fs: use kmem_cache_zalloc instead
[pv_ops_mirror.git] / fs / xfs / xfs_mount.c
bloba66b398051760f3dd2695777bbb4e637e2280279
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
47 STATIC void xfs_mount_log_sbunit(xfs_mount_t *, __int64_t);
48 STATIC int xfs_uuid_mount(xfs_mount_t *);
49 STATIC void xfs_uuid_unmount(xfs_mount_t *mp);
50 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
53 #ifdef HAVE_PERCPU_SB
54 STATIC void xfs_icsb_destroy_counters(xfs_mount_t *);
55 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
56 int, int);
57 STATIC void xfs_icsb_sync_counters(xfs_mount_t *);
58 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59 int64_t, int);
60 STATIC int xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
62 #else
64 #define xfs_icsb_destroy_counters(mp) do { } while (0)
65 #define xfs_icsb_balance_counter(mp, a, b, c) do { } while (0)
66 #define xfs_icsb_sync_counters(mp) do { } while (0)
67 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
69 #endif
71 static const struct {
72 short offset;
73 short type; /* 0 = integer
74 * 1 = binary / string (no translation)
76 } xfs_sb_info[] = {
77 { offsetof(xfs_sb_t, sb_magicnum), 0 },
78 { offsetof(xfs_sb_t, sb_blocksize), 0 },
79 { offsetof(xfs_sb_t, sb_dblocks), 0 },
80 { offsetof(xfs_sb_t, sb_rblocks), 0 },
81 { offsetof(xfs_sb_t, sb_rextents), 0 },
82 { offsetof(xfs_sb_t, sb_uuid), 1 },
83 { offsetof(xfs_sb_t, sb_logstart), 0 },
84 { offsetof(xfs_sb_t, sb_rootino), 0 },
85 { offsetof(xfs_sb_t, sb_rbmino), 0 },
86 { offsetof(xfs_sb_t, sb_rsumino), 0 },
87 { offsetof(xfs_sb_t, sb_rextsize), 0 },
88 { offsetof(xfs_sb_t, sb_agblocks), 0 },
89 { offsetof(xfs_sb_t, sb_agcount), 0 },
90 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
91 { offsetof(xfs_sb_t, sb_logblocks), 0 },
92 { offsetof(xfs_sb_t, sb_versionnum), 0 },
93 { offsetof(xfs_sb_t, sb_sectsize), 0 },
94 { offsetof(xfs_sb_t, sb_inodesize), 0 },
95 { offsetof(xfs_sb_t, sb_inopblock), 0 },
96 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
97 { offsetof(xfs_sb_t, sb_blocklog), 0 },
98 { offsetof(xfs_sb_t, sb_sectlog), 0 },
99 { offsetof(xfs_sb_t, sb_inodelog), 0 },
100 { offsetof(xfs_sb_t, sb_inopblog), 0 },
101 { offsetof(xfs_sb_t, sb_agblklog), 0 },
102 { offsetof(xfs_sb_t, sb_rextslog), 0 },
103 { offsetof(xfs_sb_t, sb_inprogress), 0 },
104 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
105 { offsetof(xfs_sb_t, sb_icount), 0 },
106 { offsetof(xfs_sb_t, sb_ifree), 0 },
107 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
108 { offsetof(xfs_sb_t, sb_frextents), 0 },
109 { offsetof(xfs_sb_t, sb_uquotino), 0 },
110 { offsetof(xfs_sb_t, sb_gquotino), 0 },
111 { offsetof(xfs_sb_t, sb_qflags), 0 },
112 { offsetof(xfs_sb_t, sb_flags), 0 },
113 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
114 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
115 { offsetof(xfs_sb_t, sb_unit), 0 },
116 { offsetof(xfs_sb_t, sb_width), 0 },
117 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
118 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
119 { offsetof(xfs_sb_t, sb_logsectsize),0 },
120 { offsetof(xfs_sb_t, sb_logsunit), 0 },
121 { offsetof(xfs_sb_t, sb_features2), 0 },
122 { sizeof(xfs_sb_t), 0 }
126 * Return a pointer to an initialized xfs_mount structure.
128 xfs_mount_t *
129 xfs_mount_init(void)
131 xfs_mount_t *mp;
133 mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
135 if (xfs_icsb_init_counters(mp)) {
136 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
139 AIL_LOCKINIT(&mp->m_ail_lock, "xfs_ail");
140 spinlock_init(&mp->m_sb_lock, "xfs_sb");
141 mutex_init(&mp->m_ilock);
142 initnsema(&mp->m_growlock, 1, "xfs_grow");
144 * Initialize the AIL.
146 xfs_trans_ail_init(mp);
148 atomic_set(&mp->m_active_trans, 0);
150 return mp;
154 * Free up the resources associated with a mount structure. Assume that
155 * the structure was initially zeroed, so we can tell which fields got
156 * initialized.
158 void
159 xfs_mount_free(
160 xfs_mount_t *mp,
161 int remove_bhv)
163 if (mp->m_ihash)
164 xfs_ihash_free(mp);
165 if (mp->m_chash)
166 xfs_chash_free(mp);
168 if (mp->m_perag) {
169 int agno;
171 for (agno = 0; agno < mp->m_maxagi; agno++)
172 if (mp->m_perag[agno].pagb_list)
173 kmem_free(mp->m_perag[agno].pagb_list,
174 sizeof(xfs_perag_busy_t) *
175 XFS_PAGB_NUM_SLOTS);
176 kmem_free(mp->m_perag,
177 sizeof(xfs_perag_t) * mp->m_sb.sb_agcount);
180 AIL_LOCK_DESTROY(&mp->m_ail_lock);
181 spinlock_destroy(&mp->m_sb_lock);
182 mutex_destroy(&mp->m_ilock);
183 freesema(&mp->m_growlock);
184 if (mp->m_quotainfo)
185 XFS_QM_DONE(mp);
187 if (mp->m_fsname != NULL)
188 kmem_free(mp->m_fsname, mp->m_fsname_len);
189 if (mp->m_rtname != NULL)
190 kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1);
191 if (mp->m_logname != NULL)
192 kmem_free(mp->m_logname, strlen(mp->m_logname) + 1);
194 if (remove_bhv) {
195 struct bhv_vfs *vfsp = XFS_MTOVFS(mp);
197 bhv_remove_all_vfsops(vfsp, 0);
198 VFS_REMOVEBHV(vfsp, &mp->m_bhv);
201 xfs_icsb_destroy_counters(mp);
202 kmem_free(mp, sizeof(xfs_mount_t));
206 * Check size of device based on the (data/realtime) block count.
207 * Note: this check is used by the growfs code as well as mount.
210 xfs_sb_validate_fsb_count(
211 xfs_sb_t *sbp,
212 __uint64_t nblocks)
214 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
215 ASSERT(sbp->sb_blocklog >= BBSHIFT);
217 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
218 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
219 return E2BIG;
220 #else /* Limited by UINT_MAX of sectors */
221 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
222 return E2BIG;
223 #endif
224 return 0;
228 * Check the validity of the SB found.
230 STATIC int
231 xfs_mount_validate_sb(
232 xfs_mount_t *mp,
233 xfs_sb_t *sbp,
234 int flags)
237 * If the log device and data device have the
238 * same device number, the log is internal.
239 * Consequently, the sb_logstart should be non-zero. If
240 * we have a zero sb_logstart in this case, we may be trying to mount
241 * a volume filesystem in a non-volume manner.
243 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
244 xfs_fs_mount_cmn_err(flags, "bad magic number");
245 return XFS_ERROR(EWRONGFS);
248 if (!XFS_SB_GOOD_VERSION(sbp)) {
249 xfs_fs_mount_cmn_err(flags, "bad version");
250 return XFS_ERROR(EWRONGFS);
253 if (unlikely(
254 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
255 xfs_fs_mount_cmn_err(flags,
256 "filesystem is marked as having an external log; "
257 "specify logdev on the\nmount command line.");
258 return XFS_ERROR(EINVAL);
261 if (unlikely(
262 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
263 xfs_fs_mount_cmn_err(flags,
264 "filesystem is marked as having an internal log; "
265 "do not specify logdev on\nthe mount command line.");
266 return XFS_ERROR(EINVAL);
270 * More sanity checking. These were stolen directly from
271 * xfs_repair.
273 if (unlikely(
274 sbp->sb_agcount <= 0 ||
275 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
276 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
277 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
278 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
279 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
280 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
281 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
282 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
283 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
284 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
285 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
286 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
287 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
288 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
289 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
290 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
291 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
292 return XFS_ERROR(EFSCORRUPTED);
296 * Sanity check AG count, size fields against data size field
298 if (unlikely(
299 sbp->sb_dblocks == 0 ||
300 sbp->sb_dblocks >
301 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
302 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
303 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
304 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
305 return XFS_ERROR(EFSCORRUPTED);
308 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
309 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
310 xfs_fs_mount_cmn_err(flags,
311 "file system too large to be mounted on this system.");
312 return XFS_ERROR(E2BIG);
315 if (unlikely(sbp->sb_inprogress)) {
316 xfs_fs_mount_cmn_err(flags, "file system busy");
317 return XFS_ERROR(EFSCORRUPTED);
321 * Version 1 directory format has never worked on Linux.
323 if (unlikely(!XFS_SB_VERSION_HASDIRV2(sbp))) {
324 xfs_fs_mount_cmn_err(flags,
325 "file system using version 1 directory format");
326 return XFS_ERROR(ENOSYS);
330 * Until this is fixed only page-sized or smaller data blocks work.
332 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
333 xfs_fs_mount_cmn_err(flags,
334 "file system with blocksize %d bytes",
335 sbp->sb_blocksize);
336 xfs_fs_mount_cmn_err(flags,
337 "only pagesize (%ld) or less will currently work.",
338 PAGE_SIZE);
339 return XFS_ERROR(ENOSYS);
342 return 0;
345 xfs_agnumber_t
346 xfs_initialize_perag(
347 bhv_vfs_t *vfs,
348 xfs_mount_t *mp,
349 xfs_agnumber_t agcount)
351 xfs_agnumber_t index, max_metadata;
352 xfs_perag_t *pag;
353 xfs_agino_t agino;
354 xfs_ino_t ino;
355 xfs_sb_t *sbp = &mp->m_sb;
356 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
358 /* Check to see if the filesystem can overflow 32 bit inodes */
359 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
360 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
362 /* Clear the mount flag if no inode can overflow 32 bits
363 * on this filesystem, or if specifically requested..
365 if ((vfs->vfs_flag & VFS_32BITINODES) && ino > max_inum) {
366 mp->m_flags |= XFS_MOUNT_32BITINODES;
367 } else {
368 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
371 /* If we can overflow then setup the ag headers accordingly */
372 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
373 /* Calculate how much should be reserved for inodes to
374 * meet the max inode percentage.
376 if (mp->m_maxicount) {
377 __uint64_t icount;
379 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
380 do_div(icount, 100);
381 icount += sbp->sb_agblocks - 1;
382 do_div(icount, sbp->sb_agblocks);
383 max_metadata = icount;
384 } else {
385 max_metadata = agcount;
387 for (index = 0; index < agcount; index++) {
388 ino = XFS_AGINO_TO_INO(mp, index, agino);
389 if (ino > max_inum) {
390 index++;
391 break;
394 /* This ag is preferred for inodes */
395 pag = &mp->m_perag[index];
396 pag->pagi_inodeok = 1;
397 if (index < max_metadata)
398 pag->pagf_metadata = 1;
400 } else {
401 /* Setup default behavior for smaller filesystems */
402 for (index = 0; index < agcount; index++) {
403 pag = &mp->m_perag[index];
404 pag->pagi_inodeok = 1;
407 return index;
411 * xfs_xlatesb
413 * data - on disk version of sb
414 * sb - a superblock
415 * dir - conversion direction: <0 - convert sb to buf
416 * >0 - convert buf to sb
417 * fields - which fields to copy (bitmask)
419 void
420 xfs_xlatesb(
421 void *data,
422 xfs_sb_t *sb,
423 int dir,
424 __int64_t fields)
426 xfs_caddr_t buf_ptr;
427 xfs_caddr_t mem_ptr;
428 xfs_sb_field_t f;
429 int first;
430 int size;
432 ASSERT(dir);
433 ASSERT(fields);
435 if (!fields)
436 return;
438 buf_ptr = (xfs_caddr_t)data;
439 mem_ptr = (xfs_caddr_t)sb;
441 while (fields) {
442 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
443 first = xfs_sb_info[f].offset;
444 size = xfs_sb_info[f + 1].offset - first;
446 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
448 if (size == 1 || xfs_sb_info[f].type == 1) {
449 if (dir > 0) {
450 memcpy(mem_ptr + first, buf_ptr + first, size);
451 } else {
452 memcpy(buf_ptr + first, mem_ptr + first, size);
454 } else {
455 switch (size) {
456 case 2:
457 INT_XLATE(*(__uint16_t*)(buf_ptr+first),
458 *(__uint16_t*)(mem_ptr+first),
459 dir, ARCH_CONVERT);
460 break;
461 case 4:
462 INT_XLATE(*(__uint32_t*)(buf_ptr+first),
463 *(__uint32_t*)(mem_ptr+first),
464 dir, ARCH_CONVERT);
465 break;
466 case 8:
467 INT_XLATE(*(__uint64_t*)(buf_ptr+first),
468 *(__uint64_t*)(mem_ptr+first), dir, ARCH_CONVERT);
469 break;
470 default:
471 ASSERT(0);
475 fields &= ~(1LL << f);
480 * xfs_readsb
482 * Does the initial read of the superblock.
485 xfs_readsb(xfs_mount_t *mp, int flags)
487 unsigned int sector_size;
488 unsigned int extra_flags;
489 xfs_buf_t *bp;
490 xfs_sb_t *sbp;
491 int error;
493 ASSERT(mp->m_sb_bp == NULL);
494 ASSERT(mp->m_ddev_targp != NULL);
497 * Allocate a (locked) buffer to hold the superblock.
498 * This will be kept around at all times to optimize
499 * access to the superblock.
501 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
502 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
504 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
505 BTOBB(sector_size), extra_flags);
506 if (!bp || XFS_BUF_ISERROR(bp)) {
507 xfs_fs_mount_cmn_err(flags, "SB read failed");
508 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
509 goto fail;
511 ASSERT(XFS_BUF_ISBUSY(bp));
512 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
515 * Initialize the mount structure from the superblock.
516 * But first do some basic consistency checking.
518 sbp = XFS_BUF_TO_SBP(bp);
519 xfs_xlatesb(XFS_BUF_PTR(bp), &(mp->m_sb), 1, XFS_SB_ALL_BITS);
521 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
522 if (error) {
523 xfs_fs_mount_cmn_err(flags, "SB validate failed");
524 goto fail;
528 * We must be able to do sector-sized and sector-aligned IO.
530 if (sector_size > mp->m_sb.sb_sectsize) {
531 xfs_fs_mount_cmn_err(flags,
532 "device supports only %u byte sectors (not %u)",
533 sector_size, mp->m_sb.sb_sectsize);
534 error = ENOSYS;
535 goto fail;
539 * If device sector size is smaller than the superblock size,
540 * re-read the superblock so the buffer is correctly sized.
542 if (sector_size < mp->m_sb.sb_sectsize) {
543 XFS_BUF_UNMANAGE(bp);
544 xfs_buf_relse(bp);
545 sector_size = mp->m_sb.sb_sectsize;
546 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
547 BTOBB(sector_size), extra_flags);
548 if (!bp || XFS_BUF_ISERROR(bp)) {
549 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
550 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
551 goto fail;
553 ASSERT(XFS_BUF_ISBUSY(bp));
554 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
557 /* Initialize per-cpu counters */
558 xfs_icsb_reinit_counters(mp);
560 mp->m_sb_bp = bp;
561 xfs_buf_relse(bp);
562 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
563 return 0;
565 fail:
566 if (bp) {
567 XFS_BUF_UNMANAGE(bp);
568 xfs_buf_relse(bp);
570 return error;
575 * xfs_mount_common
577 * Mount initialization code establishing various mount
578 * fields from the superblock associated with the given
579 * mount structure
581 STATIC void
582 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
584 int i;
586 mp->m_agfrotor = mp->m_agirotor = 0;
587 spinlock_init(&mp->m_agirotor_lock, "m_agirotor_lock");
588 mp->m_maxagi = mp->m_sb.sb_agcount;
589 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
590 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
591 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
592 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
593 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
594 mp->m_litino = sbp->sb_inodesize -
595 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
596 mp->m_blockmask = sbp->sb_blocksize - 1;
597 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
598 mp->m_blockwmask = mp->m_blockwsize - 1;
599 INIT_LIST_HEAD(&mp->m_del_inodes);
602 * Setup for attributes, in case they get created.
603 * This value is for inodes getting attributes for the first time,
604 * the per-inode value is for old attribute values.
606 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
607 switch (sbp->sb_inodesize) {
608 case 256:
609 mp->m_attroffset = XFS_LITINO(mp) -
610 XFS_BMDR_SPACE_CALC(MINABTPTRS);
611 break;
612 case 512:
613 case 1024:
614 case 2048:
615 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
616 break;
617 default:
618 ASSERT(0);
620 ASSERT(mp->m_attroffset < XFS_LITINO(mp));
622 for (i = 0; i < 2; i++) {
623 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
624 xfs_alloc, i == 0);
625 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
626 xfs_alloc, i == 0);
628 for (i = 0; i < 2; i++) {
629 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
630 xfs_bmbt, i == 0);
631 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
632 xfs_bmbt, i == 0);
634 for (i = 0; i < 2; i++) {
635 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
636 xfs_inobt, i == 0);
637 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
638 xfs_inobt, i == 0);
641 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
642 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
643 sbp->sb_inopblock);
644 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
648 * xfs_initialize_perag_data
650 * Read in each per-ag structure so we can count up the number of
651 * allocated inodes, free inodes and used filesystem blocks as this
652 * information is no longer persistent in the superblock. Once we have
653 * this information, write it into the in-core superblock structure.
655 STATIC int
656 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
658 xfs_agnumber_t index;
659 xfs_perag_t *pag;
660 xfs_sb_t *sbp = &mp->m_sb;
661 uint64_t ifree = 0;
662 uint64_t ialloc = 0;
663 uint64_t bfree = 0;
664 uint64_t bfreelst = 0;
665 uint64_t btree = 0;
666 int error;
667 int s;
669 for (index = 0; index < agcount; index++) {
671 * read the agf, then the agi. This gets us
672 * all the inforamtion we need and populates the
673 * per-ag structures for us.
675 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
676 if (error)
677 return error;
679 error = xfs_ialloc_pagi_init(mp, NULL, index);
680 if (error)
681 return error;
682 pag = &mp->m_perag[index];
683 ifree += pag->pagi_freecount;
684 ialloc += pag->pagi_count;
685 bfree += pag->pagf_freeblks;
686 bfreelst += pag->pagf_flcount;
687 btree += pag->pagf_btreeblks;
690 * Overwrite incore superblock counters with just-read data
692 s = XFS_SB_LOCK(mp);
693 sbp->sb_ifree = ifree;
694 sbp->sb_icount = ialloc;
695 sbp->sb_fdblocks = bfree + bfreelst + btree;
696 XFS_SB_UNLOCK(mp, s);
698 /* Fixup the per-cpu counters as well. */
699 xfs_icsb_reinit_counters(mp);
701 return 0;
705 * xfs_mountfs
707 * This function does the following on an initial mount of a file system:
708 * - reads the superblock from disk and init the mount struct
709 * - if we're a 32-bit kernel, do a size check on the superblock
710 * so we don't mount terabyte filesystems
711 * - init mount struct realtime fields
712 * - allocate inode hash table for fs
713 * - init directory manager
714 * - perform recovery and init the log manager
717 xfs_mountfs(
718 bhv_vfs_t *vfsp,
719 xfs_mount_t *mp,
720 int mfsi_flags)
722 xfs_buf_t *bp;
723 xfs_sb_t *sbp = &(mp->m_sb);
724 xfs_inode_t *rip;
725 bhv_vnode_t *rvp = NULL;
726 int readio_log, writeio_log;
727 xfs_daddr_t d;
728 __uint64_t resblks;
729 __int64_t update_flags;
730 uint quotamount, quotaflags;
731 int agno;
732 int uuid_mounted = 0;
733 int error = 0;
735 if (mp->m_sb_bp == NULL) {
736 if ((error = xfs_readsb(mp, mfsi_flags))) {
737 return error;
740 xfs_mount_common(mp, sbp);
743 * Check if sb_agblocks is aligned at stripe boundary
744 * If sb_agblocks is NOT aligned turn off m_dalign since
745 * allocator alignment is within an ag, therefore ag has
746 * to be aligned at stripe boundary.
748 update_flags = 0LL;
749 if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
751 * If stripe unit and stripe width are not multiples
752 * of the fs blocksize turn off alignment.
754 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
755 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
756 if (mp->m_flags & XFS_MOUNT_RETERR) {
757 cmn_err(CE_WARN,
758 "XFS: alignment check 1 failed");
759 error = XFS_ERROR(EINVAL);
760 goto error1;
762 mp->m_dalign = mp->m_swidth = 0;
763 } else {
765 * Convert the stripe unit and width to FSBs.
767 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
768 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
769 if (mp->m_flags & XFS_MOUNT_RETERR) {
770 error = XFS_ERROR(EINVAL);
771 goto error1;
773 xfs_fs_cmn_err(CE_WARN, mp,
774 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
775 mp->m_dalign, mp->m_swidth,
776 sbp->sb_agblocks);
778 mp->m_dalign = 0;
779 mp->m_swidth = 0;
780 } else if (mp->m_dalign) {
781 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
782 } else {
783 if (mp->m_flags & XFS_MOUNT_RETERR) {
784 xfs_fs_cmn_err(CE_WARN, mp,
785 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
786 mp->m_dalign,
787 mp->m_blockmask +1);
788 error = XFS_ERROR(EINVAL);
789 goto error1;
791 mp->m_swidth = 0;
796 * Update superblock with new values
797 * and log changes
799 if (XFS_SB_VERSION_HASDALIGN(sbp)) {
800 if (sbp->sb_unit != mp->m_dalign) {
801 sbp->sb_unit = mp->m_dalign;
802 update_flags |= XFS_SB_UNIT;
804 if (sbp->sb_width != mp->m_swidth) {
805 sbp->sb_width = mp->m_swidth;
806 update_flags |= XFS_SB_WIDTH;
809 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
810 XFS_SB_VERSION_HASDALIGN(&mp->m_sb)) {
811 mp->m_dalign = sbp->sb_unit;
812 mp->m_swidth = sbp->sb_width;
815 xfs_alloc_compute_maxlevels(mp);
816 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
817 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
818 xfs_ialloc_compute_maxlevels(mp);
820 if (sbp->sb_imax_pct) {
821 __uint64_t icount;
823 /* Make sure the maximum inode count is a multiple of the
824 * units we allocate inodes in.
827 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
828 do_div(icount, 100);
829 do_div(icount, mp->m_ialloc_blks);
830 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
831 sbp->sb_inopblog;
832 } else
833 mp->m_maxicount = 0;
835 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
838 * XFS uses the uuid from the superblock as the unique
839 * identifier for fsid. We can not use the uuid from the volume
840 * since a single partition filesystem is identical to a single
841 * partition volume/filesystem.
843 if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
844 (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
845 __uint64_t ret64;
846 if (xfs_uuid_mount(mp)) {
847 error = XFS_ERROR(EINVAL);
848 goto error1;
850 uuid_mounted=1;
851 ret64 = uuid_hash64(&sbp->sb_uuid);
852 memcpy(&vfsp->vfs_fsid, &ret64, sizeof(ret64));
856 * Set the default minimum read and write sizes unless
857 * already specified in a mount option.
858 * We use smaller I/O sizes when the file system
859 * is being used for NFS service (wsync mount option).
861 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
862 if (mp->m_flags & XFS_MOUNT_WSYNC) {
863 readio_log = XFS_WSYNC_READIO_LOG;
864 writeio_log = XFS_WSYNC_WRITEIO_LOG;
865 } else {
866 readio_log = XFS_READIO_LOG_LARGE;
867 writeio_log = XFS_WRITEIO_LOG_LARGE;
869 } else {
870 readio_log = mp->m_readio_log;
871 writeio_log = mp->m_writeio_log;
875 * Set the number of readahead buffers to use based on
876 * physical memory size.
878 if (xfs_physmem <= 4096) /* <= 16MB */
879 mp->m_nreadaheads = XFS_RW_NREADAHEAD_16MB;
880 else if (xfs_physmem <= 8192) /* <= 32MB */
881 mp->m_nreadaheads = XFS_RW_NREADAHEAD_32MB;
882 else
883 mp->m_nreadaheads = XFS_RW_NREADAHEAD_K32;
884 if (sbp->sb_blocklog > readio_log) {
885 mp->m_readio_log = sbp->sb_blocklog;
886 } else {
887 mp->m_readio_log = readio_log;
889 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
890 if (sbp->sb_blocklog > writeio_log) {
891 mp->m_writeio_log = sbp->sb_blocklog;
892 } else {
893 mp->m_writeio_log = writeio_log;
895 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
898 * Set the inode cluster size based on the physical memory
899 * size. This may still be overridden by the file system
900 * block size if it is larger than the chosen cluster size.
902 if (xfs_physmem <= btoc(32 * 1024 * 1024)) { /* <= 32 MB */
903 mp->m_inode_cluster_size = XFS_INODE_SMALL_CLUSTER_SIZE;
904 } else {
905 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
908 * Set whether we're using inode alignment.
910 if (XFS_SB_VERSION_HASALIGN(&mp->m_sb) &&
911 mp->m_sb.sb_inoalignmt >=
912 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
913 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
914 else
915 mp->m_inoalign_mask = 0;
917 * If we are using stripe alignment, check whether
918 * the stripe unit is a multiple of the inode alignment
920 if (mp->m_dalign && mp->m_inoalign_mask &&
921 !(mp->m_dalign & mp->m_inoalign_mask))
922 mp->m_sinoalign = mp->m_dalign;
923 else
924 mp->m_sinoalign = 0;
926 * Check that the data (and log if separate) are an ok size.
928 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
929 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
930 cmn_err(CE_WARN, "XFS: size check 1 failed");
931 error = XFS_ERROR(E2BIG);
932 goto error1;
934 error = xfs_read_buf(mp, mp->m_ddev_targp,
935 d - XFS_FSS_TO_BB(mp, 1),
936 XFS_FSS_TO_BB(mp, 1), 0, &bp);
937 if (!error) {
938 xfs_buf_relse(bp);
939 } else {
940 cmn_err(CE_WARN, "XFS: size check 2 failed");
941 if (error == ENOSPC) {
942 error = XFS_ERROR(E2BIG);
944 goto error1;
947 if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
948 mp->m_logdev_targp != mp->m_ddev_targp) {
949 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
950 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
951 cmn_err(CE_WARN, "XFS: size check 3 failed");
952 error = XFS_ERROR(E2BIG);
953 goto error1;
955 error = xfs_read_buf(mp, mp->m_logdev_targp,
956 d - XFS_FSB_TO_BB(mp, 1),
957 XFS_FSB_TO_BB(mp, 1), 0, &bp);
958 if (!error) {
959 xfs_buf_relse(bp);
960 } else {
961 cmn_err(CE_WARN, "XFS: size check 3 failed");
962 if (error == ENOSPC) {
963 error = XFS_ERROR(E2BIG);
965 goto error1;
970 * Initialize realtime fields in the mount structure
972 if ((error = xfs_rtmount_init(mp))) {
973 cmn_err(CE_WARN, "XFS: RT mount failed");
974 goto error1;
978 * For client case we are done now
980 if (mfsi_flags & XFS_MFSI_CLIENT) {
981 return 0;
985 * Copies the low order bits of the timestamp and the randomly
986 * set "sequence" number out of a UUID.
988 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
991 * The vfs structure needs to have a file system independent
992 * way of checking for the invariant file system ID. Since it
993 * can't look at mount structures it has a pointer to the data
994 * in the mount structure.
996 * File systems that don't support user level file handles (i.e.
997 * all of them except for XFS) will leave vfs_altfsid as NULL.
999 vfsp->vfs_altfsid = (xfs_fsid_t *)mp->m_fixedfsid;
1000 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1002 xfs_dir_mount(mp);
1005 * Initialize the attribute manager's entries.
1007 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1010 * Initialize the precomputed transaction reservations values.
1012 xfs_trans_init(mp);
1015 * Allocate and initialize the inode hash table for this
1016 * file system.
1018 xfs_ihash_init(mp);
1019 xfs_chash_init(mp);
1022 * Allocate and initialize the per-ag data.
1024 init_rwsem(&mp->m_peraglock);
1025 mp->m_perag =
1026 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1028 mp->m_maxagi = xfs_initialize_perag(vfsp, mp, sbp->sb_agcount);
1031 * log's mount-time initialization. Perform 1st part recovery if needed
1033 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */
1034 error = xfs_log_mount(mp, mp->m_logdev_targp,
1035 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1036 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1037 if (error) {
1038 cmn_err(CE_WARN, "XFS: log mount failed");
1039 goto error2;
1041 } else { /* No log has been defined */
1042 cmn_err(CE_WARN, "XFS: no log defined");
1043 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1044 error = XFS_ERROR(EFSCORRUPTED);
1045 goto error2;
1049 * Now the log is mounted, we know if it was an unclean shutdown or
1050 * not. If it was, with the first phase of recovery has completed, we
1051 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1052 * but they are recovered transactionally in the second recovery phase
1053 * later.
1055 * Hence we can safely re-initialise incore superblock counters from
1056 * the per-ag data. These may not be correct if the filesystem was not
1057 * cleanly unmounted, so we need to wait for recovery to finish before
1058 * doing this.
1060 * If the filesystem was cleanly unmounted, then we can trust the
1061 * values in the superblock to be correct and we don't need to do
1062 * anything here.
1064 * If we are currently making the filesystem, the initialisation will
1065 * fail as the perag data is in an undefined state.
1068 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1069 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1070 !mp->m_sb.sb_inprogress) {
1071 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1072 if (error) {
1073 goto error2;
1077 * Get and sanity-check the root inode.
1078 * Save the pointer to it in the mount structure.
1080 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1081 if (error) {
1082 cmn_err(CE_WARN, "XFS: failed to read root inode");
1083 goto error3;
1086 ASSERT(rip != NULL);
1087 rvp = XFS_ITOV(rip);
1089 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1090 cmn_err(CE_WARN, "XFS: corrupted root inode");
1091 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1092 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1093 (unsigned long long)rip->i_ino);
1094 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1095 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1096 mp);
1097 error = XFS_ERROR(EFSCORRUPTED);
1098 goto error4;
1100 mp->m_rootip = rip; /* save it */
1102 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1105 * Initialize realtime inode pointers in the mount structure
1107 if ((error = xfs_rtmount_inodes(mp))) {
1109 * Free up the root inode.
1111 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1112 goto error4;
1116 * If fs is not mounted readonly, then update the superblock
1117 * unit and width changes.
1119 if (update_flags && !(vfsp->vfs_flag & VFS_RDONLY))
1120 xfs_mount_log_sbunit(mp, update_flags);
1123 * Initialise the XFS quota management subsystem for this mount
1125 if ((error = XFS_QM_INIT(mp, &quotamount, &quotaflags)))
1126 goto error4;
1129 * Finish recovering the file system. This part needed to be
1130 * delayed until after the root and real-time bitmap inodes
1131 * were consistently read in.
1133 error = xfs_log_mount_finish(mp, mfsi_flags);
1134 if (error) {
1135 cmn_err(CE_WARN, "XFS: log mount finish failed");
1136 goto error4;
1140 * Complete the quota initialisation, post-log-replay component.
1142 if ((error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags)))
1143 goto error4;
1146 * Now we are mounted, reserve a small amount of unused space for
1147 * privileged transactions. This is needed so that transaction
1148 * space required for critical operations can dip into this pool
1149 * when at ENOSPC. This is needed for operations like create with
1150 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1151 * are not allowed to use this reserved space.
1153 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1154 * This may drive us straight to ENOSPC on mount, but that implies
1155 * we were already there on the last unmount.
1157 resblks = mp->m_sb.sb_dblocks;
1158 do_div(resblks, 20);
1159 resblks = min_t(__uint64_t, resblks, 1024);
1160 xfs_reserve_blocks(mp, &resblks, NULL);
1162 return 0;
1164 error4:
1166 * Free up the root inode.
1168 VN_RELE(rvp);
1169 error3:
1170 xfs_log_unmount_dealloc(mp);
1171 error2:
1172 xfs_ihash_free(mp);
1173 xfs_chash_free(mp);
1174 for (agno = 0; agno < sbp->sb_agcount; agno++)
1175 if (mp->m_perag[agno].pagb_list)
1176 kmem_free(mp->m_perag[agno].pagb_list,
1177 sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS);
1178 kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t));
1179 mp->m_perag = NULL;
1180 /* FALLTHROUGH */
1181 error1:
1182 if (uuid_mounted)
1183 xfs_uuid_unmount(mp);
1184 xfs_freesb(mp);
1185 return error;
1189 * xfs_unmountfs
1191 * This flushes out the inodes,dquots and the superblock, unmounts the
1192 * log and makes sure that incore structures are freed.
1195 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1197 struct bhv_vfs *vfsp = XFS_MTOVFS(mp);
1198 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1199 int64_t fsid;
1200 #endif
1201 __uint64_t resblks;
1204 * We can potentially deadlock here if we have an inode cluster
1205 * that has been freed has it's buffer still pinned in memory because
1206 * the transaction is still sitting in a iclog. The stale inodes
1207 * on that buffer will have their flush locks held until the
1208 * transaction hits the disk and the callbacks run. the inode
1209 * flush takes the flush lock unconditionally and with nothing to
1210 * push out the iclog we will never get that unlocked. hence we
1211 * need to force the log first.
1213 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1214 xfs_iflush_all(mp);
1216 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1219 * Flush out the log synchronously so that we know for sure
1220 * that nothing is pinned. This is important because bflush()
1221 * will skip pinned buffers.
1223 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1225 xfs_binval(mp->m_ddev_targp);
1226 if (mp->m_rtdev_targp) {
1227 xfs_binval(mp->m_rtdev_targp);
1231 * Unreserve any blocks we have so that when we unmount we don't account
1232 * the reserved free space as used. This is really only necessary for
1233 * lazy superblock counting because it trusts the incore superblock
1234 * counters to be aboslutely correct on clean unmount.
1236 * We don't bother correcting this elsewhere for lazy superblock
1237 * counting because on mount of an unclean filesystem we reconstruct the
1238 * correct counter value and this is irrelevant.
1240 * For non-lazy counter filesystems, this doesn't matter at all because
1241 * we only every apply deltas to the superblock and hence the incore
1242 * value does not matter....
1244 resblks = 0;
1245 xfs_reserve_blocks(mp, &resblks, NULL);
1247 xfs_log_sbcount(mp, 1);
1248 xfs_unmountfs_writesb(mp);
1249 xfs_unmountfs_wait(mp); /* wait for async bufs */
1250 xfs_log_unmount(mp); /* Done! No more fs ops. */
1252 xfs_freesb(mp);
1255 * All inodes from this mount point should be freed.
1257 ASSERT(mp->m_inodes == NULL);
1259 xfs_unmountfs_close(mp, cr);
1260 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1261 xfs_uuid_unmount(mp);
1263 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1265 * clear all error tags on this filesystem
1267 memcpy(&fsid, &vfsp->vfs_fsid, sizeof(int64_t));
1268 xfs_errortag_clearall_umount(fsid, mp->m_fsname, 0);
1269 #endif
1270 XFS_IODONE(vfsp);
1271 xfs_mount_free(mp, 1);
1272 return 0;
1275 void
1276 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1278 if (mp->m_logdev_targp != mp->m_ddev_targp)
1279 xfs_free_buftarg(mp->m_logdev_targp, 1);
1280 if (mp->m_rtdev_targp)
1281 xfs_free_buftarg(mp->m_rtdev_targp, 1);
1282 xfs_free_buftarg(mp->m_ddev_targp, 0);
1285 STATIC void
1286 xfs_unmountfs_wait(xfs_mount_t *mp)
1288 if (mp->m_logdev_targp != mp->m_ddev_targp)
1289 xfs_wait_buftarg(mp->m_logdev_targp);
1290 if (mp->m_rtdev_targp)
1291 xfs_wait_buftarg(mp->m_rtdev_targp);
1292 xfs_wait_buftarg(mp->m_ddev_targp);
1296 xfs_fs_writable(xfs_mount_t *mp)
1298 bhv_vfs_t *vfsp = XFS_MTOVFS(mp);
1300 return !(vfs_test_for_freeze(vfsp) || XFS_FORCED_SHUTDOWN(mp) ||
1301 (vfsp->vfs_flag & VFS_RDONLY));
1305 * xfs_log_sbcount
1307 * Called either periodically to keep the on disk superblock values
1308 * roughly up to date or from unmount to make sure the values are
1309 * correct on a clean unmount.
1311 * Note this code can be called during the process of freezing, so
1312 * we may need to use the transaction allocator which does not not
1313 * block when the transaction subsystem is in its frozen state.
1316 xfs_log_sbcount(
1317 xfs_mount_t *mp,
1318 uint sync)
1320 xfs_trans_t *tp;
1321 int error;
1323 if (!xfs_fs_writable(mp))
1324 return 0;
1326 xfs_icsb_sync_counters(mp);
1329 * we don't need to do this if we are updating the superblock
1330 * counters on every modification.
1332 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1333 return 0;
1335 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1336 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1337 XFS_DEFAULT_LOG_COUNT);
1338 if (error) {
1339 xfs_trans_cancel(tp, 0);
1340 return error;
1343 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1344 if (sync)
1345 xfs_trans_set_sync(tp);
1346 xfs_trans_commit(tp, 0);
1348 return 0;
1352 xfs_unmountfs_writesb(xfs_mount_t *mp)
1354 xfs_buf_t *sbp;
1355 xfs_sb_t *sb;
1356 int error = 0;
1359 * skip superblock write if fs is read-only, or
1360 * if we are doing a forced umount.
1362 if (!(XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY ||
1363 XFS_FORCED_SHUTDOWN(mp))) {
1365 sbp = xfs_getsb(mp, 0);
1366 sb = XFS_BUF_TO_SBP(sbp);
1369 * mark shared-readonly if desired
1371 if (mp->m_mk_sharedro) {
1372 if (!(sb->sb_flags & XFS_SBF_READONLY))
1373 sb->sb_flags |= XFS_SBF_READONLY;
1374 if (!XFS_SB_VERSION_HASSHARED(sb))
1375 XFS_SB_VERSION_ADDSHARED(sb);
1376 xfs_fs_cmn_err(CE_NOTE, mp,
1377 "Unmounting, marking shared read-only");
1380 XFS_BUF_UNDONE(sbp);
1381 XFS_BUF_UNREAD(sbp);
1382 XFS_BUF_UNDELAYWRITE(sbp);
1383 XFS_BUF_WRITE(sbp);
1384 XFS_BUF_UNASYNC(sbp);
1385 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1386 xfsbdstrat(mp, sbp);
1387 /* Nevermind errors we might get here. */
1388 error = xfs_iowait(sbp);
1389 if (error)
1390 xfs_ioerror_alert("xfs_unmountfs_writesb",
1391 mp, sbp, XFS_BUF_ADDR(sbp));
1392 if (error && mp->m_mk_sharedro)
1393 xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly");
1394 xfs_buf_relse(sbp);
1396 return error;
1400 * xfs_mod_sb() can be used to copy arbitrary changes to the
1401 * in-core superblock into the superblock buffer to be logged.
1402 * It does not provide the higher level of locking that is
1403 * needed to protect the in-core superblock from concurrent
1404 * access.
1406 void
1407 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1409 xfs_buf_t *bp;
1410 int first;
1411 int last;
1412 xfs_mount_t *mp;
1413 xfs_sb_t *sbp;
1414 xfs_sb_field_t f;
1416 ASSERT(fields);
1417 if (!fields)
1418 return;
1419 mp = tp->t_mountp;
1420 bp = xfs_trans_getsb(tp, mp, 0);
1421 sbp = XFS_BUF_TO_SBP(bp);
1422 first = sizeof(xfs_sb_t);
1423 last = 0;
1425 /* translate/copy */
1427 xfs_xlatesb(XFS_BUF_PTR(bp), &(mp->m_sb), -1, fields);
1429 /* find modified range */
1431 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1432 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1433 first = xfs_sb_info[f].offset;
1435 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1436 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1437 last = xfs_sb_info[f + 1].offset - 1;
1439 xfs_trans_log_buf(tp, bp, first, last);
1444 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1445 * a delta to a specified field in the in-core superblock. Simply
1446 * switch on the field indicated and apply the delta to that field.
1447 * Fields are not allowed to dip below zero, so if the delta would
1448 * do this do not apply it and return EINVAL.
1450 * The SB_LOCK must be held when this routine is called.
1453 xfs_mod_incore_sb_unlocked(
1454 xfs_mount_t *mp,
1455 xfs_sb_field_t field,
1456 int64_t delta,
1457 int rsvd)
1459 int scounter; /* short counter for 32 bit fields */
1460 long long lcounter; /* long counter for 64 bit fields */
1461 long long res_used, rem;
1464 * With the in-core superblock spin lock held, switch
1465 * on the indicated field. Apply the delta to the
1466 * proper field. If the fields value would dip below
1467 * 0, then do not apply the delta and return EINVAL.
1469 switch (field) {
1470 case XFS_SBS_ICOUNT:
1471 lcounter = (long long)mp->m_sb.sb_icount;
1472 lcounter += delta;
1473 if (lcounter < 0) {
1474 ASSERT(0);
1475 return XFS_ERROR(EINVAL);
1477 mp->m_sb.sb_icount = lcounter;
1478 return 0;
1479 case XFS_SBS_IFREE:
1480 lcounter = (long long)mp->m_sb.sb_ifree;
1481 lcounter += delta;
1482 if (lcounter < 0) {
1483 ASSERT(0);
1484 return XFS_ERROR(EINVAL);
1486 mp->m_sb.sb_ifree = lcounter;
1487 return 0;
1488 case XFS_SBS_FDBLOCKS:
1489 lcounter = (long long)
1490 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1491 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1493 if (delta > 0) { /* Putting blocks back */
1494 if (res_used > delta) {
1495 mp->m_resblks_avail += delta;
1496 } else {
1497 rem = delta - res_used;
1498 mp->m_resblks_avail = mp->m_resblks;
1499 lcounter += rem;
1501 } else { /* Taking blocks away */
1503 lcounter += delta;
1506 * If were out of blocks, use any available reserved blocks if
1507 * were allowed to.
1510 if (lcounter < 0) {
1511 if (rsvd) {
1512 lcounter = (long long)mp->m_resblks_avail + delta;
1513 if (lcounter < 0) {
1514 return XFS_ERROR(ENOSPC);
1516 mp->m_resblks_avail = lcounter;
1517 return 0;
1518 } else { /* not reserved */
1519 return XFS_ERROR(ENOSPC);
1524 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1525 return 0;
1526 case XFS_SBS_FREXTENTS:
1527 lcounter = (long long)mp->m_sb.sb_frextents;
1528 lcounter += delta;
1529 if (lcounter < 0) {
1530 return XFS_ERROR(ENOSPC);
1532 mp->m_sb.sb_frextents = lcounter;
1533 return 0;
1534 case XFS_SBS_DBLOCKS:
1535 lcounter = (long long)mp->m_sb.sb_dblocks;
1536 lcounter += delta;
1537 if (lcounter < 0) {
1538 ASSERT(0);
1539 return XFS_ERROR(EINVAL);
1541 mp->m_sb.sb_dblocks = lcounter;
1542 return 0;
1543 case XFS_SBS_AGCOUNT:
1544 scounter = mp->m_sb.sb_agcount;
1545 scounter += delta;
1546 if (scounter < 0) {
1547 ASSERT(0);
1548 return XFS_ERROR(EINVAL);
1550 mp->m_sb.sb_agcount = scounter;
1551 return 0;
1552 case XFS_SBS_IMAX_PCT:
1553 scounter = mp->m_sb.sb_imax_pct;
1554 scounter += delta;
1555 if (scounter < 0) {
1556 ASSERT(0);
1557 return XFS_ERROR(EINVAL);
1559 mp->m_sb.sb_imax_pct = scounter;
1560 return 0;
1561 case XFS_SBS_REXTSIZE:
1562 scounter = mp->m_sb.sb_rextsize;
1563 scounter += delta;
1564 if (scounter < 0) {
1565 ASSERT(0);
1566 return XFS_ERROR(EINVAL);
1568 mp->m_sb.sb_rextsize = scounter;
1569 return 0;
1570 case XFS_SBS_RBMBLOCKS:
1571 scounter = mp->m_sb.sb_rbmblocks;
1572 scounter += delta;
1573 if (scounter < 0) {
1574 ASSERT(0);
1575 return XFS_ERROR(EINVAL);
1577 mp->m_sb.sb_rbmblocks = scounter;
1578 return 0;
1579 case XFS_SBS_RBLOCKS:
1580 lcounter = (long long)mp->m_sb.sb_rblocks;
1581 lcounter += delta;
1582 if (lcounter < 0) {
1583 ASSERT(0);
1584 return XFS_ERROR(EINVAL);
1586 mp->m_sb.sb_rblocks = lcounter;
1587 return 0;
1588 case XFS_SBS_REXTENTS:
1589 lcounter = (long long)mp->m_sb.sb_rextents;
1590 lcounter += delta;
1591 if (lcounter < 0) {
1592 ASSERT(0);
1593 return XFS_ERROR(EINVAL);
1595 mp->m_sb.sb_rextents = lcounter;
1596 return 0;
1597 case XFS_SBS_REXTSLOG:
1598 scounter = mp->m_sb.sb_rextslog;
1599 scounter += delta;
1600 if (scounter < 0) {
1601 ASSERT(0);
1602 return XFS_ERROR(EINVAL);
1604 mp->m_sb.sb_rextslog = scounter;
1605 return 0;
1606 default:
1607 ASSERT(0);
1608 return XFS_ERROR(EINVAL);
1613 * xfs_mod_incore_sb() is used to change a field in the in-core
1614 * superblock structure by the specified delta. This modification
1615 * is protected by the SB_LOCK. Just use the xfs_mod_incore_sb_unlocked()
1616 * routine to do the work.
1619 xfs_mod_incore_sb(
1620 xfs_mount_t *mp,
1621 xfs_sb_field_t field,
1622 int64_t delta,
1623 int rsvd)
1625 unsigned long s;
1626 int status;
1628 /* check for per-cpu counters */
1629 switch (field) {
1630 #ifdef HAVE_PERCPU_SB
1631 case XFS_SBS_ICOUNT:
1632 case XFS_SBS_IFREE:
1633 case XFS_SBS_FDBLOCKS:
1634 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1635 status = xfs_icsb_modify_counters(mp, field,
1636 delta, rsvd);
1637 break;
1639 /* FALLTHROUGH */
1640 #endif
1641 default:
1642 s = XFS_SB_LOCK(mp);
1643 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1644 XFS_SB_UNLOCK(mp, s);
1645 break;
1648 return status;
1652 * xfs_mod_incore_sb_batch() is used to change more than one field
1653 * in the in-core superblock structure at a time. This modification
1654 * is protected by a lock internal to this module. The fields and
1655 * changes to those fields are specified in the array of xfs_mod_sb
1656 * structures passed in.
1658 * Either all of the specified deltas will be applied or none of
1659 * them will. If any modified field dips below 0, then all modifications
1660 * will be backed out and EINVAL will be returned.
1663 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1665 unsigned long s;
1666 int status=0;
1667 xfs_mod_sb_t *msbp;
1670 * Loop through the array of mod structures and apply each
1671 * individually. If any fail, then back out all those
1672 * which have already been applied. Do all of this within
1673 * the scope of the SB_LOCK so that all of the changes will
1674 * be atomic.
1676 s = XFS_SB_LOCK(mp);
1677 msbp = &msb[0];
1678 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1680 * Apply the delta at index n. If it fails, break
1681 * from the loop so we'll fall into the undo loop
1682 * below.
1684 switch (msbp->msb_field) {
1685 #ifdef HAVE_PERCPU_SB
1686 case XFS_SBS_ICOUNT:
1687 case XFS_SBS_IFREE:
1688 case XFS_SBS_FDBLOCKS:
1689 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1690 XFS_SB_UNLOCK(mp, s);
1691 status = xfs_icsb_modify_counters(mp,
1692 msbp->msb_field,
1693 msbp->msb_delta, rsvd);
1694 s = XFS_SB_LOCK(mp);
1695 break;
1697 /* FALLTHROUGH */
1698 #endif
1699 default:
1700 status = xfs_mod_incore_sb_unlocked(mp,
1701 msbp->msb_field,
1702 msbp->msb_delta, rsvd);
1703 break;
1706 if (status != 0) {
1707 break;
1712 * If we didn't complete the loop above, then back out
1713 * any changes made to the superblock. If you add code
1714 * between the loop above and here, make sure that you
1715 * preserve the value of status. Loop back until
1716 * we step below the beginning of the array. Make sure
1717 * we don't touch anything back there.
1719 if (status != 0) {
1720 msbp--;
1721 while (msbp >= msb) {
1722 switch (msbp->msb_field) {
1723 #ifdef HAVE_PERCPU_SB
1724 case XFS_SBS_ICOUNT:
1725 case XFS_SBS_IFREE:
1726 case XFS_SBS_FDBLOCKS:
1727 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1728 XFS_SB_UNLOCK(mp, s);
1729 status = xfs_icsb_modify_counters(mp,
1730 msbp->msb_field,
1731 -(msbp->msb_delta),
1732 rsvd);
1733 s = XFS_SB_LOCK(mp);
1734 break;
1736 /* FALLTHROUGH */
1737 #endif
1738 default:
1739 status = xfs_mod_incore_sb_unlocked(mp,
1740 msbp->msb_field,
1741 -(msbp->msb_delta),
1742 rsvd);
1743 break;
1745 ASSERT(status == 0);
1746 msbp--;
1749 XFS_SB_UNLOCK(mp, s);
1750 return status;
1754 * xfs_getsb() is called to obtain the buffer for the superblock.
1755 * The buffer is returned locked and read in from disk.
1756 * The buffer should be released with a call to xfs_brelse().
1758 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1759 * the superblock buffer if it can be locked without sleeping.
1760 * If it can't then we'll return NULL.
1762 xfs_buf_t *
1763 xfs_getsb(
1764 xfs_mount_t *mp,
1765 int flags)
1767 xfs_buf_t *bp;
1769 ASSERT(mp->m_sb_bp != NULL);
1770 bp = mp->m_sb_bp;
1771 if (flags & XFS_BUF_TRYLOCK) {
1772 if (!XFS_BUF_CPSEMA(bp)) {
1773 return NULL;
1775 } else {
1776 XFS_BUF_PSEMA(bp, PRIBIO);
1778 XFS_BUF_HOLD(bp);
1779 ASSERT(XFS_BUF_ISDONE(bp));
1780 return bp;
1784 * Used to free the superblock along various error paths.
1786 void
1787 xfs_freesb(
1788 xfs_mount_t *mp)
1790 xfs_buf_t *bp;
1793 * Use xfs_getsb() so that the buffer will be locked
1794 * when we call xfs_buf_relse().
1796 bp = xfs_getsb(mp, 0);
1797 XFS_BUF_UNMANAGE(bp);
1798 xfs_buf_relse(bp);
1799 mp->m_sb_bp = NULL;
1803 * See if the UUID is unique among mounted XFS filesystems.
1804 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1806 STATIC int
1807 xfs_uuid_mount(
1808 xfs_mount_t *mp)
1810 if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1811 cmn_err(CE_WARN,
1812 "XFS: Filesystem %s has nil UUID - can't mount",
1813 mp->m_fsname);
1814 return -1;
1816 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1817 cmn_err(CE_WARN,
1818 "XFS: Filesystem %s has duplicate UUID - can't mount",
1819 mp->m_fsname);
1820 return -1;
1822 return 0;
1826 * Remove filesystem from the UUID table.
1828 STATIC void
1829 xfs_uuid_unmount(
1830 xfs_mount_t *mp)
1832 uuid_table_remove(&mp->m_sb.sb_uuid);
1836 * Used to log changes to the superblock unit and width fields which could
1837 * be altered by the mount options. Only the first superblock is updated.
1839 STATIC void
1840 xfs_mount_log_sbunit(
1841 xfs_mount_t *mp,
1842 __int64_t fields)
1844 xfs_trans_t *tp;
1846 ASSERT(fields & (XFS_SB_UNIT|XFS_SB_WIDTH|XFS_SB_UUID));
1848 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1849 if (xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1850 XFS_DEFAULT_LOG_COUNT)) {
1851 xfs_trans_cancel(tp, 0);
1852 return;
1854 xfs_mod_sb(tp, fields);
1855 xfs_trans_commit(tp, 0);
1859 #ifdef HAVE_PERCPU_SB
1861 * Per-cpu incore superblock counters
1863 * Simple concept, difficult implementation
1865 * Basically, replace the incore superblock counters with a distributed per cpu
1866 * counter for contended fields (e.g. free block count).
1868 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1869 * hence needs to be accurately read when we are running low on space. Hence
1870 * there is a method to enable and disable the per-cpu counters based on how
1871 * much "stuff" is available in them.
1873 * Basically, a counter is enabled if there is enough free resource to justify
1874 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1875 * ENOSPC), then we disable the counters to synchronise all callers and
1876 * re-distribute the available resources.
1878 * If, once we redistributed the available resources, we still get a failure,
1879 * we disable the per-cpu counter and go through the slow path.
1881 * The slow path is the current xfs_mod_incore_sb() function. This means that
1882 * when we disable a per-cpu counter, we need to drain it's resources back to
1883 * the global superblock. We do this after disabling the counter to prevent
1884 * more threads from queueing up on the counter.
1886 * Essentially, this means that we still need a lock in the fast path to enable
1887 * synchronisation between the global counters and the per-cpu counters. This
1888 * is not a problem because the lock will be local to a CPU almost all the time
1889 * and have little contention except when we get to ENOSPC conditions.
1891 * Basically, this lock becomes a barrier that enables us to lock out the fast
1892 * path while we do things like enabling and disabling counters and
1893 * synchronising the counters.
1895 * Locking rules:
1897 * 1. XFS_SB_LOCK() before picking up per-cpu locks
1898 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1899 * 3. accurate counter sync requires XFS_SB_LOCK + per cpu locks
1900 * 4. modifying per-cpu counters requires holding per-cpu lock
1901 * 5. modifying global counters requires holding XFS_SB_LOCK
1902 * 6. enabling or disabling a counter requires holding the XFS_SB_LOCK
1903 * and _none_ of the per-cpu locks.
1905 * Disabled counters are only ever re-enabled by a balance operation
1906 * that results in more free resources per CPU than a given threshold.
1907 * To ensure counters don't remain disabled, they are rebalanced when
1908 * the global resource goes above a higher threshold (i.e. some hysteresis
1909 * is present to prevent thrashing).
1912 #ifdef CONFIG_HOTPLUG_CPU
1914 * hot-plug CPU notifier support.
1916 * We need a notifier per filesystem as we need to be able to identify
1917 * the filesystem to balance the counters out. This is achieved by
1918 * having a notifier block embedded in the xfs_mount_t and doing pointer
1919 * magic to get the mount pointer from the notifier block address.
1921 STATIC int
1922 xfs_icsb_cpu_notify(
1923 struct notifier_block *nfb,
1924 unsigned long action,
1925 void *hcpu)
1927 xfs_icsb_cnts_t *cntp;
1928 xfs_mount_t *mp;
1929 int s;
1931 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1932 cntp = (xfs_icsb_cnts_t *)
1933 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1934 switch (action) {
1935 case CPU_UP_PREPARE:
1936 case CPU_UP_PREPARE_FROZEN:
1937 /* Easy Case - initialize the area and locks, and
1938 * then rebalance when online does everything else for us. */
1939 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1940 break;
1941 case CPU_ONLINE:
1942 case CPU_ONLINE_FROZEN:
1943 xfs_icsb_lock(mp);
1944 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
1945 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
1946 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
1947 xfs_icsb_unlock(mp);
1948 break;
1949 case CPU_DEAD:
1950 case CPU_DEAD_FROZEN:
1951 /* Disable all the counters, then fold the dead cpu's
1952 * count into the total on the global superblock and
1953 * re-enable the counters. */
1954 xfs_icsb_lock(mp);
1955 s = XFS_SB_LOCK(mp);
1956 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1957 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1958 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1960 mp->m_sb.sb_icount += cntp->icsb_icount;
1961 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1962 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1964 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1966 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT,
1967 XFS_ICSB_SB_LOCKED, 0);
1968 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE,
1969 XFS_ICSB_SB_LOCKED, 0);
1970 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS,
1971 XFS_ICSB_SB_LOCKED, 0);
1972 XFS_SB_UNLOCK(mp, s);
1973 xfs_icsb_unlock(mp);
1974 break;
1977 return NOTIFY_OK;
1979 #endif /* CONFIG_HOTPLUG_CPU */
1982 xfs_icsb_init_counters(
1983 xfs_mount_t *mp)
1985 xfs_icsb_cnts_t *cntp;
1986 int i;
1988 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1989 if (mp->m_sb_cnts == NULL)
1990 return -ENOMEM;
1992 #ifdef CONFIG_HOTPLUG_CPU
1993 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1994 mp->m_icsb_notifier.priority = 0;
1995 register_hotcpu_notifier(&mp->m_icsb_notifier);
1996 #endif /* CONFIG_HOTPLUG_CPU */
1998 for_each_online_cpu(i) {
1999 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2000 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2003 mutex_init(&mp->m_icsb_mutex);
2006 * start with all counters disabled so that the
2007 * initial balance kicks us off correctly
2009 mp->m_icsb_counters = -1;
2010 return 0;
2013 void
2014 xfs_icsb_reinit_counters(
2015 xfs_mount_t *mp)
2017 xfs_icsb_lock(mp);
2019 * start with all counters disabled so that the
2020 * initial balance kicks us off correctly
2022 mp->m_icsb_counters = -1;
2023 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
2024 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
2025 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
2026 xfs_icsb_unlock(mp);
2029 STATIC void
2030 xfs_icsb_destroy_counters(
2031 xfs_mount_t *mp)
2033 if (mp->m_sb_cnts) {
2034 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2035 free_percpu(mp->m_sb_cnts);
2037 mutex_destroy(&mp->m_icsb_mutex);
2040 STATIC_INLINE void
2041 xfs_icsb_lock_cntr(
2042 xfs_icsb_cnts_t *icsbp)
2044 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2045 ndelay(1000);
2049 STATIC_INLINE void
2050 xfs_icsb_unlock_cntr(
2051 xfs_icsb_cnts_t *icsbp)
2053 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2057 STATIC_INLINE void
2058 xfs_icsb_lock_all_counters(
2059 xfs_mount_t *mp)
2061 xfs_icsb_cnts_t *cntp;
2062 int i;
2064 for_each_online_cpu(i) {
2065 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2066 xfs_icsb_lock_cntr(cntp);
2070 STATIC_INLINE void
2071 xfs_icsb_unlock_all_counters(
2072 xfs_mount_t *mp)
2074 xfs_icsb_cnts_t *cntp;
2075 int i;
2077 for_each_online_cpu(i) {
2078 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2079 xfs_icsb_unlock_cntr(cntp);
2083 STATIC void
2084 xfs_icsb_count(
2085 xfs_mount_t *mp,
2086 xfs_icsb_cnts_t *cnt,
2087 int flags)
2089 xfs_icsb_cnts_t *cntp;
2090 int i;
2092 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2094 if (!(flags & XFS_ICSB_LAZY_COUNT))
2095 xfs_icsb_lock_all_counters(mp);
2097 for_each_online_cpu(i) {
2098 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2099 cnt->icsb_icount += cntp->icsb_icount;
2100 cnt->icsb_ifree += cntp->icsb_ifree;
2101 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2104 if (!(flags & XFS_ICSB_LAZY_COUNT))
2105 xfs_icsb_unlock_all_counters(mp);
2108 STATIC int
2109 xfs_icsb_counter_disabled(
2110 xfs_mount_t *mp,
2111 xfs_sb_field_t field)
2113 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2114 return test_bit(field, &mp->m_icsb_counters);
2117 STATIC int
2118 xfs_icsb_disable_counter(
2119 xfs_mount_t *mp,
2120 xfs_sb_field_t field)
2122 xfs_icsb_cnts_t cnt;
2124 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2127 * If we are already disabled, then there is nothing to do
2128 * here. We check before locking all the counters to avoid
2129 * the expensive lock operation when being called in the
2130 * slow path and the counter is already disabled. This is
2131 * safe because the only time we set or clear this state is under
2132 * the m_icsb_mutex.
2134 if (xfs_icsb_counter_disabled(mp, field))
2135 return 0;
2137 xfs_icsb_lock_all_counters(mp);
2138 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2139 /* drain back to superblock */
2141 xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT);
2142 switch(field) {
2143 case XFS_SBS_ICOUNT:
2144 mp->m_sb.sb_icount = cnt.icsb_icount;
2145 break;
2146 case XFS_SBS_IFREE:
2147 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2148 break;
2149 case XFS_SBS_FDBLOCKS:
2150 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2151 break;
2152 default:
2153 BUG();
2157 xfs_icsb_unlock_all_counters(mp);
2159 return 0;
2162 STATIC void
2163 xfs_icsb_enable_counter(
2164 xfs_mount_t *mp,
2165 xfs_sb_field_t field,
2166 uint64_t count,
2167 uint64_t resid)
2169 xfs_icsb_cnts_t *cntp;
2170 int i;
2172 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2174 xfs_icsb_lock_all_counters(mp);
2175 for_each_online_cpu(i) {
2176 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2177 switch (field) {
2178 case XFS_SBS_ICOUNT:
2179 cntp->icsb_icount = count + resid;
2180 break;
2181 case XFS_SBS_IFREE:
2182 cntp->icsb_ifree = count + resid;
2183 break;
2184 case XFS_SBS_FDBLOCKS:
2185 cntp->icsb_fdblocks = count + resid;
2186 break;
2187 default:
2188 BUG();
2189 break;
2191 resid = 0;
2193 clear_bit(field, &mp->m_icsb_counters);
2194 xfs_icsb_unlock_all_counters(mp);
2197 void
2198 xfs_icsb_sync_counters_flags(
2199 xfs_mount_t *mp,
2200 int flags)
2202 xfs_icsb_cnts_t cnt;
2203 int s;
2205 /* Pass 1: lock all counters */
2206 if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2207 s = XFS_SB_LOCK(mp);
2209 xfs_icsb_count(mp, &cnt, flags);
2211 /* Step 3: update mp->m_sb fields */
2212 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2213 mp->m_sb.sb_icount = cnt.icsb_icount;
2214 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2215 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2216 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2217 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2219 if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2220 XFS_SB_UNLOCK(mp, s);
2224 * Accurate update of per-cpu counters to incore superblock
2226 STATIC void
2227 xfs_icsb_sync_counters(
2228 xfs_mount_t *mp)
2230 xfs_icsb_sync_counters_flags(mp, 0);
2234 * Balance and enable/disable counters as necessary.
2236 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2237 * chosen to be the same number as single on disk allocation chunk per CPU, and
2238 * free blocks is something far enough zero that we aren't going thrash when we
2239 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2240 * prevent looping endlessly when xfs_alloc_space asks for more than will
2241 * be distributed to a single CPU but each CPU has enough blocks to be
2242 * reenabled.
2244 * Note that we can be called when counters are already disabled.
2245 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2246 * prevent locking every per-cpu counter needlessly.
2249 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2250 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2251 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2252 STATIC void
2253 xfs_icsb_balance_counter(
2254 xfs_mount_t *mp,
2255 xfs_sb_field_t field,
2256 int flags,
2257 int min_per_cpu)
2259 uint64_t count, resid;
2260 int weight = num_online_cpus();
2261 int s;
2262 uint64_t min = (uint64_t)min_per_cpu;
2264 if (!(flags & XFS_ICSB_SB_LOCKED))
2265 s = XFS_SB_LOCK(mp);
2267 /* disable counter and sync counter */
2268 xfs_icsb_disable_counter(mp, field);
2270 /* update counters - first CPU gets residual*/
2271 switch (field) {
2272 case XFS_SBS_ICOUNT:
2273 count = mp->m_sb.sb_icount;
2274 resid = do_div(count, weight);
2275 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2276 goto out;
2277 break;
2278 case XFS_SBS_IFREE:
2279 count = mp->m_sb.sb_ifree;
2280 resid = do_div(count, weight);
2281 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2282 goto out;
2283 break;
2284 case XFS_SBS_FDBLOCKS:
2285 count = mp->m_sb.sb_fdblocks;
2286 resid = do_div(count, weight);
2287 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2288 goto out;
2289 break;
2290 default:
2291 BUG();
2292 count = resid = 0; /* quiet, gcc */
2293 break;
2296 xfs_icsb_enable_counter(mp, field, count, resid);
2297 out:
2298 if (!(flags & XFS_ICSB_SB_LOCKED))
2299 XFS_SB_UNLOCK(mp, s);
2303 xfs_icsb_modify_counters(
2304 xfs_mount_t *mp,
2305 xfs_sb_field_t field,
2306 int64_t delta,
2307 int rsvd)
2309 xfs_icsb_cnts_t *icsbp;
2310 long long lcounter; /* long counter for 64 bit fields */
2311 int cpu, ret = 0, s;
2313 might_sleep();
2314 again:
2315 cpu = get_cpu();
2316 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2319 * if the counter is disabled, go to slow path
2321 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2322 goto slow_path;
2323 xfs_icsb_lock_cntr(icsbp);
2324 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2325 xfs_icsb_unlock_cntr(icsbp);
2326 goto slow_path;
2329 switch (field) {
2330 case XFS_SBS_ICOUNT:
2331 lcounter = icsbp->icsb_icount;
2332 lcounter += delta;
2333 if (unlikely(lcounter < 0))
2334 goto balance_counter;
2335 icsbp->icsb_icount = lcounter;
2336 break;
2338 case XFS_SBS_IFREE:
2339 lcounter = icsbp->icsb_ifree;
2340 lcounter += delta;
2341 if (unlikely(lcounter < 0))
2342 goto balance_counter;
2343 icsbp->icsb_ifree = lcounter;
2344 break;
2346 case XFS_SBS_FDBLOCKS:
2347 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2349 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2350 lcounter += delta;
2351 if (unlikely(lcounter < 0))
2352 goto balance_counter;
2353 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2354 break;
2355 default:
2356 BUG();
2357 break;
2359 xfs_icsb_unlock_cntr(icsbp);
2360 put_cpu();
2361 return 0;
2363 slow_path:
2364 put_cpu();
2367 * serialise with a mutex so we don't burn lots of cpu on
2368 * the superblock lock. We still need to hold the superblock
2369 * lock, however, when we modify the global structures.
2371 xfs_icsb_lock(mp);
2374 * Now running atomically.
2376 * If the counter is enabled, someone has beaten us to rebalancing.
2377 * Drop the lock and try again in the fast path....
2379 if (!(xfs_icsb_counter_disabled(mp, field))) {
2380 xfs_icsb_unlock(mp);
2381 goto again;
2385 * The counter is currently disabled. Because we are
2386 * running atomically here, we know a rebalance cannot
2387 * be in progress. Hence we can go straight to operating
2388 * on the global superblock. We do not call xfs_mod_incore_sb()
2389 * here even though we need to get the SB_LOCK. Doing so
2390 * will cause us to re-enter this function and deadlock.
2391 * Hence we get the SB_LOCK ourselves and then call
2392 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2393 * directly on the global counters.
2395 s = XFS_SB_LOCK(mp);
2396 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2397 XFS_SB_UNLOCK(mp, s);
2400 * Now that we've modified the global superblock, we
2401 * may be able to re-enable the distributed counters
2402 * (e.g. lots of space just got freed). After that
2403 * we are done.
2405 if (ret != ENOSPC)
2406 xfs_icsb_balance_counter(mp, field, 0, 0);
2407 xfs_icsb_unlock(mp);
2408 return ret;
2410 balance_counter:
2411 xfs_icsb_unlock_cntr(icsbp);
2412 put_cpu();
2415 * We may have multiple threads here if multiple per-cpu
2416 * counters run dry at the same time. This will mean we can
2417 * do more balances than strictly necessary but it is not
2418 * the common slowpath case.
2420 xfs_icsb_lock(mp);
2423 * running atomically.
2425 * This will leave the counter in the correct state for future
2426 * accesses. After the rebalance, we simply try again and our retry
2427 * will either succeed through the fast path or slow path without
2428 * another balance operation being required.
2430 xfs_icsb_balance_counter(mp, field, 0, delta);
2431 xfs_icsb_unlock(mp);
2432 goto again;
2435 #endif