2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
34 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE 2
38 * The maximum number of SG segments that we will put inside a scatterlist
39 * (unless chaining is used). Should ideally fit inside a single page, to
40 * avoid a higher order allocation.
42 #define SCSI_MAX_SG_SEGMENTS 128
44 struct scsi_host_sg_pool
{
47 struct kmem_cache
*slab
;
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
67 static void scsi_run_queue(struct request_queue
*q
);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
81 static void scsi_unprep_request(struct request
*req
)
83 struct scsi_cmnd
*cmd
= req
->special
;
85 req
->cmd_flags
&= ~REQ_DONTPREP
;
88 scsi_put_command(cmd
);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
112 struct Scsi_Host
*host
= cmd
->device
->host
;
113 struct scsi_device
*device
= cmd
->device
;
114 struct request_queue
*q
= device
->request_queue
;
118 printk("Inserting command %p into mlqueue\n", cmd
));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason
== SCSI_MLQUEUE_HOST_BUSY
)
134 host
->host_blocked
= host
->max_host_blocked
;
135 else if (reason
== SCSI_MLQUEUE_DEVICE_BUSY
)
136 device
->device_blocked
= device
->max_device_blocked
;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device
);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q
->queue_lock
, flags
);
156 blk_requeue_request(q
, cmd
->request
);
157 spin_unlock_irqrestore(q
->queue_lock
, flags
);
165 * scsi_execute - insert request and wait for the result
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
176 * returns the req->errors value which is the scsi_cmnd result
179 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
180 int data_direction
, void *buffer
, unsigned bufflen
,
181 unsigned char *sense
, int timeout
, int retries
, int flags
)
184 int write
= (data_direction
== DMA_TO_DEVICE
);
185 int ret
= DRIVER_ERROR
<< 24;
187 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
189 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
190 buffer
, bufflen
, __GFP_WAIT
))
193 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
194 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
197 req
->retries
= retries
;
198 req
->timeout
= timeout
;
199 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
200 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
203 * head injection *required* here otherwise quiesce won't work
205 blk_execute_rq(req
->q
, NULL
, req
, 1);
209 blk_put_request(req
);
213 EXPORT_SYMBOL(scsi_execute
);
216 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
217 int data_direction
, void *buffer
, unsigned bufflen
,
218 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
)
224 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
226 return DRIVER_ERROR
<< 24;
228 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
229 sense
, timeout
, retries
, 0);
231 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
236 EXPORT_SYMBOL(scsi_execute_req
);
238 struct scsi_io_context
{
240 void (*done
)(void *data
, char *sense
, int result
, int resid
);
241 char sense
[SCSI_SENSE_BUFFERSIZE
];
244 static struct kmem_cache
*scsi_io_context_cache
;
246 static void scsi_end_async(struct request
*req
, int uptodate
)
248 struct scsi_io_context
*sioc
= req
->end_io_data
;
251 sioc
->done(sioc
->data
, sioc
->sense
, req
->errors
, req
->data_len
);
253 kmem_cache_free(scsi_io_context_cache
, sioc
);
254 __blk_put_request(req
->q
, req
);
257 static int scsi_merge_bio(struct request
*rq
, struct bio
*bio
)
259 struct request_queue
*q
= rq
->q
;
261 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
262 if (rq_data_dir(rq
) == WRITE
)
263 bio
->bi_rw
|= (1 << BIO_RW
);
264 blk_queue_bounce(q
, &bio
);
266 return blk_rq_append_bio(q
, rq
, bio
);
269 static void scsi_bi_endio(struct bio
*bio
, int error
)
275 * scsi_req_map_sg - map a scatterlist into a request
276 * @rq: request to fill
278 * @nsegs: number of elements
279 * @bufflen: len of buffer
280 * @gfp: memory allocation flags
282 * scsi_req_map_sg maps a scatterlist into a request so that the
283 * request can be sent to the block layer. We do not trust the scatterlist
284 * sent to use, as some ULDs use that struct to only organize the pages.
286 static int scsi_req_map_sg(struct request
*rq
, struct scatterlist
*sgl
,
287 int nsegs
, unsigned bufflen
, gfp_t gfp
)
289 struct request_queue
*q
= rq
->q
;
290 int nr_pages
= (bufflen
+ sgl
[0].offset
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
291 unsigned int data_len
= bufflen
, len
, bytes
, off
;
292 struct scatterlist
*sg
;
294 struct bio
*bio
= NULL
;
295 int i
, err
, nr_vecs
= 0;
297 for_each_sg(sgl
, sg
, nsegs
, i
) {
303 while (len
> 0 && data_len
> 0) {
305 * sg sends a scatterlist that is larger than
306 * the data_len it wants transferred for certain
309 bytes
= min_t(unsigned int, len
, PAGE_SIZE
- off
);
310 bytes
= min(bytes
, data_len
);
313 nr_vecs
= min_t(int, BIO_MAX_PAGES
, nr_pages
);
316 bio
= bio_alloc(gfp
, nr_vecs
);
321 bio
->bi_end_io
= scsi_bi_endio
;
324 if (bio_add_pc_page(q
, bio
, page
, bytes
, off
) !=
331 if (bio
->bi_vcnt
>= nr_vecs
) {
332 err
= scsi_merge_bio(rq
, bio
);
347 rq
->buffer
= rq
->data
= NULL
;
348 rq
->data_len
= bufflen
;
352 while ((bio
= rq
->bio
) != NULL
) {
353 rq
->bio
= bio
->bi_next
;
355 * call endio instead of bio_put incase it was bounced
364 * scsi_execute_async - insert request
367 * @cmd_len: length of scsi cdb
368 * @data_direction: data direction
369 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
370 * @bufflen: len of buffer
371 * @use_sg: if buffer is a scatterlist this is the number of elements
372 * @timeout: request timeout in seconds
373 * @retries: number of times to retry request
374 * @flags: or into request flags
376 int scsi_execute_async(struct scsi_device
*sdev
, const unsigned char *cmd
,
377 int cmd_len
, int data_direction
, void *buffer
, unsigned bufflen
,
378 int use_sg
, int timeout
, int retries
, void *privdata
,
379 void (*done
)(void *, char *, int, int), gfp_t gfp
)
382 struct scsi_io_context
*sioc
;
384 int write
= (data_direction
== DMA_TO_DEVICE
);
386 sioc
= kmem_cache_zalloc(scsi_io_context_cache
, gfp
);
388 return DRIVER_ERROR
<< 24;
390 req
= blk_get_request(sdev
->request_queue
, write
, gfp
);
393 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
394 req
->cmd_flags
|= REQ_QUIET
;
397 err
= scsi_req_map_sg(req
, buffer
, use_sg
, bufflen
, gfp
);
399 err
= blk_rq_map_kern(req
->q
, req
, buffer
, bufflen
, gfp
);
404 req
->cmd_len
= cmd_len
;
405 memset(req
->cmd
, 0, BLK_MAX_CDB
); /* ATAPI hates garbage after CDB */
406 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
407 req
->sense
= sioc
->sense
;
409 req
->timeout
= timeout
;
410 req
->retries
= retries
;
411 req
->end_io_data
= sioc
;
413 sioc
->data
= privdata
;
416 blk_execute_rq_nowait(req
->q
, NULL
, req
, 1, scsi_end_async
);
420 blk_put_request(req
);
422 kmem_cache_free(scsi_io_context_cache
, sioc
);
423 return DRIVER_ERROR
<< 24;
425 EXPORT_SYMBOL_GPL(scsi_execute_async
);
428 * Function: scsi_init_cmd_errh()
430 * Purpose: Initialize cmd fields related to error handling.
432 * Arguments: cmd - command that is ready to be queued.
434 * Notes: This function has the job of initializing a number of
435 * fields related to error handling. Typically this will
436 * be called once for each command, as required.
438 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
440 cmd
->serial_number
= 0;
442 memset(cmd
->sense_buffer
, 0, sizeof cmd
->sense_buffer
);
443 if (cmd
->cmd_len
== 0)
444 cmd
->cmd_len
= COMMAND_SIZE(cmd
->cmnd
[0]);
447 void scsi_device_unbusy(struct scsi_device
*sdev
)
449 struct Scsi_Host
*shost
= sdev
->host
;
452 spin_lock_irqsave(shost
->host_lock
, flags
);
454 if (unlikely(scsi_host_in_recovery(shost
) &&
455 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
456 scsi_eh_wakeup(shost
);
457 spin_unlock(shost
->host_lock
);
458 spin_lock(sdev
->request_queue
->queue_lock
);
460 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
464 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
465 * and call blk_run_queue for all the scsi_devices on the target -
466 * including current_sdev first.
468 * Called with *no* scsi locks held.
470 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
472 struct Scsi_Host
*shost
= current_sdev
->host
;
473 struct scsi_device
*sdev
, *tmp
;
474 struct scsi_target
*starget
= scsi_target(current_sdev
);
477 spin_lock_irqsave(shost
->host_lock
, flags
);
478 starget
->starget_sdev_user
= NULL
;
479 spin_unlock_irqrestore(shost
->host_lock
, flags
);
482 * Call blk_run_queue for all LUNs on the target, starting with
483 * current_sdev. We race with others (to set starget_sdev_user),
484 * but in most cases, we will be first. Ideally, each LU on the
485 * target would get some limited time or requests on the target.
487 blk_run_queue(current_sdev
->request_queue
);
489 spin_lock_irqsave(shost
->host_lock
, flags
);
490 if (starget
->starget_sdev_user
)
492 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
493 same_target_siblings
) {
494 if (sdev
== current_sdev
)
496 if (scsi_device_get(sdev
))
499 spin_unlock_irqrestore(shost
->host_lock
, flags
);
500 blk_run_queue(sdev
->request_queue
);
501 spin_lock_irqsave(shost
->host_lock
, flags
);
503 scsi_device_put(sdev
);
506 spin_unlock_irqrestore(shost
->host_lock
, flags
);
510 * Function: scsi_run_queue()
512 * Purpose: Select a proper request queue to serve next
514 * Arguments: q - last request's queue
518 * Notes: The previous command was completely finished, start
519 * a new one if possible.
521 static void scsi_run_queue(struct request_queue
*q
)
523 struct scsi_device
*sdev
= q
->queuedata
;
524 struct Scsi_Host
*shost
= sdev
->host
;
527 if (sdev
->single_lun
)
528 scsi_single_lun_run(sdev
);
530 spin_lock_irqsave(shost
->host_lock
, flags
);
531 while (!list_empty(&shost
->starved_list
) &&
532 !shost
->host_blocked
&& !shost
->host_self_blocked
&&
533 !((shost
->can_queue
> 0) &&
534 (shost
->host_busy
>= shost
->can_queue
))) {
536 * As long as shost is accepting commands and we have
537 * starved queues, call blk_run_queue. scsi_request_fn
538 * drops the queue_lock and can add us back to the
541 * host_lock protects the starved_list and starved_entry.
542 * scsi_request_fn must get the host_lock before checking
543 * or modifying starved_list or starved_entry.
545 sdev
= list_entry(shost
->starved_list
.next
,
546 struct scsi_device
, starved_entry
);
547 list_del_init(&sdev
->starved_entry
);
548 spin_unlock_irqrestore(shost
->host_lock
, flags
);
551 if (test_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
) &&
552 !test_and_set_bit(QUEUE_FLAG_REENTER
,
553 &sdev
->request_queue
->queue_flags
)) {
554 blk_run_queue(sdev
->request_queue
);
555 clear_bit(QUEUE_FLAG_REENTER
,
556 &sdev
->request_queue
->queue_flags
);
558 blk_run_queue(sdev
->request_queue
);
560 spin_lock_irqsave(shost
->host_lock
, flags
);
561 if (unlikely(!list_empty(&sdev
->starved_entry
)))
563 * sdev lost a race, and was put back on the
564 * starved list. This is unlikely but without this
565 * in theory we could loop forever.
569 spin_unlock_irqrestore(shost
->host_lock
, flags
);
575 * Function: scsi_requeue_command()
577 * Purpose: Handle post-processing of completed commands.
579 * Arguments: q - queue to operate on
580 * cmd - command that may need to be requeued.
584 * Notes: After command completion, there may be blocks left
585 * over which weren't finished by the previous command
586 * this can be for a number of reasons - the main one is
587 * I/O errors in the middle of the request, in which case
588 * we need to request the blocks that come after the bad
590 * Notes: Upon return, cmd is a stale pointer.
592 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
594 struct request
*req
= cmd
->request
;
597 scsi_unprep_request(req
);
598 spin_lock_irqsave(q
->queue_lock
, flags
);
599 blk_requeue_request(q
, req
);
600 spin_unlock_irqrestore(q
->queue_lock
, flags
);
605 void scsi_next_command(struct scsi_cmnd
*cmd
)
607 struct scsi_device
*sdev
= cmd
->device
;
608 struct request_queue
*q
= sdev
->request_queue
;
610 /* need to hold a reference on the device before we let go of the cmd */
611 get_device(&sdev
->sdev_gendev
);
613 scsi_put_command(cmd
);
616 /* ok to remove device now */
617 put_device(&sdev
->sdev_gendev
);
620 void scsi_run_host_queues(struct Scsi_Host
*shost
)
622 struct scsi_device
*sdev
;
624 shost_for_each_device(sdev
, shost
)
625 scsi_run_queue(sdev
->request_queue
);
629 * Function: scsi_end_request()
631 * Purpose: Post-processing of completed commands (usually invoked at end
632 * of upper level post-processing and scsi_io_completion).
634 * Arguments: cmd - command that is complete.
635 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
636 * bytes - number of bytes of completed I/O
637 * requeue - indicates whether we should requeue leftovers.
639 * Lock status: Assumed that lock is not held upon entry.
641 * Returns: cmd if requeue required, NULL otherwise.
643 * Notes: This is called for block device requests in order to
644 * mark some number of sectors as complete.
646 * We are guaranteeing that the request queue will be goosed
647 * at some point during this call.
648 * Notes: If cmd was requeued, upon return it will be a stale pointer.
650 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int uptodate
,
651 int bytes
, int requeue
)
653 struct request_queue
*q
= cmd
->device
->request_queue
;
654 struct request
*req
= cmd
->request
;
658 * If there are blocks left over at the end, set up the command
659 * to queue the remainder of them.
661 if (end_that_request_chunk(req
, uptodate
, bytes
)) {
662 int leftover
= (req
->hard_nr_sectors
<< 9);
664 if (blk_pc_request(req
))
665 leftover
= req
->data_len
;
667 /* kill remainder if no retrys */
668 if (!uptodate
&& blk_noretry_request(req
))
669 end_that_request_chunk(req
, 0, leftover
);
673 * Bleah. Leftovers again. Stick the
674 * leftovers in the front of the
675 * queue, and goose the queue again.
677 scsi_requeue_command(q
, cmd
);
684 add_disk_randomness(req
->rq_disk
);
686 spin_lock_irqsave(q
->queue_lock
, flags
);
687 if (blk_rq_tagged(req
))
688 blk_queue_end_tag(q
, req
);
689 end_that_request_last(req
, uptodate
);
690 spin_unlock_irqrestore(q
->queue_lock
, flags
);
693 * This will goose the queue request function at the end, so we don't
694 * need to worry about launching another command.
696 scsi_next_command(cmd
);
701 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
702 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
704 #define SCSI_MAX_SG_CHAIN_SEGMENTS 2048
706 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
717 #if (SCSI_MAX_SG_SEGMENTS > 16)
721 #if (SCSI_MAX_SG_SEGMENTS > 32)
725 #if (SCSI_MAX_SG_SEGMENTS > 64)
733 printk(KERN_ERR
"scsi: bad segment count=%d\n", nents
);
740 struct scatterlist
*scsi_alloc_sgtable(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
742 struct scsi_host_sg_pool
*sgp
;
743 struct scatterlist
*sgl
, *prev
, *ret
;
747 BUG_ON(!cmd
->use_sg
);
753 if (this > SCSI_MAX_SG_SEGMENTS
) {
754 this = SCSI_MAX_SG_SEGMENTS
- 1;
755 index
= SG_MEMPOOL_NR
- 1;
757 index
= scsi_sgtable_index(this);
761 sgp
= scsi_sg_pools
+ index
;
763 sgl
= mempool_alloc(sgp
->pool
, gfp_mask
);
767 sg_init_table(sgl
, sgp
->size
);
770 * first loop through, set initial index and return value
776 * chain previous sglist, if any. we know the previous
777 * sglist must be the biggest one, or we would not have
778 * ended up doing another loop.
781 sg_chain(prev
, SCSI_MAX_SG_SEGMENTS
, sgl
);
784 * if we have nothing left, mark the last segment as
788 sg_mark_end(&sgl
[this - 1]);
791 * don't allow subsequent mempool allocs to sleep, it would
792 * violate the mempool principle.
794 gfp_mask
&= ~__GFP_WAIT
;
795 gfp_mask
|= __GFP_HIGH
;
800 * ->use_sg may get modified after dma mapping has potentially
801 * shrunk the number of segments, so keep a copy of it for free.
803 cmd
->__use_sg
= cmd
->use_sg
;
808 * Free entries chained off ret. Since we were trying to
809 * allocate another sglist, we know that all entries are of
812 sgp
= scsi_sg_pools
+ SG_MEMPOOL_NR
- 1;
814 ret
= &ret
[SCSI_MAX_SG_SEGMENTS
- 1];
816 while ((sgl
= sg_chain_ptr(ret
)) != NULL
) {
817 ret
= &sgl
[SCSI_MAX_SG_SEGMENTS
- 1];
818 mempool_free(sgl
, sgp
->pool
);
821 mempool_free(prev
, sgp
->pool
);
826 EXPORT_SYMBOL(scsi_alloc_sgtable
);
828 void scsi_free_sgtable(struct scsi_cmnd
*cmd
)
830 struct scatterlist
*sgl
= cmd
->request_buffer
;
831 struct scsi_host_sg_pool
*sgp
;
834 * if this is the biggest size sglist, check if we have
835 * chained parts we need to free
837 if (cmd
->__use_sg
> SCSI_MAX_SG_SEGMENTS
) {
838 unsigned short this, left
;
839 struct scatterlist
*next
;
842 left
= cmd
->__use_sg
- (SCSI_MAX_SG_SEGMENTS
- 1);
843 next
= sg_chain_ptr(&sgl
[SCSI_MAX_SG_SEGMENTS
- 1]);
844 while (left
&& next
) {
847 if (this > SCSI_MAX_SG_SEGMENTS
) {
848 this = SCSI_MAX_SG_SEGMENTS
- 1;
849 index
= SG_MEMPOOL_NR
- 1;
851 index
= scsi_sgtable_index(this);
855 sgp
= scsi_sg_pools
+ index
;
858 next
= sg_chain_ptr(&sgl
[sgp
->size
- 1]);
860 mempool_free(sgl
, sgp
->pool
);
864 * Restore original, will be freed below
866 sgl
= cmd
->request_buffer
;
867 sgp
= scsi_sg_pools
+ SG_MEMPOOL_NR
- 1;
869 sgp
= scsi_sg_pools
+ scsi_sgtable_index(cmd
->__use_sg
);
871 mempool_free(sgl
, sgp
->pool
);
874 EXPORT_SYMBOL(scsi_free_sgtable
);
877 * Function: scsi_release_buffers()
879 * Purpose: Completion processing for block device I/O requests.
881 * Arguments: cmd - command that we are bailing.
883 * Lock status: Assumed that no lock is held upon entry.
887 * Notes: In the event that an upper level driver rejects a
888 * command, we must release resources allocated during
889 * the __init_io() function. Primarily this would involve
890 * the scatter-gather table, and potentially any bounce
893 static void scsi_release_buffers(struct scsi_cmnd
*cmd
)
896 scsi_free_sgtable(cmd
);
899 * Zero these out. They now point to freed memory, and it is
900 * dangerous to hang onto the pointers.
902 cmd
->request_buffer
= NULL
;
903 cmd
->request_bufflen
= 0;
907 * Function: scsi_io_completion()
909 * Purpose: Completion processing for block device I/O requests.
911 * Arguments: cmd - command that is finished.
913 * Lock status: Assumed that no lock is held upon entry.
917 * Notes: This function is matched in terms of capabilities to
918 * the function that created the scatter-gather list.
919 * In other words, if there are no bounce buffers
920 * (the normal case for most drivers), we don't need
921 * the logic to deal with cleaning up afterwards.
923 * We must do one of several things here:
925 * a) Call scsi_end_request. This will finish off the
926 * specified number of sectors. If we are done, the
927 * command block will be released, and the queue
928 * function will be goosed. If we are not done, then
929 * scsi_end_request will directly goose the queue.
931 * b) We can just use scsi_requeue_command() here. This would
932 * be used if we just wanted to retry, for example.
934 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
936 int result
= cmd
->result
;
937 int this_count
= cmd
->request_bufflen
;
938 struct request_queue
*q
= cmd
->device
->request_queue
;
939 struct request
*req
= cmd
->request
;
940 int clear_errors
= 1;
941 struct scsi_sense_hdr sshdr
;
943 int sense_deferred
= 0;
945 scsi_release_buffers(cmd
);
948 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
950 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
953 if (blk_pc_request(req
)) { /* SG_IO ioctl from block level */
954 req
->errors
= result
;
957 if (sense_valid
&& req
->sense
) {
959 * SG_IO wants current and deferred errors
961 int len
= 8 + cmd
->sense_buffer
[7];
963 if (len
> SCSI_SENSE_BUFFERSIZE
)
964 len
= SCSI_SENSE_BUFFERSIZE
;
965 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
966 req
->sense_len
= len
;
969 req
->data_len
= cmd
->resid
;
973 * Next deal with any sectors which we were able to correctly
976 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
978 req
->nr_sectors
, good_bytes
));
979 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd
->use_sg
));
984 /* A number of bytes were successfully read. If there
985 * are leftovers and there is some kind of error
986 * (result != 0), retry the rest.
988 if (scsi_end_request(cmd
, 1, good_bytes
, result
== 0) == NULL
)
991 /* good_bytes = 0, or (inclusive) there were leftovers and
992 * result = 0, so scsi_end_request couldn't retry.
994 if (sense_valid
&& !sense_deferred
) {
995 switch (sshdr
.sense_key
) {
997 if (cmd
->device
->removable
) {
998 /* Detected disc change. Set a bit
999 * and quietly refuse further access.
1001 cmd
->device
->changed
= 1;
1002 scsi_end_request(cmd
, 0, this_count
, 1);
1005 /* Must have been a power glitch, or a
1006 * bus reset. Could not have been a
1007 * media change, so we just retry the
1008 * request and see what happens.
1010 scsi_requeue_command(q
, cmd
);
1014 case ILLEGAL_REQUEST
:
1015 /* If we had an ILLEGAL REQUEST returned, then
1016 * we may have performed an unsupported
1017 * command. The only thing this should be
1018 * would be a ten byte read where only a six
1019 * byte read was supported. Also, on a system
1020 * where READ CAPACITY failed, we may have
1021 * read past the end of the disk.
1023 if ((cmd
->device
->use_10_for_rw
&&
1024 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
1025 (cmd
->cmnd
[0] == READ_10
||
1026 cmd
->cmnd
[0] == WRITE_10
)) {
1027 cmd
->device
->use_10_for_rw
= 0;
1028 /* This will cause a retry with a
1031 scsi_requeue_command(q
, cmd
);
1034 scsi_end_request(cmd
, 0, this_count
, 1);
1039 /* If the device is in the process of becoming
1040 * ready, or has a temporary blockage, retry.
1042 if (sshdr
.asc
== 0x04) {
1043 switch (sshdr
.ascq
) {
1044 case 0x01: /* becoming ready */
1045 case 0x04: /* format in progress */
1046 case 0x05: /* rebuild in progress */
1047 case 0x06: /* recalculation in progress */
1048 case 0x07: /* operation in progress */
1049 case 0x08: /* Long write in progress */
1050 case 0x09: /* self test in progress */
1051 scsi_requeue_command(q
, cmd
);
1057 if (!(req
->cmd_flags
& REQ_QUIET
))
1058 scsi_cmd_print_sense_hdr(cmd
,
1062 scsi_end_request(cmd
, 0, this_count
, 1);
1064 case VOLUME_OVERFLOW
:
1065 if (!(req
->cmd_flags
& REQ_QUIET
)) {
1066 scmd_printk(KERN_INFO
, cmd
,
1067 "Volume overflow, CDB: ");
1068 __scsi_print_command(cmd
->cmnd
);
1069 scsi_print_sense("", cmd
);
1071 /* See SSC3rXX or current. */
1072 scsi_end_request(cmd
, 0, this_count
, 1);
1078 if (host_byte(result
) == DID_RESET
) {
1079 /* Third party bus reset or reset for error recovery
1080 * reasons. Just retry the request and see what
1083 scsi_requeue_command(q
, cmd
);
1087 if (!(req
->cmd_flags
& REQ_QUIET
)) {
1088 scsi_print_result(cmd
);
1089 if (driver_byte(result
) & DRIVER_SENSE
)
1090 scsi_print_sense("", cmd
);
1093 scsi_end_request(cmd
, 0, this_count
, !result
);
1097 * Function: scsi_init_io()
1099 * Purpose: SCSI I/O initialize function.
1101 * Arguments: cmd - Command descriptor we wish to initialize
1103 * Returns: 0 on success
1104 * BLKPREP_DEFER if the failure is retryable
1105 * BLKPREP_KILL if the failure is fatal
1107 static int scsi_init_io(struct scsi_cmnd
*cmd
)
1109 struct request
*req
= cmd
->request
;
1113 * We used to not use scatter-gather for single segment request,
1114 * but now we do (it makes highmem I/O easier to support without
1117 cmd
->use_sg
= req
->nr_phys_segments
;
1120 * If sg table allocation fails, requeue request later.
1122 cmd
->request_buffer
= scsi_alloc_sgtable(cmd
, GFP_ATOMIC
);
1123 if (unlikely(!cmd
->request_buffer
)) {
1124 scsi_unprep_request(req
);
1125 return BLKPREP_DEFER
;
1129 if (blk_pc_request(req
))
1130 cmd
->request_bufflen
= req
->data_len
;
1132 cmd
->request_bufflen
= req
->nr_sectors
<< 9;
1135 * Next, walk the list, and fill in the addresses and sizes of
1138 count
= blk_rq_map_sg(req
->q
, req
, cmd
->request_buffer
);
1139 if (likely(count
<= cmd
->use_sg
)) {
1140 cmd
->use_sg
= count
;
1144 printk(KERN_ERR
"Incorrect number of segments after building list\n");
1145 printk(KERN_ERR
"counted %d, received %d\n", count
, cmd
->use_sg
);
1146 printk(KERN_ERR
"req nr_sec %lu, cur_nr_sec %u\n", req
->nr_sectors
,
1147 req
->current_nr_sectors
);
1149 return BLKPREP_KILL
;
1152 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1153 struct request
*req
)
1155 struct scsi_cmnd
*cmd
;
1157 if (!req
->special
) {
1158 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1166 /* pull a tag out of the request if we have one */
1167 cmd
->tag
= req
->tag
;
1173 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1175 struct scsi_cmnd
*cmd
;
1176 int ret
= scsi_prep_state_check(sdev
, req
);
1178 if (ret
!= BLKPREP_OK
)
1181 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1183 return BLKPREP_DEFER
;
1186 * BLOCK_PC requests may transfer data, in which case they must
1187 * a bio attached to them. Or they might contain a SCSI command
1188 * that does not transfer data, in which case they may optionally
1189 * submit a request without an attached bio.
1194 BUG_ON(!req
->nr_phys_segments
);
1196 ret
= scsi_init_io(cmd
);
1200 BUG_ON(req
->data_len
);
1203 cmd
->request_bufflen
= 0;
1204 cmd
->request_buffer
= NULL
;
1209 BUILD_BUG_ON(sizeof(req
->cmd
) > sizeof(cmd
->cmnd
));
1210 memcpy(cmd
->cmnd
, req
->cmd
, sizeof(cmd
->cmnd
));
1211 cmd
->cmd_len
= req
->cmd_len
;
1213 cmd
->sc_data_direction
= DMA_NONE
;
1214 else if (rq_data_dir(req
) == WRITE
)
1215 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1217 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1219 cmd
->transfersize
= req
->data_len
;
1220 cmd
->allowed
= req
->retries
;
1221 cmd
->timeout_per_command
= req
->timeout
;
1224 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1227 * Setup a REQ_TYPE_FS command. These are simple read/write request
1228 * from filesystems that still need to be translated to SCSI CDBs from
1231 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1233 struct scsi_cmnd
*cmd
;
1234 int ret
= scsi_prep_state_check(sdev
, req
);
1236 if (ret
!= BLKPREP_OK
)
1239 * Filesystem requests must transfer data.
1241 BUG_ON(!req
->nr_phys_segments
);
1243 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1245 return BLKPREP_DEFER
;
1247 return scsi_init_io(cmd
);
1249 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1251 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1253 int ret
= BLKPREP_OK
;
1256 * If the device is not in running state we will reject some
1259 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1260 switch (sdev
->sdev_state
) {
1263 * If the device is offline we refuse to process any
1264 * commands. The device must be brought online
1265 * before trying any recovery commands.
1267 sdev_printk(KERN_ERR
, sdev
,
1268 "rejecting I/O to offline device\n");
1273 * If the device is fully deleted, we refuse to
1274 * process any commands as well.
1276 sdev_printk(KERN_ERR
, sdev
,
1277 "rejecting I/O to dead device\n");
1283 * If the devices is blocked we defer normal commands.
1285 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1286 ret
= BLKPREP_DEFER
;
1290 * For any other not fully online state we only allow
1291 * special commands. In particular any user initiated
1292 * command is not allowed.
1294 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1301 EXPORT_SYMBOL(scsi_prep_state_check
);
1303 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1305 struct scsi_device
*sdev
= q
->queuedata
;
1309 req
->errors
= DID_NO_CONNECT
<< 16;
1310 /* release the command and kill it */
1312 struct scsi_cmnd
*cmd
= req
->special
;
1313 scsi_release_buffers(cmd
);
1314 scsi_put_command(cmd
);
1315 req
->special
= NULL
;
1320 * If we defer, the elv_next_request() returns NULL, but the
1321 * queue must be restarted, so we plug here if no returning
1322 * command will automatically do that.
1324 if (sdev
->device_busy
== 0)
1328 req
->cmd_flags
|= REQ_DONTPREP
;
1333 EXPORT_SYMBOL(scsi_prep_return
);
1335 static int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1337 struct scsi_device
*sdev
= q
->queuedata
;
1338 int ret
= BLKPREP_KILL
;
1340 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1341 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1342 return scsi_prep_return(q
, req
, ret
);
1346 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1349 * Called with the queue_lock held.
1351 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1352 struct scsi_device
*sdev
)
1354 if (sdev
->device_busy
>= sdev
->queue_depth
)
1356 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1358 * unblock after device_blocked iterates to zero
1360 if (--sdev
->device_blocked
== 0) {
1362 sdev_printk(KERN_INFO
, sdev
,
1363 "unblocking device at zero depth\n"));
1369 if (sdev
->device_blocked
)
1376 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1377 * return 0. We must end up running the queue again whenever 0 is
1378 * returned, else IO can hang.
1380 * Called with host_lock held.
1382 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1383 struct Scsi_Host
*shost
,
1384 struct scsi_device
*sdev
)
1386 if (scsi_host_in_recovery(shost
))
1388 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1390 * unblock after host_blocked iterates to zero
1392 if (--shost
->host_blocked
== 0) {
1394 printk("scsi%d unblocking host at zero depth\n",
1401 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
1402 shost
->host_blocked
|| shost
->host_self_blocked
) {
1403 if (list_empty(&sdev
->starved_entry
))
1404 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1408 /* We're OK to process the command, so we can't be starved */
1409 if (!list_empty(&sdev
->starved_entry
))
1410 list_del_init(&sdev
->starved_entry
);
1416 * Kill a request for a dead device
1418 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1420 struct scsi_cmnd
*cmd
= req
->special
;
1421 struct scsi_device
*sdev
= cmd
->device
;
1422 struct Scsi_Host
*shost
= sdev
->host
;
1424 blkdev_dequeue_request(req
);
1426 if (unlikely(cmd
== NULL
)) {
1427 printk(KERN_CRIT
"impossible request in %s.\n",
1432 scsi_init_cmd_errh(cmd
);
1433 cmd
->result
= DID_NO_CONNECT
<< 16;
1434 atomic_inc(&cmd
->device
->iorequest_cnt
);
1437 * SCSI request completion path will do scsi_device_unbusy(),
1438 * bump busy counts. To bump the counters, we need to dance
1439 * with the locks as normal issue path does.
1441 sdev
->device_busy
++;
1442 spin_unlock(sdev
->request_queue
->queue_lock
);
1443 spin_lock(shost
->host_lock
);
1445 spin_unlock(shost
->host_lock
);
1446 spin_lock(sdev
->request_queue
->queue_lock
);
1451 static void scsi_softirq_done(struct request
*rq
)
1453 struct scsi_cmnd
*cmd
= rq
->completion_data
;
1454 unsigned long wait_for
= (cmd
->allowed
+ 1) * cmd
->timeout_per_command
;
1457 INIT_LIST_HEAD(&cmd
->eh_entry
);
1459 disposition
= scsi_decide_disposition(cmd
);
1460 if (disposition
!= SUCCESS
&&
1461 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1462 sdev_printk(KERN_ERR
, cmd
->device
,
1463 "timing out command, waited %lus\n",
1465 disposition
= SUCCESS
;
1468 scsi_log_completion(cmd
, disposition
);
1470 switch (disposition
) {
1472 scsi_finish_command(cmd
);
1475 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1477 case ADD_TO_MLQUEUE
:
1478 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1481 if (!scsi_eh_scmd_add(cmd
, 0))
1482 scsi_finish_command(cmd
);
1487 * Function: scsi_request_fn()
1489 * Purpose: Main strategy routine for SCSI.
1491 * Arguments: q - Pointer to actual queue.
1495 * Lock status: IO request lock assumed to be held when called.
1497 static void scsi_request_fn(struct request_queue
*q
)
1499 struct scsi_device
*sdev
= q
->queuedata
;
1500 struct Scsi_Host
*shost
;
1501 struct scsi_cmnd
*cmd
;
1502 struct request
*req
;
1505 printk("scsi: killing requests for dead queue\n");
1506 while ((req
= elv_next_request(q
)) != NULL
)
1507 scsi_kill_request(req
, q
);
1511 if(!get_device(&sdev
->sdev_gendev
))
1512 /* We must be tearing the block queue down already */
1516 * To start with, we keep looping until the queue is empty, or until
1517 * the host is no longer able to accept any more requests.
1520 while (!blk_queue_plugged(q
)) {
1523 * get next queueable request. We do this early to make sure
1524 * that the request is fully prepared even if we cannot
1527 req
= elv_next_request(q
);
1528 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1531 if (unlikely(!scsi_device_online(sdev
))) {
1532 sdev_printk(KERN_ERR
, sdev
,
1533 "rejecting I/O to offline device\n");
1534 scsi_kill_request(req
, q
);
1540 * Remove the request from the request list.
1542 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1543 blkdev_dequeue_request(req
);
1544 sdev
->device_busy
++;
1546 spin_unlock(q
->queue_lock
);
1548 if (unlikely(cmd
== NULL
)) {
1549 printk(KERN_CRIT
"impossible request in %s.\n"
1550 "please mail a stack trace to "
1551 "linux-scsi@vger.kernel.org\n",
1553 blk_dump_rq_flags(req
, "foo");
1556 spin_lock(shost
->host_lock
);
1558 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1560 if (sdev
->single_lun
) {
1561 if (scsi_target(sdev
)->starget_sdev_user
&&
1562 scsi_target(sdev
)->starget_sdev_user
!= sdev
)
1564 scsi_target(sdev
)->starget_sdev_user
= sdev
;
1569 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1570 * take the lock again.
1572 spin_unlock_irq(shost
->host_lock
);
1575 * Finally, initialize any error handling parameters, and set up
1576 * the timers for timeouts.
1578 scsi_init_cmd_errh(cmd
);
1581 * Dispatch the command to the low-level driver.
1583 rtn
= scsi_dispatch_cmd(cmd
);
1584 spin_lock_irq(q
->queue_lock
);
1586 /* we're refusing the command; because of
1587 * the way locks get dropped, we need to
1588 * check here if plugging is required */
1589 if(sdev
->device_busy
== 0)
1599 spin_unlock_irq(shost
->host_lock
);
1602 * lock q, handle tag, requeue req, and decrement device_busy. We
1603 * must return with queue_lock held.
1605 * Decrementing device_busy without checking it is OK, as all such
1606 * cases (host limits or settings) should run the queue at some
1609 spin_lock_irq(q
->queue_lock
);
1610 blk_requeue_request(q
, req
);
1611 sdev
->device_busy
--;
1612 if(sdev
->device_busy
== 0)
1615 /* must be careful here...if we trigger the ->remove() function
1616 * we cannot be holding the q lock */
1617 spin_unlock_irq(q
->queue_lock
);
1618 put_device(&sdev
->sdev_gendev
);
1619 spin_lock_irq(q
->queue_lock
);
1622 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1624 struct device
*host_dev
;
1625 u64 bounce_limit
= 0xffffffff;
1627 if (shost
->unchecked_isa_dma
)
1628 return BLK_BOUNCE_ISA
;
1630 * Platforms with virtual-DMA translation
1631 * hardware have no practical limit.
1633 if (!PCI_DMA_BUS_IS_PHYS
)
1634 return BLK_BOUNCE_ANY
;
1636 host_dev
= scsi_get_device(shost
);
1637 if (host_dev
&& host_dev
->dma_mask
)
1638 bounce_limit
= *host_dev
->dma_mask
;
1640 return bounce_limit
;
1642 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1644 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1645 request_fn_proc
*request_fn
)
1647 struct request_queue
*q
;
1649 q
= blk_init_queue(request_fn
, NULL
);
1654 * this limit is imposed by hardware restrictions
1656 blk_queue_max_hw_segments(q
, shost
->sg_tablesize
);
1659 * In the future, sg chaining support will be mandatory and this
1660 * ifdef can then go away. Right now we don't have all archs
1661 * converted, so better keep it safe.
1663 #ifdef ARCH_HAS_SG_CHAIN
1664 if (shost
->use_sg_chaining
)
1665 blk_queue_max_phys_segments(q
, SCSI_MAX_SG_CHAIN_SEGMENTS
);
1667 blk_queue_max_phys_segments(q
, SCSI_MAX_SG_SEGMENTS
);
1669 blk_queue_max_phys_segments(q
, SCSI_MAX_SG_SEGMENTS
);
1672 blk_queue_max_sectors(q
, shost
->max_sectors
);
1673 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1674 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1676 if (!shost
->use_clustering
)
1677 clear_bit(QUEUE_FLAG_CLUSTER
, &q
->queue_flags
);
1680 EXPORT_SYMBOL(__scsi_alloc_queue
);
1682 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1684 struct request_queue
*q
;
1686 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1690 blk_queue_prep_rq(q
, scsi_prep_fn
);
1691 blk_queue_softirq_done(q
, scsi_softirq_done
);
1695 void scsi_free_queue(struct request_queue
*q
)
1697 blk_cleanup_queue(q
);
1701 * Function: scsi_block_requests()
1703 * Purpose: Utility function used by low-level drivers to prevent further
1704 * commands from being queued to the device.
1706 * Arguments: shost - Host in question
1710 * Lock status: No locks are assumed held.
1712 * Notes: There is no timer nor any other means by which the requests
1713 * get unblocked other than the low-level driver calling
1714 * scsi_unblock_requests().
1716 void scsi_block_requests(struct Scsi_Host
*shost
)
1718 shost
->host_self_blocked
= 1;
1720 EXPORT_SYMBOL(scsi_block_requests
);
1723 * Function: scsi_unblock_requests()
1725 * Purpose: Utility function used by low-level drivers to allow further
1726 * commands from being queued to the device.
1728 * Arguments: shost - Host in question
1732 * Lock status: No locks are assumed held.
1734 * Notes: There is no timer nor any other means by which the requests
1735 * get unblocked other than the low-level driver calling
1736 * scsi_unblock_requests().
1738 * This is done as an API function so that changes to the
1739 * internals of the scsi mid-layer won't require wholesale
1740 * changes to drivers that use this feature.
1742 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1744 shost
->host_self_blocked
= 0;
1745 scsi_run_host_queues(shost
);
1747 EXPORT_SYMBOL(scsi_unblock_requests
);
1749 int __init
scsi_init_queue(void)
1753 scsi_io_context_cache
= kmem_cache_create("scsi_io_context",
1754 sizeof(struct scsi_io_context
),
1756 if (!scsi_io_context_cache
) {
1757 printk(KERN_ERR
"SCSI: can't init scsi io context cache\n");
1761 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1762 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1763 int size
= sgp
->size
* sizeof(struct scatterlist
);
1765 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1766 SLAB_HWCACHE_ALIGN
, NULL
);
1768 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1772 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1775 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1783 void scsi_exit_queue(void)
1787 kmem_cache_destroy(scsi_io_context_cache
);
1789 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1790 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1791 mempool_destroy(sgp
->pool
);
1792 kmem_cache_destroy(sgp
->slab
);
1797 * scsi_mode_select - issue a mode select
1798 * @sdev: SCSI device to be queried
1799 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1800 * @sp: Save page bit (0 == don't save, 1 == save)
1801 * @modepage: mode page being requested
1802 * @buffer: request buffer (may not be smaller than eight bytes)
1803 * @len: length of request buffer.
1804 * @timeout: command timeout
1805 * @retries: number of retries before failing
1806 * @data: returns a structure abstracting the mode header data
1807 * @sense: place to put sense data (or NULL if no sense to be collected).
1808 * must be SCSI_SENSE_BUFFERSIZE big.
1810 * Returns zero if successful; negative error number or scsi
1815 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1816 unsigned char *buffer
, int len
, int timeout
, int retries
,
1817 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1819 unsigned char cmd
[10];
1820 unsigned char *real_buffer
;
1823 memset(cmd
, 0, sizeof(cmd
));
1824 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1826 if (sdev
->use_10_for_ms
) {
1829 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1832 memcpy(real_buffer
+ 8, buffer
, len
);
1836 real_buffer
[2] = data
->medium_type
;
1837 real_buffer
[3] = data
->device_specific
;
1838 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1840 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1841 real_buffer
[7] = data
->block_descriptor_length
;
1843 cmd
[0] = MODE_SELECT_10
;
1847 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1851 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1854 memcpy(real_buffer
+ 4, buffer
, len
);
1857 real_buffer
[1] = data
->medium_type
;
1858 real_buffer
[2] = data
->device_specific
;
1859 real_buffer
[3] = data
->block_descriptor_length
;
1862 cmd
[0] = MODE_SELECT
;
1866 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1867 sshdr
, timeout
, retries
);
1871 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1874 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1875 * six bytes if necessary.
1876 * @sdev: SCSI device to be queried
1877 * @dbd: set if mode sense will allow block descriptors to be returned
1878 * @modepage: mode page being requested
1879 * @buffer: request buffer (may not be smaller than eight bytes)
1880 * @len: length of request buffer.
1881 * @timeout: command timeout
1882 * @retries: number of retries before failing
1883 * @data: returns a structure abstracting the mode header data
1884 * @sense: place to put sense data (or NULL if no sense to be collected).
1885 * must be SCSI_SENSE_BUFFERSIZE big.
1887 * Returns zero if unsuccessful, or the header offset (either 4
1888 * or 8 depending on whether a six or ten byte command was
1889 * issued) if successful.
1892 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1893 unsigned char *buffer
, int len
, int timeout
, int retries
,
1894 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1896 unsigned char cmd
[12];
1900 struct scsi_sense_hdr my_sshdr
;
1902 memset(data
, 0, sizeof(*data
));
1903 memset(&cmd
[0], 0, 12);
1904 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1907 /* caller might not be interested in sense, but we need it */
1912 use_10_for_ms
= sdev
->use_10_for_ms
;
1914 if (use_10_for_ms
) {
1918 cmd
[0] = MODE_SENSE_10
;
1925 cmd
[0] = MODE_SENSE
;
1930 memset(buffer
, 0, len
);
1932 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1933 sshdr
, timeout
, retries
);
1935 /* This code looks awful: what it's doing is making sure an
1936 * ILLEGAL REQUEST sense return identifies the actual command
1937 * byte as the problem. MODE_SENSE commands can return
1938 * ILLEGAL REQUEST if the code page isn't supported */
1940 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1941 (driver_byte(result
) & DRIVER_SENSE
)) {
1942 if (scsi_sense_valid(sshdr
)) {
1943 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1944 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1946 * Invalid command operation code
1948 sdev
->use_10_for_ms
= 0;
1954 if(scsi_status_is_good(result
)) {
1955 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
1956 (modepage
== 6 || modepage
== 8))) {
1957 /* Initio breakage? */
1960 data
->medium_type
= 0;
1961 data
->device_specific
= 0;
1963 data
->block_descriptor_length
= 0;
1964 } else if(use_10_for_ms
) {
1965 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
1966 data
->medium_type
= buffer
[2];
1967 data
->device_specific
= buffer
[3];
1968 data
->longlba
= buffer
[4] & 0x01;
1969 data
->block_descriptor_length
= buffer
[6]*256
1972 data
->length
= buffer
[0] + 1;
1973 data
->medium_type
= buffer
[1];
1974 data
->device_specific
= buffer
[2];
1975 data
->block_descriptor_length
= buffer
[3];
1977 data
->header_length
= header_length
;
1982 EXPORT_SYMBOL(scsi_mode_sense
);
1985 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
)
1988 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
1990 struct scsi_sense_hdr sshdr
;
1993 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, &sshdr
,
1996 if ((driver_byte(result
) & DRIVER_SENSE
) && sdev
->removable
) {
1998 if ((scsi_sense_valid(&sshdr
)) &&
1999 ((sshdr
.sense_key
== UNIT_ATTENTION
) ||
2000 (sshdr
.sense_key
== NOT_READY
))) {
2007 EXPORT_SYMBOL(scsi_test_unit_ready
);
2010 * scsi_device_set_state - Take the given device through the device
2012 * @sdev: scsi device to change the state of.
2013 * @state: state to change to.
2015 * Returns zero if unsuccessful or an error if the requested
2016 * transition is illegal.
2019 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2021 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2023 if (state
== oldstate
)
2028 /* There are no legal states that come back to
2029 * created. This is the manually initialised start
2103 sdev
->sdev_state
= state
;
2107 SCSI_LOG_ERROR_RECOVERY(1,
2108 sdev_printk(KERN_ERR
, sdev
,
2109 "Illegal state transition %s->%s\n",
2110 scsi_device_state_name(oldstate
),
2111 scsi_device_state_name(state
))
2115 EXPORT_SYMBOL(scsi_device_set_state
);
2118 * sdev_evt_emit - emit a single SCSI device uevent
2119 * @sdev: associated SCSI device
2120 * @evt: event to emit
2122 * Send a single uevent (scsi_event) to the associated scsi_device.
2124 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2129 switch (evt
->evt_type
) {
2130 case SDEV_EVT_MEDIA_CHANGE
:
2131 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2141 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2145 * sdev_evt_thread - send a uevent for each scsi event
2146 * @work: work struct for scsi_device
2148 * Dispatch queued events to their associated scsi_device kobjects
2151 void scsi_evt_thread(struct work_struct
*work
)
2153 struct scsi_device
*sdev
;
2154 LIST_HEAD(event_list
);
2156 sdev
= container_of(work
, struct scsi_device
, event_work
);
2159 struct scsi_event
*evt
;
2160 struct list_head
*this, *tmp
;
2161 unsigned long flags
;
2163 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2164 list_splice_init(&sdev
->event_list
, &event_list
);
2165 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2167 if (list_empty(&event_list
))
2170 list_for_each_safe(this, tmp
, &event_list
) {
2171 evt
= list_entry(this, struct scsi_event
, node
);
2172 list_del(&evt
->node
);
2173 scsi_evt_emit(sdev
, evt
);
2180 * sdev_evt_send - send asserted event to uevent thread
2181 * @sdev: scsi_device event occurred on
2182 * @evt: event to send
2184 * Assert scsi device event asynchronously.
2186 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2188 unsigned long flags
;
2190 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2195 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2196 list_add_tail(&evt
->node
, &sdev
->event_list
);
2197 schedule_work(&sdev
->event_work
);
2198 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2200 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2203 * sdev_evt_alloc - allocate a new scsi event
2204 * @evt_type: type of event to allocate
2205 * @gfpflags: GFP flags for allocation
2207 * Allocates and returns a new scsi_event.
2209 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2212 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2216 evt
->evt_type
= evt_type
;
2217 INIT_LIST_HEAD(&evt
->node
);
2219 /* evt_type-specific initialization, if any */
2221 case SDEV_EVT_MEDIA_CHANGE
:
2229 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2232 * sdev_evt_send_simple - send asserted event to uevent thread
2233 * @sdev: scsi_device event occurred on
2234 * @evt_type: type of event to send
2235 * @gfpflags: GFP flags for allocation
2237 * Assert scsi device event asynchronously, given an event type.
2239 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2240 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2242 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2244 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2249 sdev_evt_send(sdev
, evt
);
2251 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2254 * scsi_device_quiesce - Block user issued commands.
2255 * @sdev: scsi device to quiesce.
2257 * This works by trying to transition to the SDEV_QUIESCE state
2258 * (which must be a legal transition). When the device is in this
2259 * state, only special requests will be accepted, all others will
2260 * be deferred. Since special requests may also be requeued requests,
2261 * a successful return doesn't guarantee the device will be
2262 * totally quiescent.
2264 * Must be called with user context, may sleep.
2266 * Returns zero if unsuccessful or an error if not.
2269 scsi_device_quiesce(struct scsi_device
*sdev
)
2271 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2275 scsi_run_queue(sdev
->request_queue
);
2276 while (sdev
->device_busy
) {
2277 msleep_interruptible(200);
2278 scsi_run_queue(sdev
->request_queue
);
2282 EXPORT_SYMBOL(scsi_device_quiesce
);
2285 * scsi_device_resume - Restart user issued commands to a quiesced device.
2286 * @sdev: scsi device to resume.
2288 * Moves the device from quiesced back to running and restarts the
2291 * Must be called with user context, may sleep.
2294 scsi_device_resume(struct scsi_device
*sdev
)
2296 if(scsi_device_set_state(sdev
, SDEV_RUNNING
))
2298 scsi_run_queue(sdev
->request_queue
);
2300 EXPORT_SYMBOL(scsi_device_resume
);
2303 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2305 scsi_device_quiesce(sdev
);
2309 scsi_target_quiesce(struct scsi_target
*starget
)
2311 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2313 EXPORT_SYMBOL(scsi_target_quiesce
);
2316 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2318 scsi_device_resume(sdev
);
2322 scsi_target_resume(struct scsi_target
*starget
)
2324 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2326 EXPORT_SYMBOL(scsi_target_resume
);
2329 * scsi_internal_device_block - internal function to put a device
2330 * temporarily into the SDEV_BLOCK state
2331 * @sdev: device to block
2333 * Block request made by scsi lld's to temporarily stop all
2334 * scsi commands on the specified device. Called from interrupt
2335 * or normal process context.
2337 * Returns zero if successful or error if not
2340 * This routine transitions the device to the SDEV_BLOCK state
2341 * (which must be a legal transition). When the device is in this
2342 * state, all commands are deferred until the scsi lld reenables
2343 * the device with scsi_device_unblock or device_block_tmo fires.
2344 * This routine assumes the host_lock is held on entry.
2347 scsi_internal_device_block(struct scsi_device
*sdev
)
2349 struct request_queue
*q
= sdev
->request_queue
;
2350 unsigned long flags
;
2353 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2358 * The device has transitioned to SDEV_BLOCK. Stop the
2359 * block layer from calling the midlayer with this device's
2362 spin_lock_irqsave(q
->queue_lock
, flags
);
2364 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2368 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2371 * scsi_internal_device_unblock - resume a device after a block request
2372 * @sdev: device to resume
2374 * Called by scsi lld's or the midlayer to restart the device queue
2375 * for the previously suspended scsi device. Called from interrupt or
2376 * normal process context.
2378 * Returns zero if successful or error if not.
2381 * This routine transitions the device to the SDEV_RUNNING state
2382 * (which must be a legal transition) allowing the midlayer to
2383 * goose the queue for this device. This routine assumes the
2384 * host_lock is held upon entry.
2387 scsi_internal_device_unblock(struct scsi_device
*sdev
)
2389 struct request_queue
*q
= sdev
->request_queue
;
2391 unsigned long flags
;
2394 * Try to transition the scsi device to SDEV_RUNNING
2395 * and goose the device queue if successful.
2397 err
= scsi_device_set_state(sdev
, SDEV_RUNNING
);
2401 spin_lock_irqsave(q
->queue_lock
, flags
);
2403 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2407 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2410 device_block(struct scsi_device
*sdev
, void *data
)
2412 scsi_internal_device_block(sdev
);
2416 target_block(struct device
*dev
, void *data
)
2418 if (scsi_is_target_device(dev
))
2419 starget_for_each_device(to_scsi_target(dev
), NULL
,
2425 scsi_target_block(struct device
*dev
)
2427 if (scsi_is_target_device(dev
))
2428 starget_for_each_device(to_scsi_target(dev
), NULL
,
2431 device_for_each_child(dev
, NULL
, target_block
);
2433 EXPORT_SYMBOL_GPL(scsi_target_block
);
2436 device_unblock(struct scsi_device
*sdev
, void *data
)
2438 scsi_internal_device_unblock(sdev
);
2442 target_unblock(struct device
*dev
, void *data
)
2444 if (scsi_is_target_device(dev
))
2445 starget_for_each_device(to_scsi_target(dev
), NULL
,
2451 scsi_target_unblock(struct device
*dev
)
2453 if (scsi_is_target_device(dev
))
2454 starget_for_each_device(to_scsi_target(dev
), NULL
,
2457 device_for_each_child(dev
, NULL
, target_unblock
);
2459 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2462 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2463 * @sg: scatter-gather list
2464 * @sg_count: number of segments in sg
2465 * @offset: offset in bytes into sg, on return offset into the mapped area
2466 * @len: bytes to map, on return number of bytes mapped
2468 * Returns virtual address of the start of the mapped page
2470 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2471 size_t *offset
, size_t *len
)
2474 size_t sg_len
= 0, len_complete
= 0;
2475 struct scatterlist
*sg
;
2478 WARN_ON(!irqs_disabled());
2480 for_each_sg(sgl
, sg
, sg_count
, i
) {
2481 len_complete
= sg_len
; /* Complete sg-entries */
2482 sg_len
+= sg
->length
;
2483 if (sg_len
> *offset
)
2487 if (unlikely(i
== sg_count
)) {
2488 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2490 __FUNCTION__
, sg_len
, *offset
, sg_count
);
2495 /* Offset starting from the beginning of first page in this sg-entry */
2496 *offset
= *offset
- len_complete
+ sg
->offset
;
2498 /* Assumption: contiguous pages can be accessed as "page + i" */
2499 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2500 *offset
&= ~PAGE_MASK
;
2502 /* Bytes in this sg-entry from *offset to the end of the page */
2503 sg_len
= PAGE_SIZE
- *offset
;
2507 return kmap_atomic(page
, KM_BIO_SRC_IRQ
);
2509 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2512 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2513 * mapped with scsi_kmap_atomic_sg
2514 * @virt: virtual address to be unmapped
2516 void scsi_kunmap_atomic_sg(void *virt
)
2518 kunmap_atomic(virt
, KM_BIO_SRC_IRQ
);
2520 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);