fs: use kmem_cache_zalloc instead
[pv_ops_mirror.git] / drivers / video / vermilion / vermilion.c
blobff9e805c43bccedcbd89689b45136f0c6ea6fa5c
1 /*
2 * Copyright (c) Intel Corp. 2007.
3 * All Rights Reserved.
5 * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
6 * develop this driver.
8 * This file is part of the Vermilion Range fb driver.
9 * The Vermilion Range fb driver is free software;
10 * you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * The Vermilion Range fb driver is distributed
16 * in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 * Authors:
26 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
27 * Michel Dänzer <michel-at-tungstengraphics-dot-com>
28 * Alan Hourihane <alanh-at-tungstengraphics-dot-com>
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/delay.h>
36 #include <linux/mm.h>
37 #include <linux/fb.h>
38 #include <linux/pci.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <linux/mmzone.h>
43 /* #define VERMILION_DEBUG */
45 #include "vermilion.h"
47 #define MODULE_NAME "vmlfb"
49 #define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
51 static struct mutex vml_mutex;
52 static struct list_head global_no_mode;
53 static struct list_head global_has_mode;
54 static struct fb_ops vmlfb_ops;
55 static struct vml_sys *subsys = NULL;
56 static char *vml_default_mode = "1024x768@60";
57 static struct fb_videomode defaultmode = {
58 NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
59 0, FB_VMODE_NONINTERLACED
62 static u32 vml_mem_requested = (10 * 1024 * 1024);
63 static u32 vml_mem_contig = (4 * 1024 * 1024);
64 static u32 vml_mem_min = (4 * 1024 * 1024);
66 static u32 vml_clocks[] = {
67 6750,
68 13500,
69 27000,
70 29700,
71 37125,
72 54000,
73 59400,
74 74250,
75 120000,
76 148500
79 static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
82 * Allocate a contiguous vram area and make its linear kernel map
83 * uncached.
86 static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
87 unsigned min_order)
89 gfp_t flags;
90 unsigned long i;
91 pgprot_t wc_pageprot;
93 wc_pageprot = PAGE_KERNEL_NOCACHE;
94 max_order++;
95 do {
97 * Really try hard to get the needed memory.
98 * We need memory below the first 32MB, so we
99 * add the __GFP_DMA flag that guarantees that we are
100 * below the first 16MB.
103 flags = __GFP_DMA | __GFP_HIGH;
104 va->logical =
105 __get_free_pages(flags, --max_order);
106 } while (va->logical == 0 && max_order > min_order);
108 if (!va->logical)
109 return -ENOMEM;
111 va->phys = virt_to_phys((void *)va->logical);
112 va->size = PAGE_SIZE << max_order;
113 va->order = max_order;
116 * It seems like __get_free_pages only ups the usage count
117 * of the first page. This doesn't work with nopage mapping, so
118 * up the usage count once more.
121 memset((void *)va->logical, 0x00, va->size);
122 for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
123 get_page(virt_to_page(i));
127 * Change caching policy of the linear kernel map to avoid
128 * mapping type conflicts with user-space mappings.
129 * The first global_flush_tlb() is really only there to do a global
130 * wbinvd().
133 global_flush_tlb();
134 change_page_attr(virt_to_page(va->logical), va->size >> PAGE_SHIFT,
135 wc_pageprot);
136 global_flush_tlb();
138 printk(KERN_DEBUG MODULE_NAME
139 ": Allocated %ld bytes vram area at 0x%08lx\n",
140 va->size, va->phys);
142 return 0;
146 * Free a contiguous vram area and reset its linear kernel map
147 * mapping type.
150 static void vmlfb_free_vram_area(struct vram_area *va)
152 unsigned long j;
154 if (va->logical) {
157 * Reset the linear kernel map caching policy.
160 change_page_attr(virt_to_page(va->logical),
161 va->size >> PAGE_SHIFT, PAGE_KERNEL);
162 global_flush_tlb();
165 * Decrease the usage count on the pages we've used
166 * to compensate for upping when allocating.
169 for (j = va->logical; j < va->logical + va->size;
170 j += PAGE_SIZE) {
171 (void)put_page_testzero(virt_to_page(j));
174 printk(KERN_DEBUG MODULE_NAME
175 ": Freeing %ld bytes vram area at 0x%08lx\n",
176 va->size, va->phys);
177 free_pages(va->logical, va->order);
179 va->logical = 0;
184 * Free allocated vram.
187 static void vmlfb_free_vram(struct vml_info *vinfo)
189 int i;
191 for (i = 0; i < vinfo->num_areas; ++i) {
192 vmlfb_free_vram_area(&vinfo->vram[i]);
194 vinfo->num_areas = 0;
198 * Allocate vram. Currently we try to allocate contiguous areas from the
199 * __GFP_DMA zone and puzzle them together. A better approach would be to
200 * allocate one contiguous area for scanout and use one-page allocations for
201 * offscreen areas. This requires user-space and GPU virtual mappings.
204 static int vmlfb_alloc_vram(struct vml_info *vinfo,
205 size_t requested,
206 size_t min_total, size_t min_contig)
208 int i, j;
209 int order;
210 int contiguous;
211 int err;
212 struct vram_area *va;
213 struct vram_area *va2;
215 vinfo->num_areas = 0;
216 for (i = 0; i < VML_VRAM_AREAS; ++i) {
217 va = &vinfo->vram[i];
218 order = 0;
220 while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
221 order++;
223 err = vmlfb_alloc_vram_area(va, order, 0);
225 if (err)
226 break;
228 if (i == 0) {
229 vinfo->vram_start = va->phys;
230 vinfo->vram_logical = (void __iomem *) va->logical;
231 vinfo->vram_contig_size = va->size;
232 vinfo->num_areas = 1;
233 } else {
234 contiguous = 0;
236 for (j = 0; j < i; ++j) {
237 va2 = &vinfo->vram[j];
238 if (va->phys + va->size == va2->phys ||
239 va2->phys + va2->size == va->phys) {
240 contiguous = 1;
241 break;
245 if (contiguous) {
246 vinfo->num_areas++;
247 if (va->phys < vinfo->vram_start) {
248 vinfo->vram_start = va->phys;
249 vinfo->vram_logical =
250 (void __iomem *)va->logical;
252 vinfo->vram_contig_size += va->size;
253 } else {
254 vmlfb_free_vram_area(va);
255 break;
259 if (requested < va->size)
260 break;
261 else
262 requested -= va->size;
265 if (vinfo->vram_contig_size > min_total &&
266 vinfo->vram_contig_size > min_contig) {
268 printk(KERN_DEBUG MODULE_NAME
269 ": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
270 (unsigned long)vinfo->vram_contig_size,
271 (unsigned long)vinfo->vram_start);
273 return 0;
276 printk(KERN_ERR MODULE_NAME
277 ": Could not allocate requested minimal amount of vram.\n");
279 vmlfb_free_vram(vinfo);
281 return -ENOMEM;
285 * Find the GPU to use with our display controller.
288 static int vmlfb_get_gpu(struct vml_par *par)
290 mutex_lock(&vml_mutex);
292 par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
294 if (!par->gpu) {
295 mutex_unlock(&vml_mutex);
296 return -ENODEV;
299 mutex_unlock(&vml_mutex);
301 if (pci_enable_device(par->gpu) < 0)
302 return -ENODEV;
304 return 0;
308 * Find a contiguous vram area that contains a given offset from vram start.
310 static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
312 unsigned long aoffset;
313 unsigned i;
315 for (i = 0; i < vinfo->num_areas; ++i) {
316 aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
318 if (aoffset < vinfo->vram[i].size) {
319 return 0;
323 return -EINVAL;
327 * Remap the MMIO register spaces of the VDC and the GPU.
330 static int vmlfb_enable_mmio(struct vml_par *par)
332 int err;
334 par->vdc_mem_base = pci_resource_start(par->vdc, 0);
335 par->vdc_mem_size = pci_resource_len(par->vdc, 0);
336 if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
337 printk(KERN_ERR MODULE_NAME
338 ": Could not claim display controller MMIO.\n");
339 return -EBUSY;
341 par->vdc_mem = ioremap_nocache(par->vdc_mem_base, par->vdc_mem_size);
342 if (par->vdc_mem == NULL) {
343 printk(KERN_ERR MODULE_NAME
344 ": Could not map display controller MMIO.\n");
345 err = -ENOMEM;
346 goto out_err_0;
349 par->gpu_mem_base = pci_resource_start(par->gpu, 0);
350 par->gpu_mem_size = pci_resource_len(par->gpu, 0);
351 if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
352 printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
353 err = -EBUSY;
354 goto out_err_1;
356 par->gpu_mem = ioremap_nocache(par->gpu_mem_base, par->gpu_mem_size);
357 if (par->gpu_mem == NULL) {
358 printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
359 err = -ENOMEM;
360 goto out_err_2;
363 return 0;
365 out_err_2:
366 release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
367 out_err_1:
368 iounmap(par->vdc_mem);
369 out_err_0:
370 release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
371 return err;
375 * Unmap the VDC and GPU register spaces.
378 static void vmlfb_disable_mmio(struct vml_par *par)
380 iounmap(par->gpu_mem);
381 release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
382 iounmap(par->vdc_mem);
383 release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
387 * Release and uninit the VDC and GPU.
390 static void vmlfb_release_devices(struct vml_par *par)
392 if (atomic_dec_and_test(&par->refcount)) {
393 pci_set_drvdata(par->vdc, NULL);
394 pci_disable_device(par->gpu);
395 pci_disable_device(par->vdc);
400 * Free up allocated resources for a device.
403 static void __devexit vml_pci_remove(struct pci_dev *dev)
405 struct fb_info *info;
406 struct vml_info *vinfo;
407 struct vml_par *par;
409 info = pci_get_drvdata(dev);
410 if (info) {
411 vinfo = container_of(info, struct vml_info, info);
412 par = vinfo->par;
413 mutex_lock(&vml_mutex);
414 unregister_framebuffer(info);
415 fb_dealloc_cmap(&info->cmap);
416 vmlfb_free_vram(vinfo);
417 vmlfb_disable_mmio(par);
418 vmlfb_release_devices(par);
419 kfree(vinfo);
420 kfree(par);
421 mutex_unlock(&vml_mutex);
425 static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
427 switch (var->bits_per_pixel) {
428 case 16:
429 var->blue.offset = 0;
430 var->blue.length = 5;
431 var->green.offset = 5;
432 var->green.length = 5;
433 var->red.offset = 10;
434 var->red.length = 5;
435 var->transp.offset = 15;
436 var->transp.length = 1;
437 break;
438 case 32:
439 var->blue.offset = 0;
440 var->blue.length = 8;
441 var->green.offset = 8;
442 var->green.length = 8;
443 var->red.offset = 16;
444 var->red.length = 8;
445 var->transp.offset = 24;
446 var->transp.length = 0;
447 break;
448 default:
449 break;
452 var->blue.msb_right = var->green.msb_right =
453 var->red.msb_right = var->transp.msb_right = 0;
457 * Device initialization.
458 * We initialize one vml_par struct per device and one vml_info
459 * struct per pipe. Currently we have only one pipe.
462 static int __devinit vml_pci_probe(struct pci_dev *dev,
463 const struct pci_device_id *id)
465 struct vml_info *vinfo;
466 struct fb_info *info;
467 struct vml_par *par;
468 int err = 0;
470 par = kzalloc(sizeof(*par), GFP_KERNEL);
471 if (par == NULL)
472 return -ENOMEM;
474 vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
475 if (vinfo == NULL) {
476 err = -ENOMEM;
477 goto out_err_0;
480 vinfo->par = par;
481 par->vdc = dev;
482 atomic_set(&par->refcount, 1);
484 switch (id->device) {
485 case VML_DEVICE_VDC:
486 if ((err = vmlfb_get_gpu(par)))
487 goto out_err_1;
488 pci_set_drvdata(dev, &vinfo->info);
489 break;
490 default:
491 err = -ENODEV;
492 goto out_err_1;
493 break;
496 info = &vinfo->info;
497 info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
499 err = vmlfb_enable_mmio(par);
500 if (err)
501 goto out_err_2;
503 err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
504 vml_mem_contig, vml_mem_min);
505 if (err)
506 goto out_err_3;
508 strcpy(info->fix.id, "Vermilion Range");
509 info->fix.mmio_start = 0;
510 info->fix.mmio_len = 0;
511 info->fix.smem_start = vinfo->vram_start;
512 info->fix.smem_len = vinfo->vram_contig_size;
513 info->fix.type = FB_TYPE_PACKED_PIXELS;
514 info->fix.visual = FB_VISUAL_TRUECOLOR;
515 info->fix.ypanstep = 1;
516 info->fix.xpanstep = 1;
517 info->fix.ywrapstep = 0;
518 info->fix.accel = FB_ACCEL_NONE;
519 info->screen_base = vinfo->vram_logical;
520 info->pseudo_palette = vinfo->pseudo_palette;
521 info->par = par;
522 info->fbops = &vmlfb_ops;
523 info->device = &dev->dev;
525 INIT_LIST_HEAD(&vinfo->head);
526 vinfo->pipe_disabled = 1;
527 vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
529 info->var.grayscale = 0;
530 info->var.bits_per_pixel = 16;
531 vmlfb_set_pref_pixel_format(&info->var);
533 if (!fb_find_mode
534 (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
535 printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
538 if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
539 err = -ENOMEM;
540 goto out_err_4;
543 err = register_framebuffer(info);
544 if (err) {
545 printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
546 goto out_err_5;
549 printk("Initialized vmlfb\n");
551 return 0;
553 out_err_5:
554 fb_dealloc_cmap(&info->cmap);
555 out_err_4:
556 vmlfb_free_vram(vinfo);
557 out_err_3:
558 vmlfb_disable_mmio(par);
559 out_err_2:
560 vmlfb_release_devices(par);
561 out_err_1:
562 kfree(vinfo);
563 out_err_0:
564 kfree(par);
565 return err;
568 static int vmlfb_open(struct fb_info *info, int user)
571 * Save registers here?
573 return 0;
576 static int vmlfb_release(struct fb_info *info, int user)
579 * Restore registers here.
582 return 0;
585 static int vml_nearest_clock(int clock)
588 int i;
589 int cur_index;
590 int cur_diff;
591 int diff;
593 cur_index = 0;
594 cur_diff = clock - vml_clocks[0];
595 cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
596 for (i = 1; i < vml_num_clocks; ++i) {
597 diff = clock - vml_clocks[i];
598 diff = (diff < 0) ? -diff : diff;
599 if (diff < cur_diff) {
600 cur_index = i;
601 cur_diff = diff;
604 return vml_clocks[cur_index];
607 static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
608 struct vml_info *vinfo)
610 u32 pitch;
611 u64 mem;
612 int nearest_clock;
613 int clock;
614 int clock_diff;
615 struct fb_var_screeninfo v;
617 v = *var;
618 clock = PICOS2KHZ(var->pixclock);
620 if (subsys && subsys->nearest_clock) {
621 nearest_clock = subsys->nearest_clock(subsys, clock);
622 } else {
623 nearest_clock = vml_nearest_clock(clock);
627 * Accept a 20% diff.
630 clock_diff = nearest_clock - clock;
631 clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
632 if (clock_diff > clock / 5) {
633 #if 0
634 printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
635 #endif
636 return -EINVAL;
639 v.pixclock = KHZ2PICOS(nearest_clock);
641 if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
642 printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
643 return -EINVAL;
645 if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
646 printk(KERN_DEBUG MODULE_NAME
647 ": Virtual resolution failure.\n");
648 return -EINVAL;
650 switch (v.bits_per_pixel) {
651 case 0 ... 16:
652 v.bits_per_pixel = 16;
653 break;
654 case 17 ... 32:
655 v.bits_per_pixel = 32;
656 break;
657 default:
658 printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
659 var->bits_per_pixel);
660 return -EINVAL;
663 pitch = __ALIGN_MASK((var->xres * var->bits_per_pixel) >> 3, 0x3F);
664 mem = pitch * var->yres_virtual;
665 if (mem > vinfo->vram_contig_size) {
666 return -ENOMEM;
669 switch (v.bits_per_pixel) {
670 case 16:
671 if (var->blue.offset != 0 ||
672 var->blue.length != 5 ||
673 var->green.offset != 5 ||
674 var->green.length != 5 ||
675 var->red.offset != 10 ||
676 var->red.length != 5 ||
677 var->transp.offset != 15 || var->transp.length != 1) {
678 vmlfb_set_pref_pixel_format(&v);
680 break;
681 case 32:
682 if (var->blue.offset != 0 ||
683 var->blue.length != 8 ||
684 var->green.offset != 8 ||
685 var->green.length != 8 ||
686 var->red.offset != 16 ||
687 var->red.length != 8 ||
688 (var->transp.length != 0 && var->transp.length != 8) ||
689 (var->transp.length == 8 && var->transp.offset != 24)) {
690 vmlfb_set_pref_pixel_format(&v);
692 break;
693 default:
694 return -EINVAL;
697 *var = v;
699 return 0;
702 static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
704 struct vml_info *vinfo = container_of(info, struct vml_info, info);
705 int ret;
707 mutex_lock(&vml_mutex);
708 ret = vmlfb_check_var_locked(var, vinfo);
709 mutex_unlock(&vml_mutex);
711 return ret;
714 static void vml_wait_vblank(struct vml_info *vinfo)
716 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
717 mdelay(20);
720 static void vmlfb_disable_pipe(struct vml_info *vinfo)
722 struct vml_par *par = vinfo->par;
724 /* Disable the MDVO pad */
725 VML_WRITE32(par, VML_RCOMPSTAT, 0);
726 while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
728 /* Disable display planes */
729 VML_WRITE32(par, VML_DSPCCNTR,
730 VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
731 (void)VML_READ32(par, VML_DSPCCNTR);
732 /* Wait for vblank for the disable to take effect */
733 vml_wait_vblank(vinfo);
735 /* Next, disable display pipes */
736 VML_WRITE32(par, VML_PIPEACONF, 0);
737 (void)VML_READ32(par, VML_PIPEACONF);
739 vinfo->pipe_disabled = 1;
742 #ifdef VERMILION_DEBUG
743 static void vml_dump_regs(struct vml_info *vinfo)
745 struct vml_par *par = vinfo->par;
747 printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
748 printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A : 0x%08x\n",
749 (unsigned)VML_READ32(par, VML_HTOTAL_A));
750 printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A : 0x%08x\n",
751 (unsigned)VML_READ32(par, VML_HBLANK_A));
752 printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A : 0x%08x\n",
753 (unsigned)VML_READ32(par, VML_HSYNC_A));
754 printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A : 0x%08x\n",
755 (unsigned)VML_READ32(par, VML_VTOTAL_A));
756 printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A : 0x%08x\n",
757 (unsigned)VML_READ32(par, VML_VBLANK_A));
758 printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A : 0x%08x\n",
759 (unsigned)VML_READ32(par, VML_VSYNC_A));
760 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE : 0x%08x\n",
761 (unsigned)VML_READ32(par, VML_DSPCSTRIDE));
762 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE : 0x%08x\n",
763 (unsigned)VML_READ32(par, VML_DSPCSIZE));
764 printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS : 0x%08x\n",
765 (unsigned)VML_READ32(par, VML_DSPCPOS));
766 printk(KERN_DEBUG MODULE_NAME ": \tDSPARB : 0x%08x\n",
767 (unsigned)VML_READ32(par, VML_DSPARB));
768 printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR : 0x%08x\n",
769 (unsigned)VML_READ32(par, VML_DSPCADDR));
770 printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A : 0x%08x\n",
771 (unsigned)VML_READ32(par, VML_BCLRPAT_A));
772 printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A : 0x%08x\n",
773 (unsigned)VML_READ32(par, VML_CANVSCLR_A));
774 printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC : 0x%08x\n",
775 (unsigned)VML_READ32(par, VML_PIPEASRC));
776 printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF : 0x%08x\n",
777 (unsigned)VML_READ32(par, VML_PIPEACONF));
778 printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR : 0x%08x\n",
779 (unsigned)VML_READ32(par, VML_DSPCCNTR));
780 printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT : 0x%08x\n",
781 (unsigned)VML_READ32(par, VML_RCOMPSTAT));
782 printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
784 #endif
786 static int vmlfb_set_par_locked(struct vml_info *vinfo)
788 struct vml_par *par = vinfo->par;
789 struct fb_info *info = &vinfo->info;
790 struct fb_var_screeninfo *var = &info->var;
791 u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
792 u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
793 u32 dspcntr;
794 int clock;
796 vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
797 vinfo->stride =
798 __ALIGN_MASK(var->xres_virtual * vinfo->bytes_per_pixel, 0x3F);
799 info->fix.line_length = vinfo->stride;
801 if (!subsys)
802 return 0;
804 htotal =
805 var->xres + var->right_margin + var->hsync_len + var->left_margin;
806 hactive = var->xres;
807 hblank_start = var->xres;
808 hblank_end = htotal;
809 hsync_start = hactive + var->right_margin;
810 hsync_end = hsync_start + var->hsync_len;
812 vtotal =
813 var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
814 vactive = var->yres;
815 vblank_start = var->yres;
816 vblank_end = vtotal;
817 vsync_start = vactive + var->lower_margin;
818 vsync_end = vsync_start + var->vsync_len;
820 dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
821 clock = PICOS2KHZ(var->pixclock);
823 if (subsys->nearest_clock) {
824 clock = subsys->nearest_clock(subsys, clock);
825 } else {
826 clock = vml_nearest_clock(clock);
828 printk(KERN_DEBUG MODULE_NAME
829 ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
830 ((clock / htotal) * 1000) / vtotal);
832 switch (var->bits_per_pixel) {
833 case 16:
834 dspcntr |= VML_GFX_ARGB1555;
835 break;
836 case 32:
837 if (var->transp.length == 8)
838 dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
839 else
840 dspcntr |= VML_GFX_RGB0888;
841 break;
842 default:
843 return -EINVAL;
846 vmlfb_disable_pipe(vinfo);
847 mb();
849 if (subsys->set_clock)
850 subsys->set_clock(subsys, clock);
851 else
852 return -EINVAL;
854 VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
855 VML_WRITE32(par, VML_HBLANK_A,
856 ((hblank_end - 1) << 16) | (hblank_start - 1));
857 VML_WRITE32(par, VML_HSYNC_A,
858 ((hsync_end - 1) << 16) | (hsync_start - 1));
859 VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
860 VML_WRITE32(par, VML_VBLANK_A,
861 ((vblank_end - 1) << 16) | (vblank_start - 1));
862 VML_WRITE32(par, VML_VSYNC_A,
863 ((vsync_end - 1) << 16) | (vsync_start - 1));
864 VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
865 VML_WRITE32(par, VML_DSPCSIZE,
866 ((var->yres - 1) << 16) | (var->xres - 1));
867 VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
868 VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
869 VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
870 VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
871 VML_WRITE32(par, VML_PIPEASRC,
872 ((var->xres - 1) << 16) | (var->yres - 1));
874 wmb();
875 VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
876 wmb();
877 VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
878 wmb();
879 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
880 var->yoffset * vinfo->stride +
881 var->xoffset * vinfo->bytes_per_pixel);
883 VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
885 while (!(VML_READ32(par, VML_RCOMPSTAT) &
886 (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
888 vinfo->pipe_disabled = 0;
889 #ifdef VERMILION_DEBUG
890 vml_dump_regs(vinfo);
891 #endif
893 return 0;
896 static int vmlfb_set_par(struct fb_info *info)
898 struct vml_info *vinfo = container_of(info, struct vml_info, info);
899 int ret;
901 mutex_lock(&vml_mutex);
902 list_del(&vinfo->head);
903 list_add(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
904 ret = vmlfb_set_par_locked(vinfo);
906 mutex_unlock(&vml_mutex);
907 return ret;
910 static int vmlfb_blank_locked(struct vml_info *vinfo)
912 struct vml_par *par = vinfo->par;
913 u32 cur = VML_READ32(par, VML_PIPEACONF);
915 switch (vinfo->cur_blank_mode) {
916 case FB_BLANK_UNBLANK:
917 if (vinfo->pipe_disabled) {
918 vmlfb_set_par_locked(vinfo);
920 VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
921 (void)VML_READ32(par, VML_PIPEACONF);
922 break;
923 case FB_BLANK_NORMAL:
924 if (vinfo->pipe_disabled) {
925 vmlfb_set_par_locked(vinfo);
927 VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
928 (void)VML_READ32(par, VML_PIPEACONF);
929 break;
930 case FB_BLANK_VSYNC_SUSPEND:
931 case FB_BLANK_HSYNC_SUSPEND:
932 if (!vinfo->pipe_disabled) {
933 vmlfb_disable_pipe(vinfo);
935 break;
936 case FB_BLANK_POWERDOWN:
937 if (!vinfo->pipe_disabled) {
938 vmlfb_disable_pipe(vinfo);
940 break;
941 default:
942 return -EINVAL;
945 return 0;
948 static int vmlfb_blank(int blank_mode, struct fb_info *info)
950 struct vml_info *vinfo = container_of(info, struct vml_info, info);
951 int ret;
953 mutex_lock(&vml_mutex);
954 vinfo->cur_blank_mode = blank_mode;
955 ret = vmlfb_blank_locked(vinfo);
956 mutex_unlock(&vml_mutex);
957 return ret;
960 static int vmlfb_pan_display(struct fb_var_screeninfo *var,
961 struct fb_info *info)
963 struct vml_info *vinfo = container_of(info, struct vml_info, info);
964 struct vml_par *par = vinfo->par;
966 mutex_lock(&vml_mutex);
967 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
968 var->yoffset * vinfo->stride +
969 var->xoffset * vinfo->bytes_per_pixel);
970 (void)VML_READ32(par, VML_DSPCADDR);
971 mutex_unlock(&vml_mutex);
973 return 0;
976 static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
977 u_int transp, struct fb_info *info)
979 u32 v;
981 if (regno >= 16)
982 return -EINVAL;
984 if (info->var.grayscale) {
985 red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
988 if (info->fix.visual != FB_VISUAL_TRUECOLOR)
989 return -EINVAL;
991 red = VML_TOHW(red, info->var.red.length);
992 blue = VML_TOHW(blue, info->var.blue.length);
993 green = VML_TOHW(green, info->var.green.length);
994 transp = VML_TOHW(transp, info->var.transp.length);
996 v = (red << info->var.red.offset) |
997 (green << info->var.green.offset) |
998 (blue << info->var.blue.offset) |
999 (transp << info->var.transp.offset);
1001 switch (info->var.bits_per_pixel) {
1002 case 16:
1003 ((u32 *) info->pseudo_palette)[regno] = v;
1004 break;
1005 case 24:
1006 case 32:
1007 ((u32 *) info->pseudo_palette)[regno] = v;
1008 break;
1010 return 0;
1013 static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
1015 struct vml_info *vinfo = container_of(info, struct vml_info, info);
1016 unsigned long size = vma->vm_end - vma->vm_start;
1017 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1018 int ret;
1020 if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
1021 return -EINVAL;
1022 if (offset + size > vinfo->vram_contig_size)
1023 return -EINVAL;
1024 ret = vmlfb_vram_offset(vinfo, offset);
1025 if (ret)
1026 return -EINVAL;
1027 offset += vinfo->vram_start;
1028 pgprot_val(vma->vm_page_prot) |= _PAGE_PCD;
1029 pgprot_val(vma->vm_page_prot) &= ~_PAGE_PWT;
1030 vma->vm_flags |= VM_RESERVED | VM_IO;
1031 if (remap_pfn_range(vma, vma->vm_start, offset >> PAGE_SHIFT,
1032 size, vma->vm_page_prot))
1033 return -EAGAIN;
1034 return 0;
1037 static int vmlfb_sync(struct fb_info *info)
1039 return 0;
1042 static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1044 return -EINVAL; /* just to force soft_cursor() call */
1047 static struct fb_ops vmlfb_ops = {
1048 .owner = THIS_MODULE,
1049 .fb_open = vmlfb_open,
1050 .fb_release = vmlfb_release,
1051 .fb_check_var = vmlfb_check_var,
1052 .fb_set_par = vmlfb_set_par,
1053 .fb_blank = vmlfb_blank,
1054 .fb_pan_display = vmlfb_pan_display,
1055 .fb_fillrect = cfb_fillrect,
1056 .fb_copyarea = cfb_copyarea,
1057 .fb_imageblit = cfb_imageblit,
1058 .fb_cursor = vmlfb_cursor,
1059 .fb_sync = vmlfb_sync,
1060 .fb_mmap = vmlfb_mmap,
1061 .fb_setcolreg = vmlfb_setcolreg
1064 static struct pci_device_id vml_ids[] = {
1065 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
1069 static struct pci_driver vmlfb_pci_driver = {
1070 .name = "vmlfb",
1071 .id_table = vml_ids,
1072 .probe = vml_pci_probe,
1073 .remove = __devexit_p(vml_pci_remove)
1076 static void __exit vmlfb_cleanup(void)
1078 pci_unregister_driver(&vmlfb_pci_driver);
1081 static int __init vmlfb_init(void)
1084 #ifndef MODULE
1085 char *option = NULL;
1087 if (fb_get_options(MODULE_NAME, &option))
1088 return -ENODEV;
1089 #endif
1091 printk(KERN_DEBUG MODULE_NAME ": initializing\n");
1092 mutex_init(&vml_mutex);
1093 INIT_LIST_HEAD(&global_no_mode);
1094 INIT_LIST_HEAD(&global_has_mode);
1096 return pci_register_driver(&vmlfb_pci_driver);
1099 int vmlfb_register_subsys(struct vml_sys *sys)
1101 struct vml_info *entry;
1102 struct list_head *list;
1103 u32 save_activate;
1105 mutex_lock(&vml_mutex);
1106 if (subsys != NULL) {
1107 subsys->restore(subsys);
1109 subsys = sys;
1110 subsys->save(subsys);
1113 * We need to restart list traversal for each item, since we
1114 * release the list mutex in the loop.
1117 list = global_no_mode.next;
1118 while (list != &global_no_mode) {
1119 list_del_init(list);
1120 entry = list_entry(list, struct vml_info, head);
1123 * First, try the current mode which might not be
1124 * completely validated with respect to the pixel clock.
1127 if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
1128 vmlfb_set_par_locked(entry);
1129 list_add_tail(list, &global_has_mode);
1130 } else {
1133 * Didn't work. Try to find another mode,
1134 * that matches this subsys.
1137 mutex_unlock(&vml_mutex);
1138 save_activate = entry->info.var.activate;
1139 entry->info.var.bits_per_pixel = 16;
1140 vmlfb_set_pref_pixel_format(&entry->info.var);
1141 if (fb_find_mode(&entry->info.var,
1142 &entry->info,
1143 vml_default_mode, NULL, 0, NULL, 16)) {
1144 entry->info.var.activate |=
1145 FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
1146 fb_set_var(&entry->info, &entry->info.var);
1147 } else {
1148 printk(KERN_ERR MODULE_NAME
1149 ": Sorry. no mode found for this subsys.\n");
1151 entry->info.var.activate = save_activate;
1152 mutex_lock(&vml_mutex);
1154 vmlfb_blank_locked(entry);
1155 list = global_no_mode.next;
1157 mutex_unlock(&vml_mutex);
1159 printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
1160 subsys->name ? subsys->name : "unknown");
1161 return 0;
1164 EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
1166 void vmlfb_unregister_subsys(struct vml_sys *sys)
1168 struct vml_info *entry, *next;
1170 mutex_lock(&vml_mutex);
1171 if (subsys != sys) {
1172 mutex_unlock(&vml_mutex);
1173 return;
1175 subsys->restore(subsys);
1176 subsys = NULL;
1177 list_for_each_entry_safe(entry, next, &global_has_mode, head) {
1178 printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
1179 vmlfb_disable_pipe(entry);
1180 list_del(&entry->head);
1181 list_add_tail(&entry->head, &global_no_mode);
1183 mutex_unlock(&vml_mutex);
1186 EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
1188 module_init(vmlfb_init);
1189 module_exit(vmlfb_cleanup);
1191 MODULE_AUTHOR("Tungsten Graphics");
1192 MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
1193 MODULE_VERSION("1.0.0");
1194 MODULE_LICENSE("GPL");