4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
39 #include "delegation.h"
42 /* #define NFS_DEBUG_VERBOSE 1 */
44 static int nfs_opendir(struct inode
*, struct file
*);
45 static int nfs_readdir(struct file
*, void *, filldir_t
);
46 static struct dentry
*nfs_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
47 static int nfs_create(struct inode
*, struct dentry
*, int, struct nameidata
*);
48 static int nfs_mkdir(struct inode
*, struct dentry
*, int);
49 static int nfs_rmdir(struct inode
*, struct dentry
*);
50 static int nfs_unlink(struct inode
*, struct dentry
*);
51 static int nfs_symlink(struct inode
*, struct dentry
*, const char *);
52 static int nfs_link(struct dentry
*, struct inode
*, struct dentry
*);
53 static int nfs_mknod(struct inode
*, struct dentry
*, int, dev_t
);
54 static int nfs_rename(struct inode
*, struct dentry
*,
55 struct inode
*, struct dentry
*);
56 static int nfs_fsync_dir(struct file
*, struct dentry
*, int);
57 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
59 const struct file_operations nfs_dir_operations
= {
60 .llseek
= nfs_llseek_dir
,
61 .read
= generic_read_dir
,
62 .readdir
= nfs_readdir
,
64 .release
= nfs_release
,
65 .fsync
= nfs_fsync_dir
,
68 const struct inode_operations nfs_dir_inode_operations
= {
73 .symlink
= nfs_symlink
,
78 .permission
= nfs_permission
,
79 .getattr
= nfs_getattr
,
80 .setattr
= nfs_setattr
,
84 const struct inode_operations nfs3_dir_inode_operations
= {
89 .symlink
= nfs_symlink
,
94 .permission
= nfs_permission
,
95 .getattr
= nfs_getattr
,
96 .setattr
= nfs_setattr
,
97 .listxattr
= nfs3_listxattr
,
98 .getxattr
= nfs3_getxattr
,
99 .setxattr
= nfs3_setxattr
,
100 .removexattr
= nfs3_removexattr
,
102 #endif /* CONFIG_NFS_V3 */
106 static struct dentry
*nfs_atomic_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
107 const struct inode_operations nfs4_dir_inode_operations
= {
108 .create
= nfs_create
,
109 .lookup
= nfs_atomic_lookup
,
111 .unlink
= nfs_unlink
,
112 .symlink
= nfs_symlink
,
116 .rename
= nfs_rename
,
117 .permission
= nfs_permission
,
118 .getattr
= nfs_getattr
,
119 .setattr
= nfs_setattr
,
120 .getxattr
= nfs4_getxattr
,
121 .setxattr
= nfs4_setxattr
,
122 .listxattr
= nfs4_listxattr
,
125 #endif /* CONFIG_NFS_V4 */
131 nfs_opendir(struct inode
*inode
, struct file
*filp
)
135 dfprintk(VFS
, "NFS: opendir(%s/%ld)\n",
136 inode
->i_sb
->s_id
, inode
->i_ino
);
139 /* Call generic open code in order to cache credentials */
140 res
= nfs_open(inode
, filp
);
145 typedef __be32
* (*decode_dirent_t
)(__be32
*, struct nfs_entry
*, int);
149 unsigned long page_index
;
152 loff_t current_index
;
153 struct nfs_entry
*entry
;
154 decode_dirent_t decode
;
157 unsigned long timestamp
;
159 } nfs_readdir_descriptor_t
;
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
174 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
*page
)
176 struct file
*file
= desc
->file
;
177 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
178 struct rpc_cred
*cred
= nfs_file_cred(file
);
179 unsigned long timestamp
;
182 dfprintk(DIRCACHE
, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__
, (long long)desc
->entry
->cookie
,
188 error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, desc
->entry
->cookie
, page
,
189 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error
== -ENOTSUPP
&& desc
->plus
) {
193 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
194 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_FLAGS(inode
));
200 desc
->timestamp
= timestamp
;
201 desc
->timestamp_valid
= 1;
202 SetPageUptodate(page
);
203 /* Ensure consistent page alignment of the data.
204 * Note: assumes we have exclusive access to this mapping either
205 * through inode->i_mutex or some other mechanism.
207 if (page
->index
== 0 && invalidate_inode_pages2_range(inode
->i_mapping
, PAGE_CACHE_SIZE
, -1) < 0) {
208 /* Should never happen */
209 nfs_zap_mapping(inode
, inode
->i_mapping
);
220 int dir_decode(nfs_readdir_descriptor_t
*desc
)
222 __be32
*p
= desc
->ptr
;
223 p
= desc
->decode(p
, desc
->entry
, desc
->plus
);
227 if (desc
->timestamp_valid
)
228 desc
->entry
->fattr
->time_start
= desc
->timestamp
;
230 desc
->entry
->fattr
->valid
&= ~NFS_ATTR_FATTR
;
235 void dir_page_release(nfs_readdir_descriptor_t
*desc
)
238 page_cache_release(desc
->page
);
244 * Given a pointer to a buffer that has already been filled by a call
245 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
247 * If the end of the buffer has been reached, return -EAGAIN, if not,
248 * return the offset within the buffer of the next entry to be
252 int find_dirent(nfs_readdir_descriptor_t
*desc
)
254 struct nfs_entry
*entry
= desc
->entry
;
258 while((status
= dir_decode(desc
)) == 0) {
259 dfprintk(DIRCACHE
, "NFS: %s: examining cookie %Lu\n",
260 __FUNCTION__
, (unsigned long long)entry
->cookie
);
261 if (entry
->prev_cookie
== *desc
->dir_cookie
)
263 if (loop_count
++ > 200) {
272 * Given a pointer to a buffer that has already been filled by a call
273 * to readdir, find the entry at offset 'desc->file->f_pos'.
275 * If the end of the buffer has been reached, return -EAGAIN, if not,
276 * return the offset within the buffer of the next entry to be
280 int find_dirent_index(nfs_readdir_descriptor_t
*desc
)
282 struct nfs_entry
*entry
= desc
->entry
;
287 status
= dir_decode(desc
);
291 dfprintk(DIRCACHE
, "NFS: found cookie %Lu at index %Ld\n",
292 (unsigned long long)entry
->cookie
, desc
->current_index
);
294 if (desc
->file
->f_pos
== desc
->current_index
) {
295 *desc
->dir_cookie
= entry
->cookie
;
298 desc
->current_index
++;
299 if (loop_count
++ > 200) {
308 * Find the given page, and call find_dirent() or find_dirent_index in
309 * order to try to return the next entry.
312 int find_dirent_page(nfs_readdir_descriptor_t
*desc
)
314 struct inode
*inode
= desc
->file
->f_path
.dentry
->d_inode
;
318 dfprintk(DIRCACHE
, "NFS: %s: searching page %ld for target %Lu\n",
319 __FUNCTION__
, desc
->page_index
,
320 (long long) *desc
->dir_cookie
);
322 /* If we find the page in the page_cache, we cannot be sure
323 * how fresh the data is, so we will ignore readdir_plus attributes.
325 desc
->timestamp_valid
= 0;
326 page
= read_cache_page(inode
->i_mapping
, desc
->page_index
,
327 (filler_t
*)nfs_readdir_filler
, desc
);
329 status
= PTR_ERR(page
);
333 /* NOTE: Someone else may have changed the READDIRPLUS flag */
335 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
336 if (*desc
->dir_cookie
!= 0)
337 status
= find_dirent(desc
);
339 status
= find_dirent_index(desc
);
341 dir_page_release(desc
);
343 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, status
);
348 * Recurse through the page cache pages, and return a
349 * filled nfs_entry structure of the next directory entry if possible.
351 * The target for the search is '*desc->dir_cookie' if non-0,
352 * 'desc->file->f_pos' otherwise
355 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
360 /* Always search-by-index from the beginning of the cache */
361 if (*desc
->dir_cookie
== 0) {
362 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 (long long)desc
->file
->f_pos
);
364 desc
->page_index
= 0;
365 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
366 desc
->entry
->eof
= 0;
367 desc
->current_index
= 0;
369 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 (unsigned long long)*desc
->dir_cookie
);
373 res
= find_dirent_page(desc
);
376 /* Align to beginning of next page */
378 if (loop_count
++ > 200) {
384 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, res
);
388 static inline unsigned int dt_type(struct inode
*inode
)
390 return (inode
->i_mode
>> 12) & 15;
393 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
);
396 * Once we've found the start of the dirent within a page: fill 'er up...
399 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
402 struct file
*file
= desc
->file
;
403 struct nfs_entry
*entry
= desc
->entry
;
404 struct dentry
*dentry
= NULL
;
409 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 (unsigned long long)entry
->cookie
);
413 unsigned d_type
= DT_UNKNOWN
;
414 /* Note: entry->prev_cookie contains the cookie for
415 * retrieving the current dirent on the server */
418 /* Get a dentry if we have one */
421 dentry
= nfs_readdir_lookup(desc
);
423 /* Use readdirplus info */
424 if (dentry
!= NULL
&& dentry
->d_inode
!= NULL
) {
425 d_type
= dt_type(dentry
->d_inode
);
426 fileid
= NFS_FILEID(dentry
->d_inode
);
429 res
= filldir(dirent
, entry
->name
, entry
->len
,
430 file
->f_pos
, nfs_compat_user_ino64(fileid
),
435 *desc
->dir_cookie
= entry
->cookie
;
436 if (dir_decode(desc
) != 0) {
440 if (loop_count
++ > 200) {
445 dir_page_release(desc
);
448 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
449 (unsigned long long)*desc
->dir_cookie
, res
);
454 * If we cannot find a cookie in our cache, we suspect that this is
455 * because it points to a deleted file, so we ask the server to return
456 * whatever it thinks is the next entry. We then feed this to filldir.
457 * If all goes well, we should then be able to find our way round the
458 * cache on the next call to readdir_search_pagecache();
460 * NOTE: we cannot add the anonymous page to the pagecache because
461 * the data it contains might not be page aligned. Besides,
462 * we should already have a complete representation of the
463 * directory in the page cache by the time we get here.
466 int uncached_readdir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
469 struct file
*file
= desc
->file
;
470 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
471 struct rpc_cred
*cred
= nfs_file_cred(file
);
472 struct page
*page
= NULL
;
474 unsigned long timestamp
;
476 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
477 (unsigned long long)*desc
->dir_cookie
);
479 page
= alloc_page(GFP_HIGHUSER
);
485 desc
->error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, *desc
->dir_cookie
,
487 NFS_SERVER(inode
)->dtsize
,
490 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
491 if (desc
->error
>= 0) {
492 desc
->timestamp
= timestamp
;
493 desc
->timestamp_valid
= 1;
494 if ((status
= dir_decode(desc
)) == 0)
495 desc
->entry
->prev_cookie
= *desc
->dir_cookie
;
501 status
= nfs_do_filldir(desc
, dirent
, filldir
);
503 /* Reset read descriptor so it searches the page cache from
504 * the start upon the next call to readdir_search_pagecache() */
505 desc
->page_index
= 0;
506 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
507 desc
->entry
->eof
= 0;
509 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
510 __FUNCTION__
, status
);
513 dir_page_release(desc
);
517 /* The file offset position represents the dirent entry number. A
518 last cookie cache takes care of the common case of reading the
521 static int nfs_readdir(struct file
*filp
, void *dirent
, filldir_t filldir
)
523 struct dentry
*dentry
= filp
->f_path
.dentry
;
524 struct inode
*inode
= dentry
->d_inode
;
525 nfs_readdir_descriptor_t my_desc
,
527 struct nfs_entry my_entry
;
529 struct nfs_fattr fattr
;
532 dfprintk(VFS
, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
533 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
534 (long long)filp
->f_pos
);
535 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
539 res
= nfs_revalidate_mapping_nolock(inode
, filp
->f_mapping
);
546 * filp->f_pos points to the dirent entry number.
547 * *desc->dir_cookie has the cookie for the next entry. We have
548 * to either find the entry with the appropriate number or
549 * revalidate the cookie.
551 memset(desc
, 0, sizeof(*desc
));
554 desc
->dir_cookie
= &nfs_file_open_context(filp
)->dir_cookie
;
555 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
556 desc
->plus
= NFS_USE_READDIRPLUS(inode
);
558 my_entry
.cookie
= my_entry
.prev_cookie
= 0;
561 my_entry
.fattr
= &fattr
;
562 nfs_fattr_init(&fattr
);
563 desc
->entry
= &my_entry
;
565 while(!desc
->entry
->eof
) {
566 res
= readdir_search_pagecache(desc
);
568 if (res
== -EBADCOOKIE
) {
569 /* This means either end of directory */
570 if (*desc
->dir_cookie
&& desc
->entry
->cookie
!= *desc
->dir_cookie
) {
571 /* Or that the server has 'lost' a cookie */
572 res
= uncached_readdir(desc
, dirent
, filldir
);
579 if (res
== -ETOOSMALL
&& desc
->plus
) {
580 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_FLAGS(inode
));
581 nfs_zap_caches(inode
);
583 desc
->entry
->eof
= 0;
589 res
= nfs_do_filldir(desc
, dirent
, filldir
);
598 dfprintk(VFS
, "NFS: readdir(%s/%s) returns %ld\n",
599 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
604 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int origin
)
606 mutex_lock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
609 offset
+= filp
->f_pos
;
617 if (offset
!= filp
->f_pos
) {
618 filp
->f_pos
= offset
;
619 nfs_file_open_context(filp
)->dir_cookie
= 0;
622 mutex_unlock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
627 * All directory operations under NFS are synchronous, so fsync()
628 * is a dummy operation.
630 static int nfs_fsync_dir(struct file
*filp
, struct dentry
*dentry
, int datasync
)
632 dfprintk(VFS
, "NFS: fsync_dir(%s/%s) datasync %d\n",
633 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
640 * A check for whether or not the parent directory has changed.
641 * In the case it has, we assume that the dentries are untrustworthy
642 * and may need to be looked up again.
644 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
)
648 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
650 /* Revalidate nfsi->cache_change_attribute before we declare a match */
651 if (nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
653 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
659 * Return the intent data that applies to this particular path component
661 * Note that the current set of intents only apply to the very last
662 * component of the path.
663 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
665 static inline unsigned int nfs_lookup_check_intent(struct nameidata
*nd
, unsigned int mask
)
667 if (nd
->flags
& (LOOKUP_CONTINUE
|LOOKUP_PARENT
))
669 return nd
->flags
& mask
;
673 * Use intent information to check whether or not we're going to do
674 * an O_EXCL create using this path component.
676 static int nfs_is_exclusive_create(struct inode
*dir
, struct nameidata
*nd
)
678 if (NFS_PROTO(dir
)->version
== 2)
680 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) == 0)
682 return (nd
->intent
.open
.flags
& O_EXCL
) != 0;
686 * Inode and filehandle revalidation for lookups.
688 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
689 * or if the intent information indicates that we're about to open this
690 * particular file and the "nocto" mount flag is not set.
694 int nfs_lookup_verify_inode(struct inode
*inode
, struct nameidata
*nd
)
696 struct nfs_server
*server
= NFS_SERVER(inode
);
699 /* VFS wants an on-the-wire revalidation */
700 if (nd
->flags
& LOOKUP_REVAL
)
702 /* This is an open(2) */
703 if (nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) != 0 &&
704 !(server
->flags
& NFS_MOUNT_NOCTO
) &&
705 (S_ISREG(inode
->i_mode
) ||
706 S_ISDIR(inode
->i_mode
)))
710 return nfs_revalidate_inode(server
, inode
);
712 return __nfs_revalidate_inode(server
, inode
);
716 * We judge how long we want to trust negative
717 * dentries by looking at the parent inode mtime.
719 * If parent mtime has changed, we revalidate, else we wait for a
720 * period corresponding to the parent's attribute cache timeout value.
723 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
724 struct nameidata
*nd
)
726 /* Don't revalidate a negative dentry if we're creating a new file */
727 if (nd
!= NULL
&& nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) != 0)
729 return !nfs_check_verifier(dir
, dentry
);
733 * This is called every time the dcache has a lookup hit,
734 * and we should check whether we can really trust that
737 * NOTE! The hit can be a negative hit too, don't assume
740 * If the parent directory is seen to have changed, we throw out the
741 * cached dentry and do a new lookup.
743 static int nfs_lookup_revalidate(struct dentry
* dentry
, struct nameidata
*nd
)
747 struct dentry
*parent
;
749 struct nfs_fh fhandle
;
750 struct nfs_fattr fattr
;
752 parent
= dget_parent(dentry
);
754 dir
= parent
->d_inode
;
755 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
756 inode
= dentry
->d_inode
;
759 if (nfs_neg_need_reval(dir
, dentry
, nd
))
764 if (is_bad_inode(inode
)) {
765 dfprintk(LOOKUPCACHE
, "%s: %s/%s has dud inode\n",
766 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
767 dentry
->d_name
.name
);
771 /* Force a full look up iff the parent directory has changed */
772 if (!nfs_is_exclusive_create(dir
, nd
) && nfs_check_verifier(dir
, dentry
)) {
773 if (nfs_lookup_verify_inode(inode
, nd
))
778 if (NFS_STALE(inode
))
781 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
784 if (nfs_compare_fh(NFS_FH(inode
), &fhandle
))
786 if ((error
= nfs_refresh_inode(inode
, &fattr
)) != 0)
789 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
793 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is valid\n",
794 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
795 dentry
->d_name
.name
);
800 nfs_mark_for_revalidate(dir
);
801 if (inode
&& S_ISDIR(inode
->i_mode
)) {
802 /* Purge readdir caches. */
803 nfs_zap_caches(inode
);
804 /* If we have submounts, don't unhash ! */
805 if (have_submounts(dentry
))
807 shrink_dcache_parent(dentry
);
812 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is invalid\n",
813 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
814 dentry
->d_name
.name
);
819 * This is called from dput() when d_count is going to 0.
821 static int nfs_dentry_delete(struct dentry
*dentry
)
823 dfprintk(VFS
, "NFS: dentry_delete(%s/%s, %x)\n",
824 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
827 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
828 /* Unhash it, so that ->d_iput() would be called */
831 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
832 /* Unhash it, so that ancestors of killed async unlink
833 * files will be cleaned up during umount */
841 * Called when the dentry loses inode.
842 * We use it to clean up silly-renamed files.
844 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
846 nfs_inode_return_delegation(inode
);
847 if (S_ISDIR(inode
->i_mode
))
848 /* drop any readdir cache as it could easily be old */
849 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
851 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
854 nfs_complete_unlink(dentry
, inode
);
860 struct dentry_operations nfs_dentry_operations
= {
861 .d_revalidate
= nfs_lookup_revalidate
,
862 .d_delete
= nfs_dentry_delete
,
863 .d_iput
= nfs_dentry_iput
,
866 static struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, struct nameidata
*nd
)
869 struct inode
*inode
= NULL
;
871 struct nfs_fh fhandle
;
872 struct nfs_fattr fattr
;
874 dfprintk(VFS
, "NFS: lookup(%s/%s)\n",
875 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
876 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
878 res
= ERR_PTR(-ENAMETOOLONG
);
879 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
882 res
= ERR_PTR(-ENOMEM
);
883 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
888 * If we're doing an exclusive create, optimize away the lookup
889 * but don't hash the dentry.
891 if (nfs_is_exclusive_create(dir
, nd
)) {
892 d_instantiate(dentry
, NULL
);
897 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
898 if (error
== -ENOENT
)
901 res
= ERR_PTR(error
);
904 inode
= nfs_fhget(dentry
->d_sb
, &fhandle
, &fattr
);
905 res
= (struct dentry
*)inode
;
910 res
= d_materialise_unique(dentry
, inode
);
916 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
924 static int nfs_open_revalidate(struct dentry
*, struct nameidata
*);
926 struct dentry_operations nfs4_dentry_operations
= {
927 .d_revalidate
= nfs_open_revalidate
,
928 .d_delete
= nfs_dentry_delete
,
929 .d_iput
= nfs_dentry_iput
,
933 * Use intent information to determine whether we need to substitute
934 * the NFSv4-style stateful OPEN for the LOOKUP call
936 static int is_atomic_open(struct inode
*dir
, struct nameidata
*nd
)
938 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) == 0)
940 /* NFS does not (yet) have a stateful open for directories */
941 if (nd
->flags
& LOOKUP_DIRECTORY
)
943 /* Are we trying to write to a read only partition? */
944 if (IS_RDONLY(dir
) && (nd
->intent
.open
.flags
& (O_CREAT
|O_TRUNC
|FMODE_WRITE
)))
949 static struct dentry
*nfs_atomic_lookup(struct inode
*dir
, struct dentry
*dentry
, struct nameidata
*nd
)
951 struct dentry
*res
= NULL
;
954 dfprintk(VFS
, "NFS: atomic_lookup(%s/%ld), %s\n",
955 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
957 /* Check that we are indeed trying to open this file */
958 if (!is_atomic_open(dir
, nd
))
961 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
) {
962 res
= ERR_PTR(-ENAMETOOLONG
);
965 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
967 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
969 if (nd
->intent
.open
.flags
& O_EXCL
) {
970 d_instantiate(dentry
, NULL
);
974 /* Open the file on the server */
976 res
= nfs4_atomic_open(dir
, dentry
, nd
);
979 error
= PTR_ERR(res
);
981 /* Make a negative dentry */
985 /* This turned out not to be a regular file */
990 if (!(nd
->intent
.open
.flags
& O_NOFOLLOW
))
996 } else if (res
!= NULL
)
1001 return nfs_lookup(dir
, dentry
, nd
);
1004 static int nfs_open_revalidate(struct dentry
*dentry
, struct nameidata
*nd
)
1006 struct dentry
*parent
= NULL
;
1007 struct inode
*inode
= dentry
->d_inode
;
1009 int openflags
, ret
= 0;
1011 parent
= dget_parent(dentry
);
1012 dir
= parent
->d_inode
;
1013 if (!is_atomic_open(dir
, nd
))
1015 /* We can't create new files in nfs_open_revalidate(), so we
1016 * optimize away revalidation of negative dentries.
1018 if (inode
== NULL
) {
1019 if (!nfs_neg_need_reval(dir
, dentry
, nd
))
1024 /* NFS only supports OPEN on regular files */
1025 if (!S_ISREG(inode
->i_mode
))
1027 openflags
= nd
->intent
.open
.flags
;
1028 /* We cannot do exclusive creation on a positive dentry */
1029 if ((openflags
& (O_CREAT
|O_EXCL
)) == (O_CREAT
|O_EXCL
))
1031 /* We can't create new files, or truncate existing ones here */
1032 openflags
&= ~(O_CREAT
|O_TRUNC
);
1035 * Note: we're not holding inode->i_mutex and so may be racing with
1036 * operations that change the directory. We therefore save the
1037 * change attribute *before* we do the RPC call.
1040 ret
= nfs4_open_revalidate(dir
, dentry
, openflags
, nd
);
1049 if (inode
!= NULL
&& nfs_have_delegation(inode
, FMODE_READ
))
1051 return nfs_lookup_revalidate(dentry
, nd
);
1053 #endif /* CONFIG_NFSV4 */
1055 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
)
1057 struct dentry
*parent
= desc
->file
->f_path
.dentry
;
1058 struct inode
*dir
= parent
->d_inode
;
1059 struct nfs_entry
*entry
= desc
->entry
;
1060 struct dentry
*dentry
, *alias
;
1061 struct qstr name
= {
1062 .name
= entry
->name
,
1065 struct inode
*inode
;
1066 unsigned long verf
= nfs_save_change_attribute(dir
);
1070 if (name
.name
[0] == '.' && name
.name
[1] == '.')
1071 return dget_parent(parent
);
1074 if (name
.name
[0] == '.')
1075 return dget(parent
);
1078 spin_lock(&dir
->i_lock
);
1079 if (NFS_I(dir
)->cache_validity
& NFS_INO_INVALID_DATA
) {
1080 spin_unlock(&dir
->i_lock
);
1083 spin_unlock(&dir
->i_lock
);
1085 name
.hash
= full_name_hash(name
.name
, name
.len
);
1086 dentry
= d_lookup(parent
, &name
);
1087 if (dentry
!= NULL
) {
1088 /* Is this a positive dentry that matches the readdir info? */
1089 if (dentry
->d_inode
!= NULL
&&
1090 (NFS_FILEID(dentry
->d_inode
) == entry
->ino
||
1091 d_mountpoint(dentry
))) {
1092 if (!desc
->plus
|| entry
->fh
->size
== 0)
1094 if (nfs_compare_fh(NFS_FH(dentry
->d_inode
),
1098 /* No, so d_drop to allow one to be created */
1102 if (!desc
->plus
|| !(entry
->fattr
->valid
& NFS_ATTR_FATTR
))
1104 if (name
.len
> NFS_SERVER(dir
)->namelen
)
1106 /* Note: caller is already holding the dir->i_mutex! */
1107 dentry
= d_alloc(parent
, &name
);
1110 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
1111 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
);
1112 if (IS_ERR(inode
)) {
1117 alias
= d_materialise_unique(dentry
, inode
);
1118 if (alias
!= NULL
) {
1126 nfs_set_verifier(dentry
, verf
);
1131 * Code common to create, mkdir, and mknod.
1133 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1134 struct nfs_fattr
*fattr
)
1136 struct dentry
*parent
= dget_parent(dentry
);
1137 struct inode
*dir
= parent
->d_inode
;
1138 struct inode
*inode
;
1139 int error
= -EACCES
;
1143 /* We may have been initialized further down */
1144 if (dentry
->d_inode
)
1146 if (fhandle
->size
== 0) {
1147 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
);
1151 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1152 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1153 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1154 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
);
1158 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
);
1159 error
= PTR_ERR(inode
);
1162 d_add(dentry
, inode
);
1167 nfs_mark_for_revalidate(dir
);
1173 * Following a failed create operation, we drop the dentry rather
1174 * than retain a negative dentry. This avoids a problem in the event
1175 * that the operation succeeded on the server, but an error in the
1176 * reply path made it appear to have failed.
1178 static int nfs_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1179 struct nameidata
*nd
)
1185 dfprintk(VFS
, "NFS: create(%s/%ld), %s\n",
1186 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1188 attr
.ia_mode
= mode
;
1189 attr
.ia_valid
= ATTR_MODE
;
1191 if ((nd
->flags
& LOOKUP_CREATE
) != 0)
1192 open_flags
= nd
->intent
.open
.flags
;
1195 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
, nd
);
1207 * See comments for nfs_proc_create regarding failed operations.
1210 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t rdev
)
1215 dfprintk(VFS
, "NFS: mknod(%s/%ld), %s\n",
1216 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1218 if (!new_valid_dev(rdev
))
1221 attr
.ia_mode
= mode
;
1222 attr
.ia_valid
= ATTR_MODE
;
1225 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1237 * See comments for nfs_proc_create regarding failed operations.
1239 static int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1244 dfprintk(VFS
, "NFS: mkdir(%s/%ld), %s\n",
1245 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1247 attr
.ia_valid
= ATTR_MODE
;
1248 attr
.ia_mode
= mode
| S_IFDIR
;
1251 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1262 static int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1266 dfprintk(VFS
, "NFS: rmdir(%s/%ld), %s\n",
1267 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1270 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1271 /* Ensure the VFS deletes this inode */
1272 if (error
== 0 && dentry
->d_inode
!= NULL
)
1273 clear_nlink(dentry
->d_inode
);
1279 static int nfs_sillyrename(struct inode
*dir
, struct dentry
*dentry
)
1281 static unsigned int sillycounter
;
1282 const int fileidsize
= sizeof(NFS_FILEID(dentry
->d_inode
))*2;
1283 const int countersize
= sizeof(sillycounter
)*2;
1284 const int slen
= sizeof(".nfs")+fileidsize
+countersize
-1;
1287 struct dentry
*sdentry
;
1290 dfprintk(VFS
, "NFS: silly-rename(%s/%s, ct=%d)\n",
1291 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
1292 atomic_read(&dentry
->d_count
));
1293 nfs_inc_stats(dir
, NFSIOS_SILLYRENAME
);
1296 * We don't allow a dentry to be silly-renamed twice.
1299 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1302 sprintf(silly
, ".nfs%*.*Lx",
1303 fileidsize
, fileidsize
,
1304 (unsigned long long)NFS_FILEID(dentry
->d_inode
));
1306 /* Return delegation in anticipation of the rename */
1307 nfs_inode_return_delegation(dentry
->d_inode
);
1311 char *suffix
= silly
+ slen
- countersize
;
1315 sprintf(suffix
, "%*.*x", countersize
, countersize
, sillycounter
);
1317 dfprintk(VFS
, "NFS: trying to rename %s to %s\n",
1318 dentry
->d_name
.name
, silly
);
1320 sdentry
= lookup_one_len(silly
, dentry
->d_parent
, slen
);
1322 * N.B. Better to return EBUSY here ... it could be
1323 * dangerous to delete the file while it's in use.
1325 if (IS_ERR(sdentry
))
1327 } while(sdentry
->d_inode
!= NULL
); /* need negative lookup */
1329 qsilly
.name
= silly
;
1330 qsilly
.len
= strlen(silly
);
1331 if (dentry
->d_inode
) {
1332 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1334 nfs_mark_for_revalidate(dentry
->d_inode
);
1336 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1339 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1340 d_move(dentry
, sdentry
);
1341 error
= nfs_async_unlink(dir
, dentry
);
1342 /* If we return 0 we don't unlink */
1350 * Remove a file after making sure there are no pending writes,
1351 * and after checking that the file has only one user.
1353 * We invalidate the attribute cache and free the inode prior to the operation
1354 * to avoid possible races if the server reuses the inode.
1356 static int nfs_safe_remove(struct dentry
*dentry
)
1358 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1359 struct inode
*inode
= dentry
->d_inode
;
1362 dfprintk(VFS
, "NFS: safe_remove(%s/%s)\n",
1363 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1365 /* If the dentry was sillyrenamed, we simply call d_delete() */
1366 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1371 if (inode
!= NULL
) {
1372 nfs_inode_return_delegation(inode
);
1373 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1374 /* The VFS may want to delete this inode */
1377 nfs_mark_for_revalidate(inode
);
1379 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1384 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1385 * belongs to an active ".nfs..." file and we return -EBUSY.
1387 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1389 static int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1392 int need_rehash
= 0;
1394 dfprintk(VFS
, "NFS: unlink(%s/%ld, %s)\n", dir
->i_sb
->s_id
,
1395 dir
->i_ino
, dentry
->d_name
.name
);
1398 spin_lock(&dcache_lock
);
1399 spin_lock(&dentry
->d_lock
);
1400 if (atomic_read(&dentry
->d_count
) > 1) {
1401 spin_unlock(&dentry
->d_lock
);
1402 spin_unlock(&dcache_lock
);
1403 /* Start asynchronous writeout of the inode */
1404 write_inode_now(dentry
->d_inode
, 0);
1405 error
= nfs_sillyrename(dir
, dentry
);
1409 if (!d_unhashed(dentry
)) {
1413 spin_unlock(&dentry
->d_lock
);
1414 spin_unlock(&dcache_lock
);
1415 error
= nfs_safe_remove(dentry
);
1417 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1418 } else if (need_rehash
)
1425 * To create a symbolic link, most file systems instantiate a new inode,
1426 * add a page to it containing the path, then write it out to the disk
1427 * using prepare_write/commit_write.
1429 * Unfortunately the NFS client can't create the in-core inode first
1430 * because it needs a file handle to create an in-core inode (see
1431 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1432 * symlink request has completed on the server.
1434 * So instead we allocate a raw page, copy the symname into it, then do
1435 * the SYMLINK request with the page as the buffer. If it succeeds, we
1436 * now have a new file handle and can instantiate an in-core NFS inode
1437 * and move the raw page into its mapping.
1439 static int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1441 struct pagevec lru_pvec
;
1445 unsigned int pathlen
= strlen(symname
);
1448 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s)\n", dir
->i_sb
->s_id
,
1449 dir
->i_ino
, dentry
->d_name
.name
, symname
);
1451 if (pathlen
> PAGE_SIZE
)
1452 return -ENAMETOOLONG
;
1454 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1455 attr
.ia_valid
= ATTR_MODE
;
1459 page
= alloc_page(GFP_HIGHUSER
);
1465 kaddr
= kmap_atomic(page
, KM_USER0
);
1466 memcpy(kaddr
, symname
, pathlen
);
1467 if (pathlen
< PAGE_SIZE
)
1468 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1469 kunmap_atomic(kaddr
, KM_USER0
);
1471 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1473 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1474 dir
->i_sb
->s_id
, dir
->i_ino
,
1475 dentry
->d_name
.name
, symname
, error
);
1483 * No big deal if we can't add this page to the page cache here.
1484 * READLINK will get the missing page from the server if needed.
1486 pagevec_init(&lru_pvec
, 0);
1487 if (!add_to_page_cache(page
, dentry
->d_inode
->i_mapping
, 0,
1489 pagevec_add(&lru_pvec
, page
);
1490 pagevec_lru_add(&lru_pvec
);
1491 SetPageUptodate(page
);
1501 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1503 struct inode
*inode
= old_dentry
->d_inode
;
1506 dfprintk(VFS
, "NFS: link(%s/%s -> %s/%s)\n",
1507 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1508 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1512 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1514 atomic_inc(&inode
->i_count
);
1515 d_add(dentry
, inode
);
1523 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1524 * different file handle for the same inode after a rename (e.g. when
1525 * moving to a different directory). A fail-safe method to do so would
1526 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1527 * rename the old file using the sillyrename stuff. This way, the original
1528 * file in old_dir will go away when the last process iput()s the inode.
1532 * It actually works quite well. One needs to have the possibility for
1533 * at least one ".nfs..." file in each directory the file ever gets
1534 * moved or linked to which happens automagically with the new
1535 * implementation that only depends on the dcache stuff instead of
1536 * using the inode layer
1538 * Unfortunately, things are a little more complicated than indicated
1539 * above. For a cross-directory move, we want to make sure we can get
1540 * rid of the old inode after the operation. This means there must be
1541 * no pending writes (if it's a file), and the use count must be 1.
1542 * If these conditions are met, we can drop the dentries before doing
1545 static int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1546 struct inode
*new_dir
, struct dentry
*new_dentry
)
1548 struct inode
*old_inode
= old_dentry
->d_inode
;
1549 struct inode
*new_inode
= new_dentry
->d_inode
;
1550 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1554 * To prevent any new references to the target during the rename,
1555 * we unhash the dentry and free the inode in advance.
1558 if (!d_unhashed(new_dentry
)) {
1560 rehash
= new_dentry
;
1563 dfprintk(VFS
, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1564 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1565 new_dentry
->d_parent
->d_name
.name
, new_dentry
->d_name
.name
,
1566 atomic_read(&new_dentry
->d_count
));
1569 * First check whether the target is busy ... we can't
1570 * safely do _any_ rename if the target is in use.
1572 * For files, make a copy of the dentry and then do a
1573 * silly-rename. If the silly-rename succeeds, the
1574 * copied dentry is hashed and becomes the new target.
1578 if (S_ISDIR(new_inode
->i_mode
)) {
1580 if (!S_ISDIR(old_inode
->i_mode
))
1582 } else if (atomic_read(&new_dentry
->d_count
) > 2) {
1584 /* copy the target dentry's name */
1585 dentry
= d_alloc(new_dentry
->d_parent
,
1586 &new_dentry
->d_name
);
1590 /* silly-rename the existing target ... */
1591 err
= nfs_sillyrename(new_dir
, new_dentry
);
1593 new_dentry
= rehash
= dentry
;
1595 /* instantiate the replacement target */
1596 d_instantiate(new_dentry
, NULL
);
1597 } else if (atomic_read(&new_dentry
->d_count
) > 1)
1598 /* dentry still busy? */
1601 drop_nlink(new_inode
);
1605 * ... prune child dentries and writebacks if needed.
1607 if (atomic_read(&old_dentry
->d_count
) > 1) {
1608 if (S_ISREG(old_inode
->i_mode
))
1609 nfs_wb_all(old_inode
);
1610 shrink_dcache_parent(old_dentry
);
1612 nfs_inode_return_delegation(old_inode
);
1614 if (new_inode
!= NULL
) {
1615 nfs_inode_return_delegation(new_inode
);
1616 d_delete(new_dentry
);
1619 error
= NFS_PROTO(old_dir
)->rename(old_dir
, &old_dentry
->d_name
,
1620 new_dir
, &new_dentry
->d_name
);
1621 nfs_mark_for_revalidate(old_inode
);
1626 d_move(old_dentry
, new_dentry
);
1627 nfs_set_verifier(new_dentry
,
1628 nfs_save_change_attribute(new_dir
));
1631 /* new dentry created? */
1638 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
1639 static LIST_HEAD(nfs_access_lru_list
);
1640 static atomic_long_t nfs_access_nr_entries
;
1642 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
1644 put_rpccred(entry
->cred
);
1646 smp_mb__before_atomic_dec();
1647 atomic_long_dec(&nfs_access_nr_entries
);
1648 smp_mb__after_atomic_dec();
1651 int nfs_access_cache_shrinker(int nr_to_scan
, gfp_t gfp_mask
)
1654 struct nfs_inode
*nfsi
;
1655 struct nfs_access_entry
*cache
;
1658 spin_lock(&nfs_access_lru_lock
);
1659 list_for_each_entry(nfsi
, &nfs_access_lru_list
, access_cache_inode_lru
) {
1660 struct inode
*inode
;
1662 if (nr_to_scan
-- == 0)
1664 inode
= igrab(&nfsi
->vfs_inode
);
1667 spin_lock(&inode
->i_lock
);
1668 if (list_empty(&nfsi
->access_cache_entry_lru
))
1669 goto remove_lru_entry
;
1670 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
1671 struct nfs_access_entry
, lru
);
1672 list_move(&cache
->lru
, &head
);
1673 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1674 if (!list_empty(&nfsi
->access_cache_entry_lru
))
1675 list_move_tail(&nfsi
->access_cache_inode_lru
,
1676 &nfs_access_lru_list
);
1679 list_del_init(&nfsi
->access_cache_inode_lru
);
1680 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
1682 spin_unlock(&inode
->i_lock
);
1683 spin_unlock(&nfs_access_lru_lock
);
1687 spin_unlock(&nfs_access_lru_lock
);
1688 while (!list_empty(&head
)) {
1689 cache
= list_entry(head
.next
, struct nfs_access_entry
, lru
);
1690 list_del(&cache
->lru
);
1691 nfs_access_free_entry(cache
);
1693 return (atomic_long_read(&nfs_access_nr_entries
) / 100) * sysctl_vfs_cache_pressure
;
1696 static void __nfs_access_zap_cache(struct inode
*inode
)
1698 struct nfs_inode
*nfsi
= NFS_I(inode
);
1699 struct rb_root
*root_node
= &nfsi
->access_cache
;
1700 struct rb_node
*n
, *dispose
= NULL
;
1701 struct nfs_access_entry
*entry
;
1703 /* Unhook entries from the cache */
1704 while ((n
= rb_first(root_node
)) != NULL
) {
1705 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1706 rb_erase(n
, root_node
);
1707 list_del(&entry
->lru
);
1708 n
->rb_left
= dispose
;
1711 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
1712 spin_unlock(&inode
->i_lock
);
1714 /* Now kill them all! */
1715 while (dispose
!= NULL
) {
1717 dispose
= n
->rb_left
;
1718 nfs_access_free_entry(rb_entry(n
, struct nfs_access_entry
, rb_node
));
1722 void nfs_access_zap_cache(struct inode
*inode
)
1724 /* Remove from global LRU init */
1725 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_FLAGS(inode
))) {
1726 spin_lock(&nfs_access_lru_lock
);
1727 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
1728 spin_unlock(&nfs_access_lru_lock
);
1731 spin_lock(&inode
->i_lock
);
1732 /* This will release the spinlock */
1733 __nfs_access_zap_cache(inode
);
1736 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
1738 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
1739 struct nfs_access_entry
*entry
;
1742 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1744 if (cred
< entry
->cred
)
1746 else if (cred
> entry
->cred
)
1754 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
1756 struct nfs_inode
*nfsi
= NFS_I(inode
);
1757 struct nfs_access_entry
*cache
;
1760 spin_lock(&inode
->i_lock
);
1761 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
1763 cache
= nfs_access_search_rbtree(inode
, cred
);
1766 if (!time_in_range(jiffies
, cache
->jiffies
, cache
->jiffies
+ nfsi
->attrtimeo
))
1768 res
->jiffies
= cache
->jiffies
;
1769 res
->cred
= cache
->cred
;
1770 res
->mask
= cache
->mask
;
1771 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
1774 spin_unlock(&inode
->i_lock
);
1777 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1778 list_del(&cache
->lru
);
1779 spin_unlock(&inode
->i_lock
);
1780 nfs_access_free_entry(cache
);
1783 /* This will release the spinlock */
1784 __nfs_access_zap_cache(inode
);
1788 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
1790 struct nfs_inode
*nfsi
= NFS_I(inode
);
1791 struct rb_root
*root_node
= &nfsi
->access_cache
;
1792 struct rb_node
**p
= &root_node
->rb_node
;
1793 struct rb_node
*parent
= NULL
;
1794 struct nfs_access_entry
*entry
;
1796 spin_lock(&inode
->i_lock
);
1797 while (*p
!= NULL
) {
1799 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
1801 if (set
->cred
< entry
->cred
)
1802 p
= &parent
->rb_left
;
1803 else if (set
->cred
> entry
->cred
)
1804 p
= &parent
->rb_right
;
1808 rb_link_node(&set
->rb_node
, parent
, p
);
1809 rb_insert_color(&set
->rb_node
, root_node
);
1810 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1811 spin_unlock(&inode
->i_lock
);
1814 rb_replace_node(parent
, &set
->rb_node
, root_node
);
1815 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1816 list_del(&entry
->lru
);
1817 spin_unlock(&inode
->i_lock
);
1818 nfs_access_free_entry(entry
);
1821 static void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
1823 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
1826 RB_CLEAR_NODE(&cache
->rb_node
);
1827 cache
->jiffies
= set
->jiffies
;
1828 cache
->cred
= get_rpccred(set
->cred
);
1829 cache
->mask
= set
->mask
;
1831 nfs_access_add_rbtree(inode
, cache
);
1833 /* Update accounting */
1834 smp_mb__before_atomic_inc();
1835 atomic_long_inc(&nfs_access_nr_entries
);
1836 smp_mb__after_atomic_inc();
1838 /* Add inode to global LRU list */
1839 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_FLAGS(inode
))) {
1840 spin_lock(&nfs_access_lru_lock
);
1841 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
, &nfs_access_lru_list
);
1842 spin_unlock(&nfs_access_lru_lock
);
1846 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
1848 struct nfs_access_entry cache
;
1851 status
= nfs_access_get_cached(inode
, cred
, &cache
);
1855 /* Be clever: ask server to check for all possible rights */
1856 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
1858 cache
.jiffies
= jiffies
;
1859 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
1862 nfs_access_add_cache(inode
, &cache
);
1864 if ((cache
.mask
& mask
) == mask
)
1869 static int nfs_open_permission_mask(int openflags
)
1873 if (openflags
& FMODE_READ
)
1875 if (openflags
& FMODE_WRITE
)
1877 if (openflags
& FMODE_EXEC
)
1882 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
1884 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
1887 int nfs_permission(struct inode
*inode
, int mask
, struct nameidata
*nd
)
1889 struct rpc_cred
*cred
;
1892 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
1896 /* Is this sys_access() ? */
1897 if (nd
!= NULL
&& (nd
->flags
& LOOKUP_ACCESS
))
1900 switch (inode
->i_mode
& S_IFMT
) {
1904 /* NFSv4 has atomic_open... */
1905 if (nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
)
1907 && (nd
->flags
& LOOKUP_OPEN
))
1912 * Optimize away all write operations, since the server
1913 * will check permissions when we perform the op.
1915 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
1922 if (!NFS_PROTO(inode
)->access
)
1925 cred
= rpcauth_lookupcred(NFS_CLIENT(inode
)->cl_auth
, 0);
1926 if (!IS_ERR(cred
)) {
1927 res
= nfs_do_access(inode
, cred
, mask
);
1930 res
= PTR_ERR(cred
);
1933 dfprintk(VFS
, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1934 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
1937 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
1939 res
= generic_permission(inode
, mask
, NULL
);
1946 * version-control: t
1947 * kept-new-versions: 5