4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
59 #include <linux/kmod.h>
63 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
64 int suid_dumpable
= 0;
66 EXPORT_SYMBOL(suid_dumpable
);
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static LIST_HEAD(formats
);
70 static DEFINE_RWLOCK(binfmt_lock
);
72 int register_binfmt(struct linux_binfmt
* fmt
)
76 write_lock(&binfmt_lock
);
77 list_add(&fmt
->lh
, &formats
);
78 write_unlock(&binfmt_lock
);
82 EXPORT_SYMBOL(register_binfmt
);
84 void unregister_binfmt(struct linux_binfmt
* fmt
)
86 write_lock(&binfmt_lock
);
88 write_unlock(&binfmt_lock
);
91 EXPORT_SYMBOL(unregister_binfmt
);
93 static inline void put_binfmt(struct linux_binfmt
* fmt
)
95 module_put(fmt
->module
);
99 * Note that a shared library must be both readable and executable due to
102 * Also note that we take the address to load from from the file itself.
104 asmlinkage
long sys_uselib(const char __user
* library
)
110 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
115 if (nd
.mnt
->mnt_flags
& MNT_NOEXEC
)
118 if (!S_ISREG(nd
.dentry
->d_inode
->i_mode
))
121 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
125 file
= nameidata_to_filp(&nd
, O_RDONLY
);
126 error
= PTR_ERR(file
);
132 struct linux_binfmt
* fmt
;
134 read_lock(&binfmt_lock
);
135 list_for_each_entry(fmt
, &formats
, lh
) {
136 if (!fmt
->load_shlib
)
138 if (!try_module_get(fmt
->module
))
140 read_unlock(&binfmt_lock
);
141 error
= fmt
->load_shlib(file
);
142 read_lock(&binfmt_lock
);
144 if (error
!= -ENOEXEC
)
147 read_unlock(&binfmt_lock
);
153 release_open_intent(&nd
);
160 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
166 #ifdef CONFIG_STACK_GROWSUP
168 ret
= expand_stack_downwards(bprm
->vma
, pos
);
173 ret
= get_user_pages(current
, bprm
->mm
, pos
,
174 1, write
, 1, &page
, NULL
);
179 struct rlimit
*rlim
= current
->signal
->rlim
;
180 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
183 * Limit to 1/4-th the stack size for the argv+env strings.
185 * - the remaining binfmt code will not run out of stack space,
186 * - the program will have a reasonable amount of stack left
189 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
198 static void put_arg_page(struct page
*page
)
203 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
207 static void free_arg_pages(struct linux_binprm
*bprm
)
211 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
214 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
217 static int __bprm_mm_init(struct linux_binprm
*bprm
)
220 struct vm_area_struct
*vma
= NULL
;
221 struct mm_struct
*mm
= bprm
->mm
;
223 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
227 down_write(&mm
->mmap_sem
);
231 * Place the stack at the largest stack address the architecture
232 * supports. Later, we'll move this to an appropriate place. We don't
233 * use STACK_TOP because that can depend on attributes which aren't
236 vma
->vm_end
= STACK_TOP_MAX
;
237 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
239 vma
->vm_flags
= VM_STACK_FLAGS
;
240 vma
->vm_page_prot
= protection_map
[vma
->vm_flags
& 0x7];
241 err
= insert_vm_struct(mm
, vma
);
243 up_write(&mm
->mmap_sem
);
247 mm
->stack_vm
= mm
->total_vm
= 1;
248 up_write(&mm
->mmap_sem
);
250 bprm
->p
= vma
->vm_end
- sizeof(void *);
257 kmem_cache_free(vm_area_cachep
, vma
);
263 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
265 return len
<= MAX_ARG_STRLEN
;
270 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
275 page
= bprm
->page
[pos
/ PAGE_SIZE
];
276 if (!page
&& write
) {
277 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
280 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
286 static void put_arg_page(struct page
*page
)
290 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
293 __free_page(bprm
->page
[i
]);
294 bprm
->page
[i
] = NULL
;
298 static void free_arg_pages(struct linux_binprm
*bprm
)
302 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
303 free_arg_page(bprm
, i
);
306 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
311 static int __bprm_mm_init(struct linux_binprm
*bprm
)
313 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
317 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
319 return len
<= bprm
->p
;
322 #endif /* CONFIG_MMU */
325 * Create a new mm_struct and populate it with a temporary stack
326 * vm_area_struct. We don't have enough context at this point to set the stack
327 * flags, permissions, and offset, so we use temporary values. We'll update
328 * them later in setup_arg_pages().
330 int bprm_mm_init(struct linux_binprm
*bprm
)
333 struct mm_struct
*mm
= NULL
;
335 bprm
->mm
= mm
= mm_alloc();
340 err
= init_new_context(current
, mm
);
344 err
= __bprm_mm_init(bprm
);
360 * count() counts the number of strings in array ARGV.
362 static int count(char __user
* __user
* argv
, int max
)
370 if (get_user(p
, argv
))
384 * 'copy_strings()' copies argument/environment strings from the old
385 * processes's memory to the new process's stack. The call to get_user_pages()
386 * ensures the destination page is created and not swapped out.
388 static int copy_strings(int argc
, char __user
* __user
* argv
,
389 struct linux_binprm
*bprm
)
391 struct page
*kmapped_page
= NULL
;
393 unsigned long kpos
= 0;
401 if (get_user(str
, argv
+argc
) ||
402 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
407 if (!valid_arg_len(bprm
, len
)) {
412 /* We're going to work our way backwords. */
418 int offset
, bytes_to_copy
;
420 offset
= pos
% PAGE_SIZE
;
424 bytes_to_copy
= offset
;
425 if (bytes_to_copy
> len
)
428 offset
-= bytes_to_copy
;
429 pos
-= bytes_to_copy
;
430 str
-= bytes_to_copy
;
431 len
-= bytes_to_copy
;
433 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
436 page
= get_arg_page(bprm
, pos
, 1);
443 flush_kernel_dcache_page(kmapped_page
);
444 kunmap(kmapped_page
);
445 put_arg_page(kmapped_page
);
448 kaddr
= kmap(kmapped_page
);
449 kpos
= pos
& PAGE_MASK
;
450 flush_arg_page(bprm
, kpos
, kmapped_page
);
452 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
461 flush_kernel_dcache_page(kmapped_page
);
462 kunmap(kmapped_page
);
463 put_arg_page(kmapped_page
);
469 * Like copy_strings, but get argv and its values from kernel memory.
471 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
474 mm_segment_t oldfs
= get_fs();
476 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
480 EXPORT_SYMBOL(copy_strings_kernel
);
485 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
486 * the binfmt code determines where the new stack should reside, we shift it to
487 * its final location. The process proceeds as follows:
489 * 1) Use shift to calculate the new vma endpoints.
490 * 2) Extend vma to cover both the old and new ranges. This ensures the
491 * arguments passed to subsequent functions are consistent.
492 * 3) Move vma's page tables to the new range.
493 * 4) Free up any cleared pgd range.
494 * 5) Shrink the vma to cover only the new range.
496 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
498 struct mm_struct
*mm
= vma
->vm_mm
;
499 unsigned long old_start
= vma
->vm_start
;
500 unsigned long old_end
= vma
->vm_end
;
501 unsigned long length
= old_end
- old_start
;
502 unsigned long new_start
= old_start
- shift
;
503 unsigned long new_end
= old_end
- shift
;
504 struct mmu_gather
*tlb
;
506 BUG_ON(new_start
> new_end
);
509 * ensure there are no vmas between where we want to go
512 if (vma
!= find_vma(mm
, new_start
))
516 * cover the whole range: [new_start, old_end)
518 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
521 * move the page tables downwards, on failure we rely on
522 * process cleanup to remove whatever mess we made.
524 if (length
!= move_page_tables(vma
, old_start
,
525 vma
, new_start
, length
))
529 tlb
= tlb_gather_mmu(mm
, 0);
530 if (new_end
> old_start
) {
532 * when the old and new regions overlap clear from new_end.
534 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
535 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
538 * otherwise, clean from old_start; this is done to not touch
539 * the address space in [new_end, old_start) some architectures
540 * have constraints on va-space that make this illegal (IA64) -
541 * for the others its just a little faster.
543 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
544 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
546 tlb_finish_mmu(tlb
, new_end
, old_end
);
549 * shrink the vma to just the new range.
551 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
556 #define EXTRA_STACK_VM_PAGES 20 /* random */
559 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
560 * the stack is optionally relocated, and some extra space is added.
562 int setup_arg_pages(struct linux_binprm
*bprm
,
563 unsigned long stack_top
,
564 int executable_stack
)
567 unsigned long stack_shift
;
568 struct mm_struct
*mm
= current
->mm
;
569 struct vm_area_struct
*vma
= bprm
->vma
;
570 struct vm_area_struct
*prev
= NULL
;
571 unsigned long vm_flags
;
572 unsigned long stack_base
;
574 #ifdef CONFIG_STACK_GROWSUP
575 /* Limit stack size to 1GB */
576 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
577 if (stack_base
> (1 << 30))
578 stack_base
= 1 << 30;
580 /* Make sure we didn't let the argument array grow too large. */
581 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
584 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
586 stack_shift
= vma
->vm_start
- stack_base
;
587 mm
->arg_start
= bprm
->p
- stack_shift
;
588 bprm
->p
= vma
->vm_end
- stack_shift
;
590 stack_top
= arch_align_stack(stack_top
);
591 stack_top
= PAGE_ALIGN(stack_top
);
592 stack_shift
= vma
->vm_end
- stack_top
;
594 bprm
->p
-= stack_shift
;
595 mm
->arg_start
= bprm
->p
;
599 bprm
->loader
-= stack_shift
;
600 bprm
->exec
-= stack_shift
;
602 down_write(&mm
->mmap_sem
);
603 vm_flags
= vma
->vm_flags
;
606 * Adjust stack execute permissions; explicitly enable for
607 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
608 * (arch default) otherwise.
610 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
612 else if (executable_stack
== EXSTACK_DISABLE_X
)
613 vm_flags
&= ~VM_EXEC
;
614 vm_flags
|= mm
->def_flags
;
616 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
622 /* Move stack pages down in memory. */
624 ret
= shift_arg_pages(vma
, stack_shift
);
626 up_write(&mm
->mmap_sem
);
631 #ifdef CONFIG_STACK_GROWSUP
632 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
634 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
636 ret
= expand_stack(vma
, stack_base
);
641 up_write(&mm
->mmap_sem
);
644 EXPORT_SYMBOL(setup_arg_pages
);
646 #endif /* CONFIG_MMU */
648 struct file
*open_exec(const char *name
)
654 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
658 struct inode
*inode
= nd
.dentry
->d_inode
;
659 file
= ERR_PTR(-EACCES
);
660 if (!(nd
.mnt
->mnt_flags
& MNT_NOEXEC
) &&
661 S_ISREG(inode
->i_mode
)) {
662 int err
= vfs_permission(&nd
, MAY_EXEC
);
665 file
= nameidata_to_filp(&nd
, O_RDONLY
);
667 err
= deny_write_access(file
);
677 release_open_intent(&nd
);
683 EXPORT_SYMBOL(open_exec
);
685 int kernel_read(struct file
*file
, unsigned long offset
,
686 char *addr
, unsigned long count
)
694 /* The cast to a user pointer is valid due to the set_fs() */
695 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
700 EXPORT_SYMBOL(kernel_read
);
702 static int exec_mmap(struct mm_struct
*mm
)
704 struct task_struct
*tsk
;
705 struct mm_struct
* old_mm
, *active_mm
;
707 /* Notify parent that we're no longer interested in the old VM */
709 old_mm
= current
->mm
;
710 mm_release(tsk
, old_mm
);
714 * Make sure that if there is a core dump in progress
715 * for the old mm, we get out and die instead of going
716 * through with the exec. We must hold mmap_sem around
717 * checking core_waiters and changing tsk->mm. The
718 * core-inducing thread will increment core_waiters for
719 * each thread whose ->mm == old_mm.
721 down_read(&old_mm
->mmap_sem
);
722 if (unlikely(old_mm
->core_waiters
)) {
723 up_read(&old_mm
->mmap_sem
);
728 active_mm
= tsk
->active_mm
;
731 activate_mm(active_mm
, mm
);
733 arch_pick_mmap_layout(mm
);
735 up_read(&old_mm
->mmap_sem
);
736 BUG_ON(active_mm
!= old_mm
);
745 * This function makes sure the current process has its own signal table,
746 * so that flush_signal_handlers can later reset the handlers without
747 * disturbing other processes. (Other processes might share the signal
748 * table via the CLONE_SIGHAND option to clone().)
750 static int de_thread(struct task_struct
*tsk
)
752 struct signal_struct
*sig
= tsk
->signal
;
753 struct sighand_struct
*newsighand
, *oldsighand
= tsk
->sighand
;
754 spinlock_t
*lock
= &oldsighand
->siglock
;
755 struct task_struct
*leader
= NULL
;
759 * If we don't share sighandlers, then we aren't sharing anything
760 * and we can just re-use it all.
762 if (atomic_read(&oldsighand
->count
) <= 1) {
767 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
771 if (thread_group_empty(tsk
))
772 goto no_thread_group
;
775 * Kill all other threads in the thread group.
776 * We must hold tasklist_lock to call zap_other_threads.
778 read_lock(&tasklist_lock
);
780 if (sig
->flags
& SIGNAL_GROUP_EXIT
) {
782 * Another group action in progress, just
783 * return so that the signal is processed.
785 spin_unlock_irq(lock
);
786 read_unlock(&tasklist_lock
);
787 kmem_cache_free(sighand_cachep
, newsighand
);
792 * child_reaper ignores SIGKILL, change it now.
793 * Reparenting needs write_lock on tasklist_lock,
794 * so it is safe to do it under read_lock.
796 if (unlikely(tsk
->group_leader
== child_reaper(tsk
)))
797 tsk
->nsproxy
->pid_ns
->child_reaper
= tsk
;
799 zap_other_threads(tsk
);
800 read_unlock(&tasklist_lock
);
803 * Account for the thread group leader hanging around:
806 if (!thread_group_leader(tsk
)) {
809 * The SIGALRM timer survives the exec, but needs to point
810 * at us as the new group leader now. We have a race with
811 * a timer firing now getting the old leader, so we need to
812 * synchronize with any firing (by calling del_timer_sync)
813 * before we can safely let the old group leader die.
816 spin_unlock_irq(lock
);
817 if (hrtimer_cancel(&sig
->real_timer
))
818 hrtimer_restart(&sig
->real_timer
);
821 while (atomic_read(&sig
->count
) > count
) {
822 sig
->group_exit_task
= tsk
;
823 sig
->notify_count
= count
;
824 __set_current_state(TASK_UNINTERRUPTIBLE
);
825 spin_unlock_irq(lock
);
829 sig
->group_exit_task
= NULL
;
830 sig
->notify_count
= 0;
831 spin_unlock_irq(lock
);
834 * At this point all other threads have exited, all we have to
835 * do is to wait for the thread group leader to become inactive,
836 * and to assume its PID:
838 if (!thread_group_leader(tsk
)) {
840 * Wait for the thread group leader to be a zombie.
841 * It should already be zombie at this point, most
844 leader
= tsk
->group_leader
;
845 while (leader
->exit_state
!= EXIT_ZOMBIE
)
849 * The only record we have of the real-time age of a
850 * process, regardless of execs it's done, is start_time.
851 * All the past CPU time is accumulated in signal_struct
852 * from sister threads now dead. But in this non-leader
853 * exec, nothing survives from the original leader thread,
854 * whose birth marks the true age of this process now.
855 * When we take on its identity by switching to its PID, we
856 * also take its birthdate (always earlier than our own).
858 tsk
->start_time
= leader
->start_time
;
860 write_lock_irq(&tasklist_lock
);
862 BUG_ON(leader
->tgid
!= tsk
->tgid
);
863 BUG_ON(tsk
->pid
== tsk
->tgid
);
865 * An exec() starts a new thread group with the
866 * TGID of the previous thread group. Rehash the
867 * two threads with a switched PID, and release
868 * the former thread group leader:
871 /* Become a process group leader with the old leader's pid.
872 * The old leader becomes a thread of the this thread group.
873 * Note: The old leader also uses this pid until release_task
874 * is called. Odd but simple and correct.
876 detach_pid(tsk
, PIDTYPE_PID
);
877 tsk
->pid
= leader
->pid
;
878 attach_pid(tsk
, PIDTYPE_PID
, find_pid(tsk
->pid
));
879 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
880 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
881 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
883 tsk
->group_leader
= tsk
;
884 leader
->group_leader
= tsk
;
886 tsk
->exit_signal
= SIGCHLD
;
888 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
889 leader
->exit_state
= EXIT_DEAD
;
891 write_unlock_irq(&tasklist_lock
);
895 * There may be one thread left which is just exiting,
896 * but it's safe to stop telling the group to kill themselves.
903 release_task(leader
);
905 if (atomic_read(&oldsighand
->count
) == 1) {
907 * Now that we nuked the rest of the thread group,
908 * it turns out we are not sharing sighand any more either.
909 * So we can just keep it.
911 kmem_cache_free(sighand_cachep
, newsighand
);
914 * Move our state over to newsighand and switch it in.
916 atomic_set(&newsighand
->count
, 1);
917 memcpy(newsighand
->action
, oldsighand
->action
,
918 sizeof(newsighand
->action
));
920 write_lock_irq(&tasklist_lock
);
921 spin_lock(&oldsighand
->siglock
);
922 spin_lock_nested(&newsighand
->siglock
, SINGLE_DEPTH_NESTING
);
924 rcu_assign_pointer(tsk
->sighand
, newsighand
);
927 spin_unlock(&newsighand
->siglock
);
928 spin_unlock(&oldsighand
->siglock
);
929 write_unlock_irq(&tasklist_lock
);
931 __cleanup_sighand(oldsighand
);
934 BUG_ON(!thread_group_leader(tsk
));
939 * These functions flushes out all traces of the currently running executable
940 * so that a new one can be started
943 static void flush_old_files(struct files_struct
* files
)
948 spin_lock(&files
->file_lock
);
950 unsigned long set
, i
;
954 fdt
= files_fdtable(files
);
955 if (i
>= fdt
->max_fds
)
957 set
= fdt
->close_on_exec
->fds_bits
[j
];
960 fdt
->close_on_exec
->fds_bits
[j
] = 0;
961 spin_unlock(&files
->file_lock
);
962 for ( ; set
; i
++,set
>>= 1) {
967 spin_lock(&files
->file_lock
);
970 spin_unlock(&files
->file_lock
);
973 void get_task_comm(char *buf
, struct task_struct
*tsk
)
975 /* buf must be at least sizeof(tsk->comm) in size */
977 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
981 void set_task_comm(struct task_struct
*tsk
, char *buf
)
984 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
988 int flush_old_exec(struct linux_binprm
* bprm
)
992 struct files_struct
*files
;
993 char tcomm
[sizeof(current
->comm
)];
996 * Make sure we have a private signal table and that
997 * we are unassociated from the previous thread group.
999 retval
= de_thread(current
);
1004 * Make sure we have private file handles. Ask the
1005 * fork helper to do the work for us and the exit
1006 * helper to do the cleanup of the old one.
1008 files
= current
->files
; /* refcounted so safe to hold */
1009 retval
= unshare_files();
1013 * Release all of the old mmap stuff
1015 retval
= exec_mmap(bprm
->mm
);
1019 bprm
->mm
= NULL
; /* We're using it now */
1021 /* This is the point of no return */
1022 put_files_struct(files
);
1024 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1026 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
1027 set_dumpable(current
->mm
, 1);
1029 set_dumpable(current
->mm
, suid_dumpable
);
1031 name
= bprm
->filename
;
1033 /* Copies the binary name from after last slash */
1034 for (i
=0; (ch
= *(name
++)) != '\0';) {
1036 i
= 0; /* overwrite what we wrote */
1038 if (i
< (sizeof(tcomm
) - 1))
1042 set_task_comm(current
, tcomm
);
1044 current
->flags
&= ~PF_RANDOMIZE
;
1047 /* Set the new mm task size. We have to do that late because it may
1048 * depend on TIF_32BIT which is only updated in flush_thread() on
1049 * some architectures like powerpc
1051 current
->mm
->task_size
= TASK_SIZE
;
1053 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
) {
1055 set_dumpable(current
->mm
, suid_dumpable
);
1056 current
->pdeath_signal
= 0;
1057 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1058 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
1060 set_dumpable(current
->mm
, suid_dumpable
);
1063 /* An exec changes our domain. We are no longer part of the thread
1066 current
->self_exec_id
++;
1068 flush_signal_handlers(current
, 0);
1069 flush_old_files(current
->files
);
1074 reset_files_struct(current
, files
);
1079 EXPORT_SYMBOL(flush_old_exec
);
1082 * Fill the binprm structure from the inode.
1083 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1085 int prepare_binprm(struct linux_binprm
*bprm
)
1088 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1091 mode
= inode
->i_mode
;
1092 if (bprm
->file
->f_op
== NULL
)
1095 bprm
->e_uid
= current
->euid
;
1096 bprm
->e_gid
= current
->egid
;
1098 if(!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1100 if (mode
& S_ISUID
) {
1101 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1102 bprm
->e_uid
= inode
->i_uid
;
1107 * If setgid is set but no group execute bit then this
1108 * is a candidate for mandatory locking, not a setgid
1111 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1112 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1113 bprm
->e_gid
= inode
->i_gid
;
1117 /* fill in binprm security blob */
1118 retval
= security_bprm_set(bprm
);
1122 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
1123 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
1126 EXPORT_SYMBOL(prepare_binprm
);
1128 static int unsafe_exec(struct task_struct
*p
)
1131 if (p
->ptrace
& PT_PTRACED
) {
1132 if (p
->ptrace
& PT_PTRACE_CAP
)
1133 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1135 unsafe
|= LSM_UNSAFE_PTRACE
;
1137 if (atomic_read(&p
->fs
->count
) > 1 ||
1138 atomic_read(&p
->files
->count
) > 1 ||
1139 atomic_read(&p
->sighand
->count
) > 1)
1140 unsafe
|= LSM_UNSAFE_SHARE
;
1145 void compute_creds(struct linux_binprm
*bprm
)
1149 if (bprm
->e_uid
!= current
->uid
) {
1151 current
->pdeath_signal
= 0;
1156 unsafe
= unsafe_exec(current
);
1157 security_bprm_apply_creds(bprm
, unsafe
);
1158 task_unlock(current
);
1159 security_bprm_post_apply_creds(bprm
);
1161 EXPORT_SYMBOL(compute_creds
);
1164 * Arguments are '\0' separated strings found at the location bprm->p
1165 * points to; chop off the first by relocating brpm->p to right after
1166 * the first '\0' encountered.
1168 int remove_arg_zero(struct linux_binprm
*bprm
)
1171 unsigned long offset
;
1179 offset
= bprm
->p
& ~PAGE_MASK
;
1180 page
= get_arg_page(bprm
, bprm
->p
, 0);
1185 kaddr
= kmap_atomic(page
, KM_USER0
);
1187 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1188 offset
++, bprm
->p
++)
1191 kunmap_atomic(kaddr
, KM_USER0
);
1194 if (offset
== PAGE_SIZE
)
1195 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1196 } while (offset
== PAGE_SIZE
);
1205 EXPORT_SYMBOL(remove_arg_zero
);
1208 * cycle the list of binary formats handler, until one recognizes the image
1210 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1213 struct linux_binfmt
*fmt
;
1215 /* handle /sbin/loader.. */
1217 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1219 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1220 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1223 unsigned long loader
;
1225 allow_write_access(bprm
->file
);
1229 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1231 file
= open_exec("/sbin/loader");
1232 retval
= PTR_ERR(file
);
1236 /* Remember if the application is TASO. */
1237 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1240 bprm
->loader
= loader
;
1241 retval
= prepare_binprm(bprm
);
1244 /* should call search_binary_handler recursively here,
1245 but it does not matter */
1249 retval
= security_bprm_check(bprm
);
1253 /* kernel module loader fixup */
1254 /* so we don't try to load run modprobe in kernel space. */
1257 retval
= audit_bprm(bprm
);
1262 for (try=0; try<2; try++) {
1263 read_lock(&binfmt_lock
);
1264 list_for_each_entry(fmt
, &formats
, lh
) {
1265 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1268 if (!try_module_get(fmt
->module
))
1270 read_unlock(&binfmt_lock
);
1271 retval
= fn(bprm
, regs
);
1274 allow_write_access(bprm
->file
);
1278 current
->did_exec
= 1;
1279 proc_exec_connector(current
);
1282 read_lock(&binfmt_lock
);
1284 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1287 read_unlock(&binfmt_lock
);
1291 read_unlock(&binfmt_lock
);
1292 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1296 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1297 if (printable(bprm
->buf
[0]) &&
1298 printable(bprm
->buf
[1]) &&
1299 printable(bprm
->buf
[2]) &&
1300 printable(bprm
->buf
[3]))
1301 break; /* -ENOEXEC */
1302 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1309 EXPORT_SYMBOL(search_binary_handler
);
1312 * sys_execve() executes a new program.
1314 int do_execve(char * filename
,
1315 char __user
*__user
*argv
,
1316 char __user
*__user
*envp
,
1317 struct pt_regs
* regs
)
1319 struct linux_binprm
*bprm
;
1321 unsigned long env_p
;
1325 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1329 file
= open_exec(filename
);
1330 retval
= PTR_ERR(file
);
1337 bprm
->filename
= filename
;
1338 bprm
->interp
= filename
;
1340 retval
= bprm_mm_init(bprm
);
1344 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1345 if ((retval
= bprm
->argc
) < 0)
1348 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1349 if ((retval
= bprm
->envc
) < 0)
1352 retval
= security_bprm_alloc(bprm
);
1356 retval
= prepare_binprm(bprm
);
1360 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1364 bprm
->exec
= bprm
->p
;
1365 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1370 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1373 bprm
->argv_len
= env_p
- bprm
->p
;
1375 retval
= search_binary_handler(bprm
,regs
);
1377 /* execve success */
1378 free_arg_pages(bprm
);
1379 security_bprm_free(bprm
);
1380 acct_update_integrals(current
);
1386 free_arg_pages(bprm
);
1388 security_bprm_free(bprm
);
1396 allow_write_access(bprm
->file
);
1406 int set_binfmt(struct linux_binfmt
*new)
1408 struct linux_binfmt
*old
= current
->binfmt
;
1411 if (!try_module_get(new->module
))
1414 current
->binfmt
= new;
1416 module_put(old
->module
);
1420 EXPORT_SYMBOL(set_binfmt
);
1422 /* format_corename will inspect the pattern parameter, and output a
1423 * name into corename, which must have space for at least
1424 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1426 static int format_corename(char *corename
, const char *pattern
, long signr
)
1428 const char *pat_ptr
= pattern
;
1429 char *out_ptr
= corename
;
1430 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1432 int pid_in_pattern
= 0;
1435 if (*pattern
== '|')
1438 /* Repeat as long as we have more pattern to process and more output
1441 if (*pat_ptr
!= '%') {
1442 if (out_ptr
== out_end
)
1444 *out_ptr
++ = *pat_ptr
++;
1446 switch (*++pat_ptr
) {
1449 /* Double percent, output one percent */
1451 if (out_ptr
== out_end
)
1458 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1459 "%d", current
->tgid
);
1460 if (rc
> out_end
- out_ptr
)
1466 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1467 "%d", current
->uid
);
1468 if (rc
> out_end
- out_ptr
)
1474 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1475 "%d", current
->gid
);
1476 if (rc
> out_end
- out_ptr
)
1480 /* signal that caused the coredump */
1482 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1484 if (rc
> out_end
- out_ptr
)
1488 /* UNIX time of coredump */
1491 do_gettimeofday(&tv
);
1492 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1494 if (rc
> out_end
- out_ptr
)
1501 down_read(&uts_sem
);
1502 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1503 "%s", utsname()->nodename
);
1505 if (rc
> out_end
- out_ptr
)
1511 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1512 "%s", current
->comm
);
1513 if (rc
> out_end
- out_ptr
)
1523 /* Backward compatibility with core_uses_pid:
1525 * If core_pattern does not include a %p (as is the default)
1526 * and core_uses_pid is set, then .%pid will be appended to
1527 * the filename. Do not do this for piped commands. */
1528 if (!ispipe
&& !pid_in_pattern
1529 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1530 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1531 ".%d", current
->tgid
);
1532 if (rc
> out_end
- out_ptr
)
1541 static void zap_process(struct task_struct
*start
)
1543 struct task_struct
*t
;
1545 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1546 start
->signal
->group_stop_count
= 0;
1550 if (t
!= current
&& t
->mm
) {
1551 t
->mm
->core_waiters
++;
1552 sigaddset(&t
->pending
.signal
, SIGKILL
);
1553 signal_wake_up(t
, 1);
1555 } while ((t
= next_thread(t
)) != start
);
1558 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1561 struct task_struct
*g
, *p
;
1562 unsigned long flags
;
1565 spin_lock_irq(&tsk
->sighand
->siglock
);
1566 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)) {
1567 tsk
->signal
->group_exit_code
= exit_code
;
1571 spin_unlock_irq(&tsk
->sighand
->siglock
);
1575 if (atomic_read(&mm
->mm_users
) == mm
->core_waiters
+ 1)
1579 for_each_process(g
) {
1580 if (g
== tsk
->group_leader
)
1588 * p->sighand can't disappear, but
1589 * may be changed by de_thread()
1591 lock_task_sighand(p
, &flags
);
1593 unlock_task_sighand(p
, &flags
);
1597 } while ((p
= next_thread(p
)) != g
);
1601 return mm
->core_waiters
;
1604 static int coredump_wait(int exit_code
)
1606 struct task_struct
*tsk
= current
;
1607 struct mm_struct
*mm
= tsk
->mm
;
1608 struct completion startup_done
;
1609 struct completion
*vfork_done
;
1612 init_completion(&mm
->core_done
);
1613 init_completion(&startup_done
);
1614 mm
->core_startup_done
= &startup_done
;
1616 core_waiters
= zap_threads(tsk
, mm
, exit_code
);
1617 up_write(&mm
->mmap_sem
);
1619 if (unlikely(core_waiters
< 0))
1623 * Make sure nobody is waiting for us to release the VM,
1624 * otherwise we can deadlock when we wait on each other
1626 vfork_done
= tsk
->vfork_done
;
1628 tsk
->vfork_done
= NULL
;
1629 complete(vfork_done
);
1633 wait_for_completion(&startup_done
);
1635 BUG_ON(mm
->core_waiters
);
1636 return core_waiters
;
1640 * set_dumpable converts traditional three-value dumpable to two flags and
1641 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1642 * these bits are not changed atomically. So get_dumpable can observe the
1643 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1644 * return either old dumpable or new one by paying attention to the order of
1645 * modifying the bits.
1647 * dumpable | mm->flags (binary)
1648 * old new | initial interim final
1649 * ---------+-----------------------
1657 * (*) get_dumpable regards interim value of 10 as 11.
1659 void set_dumpable(struct mm_struct
*mm
, int value
)
1663 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1665 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1668 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1670 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1673 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1675 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1679 EXPORT_SYMBOL_GPL(set_dumpable
);
1681 int get_dumpable(struct mm_struct
*mm
)
1685 ret
= mm
->flags
& 0x3;
1686 return (ret
>= 2) ? 2 : ret
;
1689 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1691 char corename
[CORENAME_MAX_SIZE
+ 1];
1692 struct mm_struct
*mm
= current
->mm
;
1693 struct linux_binfmt
* binfmt
;
1694 struct inode
* inode
;
1697 int fsuid
= current
->fsuid
;
1701 audit_core_dumps(signr
);
1703 binfmt
= current
->binfmt
;
1704 if (!binfmt
|| !binfmt
->core_dump
)
1706 down_write(&mm
->mmap_sem
);
1707 if (!get_dumpable(mm
)) {
1708 up_write(&mm
->mmap_sem
);
1713 * We cannot trust fsuid as being the "true" uid of the
1714 * process nor do we know its entire history. We only know it
1715 * was tainted so we dump it as root in mode 2.
1717 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1718 flag
= O_EXCL
; /* Stop rewrite attacks */
1719 current
->fsuid
= 0; /* Dump root private */
1721 set_dumpable(mm
, 0);
1723 retval
= coredump_wait(exit_code
);
1728 * Clear any false indication of pending signals that might
1729 * be seen by the filesystem code called to write the core file.
1731 clear_thread_flag(TIF_SIGPENDING
);
1733 if (current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
< binfmt
->min_coredump
)
1737 * lock_kernel() because format_corename() is controlled by sysctl, which
1738 * uses lock_kernel()
1741 ispipe
= format_corename(corename
, core_pattern
, signr
);
1744 /* SIGPIPE can happen, but it's just never processed */
1745 if(call_usermodehelper_pipe(corename
+1, NULL
, NULL
, &file
)) {
1746 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1751 file
= filp_open(corename
,
1752 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1756 inode
= file
->f_path
.dentry
->d_inode
;
1757 if (inode
->i_nlink
> 1)
1758 goto close_fail
; /* multiple links - don't dump */
1759 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1762 /* AK: actually i see no reason to not allow this for named pipes etc.,
1763 but keep the previous behaviour for now. */
1764 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1768 if (!file
->f_op
->write
)
1770 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1773 retval
= binfmt
->core_dump(signr
, regs
, file
);
1776 current
->signal
->group_exit_code
|= 0x80;
1778 filp_close(file
, NULL
);
1780 current
->fsuid
= fsuid
;
1781 complete_all(&mm
->core_done
);