Revert "[PATCH] paravirt: Add startup infrastructure for paravirtualization"
[pv_ops_mirror.git] / drivers / ide / ide-iops.c
blobf0be5f665a0e0ae21af516609c0a82c556b4e0cd
1 /*
2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
7 */
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
34 * Conventional PIO operations for ATA devices
37 static u8 ide_inb (unsigned long port)
39 return (u8) inb(port);
42 static u16 ide_inw (unsigned long port)
44 return (u16) inw(port);
47 static void ide_insw (unsigned long port, void *addr, u32 count)
49 insw(port, addr, count);
52 static void ide_insl (unsigned long port, void *addr, u32 count)
54 insl(port, addr, count);
57 static void ide_outb (u8 val, unsigned long port)
59 outb(val, port);
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
64 outb(addr, port);
67 static void ide_outw (u16 val, unsigned long port)
69 outw(val, port);
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
74 outsw(port, addr, count);
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
79 outsl(port, addr, count);
82 void default_hwif_iops (ide_hwif_t *hwif)
84 hwif->OUTB = ide_outb;
85 hwif->OUTBSYNC = ide_outbsync;
86 hwif->OUTW = ide_outw;
87 hwif->OUTSW = ide_outsw;
88 hwif->OUTSL = ide_outsl;
89 hwif->INB = ide_inb;
90 hwif->INW = ide_inw;
91 hwif->INSW = ide_insw;
92 hwif->INSL = ide_insl;
96 * MMIO operations, typically used for SATA controllers
99 static u8 ide_mm_inb (unsigned long port)
101 return (u8) readb((void __iomem *) port);
104 static u16 ide_mm_inw (unsigned long port)
106 return (u16) readw((void __iomem *) port);
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
111 __ide_mm_insw((void __iomem *) port, addr, count);
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
116 __ide_mm_insl((void __iomem *) port, addr, count);
119 static void ide_mm_outb (u8 value, unsigned long port)
121 writeb(value, (void __iomem *) port);
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
126 writeb(value, (void __iomem *) port);
129 static void ide_mm_outw (u16 value, unsigned long port)
131 writew(value, (void __iomem *) port);
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
136 __ide_mm_outsw((void __iomem *) port, addr, count);
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
141 __ide_mm_outsl((void __iomem *) port, addr, count);
144 void default_hwif_mmiops (ide_hwif_t *hwif)
146 hwif->OUTB = ide_mm_outb;
147 /* Most systems will need to override OUTBSYNC, alas however
148 this one is controller specific! */
149 hwif->OUTBSYNC = ide_mm_outbsync;
150 hwif->OUTW = ide_mm_outw;
151 hwif->OUTSW = ide_mm_outsw;
152 hwif->OUTSL = ide_mm_outsl;
153 hwif->INB = ide_mm_inb;
154 hwif->INW = ide_mm_inw;
155 hwif->INSW = ide_mm_insw;
156 hwif->INSL = ide_mm_insl;
159 EXPORT_SYMBOL(default_hwif_mmiops);
161 u32 ide_read_24 (ide_drive_t *drive)
163 u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164 u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165 u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166 return (hcyl<<16)|(lcyl<<8)|sect;
169 void SELECT_DRIVE (ide_drive_t *drive)
171 if (HWIF(drive)->selectproc)
172 HWIF(drive)->selectproc(drive);
173 HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
176 EXPORT_SYMBOL(SELECT_DRIVE);
178 void SELECT_INTERRUPT (ide_drive_t *drive)
180 if (HWIF(drive)->intrproc)
181 HWIF(drive)->intrproc(drive);
182 else
183 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
186 void SELECT_MASK (ide_drive_t *drive, int mask)
188 if (HWIF(drive)->maskproc)
189 HWIF(drive)->maskproc(drive, mask);
192 void QUIRK_LIST (ide_drive_t *drive)
194 if (HWIF(drive)->quirkproc)
195 drive->quirk_list = HWIF(drive)->quirkproc(drive);
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data. We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
205 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
207 (void) HWIF(drive)->INB(port);
208 (void) HWIF(drive)->INB(port);
209 (void) HWIF(drive)->INB(port);
213 * This is used for most PIO data transfers *from* the IDE interface
215 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
217 ide_hwif_t *hwif = HWIF(drive);
218 u8 io_32bit = drive->io_32bit;
220 if (io_32bit) {
221 if (io_32bit & 2) {
222 unsigned long flags;
223 local_irq_save(flags);
224 ata_vlb_sync(drive, IDE_NSECTOR_REG);
225 hwif->INSL(IDE_DATA_REG, buffer, wcount);
226 local_irq_restore(flags);
227 } else
228 hwif->INSL(IDE_DATA_REG, buffer, wcount);
229 } else {
230 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
235 * This is used for most PIO data transfers *to* the IDE interface
237 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
239 ide_hwif_t *hwif = HWIF(drive);
240 u8 io_32bit = drive->io_32bit;
242 if (io_32bit) {
243 if (io_32bit & 2) {
244 unsigned long flags;
245 local_irq_save(flags);
246 ata_vlb_sync(drive, IDE_NSECTOR_REG);
247 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248 local_irq_restore(flags);
249 } else
250 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251 } else {
252 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
257 * The following routines are mainly used by the ATAPI drivers.
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
264 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
266 ide_hwif_t *hwif = HWIF(drive);
268 ++bytecount;
269 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270 if (MACH_IS_ATARI || MACH_IS_Q40) {
271 /* Atari has a byte-swapped IDE interface */
272 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273 return;
275 #endif /* CONFIG_ATARI || CONFIG_Q40 */
276 hwif->ata_input_data(drive, buffer, bytecount / 4);
277 if ((bytecount & 0x03) >= 2)
278 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
281 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
283 ide_hwif_t *hwif = HWIF(drive);
285 ++bytecount;
286 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287 if (MACH_IS_ATARI || MACH_IS_Q40) {
288 /* Atari has a byte-swapped IDE interface */
289 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290 return;
292 #endif /* CONFIG_ATARI || CONFIG_Q40 */
293 hwif->ata_output_data(drive, buffer, bytecount / 4);
294 if ((bytecount & 0x03) >= 2)
295 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
298 void default_hwif_transport(ide_hwif_t *hwif)
300 hwif->ata_input_data = ata_input_data;
301 hwif->ata_output_data = ata_output_data;
302 hwif->atapi_input_bytes = atapi_input_bytes;
303 hwif->atapi_output_bytes = atapi_output_bytes;
307 * Beginning of Taskfile OPCODE Library and feature sets.
309 void ide_fix_driveid (struct hd_driveid *id)
311 #ifndef __LITTLE_ENDIAN
312 # ifdef __BIG_ENDIAN
313 int i;
314 u16 *stringcast;
316 id->config = __le16_to_cpu(id->config);
317 id->cyls = __le16_to_cpu(id->cyls);
318 id->reserved2 = __le16_to_cpu(id->reserved2);
319 id->heads = __le16_to_cpu(id->heads);
320 id->track_bytes = __le16_to_cpu(id->track_bytes);
321 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
322 id->sectors = __le16_to_cpu(id->sectors);
323 id->vendor0 = __le16_to_cpu(id->vendor0);
324 id->vendor1 = __le16_to_cpu(id->vendor1);
325 id->vendor2 = __le16_to_cpu(id->vendor2);
326 stringcast = (u16 *)&id->serial_no[0];
327 for (i = 0; i < (20/2); i++)
328 stringcast[i] = __le16_to_cpu(stringcast[i]);
329 id->buf_type = __le16_to_cpu(id->buf_type);
330 id->buf_size = __le16_to_cpu(id->buf_size);
331 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
332 stringcast = (u16 *)&id->fw_rev[0];
333 for (i = 0; i < (8/2); i++)
334 stringcast[i] = __le16_to_cpu(stringcast[i]);
335 stringcast = (u16 *)&id->model[0];
336 for (i = 0; i < (40/2); i++)
337 stringcast[i] = __le16_to_cpu(stringcast[i]);
338 id->dword_io = __le16_to_cpu(id->dword_io);
339 id->reserved50 = __le16_to_cpu(id->reserved50);
340 id->field_valid = __le16_to_cpu(id->field_valid);
341 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
342 id->cur_heads = __le16_to_cpu(id->cur_heads);
343 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
344 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
345 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
346 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
347 id->dma_1word = __le16_to_cpu(id->dma_1word);
348 id->dma_mword = __le16_to_cpu(id->dma_mword);
349 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
351 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
352 id->eide_pio = __le16_to_cpu(id->eide_pio);
353 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354 for (i = 0; i < 2; ++i)
355 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356 for (i = 0; i < 4; ++i)
357 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358 id->queue_depth = __le16_to_cpu(id->queue_depth);
359 for (i = 0; i < 4; ++i)
360 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
362 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
363 id->command_set_1 = __le16_to_cpu(id->command_set_1);
364 id->command_set_2 = __le16_to_cpu(id->command_set_2);
365 id->cfsse = __le16_to_cpu(id->cfsse);
366 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
367 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
368 id->csf_default = __le16_to_cpu(id->csf_default);
369 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
370 id->trseuc = __le16_to_cpu(id->trseuc);
371 id->trsEuc = __le16_to_cpu(id->trsEuc);
372 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
373 id->mprc = __le16_to_cpu(id->mprc);
374 id->hw_config = __le16_to_cpu(id->hw_config);
375 id->acoustic = __le16_to_cpu(id->acoustic);
376 id->msrqs = __le16_to_cpu(id->msrqs);
377 id->sxfert = __le16_to_cpu(id->sxfert);
378 id->sal = __le16_to_cpu(id->sal);
379 id->spg = __le32_to_cpu(id->spg);
380 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381 for (i = 0; i < 22; i++)
382 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
383 id->last_lun = __le16_to_cpu(id->last_lun);
384 id->word127 = __le16_to_cpu(id->word127);
385 id->dlf = __le16_to_cpu(id->dlf);
386 id->csfo = __le16_to_cpu(id->csfo);
387 for (i = 0; i < 26; i++)
388 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389 id->word156 = __le16_to_cpu(id->word156);
390 for (i = 0; i < 3; i++)
391 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392 id->cfa_power = __le16_to_cpu(id->cfa_power);
393 for (i = 0; i < 14; i++)
394 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395 for (i = 0; i < 31; i++)
396 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397 for (i = 0; i < 48; i++)
398 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399 id->integrity_word = __le16_to_cpu(id->integrity_word);
400 # else
401 # error "Please fix <asm/byteorder.h>"
402 # endif
403 #endif
406 /* FIXME: exported for use by the USB storage (isd200.c) code only */
407 EXPORT_SYMBOL(ide_fix_driveid);
409 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
411 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
413 if (byteswap) {
414 /* convert from big-endian to host byte order */
415 for (p = end ; p != s;) {
416 unsigned short *pp = (unsigned short *) (p -= 2);
417 *pp = ntohs(*pp);
420 /* strip leading blanks */
421 while (s != end && *s == ' ')
422 ++s;
423 /* compress internal blanks and strip trailing blanks */
424 while (s != end && *s) {
425 if (*s++ != ' ' || (s != end && *s && *s != ' '))
426 *p++ = *(s-1);
428 /* wipe out trailing garbage */
429 while (p != end)
430 *p++ = '\0';
433 EXPORT_SYMBOL(ide_fixstring);
436 * Needed for PCI irq sharing
438 int drive_is_ready (ide_drive_t *drive)
440 ide_hwif_t *hwif = HWIF(drive);
441 u8 stat = 0;
443 if (drive->waiting_for_dma)
444 return hwif->ide_dma_test_irq(drive);
446 #if 0
447 /* need to guarantee 400ns since last command was issued */
448 udelay(1);
449 #endif
451 #ifdef CONFIG_IDEPCI_SHARE_IRQ
453 * We do a passive status test under shared PCI interrupts on
454 * cards that truly share the ATA side interrupt, but may also share
455 * an interrupt with another pci card/device. We make no assumptions
456 * about possible isa-pnp and pci-pnp issues yet.
458 if (IDE_CONTROL_REG)
459 stat = hwif->INB(IDE_ALTSTATUS_REG);
460 else
461 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
462 /* Note: this may clear a pending IRQ!! */
463 stat = hwif->INB(IDE_STATUS_REG);
465 if (stat & BUSY_STAT)
466 /* drive busy: definitely not interrupting */
467 return 0;
469 /* drive ready: *might* be interrupting */
470 return 1;
473 EXPORT_SYMBOL(drive_is_ready);
476 * Global for All, and taken from ide-pmac.c. Can be called
477 * with spinlock held & IRQs disabled, so don't schedule !
479 int wait_for_ready (ide_drive_t *drive, int timeout)
481 ide_hwif_t *hwif = HWIF(drive);
482 u8 stat = 0;
484 while(--timeout) {
485 stat = hwif->INB(IDE_STATUS_REG);
486 if (!(stat & BUSY_STAT)) {
487 if (drive->ready_stat == 0)
488 break;
489 else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
490 break;
492 mdelay(1);
494 if ((stat & ERR_STAT) || timeout <= 0) {
495 if (stat & ERR_STAT) {
496 printk(KERN_ERR "%s: wait_for_ready, "
497 "error status: %x\n", drive->name, stat);
499 return 1;
501 return 0;
505 * This routine busy-waits for the drive status to be not "busy".
506 * It then checks the status for all of the "good" bits and none
507 * of the "bad" bits, and if all is okay it returns 0. All other
508 * cases return 1 after invoking ide_error() -- caller should just return.
510 * This routine should get fixed to not hog the cpu during extra long waits..
511 * That could be done by busy-waiting for the first jiffy or two, and then
512 * setting a timer to wake up at half second intervals thereafter,
513 * until timeout is achieved, before timing out.
515 int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
517 ide_hwif_t *hwif = HWIF(drive);
518 u8 stat;
519 int i;
520 unsigned long flags;
522 /* bail early if we've exceeded max_failures */
523 if (drive->max_failures && (drive->failures > drive->max_failures)) {
524 *startstop = ide_stopped;
525 return 1;
528 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
529 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
530 local_irq_set(flags);
531 timeout += jiffies;
532 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
533 if (time_after(jiffies, timeout)) {
535 * One last read after the timeout in case
536 * heavy interrupt load made us not make any
537 * progress during the timeout..
539 stat = hwif->INB(IDE_STATUS_REG);
540 if (!(stat & BUSY_STAT))
541 break;
543 local_irq_restore(flags);
544 *startstop = ide_error(drive, "status timeout", stat);
545 return 1;
548 local_irq_restore(flags);
551 * Allow status to settle, then read it again.
552 * A few rare drives vastly violate the 400ns spec here,
553 * so we'll wait up to 10usec for a "good" status
554 * rather than expensively fail things immediately.
555 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
557 for (i = 0; i < 10; i++) {
558 udelay(1);
559 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
560 return 0;
562 *startstop = ide_error(drive, "status error", stat);
563 return 1;
566 EXPORT_SYMBOL(ide_wait_stat);
569 * All hosts that use the 80c ribbon must use!
570 * The name is derived from upper byte of word 93 and the 80c ribbon.
572 u8 eighty_ninty_three (ide_drive_t *drive)
574 ide_hwif_t *hwif = drive->hwif;
575 struct hd_driveid *id = drive->id;
577 if (hwif->udma_four == 0)
578 goto no_80w;
580 /* Check for SATA but only if we are ATA5 or higher */
581 if (id->hw_config == 0 && (id->major_rev_num & 0x7FE0))
582 return 1;
585 * FIXME:
586 * - change master/slave IDENTIFY order
587 * - force bit13 (80c cable present) check
588 * (unless the slave device is pre-ATA3)
590 #ifndef CONFIG_IDEDMA_IVB
591 if (id->hw_config & 0x4000)
592 #else
593 if (id->hw_config & 0x6000)
594 #endif
595 return 1;
597 no_80w:
598 if (drive->udma33_warned == 1)
599 return 0;
601 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
602 "limiting max speed to UDMA33\n",
603 drive->name, hwif->udma_four ? "drive" : "host");
605 drive->udma33_warned = 1;
607 return 0;
610 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
612 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
613 (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
614 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
615 if (eighty_ninty_three(drive) == 0) {
616 printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
617 "be set\n", drive->name);
618 return 1;
622 return 0;
626 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
627 * 1 : Safe to update drive->id DMA registers.
628 * 0 : OOPs not allowed.
630 int set_transfer (ide_drive_t *drive, ide_task_t *args)
632 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
633 (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
634 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
635 (drive->id->dma_ultra ||
636 drive->id->dma_mword ||
637 drive->id->dma_1word))
638 return 1;
640 return 0;
643 #ifdef CONFIG_BLK_DEV_IDEDMA
644 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
646 if (!drive->crc_count)
647 return drive->current_speed;
648 drive->crc_count = 0;
650 switch(drive->current_speed) {
651 case XFER_UDMA_7: return XFER_UDMA_6;
652 case XFER_UDMA_6: return XFER_UDMA_5;
653 case XFER_UDMA_5: return XFER_UDMA_4;
654 case XFER_UDMA_4: return XFER_UDMA_3;
655 case XFER_UDMA_3: return XFER_UDMA_2;
656 case XFER_UDMA_2: return XFER_UDMA_1;
657 case XFER_UDMA_1: return XFER_UDMA_0;
659 * OOPS we do not goto non Ultra DMA modes
660 * without iCRC's available we force
661 * the system to PIO and make the user
662 * invoke the ATA-1 ATA-2 DMA modes.
664 case XFER_UDMA_0:
665 default: return XFER_PIO_4;
668 #endif /* CONFIG_BLK_DEV_IDEDMA */
671 * Update the
673 int ide_driveid_update (ide_drive_t *drive)
675 ide_hwif_t *hwif = HWIF(drive);
676 struct hd_driveid *id;
677 #if 0
678 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
679 if (!id)
680 return 0;
682 taskfile_lib_get_identify(drive, (char *)&id);
684 ide_fix_driveid(id);
685 if (id) {
686 drive->id->dma_ultra = id->dma_ultra;
687 drive->id->dma_mword = id->dma_mword;
688 drive->id->dma_1word = id->dma_1word;
689 /* anything more ? */
690 kfree(id);
692 return 1;
693 #else
695 * Re-read drive->id for possible DMA mode
696 * change (copied from ide-probe.c)
698 unsigned long timeout, flags;
700 SELECT_MASK(drive, 1);
701 if (IDE_CONTROL_REG)
702 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
703 msleep(50);
704 hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
705 timeout = jiffies + WAIT_WORSTCASE;
706 do {
707 if (time_after(jiffies, timeout)) {
708 SELECT_MASK(drive, 0);
709 return 0; /* drive timed-out */
711 msleep(50); /* give drive a breather */
712 } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
713 msleep(50); /* wait for IRQ and DRQ_STAT */
714 if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
715 SELECT_MASK(drive, 0);
716 printk("%s: CHECK for good STATUS\n", drive->name);
717 return 0;
719 local_irq_save(flags);
720 SELECT_MASK(drive, 0);
721 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
722 if (!id) {
723 local_irq_restore(flags);
724 return 0;
726 ata_input_data(drive, id, SECTOR_WORDS);
727 (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
728 local_irq_enable();
729 local_irq_restore(flags);
730 ide_fix_driveid(id);
731 if (id) {
732 drive->id->dma_ultra = id->dma_ultra;
733 drive->id->dma_mword = id->dma_mword;
734 drive->id->dma_1word = id->dma_1word;
735 /* anything more ? */
736 kfree(id);
739 return 1;
740 #endif
744 * Similar to ide_wait_stat(), except it never calls ide_error internally.
745 * This is a kludge to handle the new ide_config_drive_speed() function,
746 * and should not otherwise be used anywhere. Eventually, the tuneproc's
747 * should be updated to return ide_startstop_t, in which case we can get
748 * rid of this abomination again. :) -ml
750 * It is gone..........
752 * const char *msg == consider adding for verbose errors.
754 int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
756 ide_hwif_t *hwif = HWIF(drive);
757 int i, error = 1;
758 u8 stat;
760 // while (HWGROUP(drive)->busy)
761 // msleep(50);
763 #ifdef CONFIG_BLK_DEV_IDEDMA
764 if (hwif->ide_dma_check) /* check if host supports DMA */
765 hwif->dma_host_off(drive);
766 #endif
769 * Don't use ide_wait_cmd here - it will
770 * attempt to set_geometry and recalibrate,
771 * but for some reason these don't work at
772 * this point (lost interrupt).
775 * Select the drive, and issue the SETFEATURES command
777 disable_irq_nosync(hwif->irq);
780 * FIXME: we race against the running IRQ here if
781 * this is called from non IRQ context. If we use
782 * disable_irq() we hang on the error path. Work
783 * is needed.
786 udelay(1);
787 SELECT_DRIVE(drive);
788 SELECT_MASK(drive, 0);
789 udelay(1);
790 if (IDE_CONTROL_REG)
791 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
792 hwif->OUTB(speed, IDE_NSECTOR_REG);
793 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
794 hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
795 if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
796 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
797 udelay(1);
799 * Wait for drive to become non-BUSY
801 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
802 unsigned long flags, timeout;
803 local_irq_set(flags);
804 timeout = jiffies + WAIT_CMD;
805 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
806 if (time_after(jiffies, timeout))
807 break;
809 local_irq_restore(flags);
813 * Allow status to settle, then read it again.
814 * A few rare drives vastly violate the 400ns spec here,
815 * so we'll wait up to 10usec for a "good" status
816 * rather than expensively fail things immediately.
817 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
819 for (i = 0; i < 10; i++) {
820 udelay(1);
821 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
822 error = 0;
823 break;
827 SELECT_MASK(drive, 0);
829 enable_irq(hwif->irq);
831 if (error) {
832 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
833 return error;
836 drive->id->dma_ultra &= ~0xFF00;
837 drive->id->dma_mword &= ~0x0F00;
838 drive->id->dma_1word &= ~0x0F00;
840 #ifdef CONFIG_BLK_DEV_IDEDMA
841 if (speed >= XFER_SW_DMA_0)
842 hwif->dma_host_on(drive);
843 else if (hwif->ide_dma_check) /* check if host supports DMA */
844 hwif->dma_off_quietly(drive);
845 #endif
847 switch(speed) {
848 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
849 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
850 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
851 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
852 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
853 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
854 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
855 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
856 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
857 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
858 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
859 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
860 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
861 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
862 default: break;
864 if (!drive->init_speed)
865 drive->init_speed = speed;
866 drive->current_speed = speed;
867 return error;
870 EXPORT_SYMBOL(ide_config_drive_speed);
874 * This should get invoked any time we exit the driver to
875 * wait for an interrupt response from a drive. handler() points
876 * at the appropriate code to handle the next interrupt, and a
877 * timer is started to prevent us from waiting forever in case
878 * something goes wrong (see the ide_timer_expiry() handler later on).
880 * See also ide_execute_command
882 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
883 unsigned int timeout, ide_expiry_t *expiry)
885 ide_hwgroup_t *hwgroup = HWGROUP(drive);
887 if (hwgroup->handler != NULL) {
888 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
889 "old=%p, new=%p\n",
890 drive->name, hwgroup->handler, handler);
892 hwgroup->handler = handler;
893 hwgroup->expiry = expiry;
894 hwgroup->timer.expires = jiffies + timeout;
895 hwgroup->req_gen_timer = hwgroup->req_gen;
896 add_timer(&hwgroup->timer);
899 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
900 unsigned int timeout, ide_expiry_t *expiry)
902 unsigned long flags;
903 spin_lock_irqsave(&ide_lock, flags);
904 __ide_set_handler(drive, handler, timeout, expiry);
905 spin_unlock_irqrestore(&ide_lock, flags);
908 EXPORT_SYMBOL(ide_set_handler);
911 * ide_execute_command - execute an IDE command
912 * @drive: IDE drive to issue the command against
913 * @command: command byte to write
914 * @handler: handler for next phase
915 * @timeout: timeout for command
916 * @expiry: handler to run on timeout
918 * Helper function to issue an IDE command. This handles the
919 * atomicity requirements, command timing and ensures that the
920 * handler and IRQ setup do not race. All IDE command kick off
921 * should go via this function or do equivalent locking.
924 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
926 unsigned long flags;
927 ide_hwgroup_t *hwgroup = HWGROUP(drive);
928 ide_hwif_t *hwif = HWIF(drive);
930 spin_lock_irqsave(&ide_lock, flags);
932 BUG_ON(hwgroup->handler);
933 hwgroup->handler = handler;
934 hwgroup->expiry = expiry;
935 hwgroup->timer.expires = jiffies + timeout;
936 hwgroup->req_gen_timer = hwgroup->req_gen;
937 add_timer(&hwgroup->timer);
938 hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
939 /* Drive takes 400nS to respond, we must avoid the IRQ being
940 serviced before that.
942 FIXME: we could skip this delay with care on non shared
943 devices
945 ndelay(400);
946 spin_unlock_irqrestore(&ide_lock, flags);
949 EXPORT_SYMBOL(ide_execute_command);
952 /* needed below */
953 static ide_startstop_t do_reset1 (ide_drive_t *, int);
956 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
957 * during an atapi drive reset operation. If the drive has not yet responded,
958 * and we have not yet hit our maximum waiting time, then the timer is restarted
959 * for another 50ms.
961 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
963 ide_hwgroup_t *hwgroup = HWGROUP(drive);
964 ide_hwif_t *hwif = HWIF(drive);
965 u8 stat;
967 SELECT_DRIVE(drive);
968 udelay (10);
970 if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
971 printk("%s: ATAPI reset complete\n", drive->name);
972 } else {
973 if (time_before(jiffies, hwgroup->poll_timeout)) {
974 BUG_ON(HWGROUP(drive)->handler != NULL);
975 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
976 /* continue polling */
977 return ide_started;
979 /* end of polling */
980 hwgroup->polling = 0;
981 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
982 drive->name, stat);
983 /* do it the old fashioned way */
984 return do_reset1(drive, 1);
986 /* done polling */
987 hwgroup->polling = 0;
988 hwgroup->resetting = 0;
989 return ide_stopped;
993 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
994 * during an ide reset operation. If the drives have not yet responded,
995 * and we have not yet hit our maximum waiting time, then the timer is restarted
996 * for another 50ms.
998 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1000 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1001 ide_hwif_t *hwif = HWIF(drive);
1002 u8 tmp;
1004 if (hwif->reset_poll != NULL) {
1005 if (hwif->reset_poll(drive)) {
1006 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1007 hwif->name, drive->name);
1008 return ide_stopped;
1012 if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1013 if (time_before(jiffies, hwgroup->poll_timeout)) {
1014 BUG_ON(HWGROUP(drive)->handler != NULL);
1015 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1016 /* continue polling */
1017 return ide_started;
1019 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1020 drive->failures++;
1021 } else {
1022 printk("%s: reset: ", hwif->name);
1023 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1024 printk("success\n");
1025 drive->failures = 0;
1026 } else {
1027 drive->failures++;
1028 printk("master: ");
1029 switch (tmp & 0x7f) {
1030 case 1: printk("passed");
1031 break;
1032 case 2: printk("formatter device error");
1033 break;
1034 case 3: printk("sector buffer error");
1035 break;
1036 case 4: printk("ECC circuitry error");
1037 break;
1038 case 5: printk("controlling MPU error");
1039 break;
1040 default:printk("error (0x%02x?)", tmp);
1042 if (tmp & 0x80)
1043 printk("; slave: failed");
1044 printk("\n");
1047 hwgroup->polling = 0; /* done polling */
1048 hwgroup->resetting = 0; /* done reset attempt */
1049 return ide_stopped;
1052 static void check_dma_crc(ide_drive_t *drive)
1054 #ifdef CONFIG_BLK_DEV_IDEDMA
1055 if (drive->crc_count) {
1056 drive->hwif->dma_off_quietly(drive);
1057 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1058 if (drive->current_speed >= XFER_SW_DMA_0)
1059 (void) HWIF(drive)->ide_dma_on(drive);
1060 } else
1061 ide_dma_off(drive);
1062 #endif
1065 static void ide_disk_pre_reset(ide_drive_t *drive)
1067 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1069 drive->special.all = 0;
1070 drive->special.b.set_geometry = legacy;
1071 drive->special.b.recalibrate = legacy;
1072 if (OK_TO_RESET_CONTROLLER)
1073 drive->mult_count = 0;
1074 if (!drive->keep_settings && !drive->using_dma)
1075 drive->mult_req = 0;
1076 if (drive->mult_req != drive->mult_count)
1077 drive->special.b.set_multmode = 1;
1080 static void pre_reset(ide_drive_t *drive)
1082 if (drive->media == ide_disk)
1083 ide_disk_pre_reset(drive);
1084 else
1085 drive->post_reset = 1;
1087 if (!drive->keep_settings) {
1088 if (drive->using_dma) {
1089 check_dma_crc(drive);
1090 } else {
1091 drive->unmask = 0;
1092 drive->io_32bit = 0;
1094 return;
1096 if (drive->using_dma)
1097 check_dma_crc(drive);
1099 if (HWIF(drive)->pre_reset != NULL)
1100 HWIF(drive)->pre_reset(drive);
1102 if (drive->current_speed != 0xff)
1103 drive->desired_speed = drive->current_speed;
1104 drive->current_speed = 0xff;
1108 * do_reset1() attempts to recover a confused drive by resetting it.
1109 * Unfortunately, resetting a disk drive actually resets all devices on
1110 * the same interface, so it can really be thought of as resetting the
1111 * interface rather than resetting the drive.
1113 * ATAPI devices have their own reset mechanism which allows them to be
1114 * individually reset without clobbering other devices on the same interface.
1116 * Unfortunately, the IDE interface does not generate an interrupt to let
1117 * us know when the reset operation has finished, so we must poll for this.
1118 * Equally poor, though, is the fact that this may a very long time to complete,
1119 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1120 * we set a timer to poll at 50ms intervals.
1122 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1124 unsigned int unit;
1125 unsigned long flags;
1126 ide_hwif_t *hwif;
1127 ide_hwgroup_t *hwgroup;
1129 spin_lock_irqsave(&ide_lock, flags);
1130 hwif = HWIF(drive);
1131 hwgroup = HWGROUP(drive);
1133 /* We must not reset with running handlers */
1134 BUG_ON(hwgroup->handler != NULL);
1136 /* For an ATAPI device, first try an ATAPI SRST. */
1137 if (drive->media != ide_disk && !do_not_try_atapi) {
1138 hwgroup->resetting = 1;
1139 pre_reset(drive);
1140 SELECT_DRIVE(drive);
1141 udelay (20);
1142 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1143 ndelay(400);
1144 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1145 hwgroup->polling = 1;
1146 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1147 spin_unlock_irqrestore(&ide_lock, flags);
1148 return ide_started;
1152 * First, reset any device state data we were maintaining
1153 * for any of the drives on this interface.
1155 for (unit = 0; unit < MAX_DRIVES; ++unit)
1156 pre_reset(&hwif->drives[unit]);
1158 #if OK_TO_RESET_CONTROLLER
1159 if (!IDE_CONTROL_REG) {
1160 spin_unlock_irqrestore(&ide_lock, flags);
1161 return ide_stopped;
1164 hwgroup->resetting = 1;
1166 * Note that we also set nIEN while resetting the device,
1167 * to mask unwanted interrupts from the interface during the reset.
1168 * However, due to the design of PC hardware, this will cause an
1169 * immediate interrupt due to the edge transition it produces.
1170 * This single interrupt gives us a "fast poll" for drives that
1171 * recover from reset very quickly, saving us the first 50ms wait time.
1173 /* set SRST and nIEN */
1174 hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1175 /* more than enough time */
1176 udelay(10);
1177 if (drive->quirk_list == 2) {
1178 /* clear SRST and nIEN */
1179 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1180 } else {
1181 /* clear SRST, leave nIEN */
1182 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1184 /* more than enough time */
1185 udelay(10);
1186 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1187 hwgroup->polling = 1;
1188 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1191 * Some weird controller like resetting themselves to a strange
1192 * state when the disks are reset this way. At least, the Winbond
1193 * 553 documentation says that
1195 if (hwif->resetproc != NULL) {
1196 hwif->resetproc(drive);
1199 #endif /* OK_TO_RESET_CONTROLLER */
1201 spin_unlock_irqrestore(&ide_lock, flags);
1202 return ide_started;
1206 * ide_do_reset() is the entry point to the drive/interface reset code.
1209 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1211 return do_reset1(drive, 0);
1214 EXPORT_SYMBOL(ide_do_reset);
1217 * ide_wait_not_busy() waits for the currently selected device on the hwif
1218 * to report a non-busy status, see comments in probe_hwif().
1220 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1222 u8 stat = 0;
1224 while(timeout--) {
1226 * Turn this into a schedule() sleep once I'm sure
1227 * about locking issues (2.5 work ?).
1229 mdelay(1);
1230 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1231 if ((stat & BUSY_STAT) == 0)
1232 return 0;
1234 * Assume a value of 0xff means nothing is connected to
1235 * the interface and it doesn't implement the pull-down
1236 * resistor on D7.
1238 if (stat == 0xff)
1239 return -ENODEV;
1240 touch_softlockup_watchdog();
1241 touch_nmi_watchdog();
1243 return -EBUSY;
1246 EXPORT_SYMBOL_GPL(ide_wait_not_busy);