V4L/DVB (5811): Use mutex instead of semaphore in Virtual Video driver
[pv_ops_mirror.git] / fs / libfs.c
blob5294de1f40c41ba3c2dfcd992c725202967b0dce
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/mount.h>
9 #include <linux/vfs.h>
10 #include <linux/mutex.h>
12 #include <asm/uaccess.h>
14 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
15 struct kstat *stat)
17 struct inode *inode = dentry->d_inode;
18 generic_fillattr(inode, stat);
19 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
20 return 0;
23 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
25 buf->f_type = dentry->d_sb->s_magic;
26 buf->f_bsize = PAGE_CACHE_SIZE;
27 buf->f_namelen = NAME_MAX;
28 return 0;
32 * Retaining negative dentries for an in-memory filesystem just wastes
33 * memory and lookup time: arrange for them to be deleted immediately.
35 static int simple_delete_dentry(struct dentry *dentry)
37 return 1;
41 * Lookup the data. This is trivial - if the dentry didn't already
42 * exist, we know it is negative. Set d_op to delete negative dentries.
44 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
46 static struct dentry_operations simple_dentry_operations = {
47 .d_delete = simple_delete_dentry,
50 if (dentry->d_name.len > NAME_MAX)
51 return ERR_PTR(-ENAMETOOLONG);
52 dentry->d_op = &simple_dentry_operations;
53 d_add(dentry, NULL);
54 return NULL;
57 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
59 return 0;
62 int dcache_dir_open(struct inode *inode, struct file *file)
64 static struct qstr cursor_name = {.len = 1, .name = "."};
66 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
68 return file->private_data ? 0 : -ENOMEM;
71 int dcache_dir_close(struct inode *inode, struct file *file)
73 dput(file->private_data);
74 return 0;
77 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
79 mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
80 switch (origin) {
81 case 1:
82 offset += file->f_pos;
83 case 0:
84 if (offset >= 0)
85 break;
86 default:
87 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
88 return -EINVAL;
90 if (offset != file->f_pos) {
91 file->f_pos = offset;
92 if (file->f_pos >= 2) {
93 struct list_head *p;
94 struct dentry *cursor = file->private_data;
95 loff_t n = file->f_pos - 2;
97 spin_lock(&dcache_lock);
98 list_del(&cursor->d_u.d_child);
99 p = file->f_path.dentry->d_subdirs.next;
100 while (n && p != &file->f_path.dentry->d_subdirs) {
101 struct dentry *next;
102 next = list_entry(p, struct dentry, d_u.d_child);
103 if (!d_unhashed(next) && next->d_inode)
104 n--;
105 p = p->next;
107 list_add_tail(&cursor->d_u.d_child, p);
108 spin_unlock(&dcache_lock);
111 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
112 return offset;
115 /* Relationship between i_mode and the DT_xxx types */
116 static inline unsigned char dt_type(struct inode *inode)
118 return (inode->i_mode >> 12) & 15;
122 * Directory is locked and all positive dentries in it are safe, since
123 * for ramfs-type trees they can't go away without unlink() or rmdir(),
124 * both impossible due to the lock on directory.
127 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
129 struct dentry *dentry = filp->f_path.dentry;
130 struct dentry *cursor = filp->private_data;
131 struct list_head *p, *q = &cursor->d_u.d_child;
132 ino_t ino;
133 int i = filp->f_pos;
135 switch (i) {
136 case 0:
137 ino = dentry->d_inode->i_ino;
138 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
139 break;
140 filp->f_pos++;
141 i++;
142 /* fallthrough */
143 case 1:
144 ino = parent_ino(dentry);
145 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
146 break;
147 filp->f_pos++;
148 i++;
149 /* fallthrough */
150 default:
151 spin_lock(&dcache_lock);
152 if (filp->f_pos == 2)
153 list_move(q, &dentry->d_subdirs);
155 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
156 struct dentry *next;
157 next = list_entry(p, struct dentry, d_u.d_child);
158 if (d_unhashed(next) || !next->d_inode)
159 continue;
161 spin_unlock(&dcache_lock);
162 if (filldir(dirent, next->d_name.name,
163 next->d_name.len, filp->f_pos,
164 next->d_inode->i_ino,
165 dt_type(next->d_inode)) < 0)
166 return 0;
167 spin_lock(&dcache_lock);
168 /* next is still alive */
169 list_move(q, p);
170 p = q;
171 filp->f_pos++;
173 spin_unlock(&dcache_lock);
175 return 0;
178 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
180 return -EISDIR;
183 const struct file_operations simple_dir_operations = {
184 .open = dcache_dir_open,
185 .release = dcache_dir_close,
186 .llseek = dcache_dir_lseek,
187 .read = generic_read_dir,
188 .readdir = dcache_readdir,
189 .fsync = simple_sync_file,
192 const struct inode_operations simple_dir_inode_operations = {
193 .lookup = simple_lookup,
196 static const struct super_operations simple_super_operations = {
197 .statfs = simple_statfs,
201 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
202 * will never be mountable)
204 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
205 const struct super_operations *ops, unsigned long magic,
206 struct vfsmount *mnt)
208 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
209 struct dentry *dentry;
210 struct inode *root;
211 struct qstr d_name = {.name = name, .len = strlen(name)};
213 if (IS_ERR(s))
214 return PTR_ERR(s);
216 s->s_flags = MS_NOUSER;
217 s->s_maxbytes = ~0ULL;
218 s->s_blocksize = 1024;
219 s->s_blocksize_bits = 10;
220 s->s_magic = magic;
221 s->s_op = ops ? ops : &simple_super_operations;
222 s->s_time_gran = 1;
223 root = new_inode(s);
224 if (!root)
225 goto Enomem;
227 * since this is the first inode, make it number 1. New inodes created
228 * after this must take care not to collide with it (by passing
229 * max_reserved of 1 to iunique).
231 root->i_ino = 1;
232 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
233 root->i_uid = root->i_gid = 0;
234 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
235 dentry = d_alloc(NULL, &d_name);
236 if (!dentry) {
237 iput(root);
238 goto Enomem;
240 dentry->d_sb = s;
241 dentry->d_parent = dentry;
242 d_instantiate(dentry, root);
243 s->s_root = dentry;
244 s->s_flags |= MS_ACTIVE;
245 return simple_set_mnt(mnt, s);
247 Enomem:
248 up_write(&s->s_umount);
249 deactivate_super(s);
250 return -ENOMEM;
253 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
255 struct inode *inode = old_dentry->d_inode;
257 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
258 inc_nlink(inode);
259 atomic_inc(&inode->i_count);
260 dget(dentry);
261 d_instantiate(dentry, inode);
262 return 0;
265 static inline int simple_positive(struct dentry *dentry)
267 return dentry->d_inode && !d_unhashed(dentry);
270 int simple_empty(struct dentry *dentry)
272 struct dentry *child;
273 int ret = 0;
275 spin_lock(&dcache_lock);
276 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
277 if (simple_positive(child))
278 goto out;
279 ret = 1;
280 out:
281 spin_unlock(&dcache_lock);
282 return ret;
285 int simple_unlink(struct inode *dir, struct dentry *dentry)
287 struct inode *inode = dentry->d_inode;
289 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
290 drop_nlink(inode);
291 dput(dentry);
292 return 0;
295 int simple_rmdir(struct inode *dir, struct dentry *dentry)
297 if (!simple_empty(dentry))
298 return -ENOTEMPTY;
300 drop_nlink(dentry->d_inode);
301 simple_unlink(dir, dentry);
302 drop_nlink(dir);
303 return 0;
306 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
307 struct inode *new_dir, struct dentry *new_dentry)
309 struct inode *inode = old_dentry->d_inode;
310 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
312 if (!simple_empty(new_dentry))
313 return -ENOTEMPTY;
315 if (new_dentry->d_inode) {
316 simple_unlink(new_dir, new_dentry);
317 if (they_are_dirs)
318 drop_nlink(old_dir);
319 } else if (they_are_dirs) {
320 drop_nlink(old_dir);
321 inc_nlink(new_dir);
324 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
325 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
327 return 0;
330 int simple_readpage(struct file *file, struct page *page)
332 clear_highpage(page);
333 flush_dcache_page(page);
334 SetPageUptodate(page);
335 unlock_page(page);
336 return 0;
339 int simple_prepare_write(struct file *file, struct page *page,
340 unsigned from, unsigned to)
342 if (!PageUptodate(page)) {
343 if (to - from != PAGE_CACHE_SIZE) {
344 void *kaddr = kmap_atomic(page, KM_USER0);
345 memset(kaddr, 0, from);
346 memset(kaddr + to, 0, PAGE_CACHE_SIZE - to);
347 flush_dcache_page(page);
348 kunmap_atomic(kaddr, KM_USER0);
351 return 0;
354 int simple_commit_write(struct file *file, struct page *page,
355 unsigned from, unsigned to)
357 struct inode *inode = page->mapping->host;
358 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
360 if (!PageUptodate(page))
361 SetPageUptodate(page);
363 * No need to use i_size_read() here, the i_size
364 * cannot change under us because we hold the i_mutex.
366 if (pos > inode->i_size)
367 i_size_write(inode, pos);
368 set_page_dirty(page);
369 return 0;
373 * the inodes created here are not hashed. If you use iunique to generate
374 * unique inode values later for this filesystem, then you must take care
375 * to pass it an appropriate max_reserved value to avoid collisions.
377 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
379 struct inode *inode;
380 struct dentry *root;
381 struct dentry *dentry;
382 int i;
384 s->s_blocksize = PAGE_CACHE_SIZE;
385 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
386 s->s_magic = magic;
387 s->s_op = &simple_super_operations;
388 s->s_time_gran = 1;
390 inode = new_inode(s);
391 if (!inode)
392 return -ENOMEM;
394 * because the root inode is 1, the files array must not contain an
395 * entry at index 1
397 inode->i_ino = 1;
398 inode->i_mode = S_IFDIR | 0755;
399 inode->i_uid = inode->i_gid = 0;
400 inode->i_blocks = 0;
401 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
402 inode->i_op = &simple_dir_inode_operations;
403 inode->i_fop = &simple_dir_operations;
404 inode->i_nlink = 2;
405 root = d_alloc_root(inode);
406 if (!root) {
407 iput(inode);
408 return -ENOMEM;
410 for (i = 0; !files->name || files->name[0]; i++, files++) {
411 if (!files->name)
412 continue;
414 /* warn if it tries to conflict with the root inode */
415 if (unlikely(i == 1))
416 printk(KERN_WARNING "%s: %s passed in a files array"
417 "with an index of 1!\n", __func__,
418 s->s_type->name);
420 dentry = d_alloc_name(root, files->name);
421 if (!dentry)
422 goto out;
423 inode = new_inode(s);
424 if (!inode)
425 goto out;
426 inode->i_mode = S_IFREG | files->mode;
427 inode->i_uid = inode->i_gid = 0;
428 inode->i_blocks = 0;
429 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
430 inode->i_fop = files->ops;
431 inode->i_ino = i;
432 d_add(dentry, inode);
434 s->s_root = root;
435 return 0;
436 out:
437 d_genocide(root);
438 dput(root);
439 return -ENOMEM;
442 static DEFINE_SPINLOCK(pin_fs_lock);
444 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
446 struct vfsmount *mnt = NULL;
447 spin_lock(&pin_fs_lock);
448 if (unlikely(!*mount)) {
449 spin_unlock(&pin_fs_lock);
450 mnt = vfs_kern_mount(type, 0, type->name, NULL);
451 if (IS_ERR(mnt))
452 return PTR_ERR(mnt);
453 spin_lock(&pin_fs_lock);
454 if (!*mount)
455 *mount = mnt;
457 mntget(*mount);
458 ++*count;
459 spin_unlock(&pin_fs_lock);
460 mntput(mnt);
461 return 0;
464 void simple_release_fs(struct vfsmount **mount, int *count)
466 struct vfsmount *mnt;
467 spin_lock(&pin_fs_lock);
468 mnt = *mount;
469 if (!--*count)
470 *mount = NULL;
471 spin_unlock(&pin_fs_lock);
472 mntput(mnt);
475 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
476 const void *from, size_t available)
478 loff_t pos = *ppos;
479 if (pos < 0)
480 return -EINVAL;
481 if (pos >= available)
482 return 0;
483 if (count > available - pos)
484 count = available - pos;
485 if (copy_to_user(to, from + pos, count))
486 return -EFAULT;
487 *ppos = pos + count;
488 return count;
492 * Transaction based IO.
493 * The file expects a single write which triggers the transaction, and then
494 * possibly a read which collects the result - which is stored in a
495 * file-local buffer.
497 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
499 struct simple_transaction_argresp *ar;
500 static DEFINE_SPINLOCK(simple_transaction_lock);
502 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
503 return ERR_PTR(-EFBIG);
505 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
506 if (!ar)
507 return ERR_PTR(-ENOMEM);
509 spin_lock(&simple_transaction_lock);
511 /* only one write allowed per open */
512 if (file->private_data) {
513 spin_unlock(&simple_transaction_lock);
514 free_page((unsigned long)ar);
515 return ERR_PTR(-EBUSY);
518 file->private_data = ar;
520 spin_unlock(&simple_transaction_lock);
522 if (copy_from_user(ar->data, buf, size))
523 return ERR_PTR(-EFAULT);
525 return ar->data;
528 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
530 struct simple_transaction_argresp *ar = file->private_data;
532 if (!ar)
533 return 0;
534 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
537 int simple_transaction_release(struct inode *inode, struct file *file)
539 free_page((unsigned long)file->private_data);
540 return 0;
543 /* Simple attribute files */
545 struct simple_attr {
546 u64 (*get)(void *);
547 void (*set)(void *, u64);
548 char get_buf[24]; /* enough to store a u64 and "\n\0" */
549 char set_buf[24];
550 void *data;
551 const char *fmt; /* format for read operation */
552 struct mutex mutex; /* protects access to these buffers */
555 /* simple_attr_open is called by an actual attribute open file operation
556 * to set the attribute specific access operations. */
557 int simple_attr_open(struct inode *inode, struct file *file,
558 u64 (*get)(void *), void (*set)(void *, u64),
559 const char *fmt)
561 struct simple_attr *attr;
563 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
564 if (!attr)
565 return -ENOMEM;
567 attr->get = get;
568 attr->set = set;
569 attr->data = inode->i_private;
570 attr->fmt = fmt;
571 mutex_init(&attr->mutex);
573 file->private_data = attr;
575 return nonseekable_open(inode, file);
578 int simple_attr_close(struct inode *inode, struct file *file)
580 kfree(file->private_data);
581 return 0;
584 /* read from the buffer that is filled with the get function */
585 ssize_t simple_attr_read(struct file *file, char __user *buf,
586 size_t len, loff_t *ppos)
588 struct simple_attr *attr;
589 size_t size;
590 ssize_t ret;
592 attr = file->private_data;
594 if (!attr->get)
595 return -EACCES;
597 mutex_lock(&attr->mutex);
598 if (*ppos) /* continued read */
599 size = strlen(attr->get_buf);
600 else /* first read */
601 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
602 attr->fmt,
603 (unsigned long long)attr->get(attr->data));
605 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
606 mutex_unlock(&attr->mutex);
607 return ret;
610 /* interpret the buffer as a number to call the set function with */
611 ssize_t simple_attr_write(struct file *file, const char __user *buf,
612 size_t len, loff_t *ppos)
614 struct simple_attr *attr;
615 u64 val;
616 size_t size;
617 ssize_t ret;
619 attr = file->private_data;
621 if (!attr->set)
622 return -EACCES;
624 mutex_lock(&attr->mutex);
625 ret = -EFAULT;
626 size = min(sizeof(attr->set_buf) - 1, len);
627 if (copy_from_user(attr->set_buf, buf, size))
628 goto out;
630 ret = len; /* claim we got the whole input */
631 attr->set_buf[size] = '\0';
632 val = simple_strtol(attr->set_buf, NULL, 0);
633 attr->set(attr->data, val);
634 out:
635 mutex_unlock(&attr->mutex);
636 return ret;
639 EXPORT_SYMBOL(dcache_dir_close);
640 EXPORT_SYMBOL(dcache_dir_lseek);
641 EXPORT_SYMBOL(dcache_dir_open);
642 EXPORT_SYMBOL(dcache_readdir);
643 EXPORT_SYMBOL(generic_read_dir);
644 EXPORT_SYMBOL(get_sb_pseudo);
645 EXPORT_SYMBOL(simple_commit_write);
646 EXPORT_SYMBOL(simple_dir_inode_operations);
647 EXPORT_SYMBOL(simple_dir_operations);
648 EXPORT_SYMBOL(simple_empty);
649 EXPORT_SYMBOL(d_alloc_name);
650 EXPORT_SYMBOL(simple_fill_super);
651 EXPORT_SYMBOL(simple_getattr);
652 EXPORT_SYMBOL(simple_link);
653 EXPORT_SYMBOL(simple_lookup);
654 EXPORT_SYMBOL(simple_pin_fs);
655 EXPORT_SYMBOL(simple_prepare_write);
656 EXPORT_SYMBOL(simple_readpage);
657 EXPORT_SYMBOL(simple_release_fs);
658 EXPORT_SYMBOL(simple_rename);
659 EXPORT_SYMBOL(simple_rmdir);
660 EXPORT_SYMBOL(simple_statfs);
661 EXPORT_SYMBOL(simple_sync_file);
662 EXPORT_SYMBOL(simple_unlink);
663 EXPORT_SYMBOL(simple_read_from_buffer);
664 EXPORT_SYMBOL(simple_transaction_get);
665 EXPORT_SYMBOL(simple_transaction_read);
666 EXPORT_SYMBOL(simple_transaction_release);
667 EXPORT_SYMBOL_GPL(simple_attr_open);
668 EXPORT_SYMBOL_GPL(simple_attr_close);
669 EXPORT_SYMBOL_GPL(simple_attr_read);
670 EXPORT_SYMBOL_GPL(simple_attr_write);