3 * device driver for Conexant 2388x based TV cards
6 * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
8 * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
10 * - video_ioctl2 conversion
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/kmod.h>
35 #include <linux/sound.h>
36 #include <linux/interrupt.h>
37 #include <linux/pci.h>
38 #include <linux/delay.h>
39 #include <linux/videodev2.h>
40 #include <linux/mutex.h>
43 #include <media/v4l2-common.h>
45 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
46 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
47 MODULE_LICENSE("GPL");
49 /* ------------------------------------------------------------------ */
51 static unsigned int core_debug
= 0;
52 module_param(core_debug
,int,0644);
53 MODULE_PARM_DESC(core_debug
,"enable debug messages [core]");
55 static unsigned int latency
= UNSET
;
56 module_param(latency
,int,0444);
57 MODULE_PARM_DESC(latency
,"pci latency timer");
59 static unsigned int tuner
[] = {[0 ... (CX88_MAXBOARDS
- 1)] = UNSET
};
60 static unsigned int radio
[] = {[0 ... (CX88_MAXBOARDS
- 1)] = UNSET
};
61 static unsigned int card
[] = {[0 ... (CX88_MAXBOARDS
- 1)] = UNSET
};
63 module_param_array(tuner
, int, NULL
, 0444);
64 module_param_array(radio
, int, NULL
, 0444);
65 module_param_array(card
, int, NULL
, 0444);
67 MODULE_PARM_DESC(tuner
,"tuner type");
68 MODULE_PARM_DESC(radio
,"radio tuner type");
69 MODULE_PARM_DESC(card
,"card type");
71 static unsigned int nicam
= 0;
72 module_param(nicam
,int,0644);
73 MODULE_PARM_DESC(nicam
,"tv audio is nicam");
75 static unsigned int nocomb
= 0;
76 module_param(nocomb
,int,0644);
77 MODULE_PARM_DESC(nocomb
,"disable comb filter");
79 #define dprintk(level,fmt, arg...) if (core_debug >= level) \
80 printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
82 static unsigned int cx88_devcount
;
83 static LIST_HEAD(cx88_devlist
);
84 static DEFINE_MUTEX(devlist
);
86 #define NO_SYNC_LINE (-1U)
88 static u32
* cx88_risc_field(u32
*rp
, struct scatterlist
*sglist
,
89 unsigned int offset
, u32 sync_line
,
90 unsigned int bpl
, unsigned int padding
,
93 struct scatterlist
*sg
;
94 unsigned int line
,todo
;
96 /* sync instruction */
97 if (sync_line
!= NO_SYNC_LINE
)
98 *(rp
++) = cpu_to_le32(RISC_RESYNC
| sync_line
);
102 for (line
= 0; line
< lines
; line
++) {
103 while (offset
&& offset
>= sg_dma_len(sg
)) {
104 offset
-= sg_dma_len(sg
);
107 if (bpl
<= sg_dma_len(sg
)-offset
) {
108 /* fits into current chunk */
109 *(rp
++)=cpu_to_le32(RISC_WRITE
|RISC_SOL
|RISC_EOL
|bpl
);
110 *(rp
++)=cpu_to_le32(sg_dma_address(sg
)+offset
);
113 /* scanline needs to be split */
115 *(rp
++)=cpu_to_le32(RISC_WRITE
|RISC_SOL
|
116 (sg_dma_len(sg
)-offset
));
117 *(rp
++)=cpu_to_le32(sg_dma_address(sg
)+offset
);
118 todo
-= (sg_dma_len(sg
)-offset
);
121 while (todo
> sg_dma_len(sg
)) {
122 *(rp
++)=cpu_to_le32(RISC_WRITE
|
124 *(rp
++)=cpu_to_le32(sg_dma_address(sg
));
125 todo
-= sg_dma_len(sg
);
128 *(rp
++)=cpu_to_le32(RISC_WRITE
|RISC_EOL
|todo
);
129 *(rp
++)=cpu_to_le32(sg_dma_address(sg
));
138 int cx88_risc_buffer(struct pci_dev
*pci
, struct btcx_riscmem
*risc
,
139 struct scatterlist
*sglist
,
140 unsigned int top_offset
, unsigned int bottom_offset
,
141 unsigned int bpl
, unsigned int padding
, unsigned int lines
)
143 u32 instructions
,fields
;
148 if (UNSET
!= top_offset
)
150 if (UNSET
!= bottom_offset
)
153 /* estimate risc mem: worst case is one write per page border +
154 one write per scan line + syncs + jump (all 2 dwords). Padding
155 can cause next bpl to start close to a page border. First DMA
156 region may be smaller than PAGE_SIZE */
157 instructions
= fields
* (1 + ((bpl
+ padding
) * lines
) / PAGE_SIZE
+ lines
);
159 if ((rc
= btcx_riscmem_alloc(pci
,risc
,instructions
*8)) < 0)
162 /* write risc instructions */
164 if (UNSET
!= top_offset
)
165 rp
= cx88_risc_field(rp
, sglist
, top_offset
, 0,
166 bpl
, padding
, lines
);
167 if (UNSET
!= bottom_offset
)
168 rp
= cx88_risc_field(rp
, sglist
, bottom_offset
, 0x200,
169 bpl
, padding
, lines
);
171 /* save pointer to jmp instruction address */
173 BUG_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof (*risc
->cpu
) > risc
->size
);
177 int cx88_risc_databuffer(struct pci_dev
*pci
, struct btcx_riscmem
*risc
,
178 struct scatterlist
*sglist
, unsigned int bpl
,
185 /* estimate risc mem: worst case is one write per page border +
186 one write per scan line + syncs + jump (all 2 dwords). Here
187 there is no padding and no sync. First DMA region may be smaller
189 instructions
= 1 + (bpl
* lines
) / PAGE_SIZE
+ lines
;
191 if ((rc
= btcx_riscmem_alloc(pci
,risc
,instructions
*8)) < 0)
194 /* write risc instructions */
196 rp
= cx88_risc_field(rp
, sglist
, 0, NO_SYNC_LINE
, bpl
, 0, lines
);
198 /* save pointer to jmp instruction address */
200 BUG_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof (*risc
->cpu
) > risc
->size
);
204 int cx88_risc_stopper(struct pci_dev
*pci
, struct btcx_riscmem
*risc
,
205 u32 reg
, u32 mask
, u32 value
)
210 if ((rc
= btcx_riscmem_alloc(pci
, risc
, 4*16)) < 0)
213 /* write risc instructions */
215 *(rp
++) = cpu_to_le32(RISC_WRITECR
| RISC_IRQ2
| RISC_IMM
);
216 *(rp
++) = cpu_to_le32(reg
);
217 *(rp
++) = cpu_to_le32(value
);
218 *(rp
++) = cpu_to_le32(mask
);
219 *(rp
++) = cpu_to_le32(RISC_JUMP
);
220 *(rp
++) = cpu_to_le32(risc
->dma
);
225 cx88_free_buffer(struct videobuf_queue
*q
, struct cx88_buffer
*buf
)
227 BUG_ON(in_interrupt());
228 videobuf_waiton(&buf
->vb
,0,0);
229 videobuf_dma_unmap(q
, &buf
->vb
.dma
);
230 videobuf_dma_free(&buf
->vb
.dma
);
231 btcx_riscmem_free((struct pci_dev
*)q
->dev
, &buf
->risc
);
232 buf
->vb
.state
= STATE_NEEDS_INIT
;
235 /* ------------------------------------------------------------------ */
236 /* our SRAM memory layout */
238 /* we are going to put all thr risc programs into host memory, so we
239 * can use the whole SDRAM for the DMA fifos. To simplify things, we
240 * use a static memory layout. That surely will waste memory in case
241 * we don't use all DMA channels at the same time (which will be the
242 * case most of the time). But that still gives us enougth FIFO space
243 * to be able to deal with insane long pci latencies ...
245 * FIFO space allocations:
246 * channel 21 (y video) - 10.0k
247 * channel 22 (u video) - 2.0k
248 * channel 23 (v video) - 2.0k
249 * channel 24 (vbi) - 4.0k
250 * channels 25+26 (audio) - 4.0k
251 * channel 28 (mpeg) - 4.0k
254 * Every channel has 160 bytes control data (64 bytes instruction
255 * queue and 6 CDT entries), which is close to 2k total.
258 * 0x0000 - 0x03ff CMDs / reserved
259 * 0x0400 - 0x0bff instruction queues + CDs
263 struct sram_channel cx88_sram_channels
[] = {
265 .name
= "video y / packed",
266 .cmds_start
= 0x180040,
267 .ctrl_start
= 0x180400,
268 .cdt
= 0x180400 + 64,
269 .fifo_start
= 0x180c00,
270 .fifo_size
= 0x002800,
271 .ptr1_reg
= MO_DMA21_PTR1
,
272 .ptr2_reg
= MO_DMA21_PTR2
,
273 .cnt1_reg
= MO_DMA21_CNT1
,
274 .cnt2_reg
= MO_DMA21_CNT2
,
278 .cmds_start
= 0x180080,
279 .ctrl_start
= 0x1804a0,
280 .cdt
= 0x1804a0 + 64,
281 .fifo_start
= 0x183400,
282 .fifo_size
= 0x000800,
283 .ptr1_reg
= MO_DMA22_PTR1
,
284 .ptr2_reg
= MO_DMA22_PTR2
,
285 .cnt1_reg
= MO_DMA22_CNT1
,
286 .cnt2_reg
= MO_DMA22_CNT2
,
290 .cmds_start
= 0x1800c0,
291 .ctrl_start
= 0x180540,
292 .cdt
= 0x180540 + 64,
293 .fifo_start
= 0x183c00,
294 .fifo_size
= 0x000800,
295 .ptr1_reg
= MO_DMA23_PTR1
,
296 .ptr2_reg
= MO_DMA23_PTR2
,
297 .cnt1_reg
= MO_DMA23_CNT1
,
298 .cnt2_reg
= MO_DMA23_CNT2
,
302 .cmds_start
= 0x180100,
303 .ctrl_start
= 0x1805e0,
304 .cdt
= 0x1805e0 + 64,
305 .fifo_start
= 0x184400,
306 .fifo_size
= 0x001000,
307 .ptr1_reg
= MO_DMA24_PTR1
,
308 .ptr2_reg
= MO_DMA24_PTR2
,
309 .cnt1_reg
= MO_DMA24_CNT1
,
310 .cnt2_reg
= MO_DMA24_CNT2
,
313 .name
= "audio from",
314 .cmds_start
= 0x180140,
315 .ctrl_start
= 0x180680,
316 .cdt
= 0x180680 + 64,
317 .fifo_start
= 0x185400,
318 .fifo_size
= 0x001000,
319 .ptr1_reg
= MO_DMA25_PTR1
,
320 .ptr2_reg
= MO_DMA25_PTR2
,
321 .cnt1_reg
= MO_DMA25_CNT1
,
322 .cnt2_reg
= MO_DMA25_CNT2
,
326 .cmds_start
= 0x180180,
327 .ctrl_start
= 0x180720,
328 .cdt
= 0x180680 + 64, /* same as audio IN */
329 .fifo_start
= 0x185400, /* same as audio IN */
330 .fifo_size
= 0x001000, /* same as audio IN */
331 .ptr1_reg
= MO_DMA26_PTR1
,
332 .ptr2_reg
= MO_DMA26_PTR2
,
333 .cnt1_reg
= MO_DMA26_CNT1
,
334 .cnt2_reg
= MO_DMA26_CNT2
,
338 .cmds_start
= 0x180200,
339 .ctrl_start
= 0x1807C0,
340 .cdt
= 0x1807C0 + 64,
341 .fifo_start
= 0x186400,
342 .fifo_size
= 0x001000,
343 .ptr1_reg
= MO_DMA28_PTR1
,
344 .ptr2_reg
= MO_DMA28_PTR2
,
345 .cnt1_reg
= MO_DMA28_CNT1
,
346 .cnt2_reg
= MO_DMA28_CNT2
,
350 int cx88_sram_channel_setup(struct cx88_core
*core
,
351 struct sram_channel
*ch
,
352 unsigned int bpl
, u32 risc
)
354 unsigned int i
,lines
;
357 bpl
= (bpl
+ 7) & ~7; /* alignment */
359 lines
= ch
->fifo_size
/ bpl
;
365 for (i
= 0; i
< lines
; i
++)
366 cx_write(cdt
+ 16*i
, ch
->fifo_start
+ bpl
*i
);
369 cx_write(ch
->cmds_start
+ 0, risc
);
370 cx_write(ch
->cmds_start
+ 4, cdt
);
371 cx_write(ch
->cmds_start
+ 8, (lines
*16) >> 3);
372 cx_write(ch
->cmds_start
+ 12, ch
->ctrl_start
);
373 cx_write(ch
->cmds_start
+ 16, 64 >> 2);
374 for (i
= 20; i
< 64; i
+= 4)
375 cx_write(ch
->cmds_start
+ i
, 0);
378 cx_write(ch
->ptr1_reg
, ch
->fifo_start
);
379 cx_write(ch
->ptr2_reg
, cdt
);
380 cx_write(ch
->cnt1_reg
, (bpl
>> 3) -1);
381 cx_write(ch
->cnt2_reg
, (lines
*16) >> 3);
383 dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch
->name
, bpl
, lines
);
387 /* ------------------------------------------------------------------ */
388 /* debug helper code */
390 static int cx88_risc_decode(u32 risc
)
392 static char *instr
[16] = {
393 [ RISC_SYNC
>> 28 ] = "sync",
394 [ RISC_WRITE
>> 28 ] = "write",
395 [ RISC_WRITEC
>> 28 ] = "writec",
396 [ RISC_READ
>> 28 ] = "read",
397 [ RISC_READC
>> 28 ] = "readc",
398 [ RISC_JUMP
>> 28 ] = "jump",
399 [ RISC_SKIP
>> 28 ] = "skip",
400 [ RISC_WRITERM
>> 28 ] = "writerm",
401 [ RISC_WRITECM
>> 28 ] = "writecm",
402 [ RISC_WRITECR
>> 28 ] = "writecr",
404 static int incr
[16] = {
405 [ RISC_WRITE
>> 28 ] = 2,
406 [ RISC_JUMP
>> 28 ] = 2,
407 [ RISC_WRITERM
>> 28 ] = 3,
408 [ RISC_WRITECM
>> 28 ] = 3,
409 [ RISC_WRITECR
>> 28 ] = 4,
411 static char *bits
[] = {
412 "12", "13", "14", "resync",
413 "cnt0", "cnt1", "18", "19",
414 "20", "21", "22", "23",
415 "irq1", "irq2", "eol", "sol",
419 printk("0x%08x [ %s", risc
,
420 instr
[risc
>> 28] ? instr
[risc
>> 28] : "INVALID");
421 for (i
= ARRAY_SIZE(bits
)-1; i
>= 0; i
--)
422 if (risc
& (1 << (i
+ 12)))
423 printk(" %s",bits
[i
]);
424 printk(" count=%d ]\n", risc
& 0xfff);
425 return incr
[risc
>> 28] ? incr
[risc
>> 28] : 1;
429 void cx88_sram_channel_dump(struct cx88_core
*core
,
430 struct sram_channel
*ch
)
432 static char *name
[] = {
448 printk("%s: %s - dma channel status dump\n",
449 core
->name
,ch
->name
);
450 for (i
= 0; i
< ARRAY_SIZE(name
); i
++)
451 printk("%s: cmds: %-12s: 0x%08x\n",
453 cx_read(ch
->cmds_start
+ 4*i
));
454 for (i
= 0; i
< 4; i
++) {
455 risc
= cx_read(ch
->cmds_start
+ 4 * (i
+11));
456 printk("%s: risc%d: ", core
->name
, i
);
457 cx88_risc_decode(risc
);
459 for (i
= 0; i
< 16; i
+= n
) {
460 risc
= cx_read(ch
->ctrl_start
+ 4 * i
);
461 printk("%s: iq %x: ", core
->name
, i
);
462 n
= cx88_risc_decode(risc
);
463 for (j
= 1; j
< n
; j
++) {
464 risc
= cx_read(ch
->ctrl_start
+ 4 * (i
+j
));
465 printk("%s: iq %x: 0x%08x [ arg #%d ]\n",
466 core
->name
, i
+j
, risc
, j
);
470 printk("%s: fifo: 0x%08x -> 0x%x\n",
471 core
->name
, ch
->fifo_start
, ch
->fifo_start
+ch
->fifo_size
);
472 printk("%s: ctrl: 0x%08x -> 0x%x\n",
473 core
->name
, ch
->ctrl_start
, ch
->ctrl_start
+6*16);
474 printk("%s: ptr1_reg: 0x%08x\n",
475 core
->name
,cx_read(ch
->ptr1_reg
));
476 printk("%s: ptr2_reg: 0x%08x\n",
477 core
->name
,cx_read(ch
->ptr2_reg
));
478 printk("%s: cnt1_reg: 0x%08x\n",
479 core
->name
,cx_read(ch
->cnt1_reg
));
480 printk("%s: cnt2_reg: 0x%08x\n",
481 core
->name
,cx_read(ch
->cnt2_reg
));
484 static char *cx88_pci_irqs
[32] = {
485 "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
486 "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
487 "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
488 "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
491 void cx88_print_irqbits(char *name
, char *tag
, char **strings
,
492 int len
, u32 bits
, u32 mask
)
496 printk(KERN_DEBUG
"%s: %s [0x%x]", name
, tag
, bits
);
497 for (i
= 0; i
< len
; i
++) {
498 if (!(bits
& (1 << i
)))
501 printk(" %s", strings
[i
]);
504 if (!(mask
& (1 << i
)))
511 /* ------------------------------------------------------------------ */
513 int cx88_core_irq(struct cx88_core
*core
, u32 status
)
517 if (status
& (1<<18)) {
522 cx88_print_irqbits(core
->name
, "irq pci",
523 cx88_pci_irqs
, ARRAY_SIZE(cx88_pci_irqs
),
524 status
, core
->pci_irqmask
);
528 void cx88_wakeup(struct cx88_core
*core
,
529 struct cx88_dmaqueue
*q
, u32 count
)
531 struct cx88_buffer
*buf
;
534 for (bc
= 0;; bc
++) {
535 if (list_empty(&q
->active
))
537 buf
= list_entry(q
->active
.next
,
538 struct cx88_buffer
, vb
.queue
);
539 /* count comes from the hw and is is 16bit wide --
540 * this trick handles wrap-arounds correctly for
541 * up to 32767 buffers in flight... */
542 if ((s16
) (count
- buf
->count
) < 0)
544 do_gettimeofday(&buf
->vb
.ts
);
545 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf
,buf
->vb
.i
,
547 buf
->vb
.state
= STATE_DONE
;
548 list_del(&buf
->vb
.queue
);
549 wake_up(&buf
->vb
.done
);
551 if (list_empty(&q
->active
)) {
552 del_timer(&q
->timeout
);
554 mod_timer(&q
->timeout
, jiffies
+BUFFER_TIMEOUT
);
557 printk("%s: %d buffers handled (should be 1)\n",__FUNCTION__
,bc
);
560 void cx88_shutdown(struct cx88_core
*core
)
562 /* disable RISC controller + IRQs */
563 cx_write(MO_DEV_CNTRL2
, 0);
565 /* stop dma transfers */
566 cx_write(MO_VID_DMACNTRL
, 0x0);
567 cx_write(MO_AUD_DMACNTRL
, 0x0);
568 cx_write(MO_TS_DMACNTRL
, 0x0);
569 cx_write(MO_VIP_DMACNTRL
, 0x0);
570 cx_write(MO_GPHST_DMACNTRL
, 0x0);
572 /* stop interrupts */
573 cx_write(MO_PCI_INTMSK
, 0x0);
574 cx_write(MO_VID_INTMSK
, 0x0);
575 cx_write(MO_AUD_INTMSK
, 0x0);
576 cx_write(MO_TS_INTMSK
, 0x0);
577 cx_write(MO_VIP_INTMSK
, 0x0);
578 cx_write(MO_GPHST_INTMSK
, 0x0);
581 cx_write(VID_CAPTURE_CONTROL
, 0);
584 int cx88_reset(struct cx88_core
*core
)
586 dprintk(1,"%s\n",__FUNCTION__
);
589 /* clear irq status */
590 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
591 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
592 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
598 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH21
], 720*4, 0);
599 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH22
], 128, 0);
600 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH23
], 128, 0);
601 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH24
], 128, 0);
602 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], 128, 0);
603 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], 128, 0);
604 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH28
], 188*4, 0);
607 cx_write(MO_INPUT_FORMAT
, ((1 << 13) | // agc enable
608 (1 << 12) | // agc gain
609 (1 << 11) | // adaptibe agc
610 (0 << 10) | // chroma agc
611 (0 << 9) | // ckillen
614 /* setup image format */
615 cx_andor(MO_COLOR_CTRL
, 0x4000, 0x4000);
617 /* setup FIFO Threshholds */
618 cx_write(MO_PDMA_STHRSH
, 0x0807);
619 cx_write(MO_PDMA_DTHRSH
, 0x0807);
621 /* fixes flashing of image */
622 cx_write(MO_AGC_SYNC_TIP1
, 0x0380000F);
623 cx_write(MO_AGC_BACK_VBI
, 0x00E00555);
625 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
626 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
627 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
629 /* Reset on-board parts */
630 cx_write(MO_SRST_IO
, 0);
632 cx_write(MO_SRST_IO
, 1);
637 /* ------------------------------------------------------------------ */
639 static unsigned int inline norm_swidth(v4l2_std_id norm
)
641 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 754 : 922;
644 static unsigned int inline norm_hdelay(v4l2_std_id norm
)
646 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 135 : 186;
649 static unsigned int inline norm_vdelay(v4l2_std_id norm
)
651 return (norm
& V4L2_STD_625_50
) ? 0x24 : 0x18;
654 static unsigned int inline norm_fsc8(v4l2_std_id norm
)
656 if (norm
& V4L2_STD_PAL_M
)
657 return 28604892; // 3.575611 MHz
659 if (norm
& (V4L2_STD_PAL_Nc
))
660 return 28656448; // 3.582056 MHz
662 if (norm
& V4L2_STD_NTSC
) // All NTSC/M and variants
663 return 28636360; // 3.57954545 MHz +/- 10 Hz
665 /* SECAM have also different sub carrier for chroma,
666 but step_db and step_dr, at cx88_set_tvnorm already handles that.
668 The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
671 return 35468950; // 4.43361875 MHz +/- 5 Hz
674 static unsigned int inline norm_htotal(v4l2_std_id norm
)
677 unsigned int fsc4
=norm_fsc8(norm
)/2;
679 /* returns 4*FSC / vtotal / frames per seconds */
680 return (norm
& V4L2_STD_625_50
) ?
681 ((fsc4
+312)/625+12)/25 :
682 ((fsc4
+262)/525*1001+15000)/30000;
685 static unsigned int inline norm_vbipack(v4l2_std_id norm
)
687 return (norm
& V4L2_STD_625_50
) ? 511 : 400;
690 int cx88_set_scale(struct cx88_core
*core
, unsigned int width
, unsigned int height
,
691 enum v4l2_field field
)
693 unsigned int swidth
= norm_swidth(core
->tvnorm
);
694 unsigned int sheight
= norm_maxh(core
->tvnorm
);
697 dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width
, height
,
698 V4L2_FIELD_HAS_TOP(field
) ? "T" : "",
699 V4L2_FIELD_HAS_BOTTOM(field
) ? "B" : "",
700 v4l2_norm_to_name(core
->tvnorm
));
701 if (!V4L2_FIELD_HAS_BOTH(field
))
704 // recalc H delay and scale registers
705 value
= (width
* norm_hdelay(core
->tvnorm
)) / swidth
;
707 cx_write(MO_HDELAY_EVEN
, value
);
708 cx_write(MO_HDELAY_ODD
, value
);
709 dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value
,swidth
);
711 value
= (swidth
* 4096 / width
) - 4096;
712 cx_write(MO_HSCALE_EVEN
, value
);
713 cx_write(MO_HSCALE_ODD
, value
);
714 dprintk(1,"set_scale: hscale 0x%04x\n", value
);
716 cx_write(MO_HACTIVE_EVEN
, width
);
717 cx_write(MO_HACTIVE_ODD
, width
);
718 dprintk(1,"set_scale: hactive 0x%04x\n", width
);
720 // recalc V scale Register (delay is constant)
721 cx_write(MO_VDELAY_EVEN
, norm_vdelay(core
->tvnorm
));
722 cx_write(MO_VDELAY_ODD
, norm_vdelay(core
->tvnorm
));
723 dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core
->tvnorm
));
725 value
= (0x10000 - (sheight
* 512 / height
- 512)) & 0x1fff;
726 cx_write(MO_VSCALE_EVEN
, value
);
727 cx_write(MO_VSCALE_ODD
, value
);
728 dprintk(1,"set_scale: vscale 0x%04x\n", value
);
730 cx_write(MO_VACTIVE_EVEN
, sheight
);
731 cx_write(MO_VACTIVE_ODD
, sheight
);
732 dprintk(1,"set_scale: vactive 0x%04x\n", sheight
);
736 value
|= (1 << 19); // CFILT (default)
737 if (core
->tvnorm
& V4L2_STD_SECAM
) {
741 if (INPUT(core
->input
)->type
== CX88_VMUX_SVIDEO
)
742 value
|= (1 << 13) | (1 << 5);
743 if (V4L2_FIELD_INTERLACED
== field
)
744 value
|= (1 << 3); // VINT (interlaced vertical scaling)
746 value
|= (1 << 0); // 3-tap interpolation
748 value
|= (1 << 1); // 5-tap interpolation
750 value
|= (3 << 5); // disable comb filter
752 cx_write(MO_FILTER_EVEN
, value
);
753 cx_write(MO_FILTER_ODD
, value
);
754 dprintk(1,"set_scale: filter 0x%04x\n", value
);
759 static const u32 xtal
= 28636363;
761 static int set_pll(struct cx88_core
*core
, int prescale
, u32 ofreq
)
763 static u32 pre
[] = { 0, 0, 0, 3, 2, 1 };
773 pll
= ofreq
* 8 * prescale
* (u64
)(1 << 20);
775 reg
= (pll
& 0x3ffffff) | (pre
[prescale
] << 26);
776 if (((reg
>> 20) & 0x3f) < 14) {
777 printk("%s/0: pll out of range\n",core
->name
);
781 dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
782 reg
, cx_read(MO_PLL_REG
), ofreq
);
783 cx_write(MO_PLL_REG
, reg
);
784 for (i
= 0; i
< 100; i
++) {
785 reg
= cx_read(MO_DEVICE_STATUS
);
787 dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
791 dprintk(1,"pll not locked yet, waiting ...\n");
794 dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale
,ofreq
);
798 int cx88_start_audio_dma(struct cx88_core
*core
)
800 /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
801 int bpl
= cx88_sram_channels
[SRAM_CH25
].fifo_size
/4;
803 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
804 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
807 /* setup fifo + format */
808 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], bpl
, 0);
809 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], bpl
, 0);
811 cx_write(MO_AUDD_LNGTH
, bpl
); /* fifo bpl size */
812 cx_write(MO_AUDR_LNGTH
, bpl
); /* fifo bpl size */
815 cx_write(MO_AUD_DMACNTRL
, 0x0003); /* Up and Down fifo enable */
820 int cx88_stop_audio_dma(struct cx88_core
*core
)
822 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
823 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
827 cx_write(MO_AUD_DMACNTRL
, 0x0000);
832 static int set_tvaudio(struct cx88_core
*core
)
834 v4l2_std_id norm
= core
->tvnorm
;
836 if (CX88_VMUX_TELEVISION
!= INPUT(core
->input
)->type
)
839 if (V4L2_STD_PAL_BG
& norm
) {
840 core
->tvaudio
= WW_BG
;
842 } else if (V4L2_STD_PAL_DK
& norm
) {
843 core
->tvaudio
= WW_DK
;
845 } else if (V4L2_STD_PAL_I
& norm
) {
846 core
->tvaudio
= WW_I
;
848 } else if (V4L2_STD_SECAM_L
& norm
) {
849 core
->tvaudio
= WW_L
;
851 } else if (V4L2_STD_SECAM_DK
& norm
) {
852 core
->tvaudio
= WW_DK
;
854 } else if ((V4L2_STD_NTSC_M
& norm
) ||
855 (V4L2_STD_PAL_M
& norm
)) {
856 core
->tvaudio
= WW_BTSC
;
858 } else if (V4L2_STD_NTSC_M_JP
& norm
) {
859 core
->tvaudio
= WW_EIAJ
;
862 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
863 core
->name
, v4l2_norm_to_name(core
->tvnorm
));
868 cx_andor(MO_AFECFG_IO
, 0x1f, 0x0);
869 cx88_set_tvaudio(core
);
870 /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
873 This should be needed only on cx88-alsa. It seems that some cx88 chips have
874 bugs and does require DMA enabled for it to work.
876 cx88_start_audio_dma(core
);
882 int cx88_set_tvnorm(struct cx88_core
*core
, v4l2_std_id norm
)
889 u32 bdelay
,agcdelay
,htotal
;
890 u32 cxiformat
, cxoformat
;
893 fsc8
= norm_fsc8(norm
);
899 if (norm
& V4L2_STD_NTSC_M_JP
) {
900 cxiformat
= VideoFormatNTSCJapan
;
901 cxoformat
= 0x181f0008;
902 } else if (norm
& V4L2_STD_NTSC_443
) {
903 cxiformat
= VideoFormatNTSC443
;
904 cxoformat
= 0x181f0008;
905 } else if (norm
& V4L2_STD_PAL_M
) {
906 cxiformat
= VideoFormatPALM
;
907 cxoformat
= 0x1c1f0008;
908 } else if (norm
& V4L2_STD_PAL_N
) {
909 cxiformat
= VideoFormatPALN
;
910 cxoformat
= 0x1c1f0008;
911 } else if (norm
& V4L2_STD_PAL_Nc
) {
912 cxiformat
= VideoFormatPALNC
;
913 cxoformat
= 0x1c1f0008;
914 } else if (norm
& V4L2_STD_PAL_60
) {
915 cxiformat
= VideoFormatPAL60
;
916 cxoformat
= 0x181f0008;
917 } else if (norm
& V4L2_STD_NTSC
) {
918 cxiformat
= VideoFormatNTSC
;
919 cxoformat
= 0x181f0008;
920 } else if (norm
& V4L2_STD_SECAM
) {
921 step_db
= 4250000 * 8;
922 step_dr
= 4406250 * 8;
924 cxiformat
= VideoFormatSECAM
;
925 cxoformat
= 0x181f0008;
927 cxiformat
= VideoFormatPAL
;
928 cxoformat
= 0x181f0008;
931 dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
932 v4l2_norm_to_name(core
->tvnorm
), fsc8
, adc_clock
, vdec_clock
,
934 set_pll(core
,2,vdec_clock
);
936 dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
937 cxiformat
, cx_read(MO_INPUT_FORMAT
) & 0x0f);
938 cx_andor(MO_INPUT_FORMAT
, 0xf, cxiformat
);
940 // FIXME: as-is from DScaler
941 dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
942 cxoformat
, cx_read(MO_OUTPUT_FORMAT
));
943 cx_write(MO_OUTPUT_FORMAT
, cxoformat
);
945 // MO_SCONV_REG = adc clock / video dec clock * 2^17
946 tmp64
= adc_clock
* (u64
)(1 << 17);
947 do_div(tmp64
, vdec_clock
);
948 dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
949 (u32
)tmp64
, cx_read(MO_SCONV_REG
));
950 cx_write(MO_SCONV_REG
, (u32
)tmp64
);
952 // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
953 tmp64
= step_db
* (u64
)(1 << 22);
954 do_div(tmp64
, vdec_clock
);
955 dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
956 (u32
)tmp64
, cx_read(MO_SUB_STEP
));
957 cx_write(MO_SUB_STEP
, (u32
)tmp64
);
959 // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
960 tmp64
= step_dr
* (u64
)(1 << 22);
961 do_div(tmp64
, vdec_clock
);
962 dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
963 (u32
)tmp64
, cx_read(MO_SUB_STEP_DR
));
964 cx_write(MO_SUB_STEP_DR
, (u32
)tmp64
);
967 bdelay
= vdec_clock
* 65 / 20000000 + 21;
968 agcdelay
= vdec_clock
* 68 / 20000000 + 15;
969 dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
970 (bdelay
<< 8) | agcdelay
, cx_read(MO_AGC_BURST
), bdelay
, agcdelay
);
971 cx_write(MO_AGC_BURST
, (bdelay
<< 8) | agcdelay
);
974 tmp64
= norm_htotal(norm
) * (u64
)vdec_clock
;
976 htotal
= (u32
)tmp64
| (HLNotchFilter4xFsc
<< 11);
977 dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
978 htotal
, cx_read(MO_HTOTAL
), (u32
)tmp64
);
979 cx_write(MO_HTOTAL
, htotal
);
981 // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
982 // the effective vbi offset ~244 samples, the same as the Bt8x8
983 cx_write(MO_VBI_PACKET
, (10<<11) | norm_vbipack(norm
));
985 // this is needed as well to set all tvnorm parameter
986 cx88_set_scale(core
, 320, 240, V4L2_FIELD_INTERLACED
);
992 cx88_call_i2c_clients(core
,VIDIOC_S_STD
,&norm
);
998 /* ------------------------------------------------------------------ */
1000 static int cx88_pci_quirks(char *name
, struct pci_dev
*pci
)
1002 unsigned int lat
= UNSET
;
1006 /* check pci quirks */
1007 if (pci_pci_problems
& PCIPCI_TRITON
) {
1008 printk(KERN_INFO
"%s: quirk: PCIPCI_TRITON -- set TBFX\n",
1010 ctrl
|= CX88X_EN_TBFX
;
1012 if (pci_pci_problems
& PCIPCI_NATOMA
) {
1013 printk(KERN_INFO
"%s: quirk: PCIPCI_NATOMA -- set TBFX\n",
1015 ctrl
|= CX88X_EN_TBFX
;
1017 if (pci_pci_problems
& PCIPCI_VIAETBF
) {
1018 printk(KERN_INFO
"%s: quirk: PCIPCI_VIAETBF -- set TBFX\n",
1020 ctrl
|= CX88X_EN_TBFX
;
1022 if (pci_pci_problems
& PCIPCI_VSFX
) {
1023 printk(KERN_INFO
"%s: quirk: PCIPCI_VSFX -- set VSFX\n",
1025 ctrl
|= CX88X_EN_VSFX
;
1027 #ifdef PCIPCI_ALIMAGIK
1028 if (pci_pci_problems
& PCIPCI_ALIMAGIK
) {
1029 printk(KERN_INFO
"%s: quirk: PCIPCI_ALIMAGIK -- latency fixup\n",
1035 /* check insmod options */
1036 if (UNSET
!= latency
)
1041 pci_read_config_byte(pci
, CX88X_DEVCTRL
, &value
);
1043 pci_write_config_byte(pci
, CX88X_DEVCTRL
, value
);
1046 printk(KERN_INFO
"%s: setting pci latency timer to %d\n",
1048 pci_write_config_byte(pci
, PCI_LATENCY_TIMER
, latency
);
1053 /* ------------------------------------------------------------------ */
1055 struct video_device
*cx88_vdev_init(struct cx88_core
*core
,
1056 struct pci_dev
*pci
,
1057 struct video_device
*template,
1060 struct video_device
*vfd
;
1062 vfd
= video_device_alloc();
1067 vfd
->dev
= &pci
->dev
;
1068 vfd
->release
= video_device_release
;
1069 snprintf(vfd
->name
, sizeof(vfd
->name
), "%s %s (%s)",
1070 core
->name
, type
, cx88_boards
[core
->board
].name
);
1074 static int get_ressources(struct cx88_core
*core
, struct pci_dev
*pci
)
1076 if (request_mem_region(pci_resource_start(pci
,0),
1077 pci_resource_len(pci
,0),
1080 printk(KERN_ERR
"%s: can't get MMIO memory @ 0x%llx\n",
1081 core
->name
,(unsigned long long)pci_resource_start(pci
,0));
1085 struct cx88_core
* cx88_core_get(struct pci_dev
*pci
)
1087 struct cx88_core
*core
;
1088 struct list_head
*item
;
1091 mutex_lock(&devlist
);
1092 list_for_each(item
,&cx88_devlist
) {
1093 core
= list_entry(item
, struct cx88_core
, devlist
);
1094 if (pci
->bus
->number
!= core
->pci_bus
)
1096 if (PCI_SLOT(pci
->devfn
) != core
->pci_slot
)
1099 if (0 != get_ressources(core
,pci
))
1101 atomic_inc(&core
->refcount
);
1102 mutex_unlock(&devlist
);
1105 core
= kzalloc(sizeof(*core
),GFP_KERNEL
);
1109 atomic_inc(&core
->refcount
);
1110 core
->pci_bus
= pci
->bus
->number
;
1111 core
->pci_slot
= PCI_SLOT(pci
->devfn
);
1112 core
->pci_irqmask
= 0x00fc00;
1113 mutex_init(&core
->lock
);
1115 core
->nr
= cx88_devcount
++;
1116 sprintf(core
->name
,"cx88[%d]",core
->nr
);
1117 if (0 != get_ressources(core
,pci
)) {
1118 printk(KERN_ERR
"CORE %s No more PCI ressources for "
1119 "subsystem: %04x:%04x, board: %s\n",
1120 core
->name
,pci
->subsystem_vendor
,
1121 pci
->subsystem_device
,
1122 cx88_boards
[core
->board
].name
);
1127 list_add_tail(&core
->devlist
,&cx88_devlist
);
1130 cx88_pci_quirks(core
->name
, pci
);
1131 core
->lmmio
= ioremap(pci_resource_start(pci
,0),
1132 pci_resource_len(pci
,0));
1133 core
->bmmio
= (u8 __iomem
*)core
->lmmio
;
1136 core
->board
= UNSET
;
1137 if (card
[core
->nr
] < cx88_bcount
)
1138 core
->board
= card
[core
->nr
];
1139 for (i
= 0; UNSET
== core
->board
&& i
< cx88_idcount
; i
++)
1140 if (pci
->subsystem_vendor
== cx88_subids
[i
].subvendor
&&
1141 pci
->subsystem_device
== cx88_subids
[i
].subdevice
)
1142 core
->board
= cx88_subids
[i
].card
;
1143 if (UNSET
== core
->board
) {
1144 core
->board
= CX88_BOARD_UNKNOWN
;
1145 cx88_card_list(core
,pci
);
1147 printk(KERN_INFO
"CORE %s: subsystem: %04x:%04x, board: %s [card=%d,%s]\n",
1148 core
->name
,pci
->subsystem_vendor
,
1149 pci
->subsystem_device
,cx88_boards
[core
->board
].name
,
1150 core
->board
, card
[core
->nr
] == core
->board
?
1151 "insmod option" : "autodetected");
1153 core
->tuner_type
= tuner
[core
->nr
];
1154 core
->radio_type
= radio
[core
->nr
];
1155 if (UNSET
== core
->tuner_type
)
1156 core
->tuner_type
= cx88_boards
[core
->board
].tuner_type
;
1157 if (UNSET
== core
->radio_type
)
1158 core
->radio_type
= cx88_boards
[core
->board
].radio_type
;
1159 if (!core
->tuner_addr
)
1160 core
->tuner_addr
= cx88_boards
[core
->board
].tuner_addr
;
1161 if (!core
->radio_addr
)
1162 core
->radio_addr
= cx88_boards
[core
->board
].radio_addr
;
1164 printk(KERN_INFO
"TV tuner %d at 0x%02x, Radio tuner %d at 0x%02x\n",
1165 core
->tuner_type
, core
->tuner_addr
<<1,
1166 core
->radio_type
, core
->radio_addr
<<1);
1168 core
->tda9887_conf
= cx88_boards
[core
->board
].tda9887_conf
;
1172 cx88_card_setup_pre_i2c(core
);
1173 cx88_i2c_init(core
,pci
);
1174 cx88_call_i2c_clients (core
, TUNER_SET_STANDBY
, NULL
);
1175 cx88_card_setup(core
);
1176 cx88_ir_init(core
,pci
);
1178 mutex_unlock(&devlist
);
1184 mutex_unlock(&devlist
);
1188 void cx88_core_put(struct cx88_core
*core
, struct pci_dev
*pci
)
1190 release_mem_region(pci_resource_start(pci
,0),
1191 pci_resource_len(pci
,0));
1193 if (!atomic_dec_and_test(&core
->refcount
))
1196 mutex_lock(&devlist
);
1198 if (0 == core
->i2c_rc
)
1199 i2c_del_adapter(&core
->i2c_adap
);
1200 list_del(&core
->devlist
);
1201 iounmap(core
->lmmio
);
1203 mutex_unlock(&devlist
);
1207 /* ------------------------------------------------------------------ */
1209 EXPORT_SYMBOL(cx88_print_irqbits
);
1211 EXPORT_SYMBOL(cx88_core_irq
);
1212 EXPORT_SYMBOL(cx88_wakeup
);
1213 EXPORT_SYMBOL(cx88_reset
);
1214 EXPORT_SYMBOL(cx88_shutdown
);
1216 EXPORT_SYMBOL(cx88_risc_buffer
);
1217 EXPORT_SYMBOL(cx88_risc_databuffer
);
1218 EXPORT_SYMBOL(cx88_risc_stopper
);
1219 EXPORT_SYMBOL(cx88_free_buffer
);
1221 EXPORT_SYMBOL(cx88_sram_channels
);
1222 EXPORT_SYMBOL(cx88_sram_channel_setup
);
1223 EXPORT_SYMBOL(cx88_sram_channel_dump
);
1225 EXPORT_SYMBOL(cx88_set_tvnorm
);
1226 EXPORT_SYMBOL(cx88_set_scale
);
1228 EXPORT_SYMBOL(cx88_vdev_init
);
1229 EXPORT_SYMBOL(cx88_core_get
);
1230 EXPORT_SYMBOL(cx88_core_put
);
1236 * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off