
203 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
204 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
205 phy
->routing_attr
== TABLE_ROUTING
? 'T' :
206 phy
->routing_attr
== DIRECT_ROUTING
? 'D' :
207 phy
->routing_attr
== SUBTRACTIVE_ROUTING
? 'S' : '?',
208 SAS_ADDR(phy
->attached_sas_addr
));
213 #define DISCOVER_REQ_SIZE 16
214 #define DISCOVER_RESP_SIZE 56
216 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
217 u8
*disc_resp
, int single
)
221 disc_req
[9] = single
;
222 for (i
= 1 ; i
< 3; i
++) {
223 struct discover_resp
*dr
;
225 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
226 disc_resp
, DISCOVER_RESP_SIZE
);
229 /* This is detecting a failure to transmit inital
230 * dev to host FIS as described in section G.5 of
232 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
233 if (!(dr
->attached_dev_type
== 0 &&
234 dr
->attached_sata_dev
))
236 /* In order to generate the dev to host FIS, we
237 * send a link reset to the expander port */
238 sas_smp_phy_control(dev
, single
, PHY_FUNC_LINK_RESET
, NULL
);
239 /* Wait for the reset to trigger the negotiation */
242 sas_set_ex_phy(dev
, single
, disc_resp
);
246 static int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
248 struct expander_device
*ex
= &dev
->ex_dev
;
253 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
257 disc_resp
= alloc_smp_req(DISCOVER_RESP_SIZE
);
263 disc_req
[1] = SMP_DISCOVER
;
265 if (0 <= single
&& single
< ex
->num_phys
) {
266 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
270 for (i
= 0; i
< ex
->num_phys
; i
++) {
271 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
283 static int sas_expander_discover(struct domain_device
*dev
)
285 struct expander_device
*ex
= &dev
->ex_dev
;
288 ex
->ex_phy
= kzalloc(sizeof(*ex
->ex_phy
)*ex
->num_phys
, GFP_KERNEL
);
292 res
= sas_ex_phy_discover(dev
, -1);
303 #define MAX_EXPANDER_PHYS 128
305 static void ex_assign_report_general(struct domain_device
*dev
,
306 struct smp_resp
*resp
)
308 struct report_general_resp
*rg
= &resp
->rg
;
310 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
311 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
312 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
313 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
314 dev
->ex_dev
.configuring
= rg
->configuring
;
315 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
318 #define RG_REQ_SIZE 8
319 #define RG_RESP_SIZE 32
321 static int sas_ex_general(struct domain_device
*dev
)
324 struct smp_resp
*rg_resp
;
328 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
332 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
338 rg_req
[1] = SMP_REPORT_GENERAL
;
340 for (i
= 0; i
< 5; i
++) {
341 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
345 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
346 SAS_ADDR(dev
->sas_addr
), res
);
348 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
349 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
350 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
351 res
= rg_resp
->result
;
355 ex_assign_report_general(dev
, rg_resp
);
357 if (dev
->ex_dev
.configuring
) {
358 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
359 SAS_ADDR(dev
->sas_addr
));
360 schedule_timeout_interruptible(5*HZ
);
370 static void ex_assign_manuf_info(struct domain_device
*dev
, void
373 u8
*mi_resp
= _mi_resp
;
374 struct sas_rphy
*rphy
= dev
->rphy
;
375 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
377 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
378 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
379 memcpy(edev
->product_rev
, mi_resp
+ 36,
380 SAS_EXPANDER_PRODUCT_REV_LEN
);
382 if (mi_resp
[8] & 1) {
383 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
384 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
385 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
386 edev
->component_revision_id
= mi_resp
[50];
390 #define MI_REQ_SIZE 8
391 #define MI_RESP_SIZE 64
393 static int sas_ex_manuf_info(struct domain_device
*dev
)
399 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
403 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
409 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
411 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
413 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
414 SAS_ADDR(dev
->sas_addr
), res
);
416 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
417 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
418 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
422 ex_assign_manuf_info(dev
, mi_resp
);
429 #define PC_REQ_SIZE 44
430 #define PC_RESP_SIZE 8
432 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
433 enum phy_func phy_func
,
434 struct sas_phy_linkrates
*rates
)
440 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
444 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
450 pc_req
[1] = SMP_PHY_CONTROL
;
452 pc_req
[10]= phy_func
;
454 pc_req
[32] = rates
->minimum_linkrate
<< 4;
455 pc_req
[33] = rates
->maximum_linkrate
<< 4;
458 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
465 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
467 struct expander_device
*ex
= &dev
->ex_dev
;
468 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
470 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
471 phy
->linkrate
= SAS_PHY_DISABLED
;
474 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
476 struct expander_device
*ex
= &dev
->ex_dev
;
479 for (i
= 0; i
< ex
->num_phys
; i
++) {
480 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
482 if (phy
->phy_state
== PHY_VACANT
||
483 phy
->phy_state
== PHY_NOT_PRESENT
)
486 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
487 sas_ex_disable_phy(dev
, i
);
491 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
494 struct domain_device
*dev
;
496 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
498 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
499 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
505 #define RPEL_REQ_SIZE 16
506 #define RPEL_RESP_SIZE 32
507 int sas_smp_get_phy_events(struct sas_phy
*phy
)
512 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
513 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
515 req
= alloc_smp_req(RPEL_REQ_SIZE
);
519 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
525 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
526 req
[9] = phy
->number
;
528 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
529 resp
, RPEL_RESP_SIZE
);
534 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
535 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
536 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
537 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
545 #ifdef CONFIG_SCSI_SAS_ATA
547 #define RPS_REQ_SIZE 16
548 #define RPS_RESP_SIZE 60
550 static int sas_get_report_phy_sata(struct domain_device
*dev
,
552 struct smp_resp
*rps_resp
)
555 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
556 u8
*resp
= (u8
*)rps_resp
;
561 rps_req
[1] = SMP_REPORT_PHY_SATA
;
564 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
565 rps_resp
, RPS_RESP_SIZE
);
567 /* 0x34 is the FIS type for the D2H fis. There's a potential
568 * standards cockup here. sas-2 explicitly specifies the FIS
569 * should be encoded so that FIS type is in resp[24].
570 * However, some expanders endian reverse this. Undo the
572 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
575 for (i
= 0; i
< 5; i
++) {
580 resp
[j
+ 0] = resp
[j
+ 3];
581 resp
[j
+ 1] = resp
[j
+ 2];
592 static void sas_ex_get_linkrate(struct domain_device
*parent
,
593 struct domain_device
*child
,
594 struct ex_phy
*parent_phy
)
596 struct expander_device
*parent_ex
= &parent
->ex_dev
;
597 struct sas_port
*port
;
602 port
= parent_phy
->port
;
604 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
605 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
607 if (phy
->phy_state
== PHY_VACANT
||
608 phy
->phy_state
== PHY_NOT_PRESENT
)
611 if (SAS_ADDR(phy
->attached_sas_addr
) ==
612 SAS_ADDR(child
->sas_addr
)) {
614 child
->min_linkrate
= min(parent
->min_linkrate
,
616 child
->max_linkrate
= max(parent
->max_linkrate
,
619 sas_port_add_phy(port
, phy
->phy
);
622 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
623 child
->pathways
= min(child
->pathways
, parent
->pathways
);
626 static struct domain_device
*sas_ex_discover_end_dev(
627 struct domain_device
*parent
, int phy_id
)
629 struct expander_device
*parent_ex
= &parent
->ex_dev
;
630 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
631 struct domain_device
*child
= NULL
;
632 struct sas_rphy
*rphy
;
635 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
638 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
642 child
->parent
= parent
;
643 child
->port
= parent
->port
;
644 child
->iproto
= phy
->attached_iproto
;
645 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
646 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
648 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
649 if (unlikely(!phy
->port
))
651 if (unlikely(sas_port_add(phy
->port
) != 0)) {
652 sas_port_free(phy
->port
);
656 sas_ex_get_linkrate(parent
, child
, phy
);
658 #ifdef CONFIG_SCSI_SAS_ATA
659 if ((phy
->attached_tproto
& SAS_PROTO_STP
) || phy
->attached_sata_dev
) {
660 child
->dev_type
= SATA_DEV
;
661 if (phy
->attached_tproto
& SAS_PROTO_STP
)
662 child
->tproto
= phy
->attached_tproto
;
663 if (phy
->attached_sata_dev
)
664 child
->tproto
|= SATA_DEV
;
665 res
= sas_get_report_phy_sata(parent
, phy_id
,
666 &child
->sata_dev
.rps_resp
);
668 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
669 "0x%x\n", SAS_ADDR(parent
->sas_addr
),
673 memcpy(child
->frame_rcvd
, &child
->sata_dev
.rps_resp
.rps
.fis
,
674 sizeof(struct dev_to_host_fis
));
676 rphy
= sas_end_device_alloc(phy
->port
);
684 spin_lock_irq(&parent
->port
->dev_list_lock
);
685 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
686 spin_unlock_irq(&parent
->port
->dev_list_lock
);
688 res
= sas_discover_sata(child
);
690 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
691 "%016llx:0x%x returned 0x%x\n",
692 SAS_ADDR(child
->sas_addr
),
693 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
698 if (phy
->attached_tproto
& SAS_PROTO_SSP
) {
699 child
->dev_type
= SAS_END_DEV
;
700 rphy
= sas_end_device_alloc(phy
->port
);
701 /* FIXME: error handling */
704 child
->tproto
= phy
->attached_tproto
;
708 sas_fill_in_rphy(child
, rphy
);
710 spin_lock_irq(&parent
->port
->dev_list_lock
);
711 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
712 spin_unlock_irq(&parent
->port
->dev_list_lock
);
714 res
= sas_discover_end_dev(child
);
716 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
717 "at %016llx:0x%x returned 0x%x\n",
718 SAS_ADDR(child
->sas_addr
),
719 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
723 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
724 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
729 list_add_tail(&child
->siblings
, &parent_ex
->children
);
733 sas_rphy_free(child
->rphy
);
735 list_del(&child
->dev_list_node
);
737 sas_port_delete(phy
->port
);
744 /* See if this phy is part of a wide port */
745 static int sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
747 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
750 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
751 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
756 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
757 SAS_ADDR_SIZE
) && ephy
->port
) {
758 sas_port_add_phy(ephy
->port
, phy
->phy
);
759 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
767 static struct domain_device
*sas_ex_discover_expander(
768 struct domain_device
*parent
, int phy_id
)
770 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
771 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
772 struct domain_device
*child
= NULL
;
773 struct sas_rphy
*rphy
;
774 struct sas_expander_device
*edev
;
775 struct asd_sas_port
*port
;
778 if (phy
->routing_attr
== DIRECT_ROUTING
) {
779 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
781 SAS_ADDR(parent
->sas_addr
), phy_id
,
782 SAS_ADDR(phy
->attached_sas_addr
),
783 phy
->attached_phy_id
);
786 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
790 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
791 /* FIXME: better error handling */
792 BUG_ON(sas_port_add(phy
->port
) != 0);
795 switch (phy
->attached_dev_type
) {
797 rphy
= sas_expander_alloc(phy
->port
,
798 SAS_EDGE_EXPANDER_DEVICE
);
801 rphy
= sas_expander_alloc(phy
->port
,
802 SAS_FANOUT_EXPANDER_DEVICE
);
805 rphy
= NULL
; /* shut gcc up */
810 edev
= rphy_to_expander_device(rphy
);
811 child
->dev_type
= phy
->attached_dev_type
;
812 child
->parent
= parent
;
814 child
->iproto
= phy
->attached_iproto
;
815 child
->tproto
= phy
->attached_tproto
;
816 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
817 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
818 sas_ex_get_linkrate(parent
, child
, phy
);
819 edev
->level
= parent_ex
->level
+ 1;
820 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
823 sas_fill_in_rphy(child
, rphy
);
826 spin_lock_irq(&parent
->port
->dev_list_lock
);
827 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
828 spin_unlock_irq(&parent
->port
->dev_list_lock
);
830 res
= sas_discover_expander(child
);
835 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
839 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
841 struct expander_device
*ex
= &dev
->ex_dev
;
842 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
843 struct domain_device
*child
= NULL
;
847 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
848 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
849 res
= sas_ex_phy_discover(dev
, phy_id
);
854 /* Parent and domain coherency */
855 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
856 SAS_ADDR(dev
->port
->sas_addr
))) {
857 sas_add_parent_port(dev
, phy_id
);
860 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
861 SAS_ADDR(dev
->parent
->sas_addr
))) {
862 sas_add_parent_port(dev
, phy_id
);
863 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
864 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
868 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
869 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
871 if (ex_phy
->attached_dev_type
== NO_DEVICE
) {
872 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
873 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
874 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
877 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
880 if (ex_phy
->attached_dev_type
!= SAS_END_DEV
&&
881 ex_phy
->attached_dev_type
!= FANOUT_DEV
&&
882 ex_phy
->attached_dev_type
!= EDGE_DEV
) {
883 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
884 "phy 0x%x\n", ex_phy
->attached_dev_type
,
885 SAS_ADDR(dev
->sas_addr
),
890 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
892 SAS_DPRINTK("configure routing for dev %016llx "
893 "reported 0x%x. Forgotten\n",
894 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
895 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
899 res
= sas_ex_join_wide_port(dev
, phy_id
);
901 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
902 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
906 switch (ex_phy
->attached_dev_type
) {
908 child
= sas_ex_discover_end_dev(dev
, phy_id
);
911 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
912 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
913 "attached to ex %016llx phy 0x%x\n",
914 SAS_ADDR(ex_phy
->attached_sas_addr
),
915 ex_phy
->attached_phy_id
,
916 SAS_ADDR(dev
->sas_addr
),
918 sas_ex_disable_phy(dev
, phy_id
);
921 memcpy(dev
->port
->disc
.fanout_sas_addr
,
922 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
925 child
= sas_ex_discover_expander(dev
, phy_id
);
934 for (i
= 0; i
< ex
->num_phys
; i
++) {
935 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
936 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
939 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
940 SAS_ADDR(child
->sas_addr
))
941 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
948 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
950 struct expander_device
*ex
= &dev
->ex_dev
;
953 for (i
= 0; i
< ex
->num_phys
; i
++) {
954 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
956 if (phy
->phy_state
== PHY_VACANT
||
957 phy
->phy_state
== PHY_NOT_PRESENT
)
960 if ((phy
->attached_dev_type
== EDGE_DEV
||
961 phy
->attached_dev_type
== FANOUT_DEV
) &&
962 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
964 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
972 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
974 struct expander_device
*ex
= &dev
->ex_dev
;
975 struct domain_device
*child
;
976 u8 sub_addr
[8] = {0, };
978 list_for_each_entry(child
, &ex
->children
, siblings
) {
979 if (child
->dev_type
!= EDGE_DEV
&&
980 child
->dev_type
!= FANOUT_DEV
)
982 if (sub_addr
[0] == 0) {
983 sas_find_sub_addr(child
, sub_addr
);
988 if (sas_find_sub_addr(child
, s2
) &&
989 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
991 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
992 "diverges from subtractive "
993 "boundary %016llx\n",
994 SAS_ADDR(dev
->sas_addr
),
995 SAS_ADDR(child
->sas_addr
),
999 sas_ex_disable_port(child
, s2
);
1006 * sas_ex_discover_devices -- discover devices attached to this expander
1007 * dev: pointer to the expander domain device
1008 * single: if you want to do a single phy, else set to -1;
1010 * Configure this expander for use with its devices and register the
1011 * devices of this expander.
1013 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1015 struct expander_device
*ex
= &dev
->ex_dev
;
1016 int i
= 0, end
= ex
->num_phys
;
1019 if (0 <= single
&& single
< end
) {
1024 for ( ; i
< end
; i
++) {
1025 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1027 if (ex_phy
->phy_state
== PHY_VACANT
||
1028 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1029 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1032 switch (ex_phy
->linkrate
) {
1033 case SAS_PHY_DISABLED
:
1034 case SAS_PHY_RESET_PROBLEM
:
1035 case SAS_SATA_PORT_SELECTOR
:
1038 res
= sas_ex_discover_dev(dev
, i
);
1046 sas_check_level_subtractive_boundary(dev
);
1051 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1053 struct expander_device
*ex
= &dev
->ex_dev
;
1055 u8
*sub_sas_addr
= NULL
;
1057 if (dev
->dev_type
!= EDGE_DEV
)
1060 for (i
= 0; i
< ex
->num_phys
; i
++) {
1061 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1063 if (phy
->phy_state
== PHY_VACANT
||
1064 phy
->phy_state
== PHY_NOT_PRESENT
)
1067 if ((phy
->attached_dev_type
== FANOUT_DEV
||
1068 phy
->attached_dev_type
== EDGE_DEV
) &&
1069 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1072 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1073 else if (SAS_ADDR(sub_sas_addr
) !=
1074 SAS_ADDR(phy
->attached_sas_addr
)) {
1076 SAS_DPRINTK("ex %016llx phy 0x%x "
1077 "diverges(%016llx) on subtractive "
1078 "boundary(%016llx). Disabled\n",
1079 SAS_ADDR(dev
->sas_addr
), i
,
1080 SAS_ADDR(phy
->attached_sas_addr
),
1081 SAS_ADDR(sub_sas_addr
));
1082 sas_ex_disable_phy(dev
, i
);
1089 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1090 struct ex_phy
*parent_phy
,
1091 struct ex_phy
*child_phy
)
1093 static const char ra_char
[] = {
1094 [DIRECT_ROUTING
] = 'D',
1095 [SUBTRACTIVE_ROUTING
] = 'S',
1096 [TABLE_ROUTING
] = 'T',
1098 static const char *ex_type
[] = {
1099 [EDGE_DEV
] = "edge",
1100 [FANOUT_DEV
] = "fanout",
1102 struct domain_device
*parent
= child
->parent
;
1104 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1105 "has %c:%c routing link!\n",
1107 ex_type
[parent
->dev_type
],
1108 SAS_ADDR(parent
->sas_addr
),
1111 ex_type
[child
->dev_type
],
1112 SAS_ADDR(child
->sas_addr
),
1115 ra_char
[parent_phy
->routing_attr
],
1116 ra_char
[child_phy
->routing_attr
]);
1119 static int sas_check_eeds(struct domain_device
*child
,
1120 struct ex_phy
*parent_phy
,
1121 struct ex_phy
*child_phy
)
1124 struct domain_device
*parent
= child
->parent
;
1126 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1128 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1129 "phy S:0x%x, while there is a fanout ex %016llx\n",
1130 SAS_ADDR(parent
->sas_addr
),
1132 SAS_ADDR(child
->sas_addr
),
1134 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1135 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1136 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1138 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1140 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1141 SAS_ADDR(parent
->sas_addr
)) ||
1142 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1143 SAS_ADDR(child
->sas_addr
)))
1145 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1146 SAS_ADDR(parent
->sas_addr
)) ||
1147 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1148 SAS_ADDR(child
->sas_addr
))))
1152 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1153 "phy 0x%x link forms a third EEDS!\n",
1154 SAS_ADDR(parent
->sas_addr
),
1156 SAS_ADDR(child
->sas_addr
),
1163 /* Here we spill over 80 columns. It is intentional.
1165 static int sas_check_parent_topology(struct domain_device
*child
)
1167 struct expander_device
*child_ex
= &child
->ex_dev
;
1168 struct expander_device
*parent_ex
;
1175 if (child
->parent
->dev_type
!= EDGE_DEV
&&
1176 child
->parent
->dev_type
!= FANOUT_DEV
)
1179 parent_ex
= &child
->parent
->ex_dev
;
1181 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1182 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1183 struct ex_phy
*child_phy
;
1185 if (parent_phy
->phy_state
== PHY_VACANT
||
1186 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1189 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1192 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1194 switch (child
->parent
->dev_type
) {
1196 if (child
->dev_type
== FANOUT_DEV
) {
1197 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1198 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1199 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1202 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1203 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1204 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1205 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1206 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1209 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
&&
1210 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1211 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1216 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1217 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1218 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1230 #define RRI_REQ_SIZE 16
1231 #define RRI_RESP_SIZE 44
1233 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1234 u8
*sas_addr
, int *index
, int *present
)
1237 struct expander_device
*ex
= &dev
->ex_dev
;
1238 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1245 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1249 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1255 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1256 rri_req
[9] = phy_id
;
1258 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1259 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1260 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1265 if (res
== SMP_RESP_NO_INDEX
) {
1266 SAS_DPRINTK("overflow of indexes: dev %016llx "
1267 "phy 0x%x index 0x%x\n",
1268 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1270 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1271 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1272 "result 0x%x\n", __FUNCTION__
,
1273 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1276 if (SAS_ADDR(sas_addr
) != 0) {
1277 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1279 if ((rri_resp
[12] & 0x80) == 0x80)
1284 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1289 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1290 phy
->last_da_index
< i
) {
1291 phy
->last_da_index
= i
;
1304 #define CRI_REQ_SIZE 44
1305 #define CRI_RESP_SIZE 8
1307 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1308 u8
*sas_addr
, int index
, int include
)
1314 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1318 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1324 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1325 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1326 cri_req
[9] = phy_id
;
1327 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1328 cri_req
[12] |= 0x80;
1329 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1331 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1336 if (res
== SMP_RESP_NO_INDEX
) {
1337 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1339 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1347 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1348 u8
*sas_addr
, int include
)
1354 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1357 if (include
^ present
)
1358 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1364 * sas_configure_parent -- configure routing table of parent
1365 * parent: parent expander
1366 * child: child expander
1367 * sas_addr: SAS port identifier of device directly attached to child
1369 static int sas_configure_parent(struct domain_device
*parent
,
1370 struct domain_device
*child
,
1371 u8
*sas_addr
, int include
)
1373 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1377 if (parent
->parent
) {
1378 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1384 if (ex_parent
->conf_route_table
== 0) {
1385 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1386 SAS_ADDR(parent
->sas_addr
));
1390 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1391 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1393 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1394 (SAS_ADDR(phy
->attached_sas_addr
) ==
1395 SAS_ADDR(child
->sas_addr
))) {
1396 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1406 * sas_configure_routing -- configure routing
1407 * dev: expander device
1408 * sas_addr: port identifier of device directly attached to the expander device
1410 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1413 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1417 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1420 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1425 * sas_discover_expander -- expander discovery
1426 * @ex: pointer to expander domain device
1428 * See comment in sas_discover_sata().
1430 static int sas_discover_expander(struct domain_device
*dev
)
1434 res
= sas_notify_lldd_dev_found(dev
);
1438 res
= sas_ex_general(dev
);
1441 res
= sas_ex_manuf_info(dev
);
1445 res
= sas_expander_discover(dev
);
1447 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1448 SAS_ADDR(dev
->sas_addr
), res
);
1452 sas_check_ex_subtractive_boundary(dev
);
1453 res
= sas_check_parent_topology(dev
);
1458 sas_notify_lldd_dev_gone(dev
);
1462 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1465 struct domain_device
*dev
;
1467 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1468 if (dev
->dev_type
== EDGE_DEV
||
1469 dev
->dev_type
== FANOUT_DEV
) {
1470 struct sas_expander_device
*ex
=
1471 rphy_to_expander_device(dev
->rphy
);
1473 if (level
== ex
->level
)
1474 res
= sas_ex_discover_devices(dev
, -1);
1476 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1484 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1490 level
= port
->disc
.max_level
;
1491 res
= sas_ex_level_discovery(port
, level
);
1493 } while (level
< port
->disc
.max_level
);
1498 int sas_discover_root_expander(struct domain_device
*dev
)
1501 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1503 res
= sas_rphy_add(dev
->rphy
);
1507 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1508 res
= sas_discover_expander(dev
);
1512 sas_ex_bfs_disc(dev
->port
);
1517 sas_rphy_remove(dev
->rphy
);
1522 /* ---------- Domain revalidation ---------- */
1524 static int sas_get_phy_discover(struct domain_device
*dev
,
1525 int phy_id
, struct smp_resp
*disc_resp
)
1530 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1534 disc_req
[1] = SMP_DISCOVER
;
1535 disc_req
[9] = phy_id
;
1537 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1538 disc_resp
, DISCOVER_RESP_SIZE
);
1541 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1542 res
= disc_resp
->result
;
1550 static int sas_get_phy_change_count(struct domain_device
*dev
,
1551 int phy_id
, int *pcc
)
1554 struct smp_resp
*disc_resp
;
1556 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1560 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1562 *pcc
= disc_resp
->disc
.change_count
;
1568 static int sas_get_phy_attached_sas_addr(struct domain_device
*dev
,
1569 int phy_id
, u8
*attached_sas_addr
)
1572 struct smp_resp
*disc_resp
;
1573 struct discover_resp
*dr
;
1575 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1578 dr
= &disc_resp
->disc
;
1580 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1582 memcpy(attached_sas_addr
,disc_resp
->disc
.attached_sas_addr
,8);
1583 if (dr
->attached_dev_type
== 0)
1584 memset(attached_sas_addr
, 0, 8);
1590 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1593 struct expander_device
*ex
= &dev
->ex_dev
;
1597 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1598 int phy_change_count
= 0;
1600 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1603 else if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1604 ex
->ex_phy
[i
].phy_change_count
= phy_change_count
;
1613 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1617 struct smp_resp
*rg_resp
;
1619 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1623 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1629 rg_req
[1] = SMP_REPORT_GENERAL
;
1631 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1635 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1636 res
= rg_resp
->result
;
1640 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1647 static int sas_find_bcast_dev(struct domain_device
*dev
,
1648 struct domain_device
**src_dev
)
1650 struct expander_device
*ex
= &dev
->ex_dev
;
1651 int ex_change_count
= -1;
1654 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1657 if (ex_change_count
!= -1 &&
1658 ex_change_count
!= ex
->ex_change_count
) {
1660 ex
->ex_change_count
= ex_change_count
;
1662 struct domain_device
*ch
;
1664 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1665 if (ch
->dev_type
== EDGE_DEV
||
1666 ch
->dev_type
== FANOUT_DEV
) {
1667 res
= sas_find_bcast_dev(ch
, src_dev
);
1677 static void sas_unregister_ex_tree(struct domain_device
*dev
)
1679 struct expander_device
*ex
= &dev
->ex_dev
;
1680 struct domain_device
*child
, *n
;
1682 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1683 if (child
->dev_type
== EDGE_DEV
||
1684 child
->dev_type
== FANOUT_DEV
)
1685 sas_unregister_ex_tree(child
);
1687 sas_unregister_dev(child
);
1689 sas_unregister_dev(dev
);
1692 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1695 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1696 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1697 struct domain_device
*child
, *n
;
1699 list_for_each_entry_safe(child
, n
, &ex_dev
->children
, siblings
) {
1700 if (SAS_ADDR(child
->sas_addr
) ==
1701 SAS_ADDR(phy
->attached_sas_addr
)) {
1702 if (child
->dev_type
== EDGE_DEV
||
1703 child
->dev_type
== FANOUT_DEV
)
1704 sas_unregister_ex_tree(child
);
1706 sas_unregister_dev(child
);
1710 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1711 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1712 sas_port_delete_phy(phy
->port
, phy
->phy
);
1713 if (phy
->port
->num_phys
== 0)
1714 sas_port_delete(phy
->port
);
1718 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1721 struct expander_device
*ex_root
= &root
->ex_dev
;
1722 struct domain_device
*child
;
1725 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1726 if (child
->dev_type
== EDGE_DEV
||
1727 child
->dev_type
== FANOUT_DEV
) {
1728 struct sas_expander_device
*ex
=
1729 rphy_to_expander_device(child
->rphy
);
1731 if (level
> ex
->level
)
1732 res
= sas_discover_bfs_by_root_level(child
,
1734 else if (level
== ex
->level
)
1735 res
= sas_ex_discover_devices(child
, -1);
1741 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1744 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1745 int level
= ex
->level
+1;
1747 res
= sas_ex_discover_devices(dev
, -1);
1751 res
= sas_discover_bfs_by_root_level(dev
, level
);
1754 } while (level
<= dev
->port
->disc
.max_level
);
1759 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1761 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1762 struct domain_device
*child
;
1765 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1766 SAS_ADDR(dev
->sas_addr
), phy_id
);
1767 res
= sas_ex_phy_discover(dev
, phy_id
);
1770 res
= sas_ex_discover_devices(dev
, phy_id
);
1773 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1774 if (SAS_ADDR(child
->sas_addr
) ==
1775 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1776 if (child
->dev_type
== EDGE_DEV
||
1777 child
->dev_type
== FANOUT_DEV
)
1778 res
= sas_discover_bfs_by_root(child
);
1786 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
)
1788 struct expander_device
*ex
= &dev
->ex_dev
;
1789 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1790 u8 attached_sas_addr
[8];
1793 res
= sas_get_phy_attached_sas_addr(dev
, phy_id
, attached_sas_addr
);
1795 case SMP_RESP_NO_PHY
:
1796 phy
->phy_state
= PHY_NOT_PRESENT
;
1797 sas_unregister_devs_sas_addr(dev
, phy_id
);
1799 case SMP_RESP_PHY_VACANT
:
1800 phy
->phy_state
= PHY_VACANT
;
1801 sas_unregister_devs_sas_addr(dev
, phy_id
);
1803 case SMP_RESP_FUNC_ACC
:
1807 if (SAS_ADDR(attached_sas_addr
) == 0) {
1808 phy
->phy_state
= PHY_EMPTY
;
1809 sas_unregister_devs_sas_addr(dev
, phy_id
);
1810 } else if (SAS_ADDR(attached_sas_addr
) ==
1811 SAS_ADDR(phy
->attached_sas_addr
)) {
1812 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1813 SAS_ADDR(dev
->sas_addr
), phy_id
);
1814 sas_ex_phy_discover(dev
, phy_id
);
1816 res
= sas_discover_new(dev
, phy_id
);
1821 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
1823 struct expander_device
*ex
= &dev
->ex_dev
;
1824 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
1828 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1829 SAS_ADDR(dev
->sas_addr
), phy_id
);
1831 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
1832 for (i
= 0; i
< ex
->num_phys
; i
++) {
1833 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1837 if (SAS_ADDR(phy
->attached_sas_addr
) ==
1838 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
1839 SAS_DPRINTK("phy%d part of wide port with "
1840 "phy%d\n", phy_id
, i
);
1844 res
= sas_rediscover_dev(dev
, phy_id
);
1846 res
= sas_discover_new(dev
, phy_id
);
1852 * sas_revalidate_domain -- revalidate the domain
1853 * @port: port to the domain of interest
1855 * NOTE: this process _must_ quit (return) as soon as any connection
1856 * errors are encountered. Connection recovery is done elsewhere.
1857 * Discover process only interrogates devices in order to discover the
1860 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
1863 struct domain_device
*dev
= NULL
;
1865 res
= sas_find_bcast_dev(port_dev
, &dev
);
1869 struct expander_device
*ex
= &dev
->ex_dev
;
1874 res
= sas_find_bcast_phy(dev
, &phy_id
, i
);
1877 res
= sas_rediscover(dev
, phy_id
);
1879 } while (i
< ex
->num_phys
);
1885 int sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
1886 struct request
*req
)
1888 struct domain_device
*dev
;
1890 struct request
*rsp
= req
->next_rq
;
1893 printk("%s: space for a smp response is missing\n",
1898 /* no rphy means no smp target support (ie aic94xx host) */
1900 printk("%s: can we send a smp request to a host?\n",
1904 type
= rphy
->identify
.device_type
;
1906 if (type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1907 type
!= SAS_FANOUT_EXPANDER_DEVICE
) {
1908 printk("%s: can we send a smp request to a device?\n",
1913 dev
= sas_find_dev_by_rphy(rphy
);
1915 printk("%s: fail to find a domain_device?\n", __FUNCTION__
);
1919 /* do we need to support multiple segments? */
1920 if (req
->bio
->bi_vcnt
> 1 || rsp
->bio
->bi_vcnt
> 1) {
1921 printk("%s: multiple segments req %u %u, rsp %u %u\n",
1922 __FUNCTION__
, req
->bio
->bi_vcnt
, req
->data_len
,
1923 rsp
->bio
->bi_vcnt
, rsp
->data_len
);
1927 ret
= smp_execute_task(dev
, bio_data(req
->bio
), req
->data_len
,
1928 bio_data(rsp
->bio
), rsp
->data_len
);