Revert "[PATCH] paravirt: Add startup infrastructure for paravirtualization"
[pv_ops_mirror.git] / drivers / net / 8139cp.c
blobe8c9f27817b08f9d36c60d6abacf4b6c800e85a1
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
29 * Implement dev->tx_timeout
31 Low priority TODO:
32 * Complete reset on PciErr
33 * Consider Rx interrupt mitigation using TimerIntr
34 * Investigate using skb->priority with h/w VLAN priority
35 * Investigate using High Priority Tx Queue with skb->priority
36 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
37 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
38 * Implement Tx software interrupt mitigation via
39 Tx descriptor bit
40 * The real minimum of CP_MIN_MTU is 4 bytes. However,
41 for this to be supported, one must(?) turn on packet padding.
42 * Support external MII transceivers (patch available)
44 NOTES:
45 * TX checksumming is considered experimental. It is off by
46 default, use ethtool to turn it on.
50 #define DRV_NAME "8139cp"
51 #define DRV_VERSION "1.3"
52 #define DRV_RELDATE "Mar 22, 2004"
55 #include <linux/module.h>
56 #include <linux/moduleparam.h>
57 #include <linux/kernel.h>
58 #include <linux/compiler.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/init.h>
62 #include <linux/pci.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/delay.h>
65 #include <linux/ethtool.h>
66 #include <linux/mii.h>
67 #include <linux/if_vlan.h>
68 #include <linux/crc32.h>
69 #include <linux/in.h>
70 #include <linux/ip.h>
71 #include <linux/tcp.h>
72 #include <linux/udp.h>
73 #include <linux/cache.h>
74 #include <asm/io.h>
75 #include <asm/irq.h>
76 #include <asm/uaccess.h>
78 /* VLAN tagging feature enable/disable */
79 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
80 #define CP_VLAN_TAG_USED 1
81 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
82 do { (tx_desc)->opts2 = (vlan_tag_value); } while (0)
83 #else
84 #define CP_VLAN_TAG_USED 0
85 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
86 do { (tx_desc)->opts2 = 0; } while (0)
87 #endif
89 /* These identify the driver base version and may not be removed. */
90 static char version[] =
91 KERN_INFO DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
93 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
94 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
95 MODULE_VERSION(DRV_VERSION);
96 MODULE_LICENSE("GPL");
98 static int debug = -1;
99 module_param(debug, int, 0);
100 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
102 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
103 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
104 static int multicast_filter_limit = 32;
105 module_param(multicast_filter_limit, int, 0);
106 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
108 #define PFX DRV_NAME ": "
110 #ifndef TRUE
111 #define FALSE 0
112 #define TRUE (!FALSE)
113 #endif
115 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
116 NETIF_MSG_PROBE | \
117 NETIF_MSG_LINK)
118 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
119 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
120 #define CP_REGS_SIZE (0xff + 1)
121 #define CP_REGS_VER 1 /* version 1 */
122 #define CP_RX_RING_SIZE 64
123 #define CP_TX_RING_SIZE 64
124 #define CP_RING_BYTES \
125 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
126 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
127 CP_STATS_SIZE)
128 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
129 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
130 #define TX_BUFFS_AVAIL(CP) \
131 (((CP)->tx_tail <= (CP)->tx_head) ? \
132 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
133 (CP)->tx_tail - (CP)->tx_head - 1)
135 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
136 #define RX_OFFSET 2
137 #define CP_INTERNAL_PHY 32
139 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
140 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
141 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
142 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
143 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
145 /* Time in jiffies before concluding the transmitter is hung. */
146 #define TX_TIMEOUT (6*HZ)
148 /* hardware minimum and maximum for a single frame's data payload */
149 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
150 #define CP_MAX_MTU 4096
152 enum {
153 /* NIC register offsets */
154 MAC0 = 0x00, /* Ethernet hardware address. */
155 MAR0 = 0x08, /* Multicast filter. */
156 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
157 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
158 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
159 Cmd = 0x37, /* Command register */
160 IntrMask = 0x3C, /* Interrupt mask */
161 IntrStatus = 0x3E, /* Interrupt status */
162 TxConfig = 0x40, /* Tx configuration */
163 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
164 RxConfig = 0x44, /* Rx configuration */
165 RxMissed = 0x4C, /* 24 bits valid, write clears */
166 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
167 Config1 = 0x52, /* Config1 */
168 Config3 = 0x59, /* Config3 */
169 Config4 = 0x5A, /* Config4 */
170 MultiIntr = 0x5C, /* Multiple interrupt select */
171 BasicModeCtrl = 0x62, /* MII BMCR */
172 BasicModeStatus = 0x64, /* MII BMSR */
173 NWayAdvert = 0x66, /* MII ADVERTISE */
174 NWayLPAR = 0x68, /* MII LPA */
175 NWayExpansion = 0x6A, /* MII Expansion */
176 Config5 = 0xD8, /* Config5 */
177 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
178 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
179 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
180 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
181 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
182 TxThresh = 0xEC, /* Early Tx threshold */
183 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
184 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
186 /* Tx and Rx status descriptors */
187 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
188 RingEnd = (1 << 30), /* End of descriptor ring */
189 FirstFrag = (1 << 29), /* First segment of a packet */
190 LastFrag = (1 << 28), /* Final segment of a packet */
191 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
192 MSSShift = 16, /* MSS value position */
193 MSSMask = 0xfff, /* MSS value: 11 bits */
194 TxError = (1 << 23), /* Tx error summary */
195 RxError = (1 << 20), /* Rx error summary */
196 IPCS = (1 << 18), /* Calculate IP checksum */
197 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
198 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
199 TxVlanTag = (1 << 17), /* Add VLAN tag */
200 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
201 IPFail = (1 << 15), /* IP checksum failed */
202 UDPFail = (1 << 14), /* UDP/IP checksum failed */
203 TCPFail = (1 << 13), /* TCP/IP checksum failed */
204 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
205 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
206 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
207 RxProtoTCP = 1,
208 RxProtoUDP = 2,
209 RxProtoIP = 3,
210 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
211 TxOWC = (1 << 22), /* Tx Out-of-window collision */
212 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
213 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
214 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
215 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
216 RxErrFrame = (1 << 27), /* Rx frame alignment error */
217 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
218 RxErrCRC = (1 << 18), /* Rx CRC error */
219 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
220 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
221 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
223 /* StatsAddr register */
224 DumpStats = (1 << 3), /* Begin stats dump */
226 /* RxConfig register */
227 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
228 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
229 AcceptErr = 0x20, /* Accept packets with CRC errors */
230 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
231 AcceptBroadcast = 0x08, /* Accept broadcast packets */
232 AcceptMulticast = 0x04, /* Accept multicast packets */
233 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
234 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
236 /* IntrMask / IntrStatus registers */
237 PciErr = (1 << 15), /* System error on the PCI bus */
238 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
239 LenChg = (1 << 13), /* Cable length change */
240 SWInt = (1 << 8), /* Software-requested interrupt */
241 TxEmpty = (1 << 7), /* No Tx descriptors available */
242 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
243 LinkChg = (1 << 5), /* Packet underrun, or link change */
244 RxEmpty = (1 << 4), /* No Rx descriptors available */
245 TxErr = (1 << 3), /* Tx error */
246 TxOK = (1 << 2), /* Tx packet sent */
247 RxErr = (1 << 1), /* Rx error */
248 RxOK = (1 << 0), /* Rx packet received */
249 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
250 but hardware likes to raise it */
252 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
253 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
254 RxErr | RxOK | IntrResvd,
256 /* C mode command register */
257 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
258 RxOn = (1 << 3), /* Rx mode enable */
259 TxOn = (1 << 2), /* Tx mode enable */
261 /* C+ mode command register */
262 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
263 RxChkSum = (1 << 5), /* Rx checksum offload enable */
264 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
265 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
266 CpRxOn = (1 << 1), /* Rx mode enable */
267 CpTxOn = (1 << 0), /* Tx mode enable */
269 /* Cfg9436 EEPROM control register */
270 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
271 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
273 /* TxConfig register */
274 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
275 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
277 /* Early Tx Threshold register */
278 TxThreshMask = 0x3f, /* Mask bits 5-0 */
279 TxThreshMax = 2048, /* Max early Tx threshold */
281 /* Config1 register */
282 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
283 LWACT = (1 << 4), /* LWAKE active mode */
284 PMEnable = (1 << 0), /* Enable various PM features of chip */
286 /* Config3 register */
287 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
288 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
289 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
291 /* Config4 register */
292 LWPTN = (1 << 1), /* LWAKE Pattern */
293 LWPME = (1 << 4), /* LANWAKE vs PMEB */
295 /* Config5 register */
296 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
297 MWF = (1 << 5), /* Accept Multicast wakeup frame */
298 UWF = (1 << 4), /* Accept Unicast wakeup frame */
299 LANWake = (1 << 1), /* Enable LANWake signal */
300 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
302 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
303 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
304 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
307 static const unsigned int cp_rx_config =
308 (RX_FIFO_THRESH << RxCfgFIFOShift) |
309 (RX_DMA_BURST << RxCfgDMAShift);
311 struct cp_desc {
312 u32 opts1;
313 u32 opts2;
314 u64 addr;
317 struct cp_dma_stats {
318 u64 tx_ok;
319 u64 rx_ok;
320 u64 tx_err;
321 u32 rx_err;
322 u16 rx_fifo;
323 u16 frame_align;
324 u32 tx_ok_1col;
325 u32 tx_ok_mcol;
326 u64 rx_ok_phys;
327 u64 rx_ok_bcast;
328 u32 rx_ok_mcast;
329 u16 tx_abort;
330 u16 tx_underrun;
331 } __attribute__((packed));
333 struct cp_extra_stats {
334 unsigned long rx_frags;
337 struct cp_private {
338 void __iomem *regs;
339 struct net_device *dev;
340 spinlock_t lock;
341 u32 msg_enable;
343 struct pci_dev *pdev;
344 u32 rx_config;
345 u16 cpcmd;
347 struct net_device_stats net_stats;
348 struct cp_extra_stats cp_stats;
350 unsigned rx_head ____cacheline_aligned;
351 unsigned rx_tail;
352 struct cp_desc *rx_ring;
353 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
355 unsigned tx_head ____cacheline_aligned;
356 unsigned tx_tail;
357 struct cp_desc *tx_ring;
358 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
360 unsigned rx_buf_sz;
361 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
363 #if CP_VLAN_TAG_USED
364 struct vlan_group *vlgrp;
365 #endif
366 dma_addr_t ring_dma;
368 struct mii_if_info mii_if;
371 #define cpr8(reg) readb(cp->regs + (reg))
372 #define cpr16(reg) readw(cp->regs + (reg))
373 #define cpr32(reg) readl(cp->regs + (reg))
374 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
375 #define cpw16(reg,val) writew((val), cp->regs + (reg))
376 #define cpw32(reg,val) writel((val), cp->regs + (reg))
377 #define cpw8_f(reg,val) do { \
378 writeb((val), cp->regs + (reg)); \
379 readb(cp->regs + (reg)); \
380 } while (0)
381 #define cpw16_f(reg,val) do { \
382 writew((val), cp->regs + (reg)); \
383 readw(cp->regs + (reg)); \
384 } while (0)
385 #define cpw32_f(reg,val) do { \
386 writel((val), cp->regs + (reg)); \
387 readl(cp->regs + (reg)); \
388 } while (0)
391 static void __cp_set_rx_mode (struct net_device *dev);
392 static void cp_tx (struct cp_private *cp);
393 static void cp_clean_rings (struct cp_private *cp);
394 #ifdef CONFIG_NET_POLL_CONTROLLER
395 static void cp_poll_controller(struct net_device *dev);
396 #endif
397 static int cp_get_eeprom_len(struct net_device *dev);
398 static int cp_get_eeprom(struct net_device *dev,
399 struct ethtool_eeprom *eeprom, u8 *data);
400 static int cp_set_eeprom(struct net_device *dev,
401 struct ethtool_eeprom *eeprom, u8 *data);
403 static struct pci_device_id cp_pci_tbl[] = {
404 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
405 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
406 { },
408 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
410 static struct {
411 const char str[ETH_GSTRING_LEN];
412 } ethtool_stats_keys[] = {
413 { "tx_ok" },
414 { "rx_ok" },
415 { "tx_err" },
416 { "rx_err" },
417 { "rx_fifo" },
418 { "frame_align" },
419 { "tx_ok_1col" },
420 { "tx_ok_mcol" },
421 { "rx_ok_phys" },
422 { "rx_ok_bcast" },
423 { "rx_ok_mcast" },
424 { "tx_abort" },
425 { "tx_underrun" },
426 { "rx_frags" },
430 #if CP_VLAN_TAG_USED
431 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
433 struct cp_private *cp = netdev_priv(dev);
434 unsigned long flags;
436 spin_lock_irqsave(&cp->lock, flags);
437 cp->vlgrp = grp;
438 cp->cpcmd |= RxVlanOn;
439 cpw16(CpCmd, cp->cpcmd);
440 spin_unlock_irqrestore(&cp->lock, flags);
443 static void cp_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
445 struct cp_private *cp = netdev_priv(dev);
446 unsigned long flags;
448 spin_lock_irqsave(&cp->lock, flags);
449 cp->cpcmd &= ~RxVlanOn;
450 cpw16(CpCmd, cp->cpcmd);
451 vlan_group_set_device(cp->vlgrp, vid, NULL);
452 spin_unlock_irqrestore(&cp->lock, flags);
454 #endif /* CP_VLAN_TAG_USED */
456 static inline void cp_set_rxbufsize (struct cp_private *cp)
458 unsigned int mtu = cp->dev->mtu;
460 if (mtu > ETH_DATA_LEN)
461 /* MTU + ethernet header + FCS + optional VLAN tag */
462 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
463 else
464 cp->rx_buf_sz = PKT_BUF_SZ;
467 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
468 struct cp_desc *desc)
470 skb->protocol = eth_type_trans (skb, cp->dev);
472 cp->net_stats.rx_packets++;
473 cp->net_stats.rx_bytes += skb->len;
474 cp->dev->last_rx = jiffies;
476 #if CP_VLAN_TAG_USED
477 if (cp->vlgrp && (desc->opts2 & RxVlanTagged)) {
478 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
479 be16_to_cpu(desc->opts2 & 0xffff));
480 } else
481 #endif
482 netif_receive_skb(skb);
485 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
486 u32 status, u32 len)
488 if (netif_msg_rx_err (cp))
489 printk (KERN_DEBUG
490 "%s: rx err, slot %d status 0x%x len %d\n",
491 cp->dev->name, rx_tail, status, len);
492 cp->net_stats.rx_errors++;
493 if (status & RxErrFrame)
494 cp->net_stats.rx_frame_errors++;
495 if (status & RxErrCRC)
496 cp->net_stats.rx_crc_errors++;
497 if ((status & RxErrRunt) || (status & RxErrLong))
498 cp->net_stats.rx_length_errors++;
499 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
500 cp->net_stats.rx_length_errors++;
501 if (status & RxErrFIFO)
502 cp->net_stats.rx_fifo_errors++;
505 static inline unsigned int cp_rx_csum_ok (u32 status)
507 unsigned int protocol = (status >> 16) & 0x3;
509 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
510 return 1;
511 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
512 return 1;
513 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
514 return 1;
515 return 0;
518 static int cp_rx_poll (struct net_device *dev, int *budget)
520 struct cp_private *cp = netdev_priv(dev);
521 unsigned rx_tail = cp->rx_tail;
522 unsigned rx_work = dev->quota;
523 unsigned rx;
525 rx_status_loop:
526 rx = 0;
527 cpw16(IntrStatus, cp_rx_intr_mask);
529 while (1) {
530 u32 status, len;
531 dma_addr_t mapping;
532 struct sk_buff *skb, *new_skb;
533 struct cp_desc *desc;
534 unsigned buflen;
536 skb = cp->rx_skb[rx_tail];
537 BUG_ON(!skb);
539 desc = &cp->rx_ring[rx_tail];
540 status = le32_to_cpu(desc->opts1);
541 if (status & DescOwn)
542 break;
544 len = (status & 0x1fff) - 4;
545 mapping = le64_to_cpu(desc->addr);
547 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
548 /* we don't support incoming fragmented frames.
549 * instead, we attempt to ensure that the
550 * pre-allocated RX skbs are properly sized such
551 * that RX fragments are never encountered
553 cp_rx_err_acct(cp, rx_tail, status, len);
554 cp->net_stats.rx_dropped++;
555 cp->cp_stats.rx_frags++;
556 goto rx_next;
559 if (status & (RxError | RxErrFIFO)) {
560 cp_rx_err_acct(cp, rx_tail, status, len);
561 goto rx_next;
564 if (netif_msg_rx_status(cp))
565 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d\n",
566 dev->name, rx_tail, status, len);
568 buflen = cp->rx_buf_sz + RX_OFFSET;
569 new_skb = dev_alloc_skb (buflen);
570 if (!new_skb) {
571 cp->net_stats.rx_dropped++;
572 goto rx_next;
575 skb_reserve(new_skb, RX_OFFSET);
577 pci_unmap_single(cp->pdev, mapping,
578 buflen, PCI_DMA_FROMDEVICE);
580 /* Handle checksum offloading for incoming packets. */
581 if (cp_rx_csum_ok(status))
582 skb->ip_summed = CHECKSUM_UNNECESSARY;
583 else
584 skb->ip_summed = CHECKSUM_NONE;
586 skb_put(skb, len);
588 mapping = pci_map_single(cp->pdev, new_skb->data, buflen,
589 PCI_DMA_FROMDEVICE);
590 cp->rx_skb[rx_tail] = new_skb;
592 cp_rx_skb(cp, skb, desc);
593 rx++;
595 rx_next:
596 cp->rx_ring[rx_tail].opts2 = 0;
597 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
598 if (rx_tail == (CP_RX_RING_SIZE - 1))
599 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
600 cp->rx_buf_sz);
601 else
602 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
603 rx_tail = NEXT_RX(rx_tail);
605 if (!rx_work--)
606 break;
609 cp->rx_tail = rx_tail;
611 dev->quota -= rx;
612 *budget -= rx;
614 /* if we did not reach work limit, then we're done with
615 * this round of polling
617 if (rx_work) {
618 unsigned long flags;
620 if (cpr16(IntrStatus) & cp_rx_intr_mask)
621 goto rx_status_loop;
623 local_irq_save(flags);
624 cpw16_f(IntrMask, cp_intr_mask);
625 __netif_rx_complete(dev);
626 local_irq_restore(flags);
628 return 0; /* done */
631 return 1; /* not done */
634 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
636 struct net_device *dev = dev_instance;
637 struct cp_private *cp;
638 u16 status;
640 if (unlikely(dev == NULL))
641 return IRQ_NONE;
642 cp = netdev_priv(dev);
644 status = cpr16(IntrStatus);
645 if (!status || (status == 0xFFFF))
646 return IRQ_NONE;
648 if (netif_msg_intr(cp))
649 printk(KERN_DEBUG "%s: intr, status %04x cmd %02x cpcmd %04x\n",
650 dev->name, status, cpr8(Cmd), cpr16(CpCmd));
652 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
654 spin_lock(&cp->lock);
656 /* close possible race's with dev_close */
657 if (unlikely(!netif_running(dev))) {
658 cpw16(IntrMask, 0);
659 spin_unlock(&cp->lock);
660 return IRQ_HANDLED;
663 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
664 if (netif_rx_schedule_prep(dev)) {
665 cpw16_f(IntrMask, cp_norx_intr_mask);
666 __netif_rx_schedule(dev);
669 if (status & (TxOK | TxErr | TxEmpty | SWInt))
670 cp_tx(cp);
671 if (status & LinkChg)
672 mii_check_media(&cp->mii_if, netif_msg_link(cp), FALSE);
674 spin_unlock(&cp->lock);
676 if (status & PciErr) {
677 u16 pci_status;
679 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
680 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
681 printk(KERN_ERR "%s: PCI bus error, status=%04x, PCI status=%04x\n",
682 dev->name, status, pci_status);
684 /* TODO: reset hardware */
687 return IRQ_HANDLED;
690 #ifdef CONFIG_NET_POLL_CONTROLLER
692 * Polling receive - used by netconsole and other diagnostic tools
693 * to allow network i/o with interrupts disabled.
695 static void cp_poll_controller(struct net_device *dev)
697 disable_irq(dev->irq);
698 cp_interrupt(dev->irq, dev);
699 enable_irq(dev->irq);
701 #endif
703 static void cp_tx (struct cp_private *cp)
705 unsigned tx_head = cp->tx_head;
706 unsigned tx_tail = cp->tx_tail;
708 while (tx_tail != tx_head) {
709 struct cp_desc *txd = cp->tx_ring + tx_tail;
710 struct sk_buff *skb;
711 u32 status;
713 rmb();
714 status = le32_to_cpu(txd->opts1);
715 if (status & DescOwn)
716 break;
718 skb = cp->tx_skb[tx_tail];
719 BUG_ON(!skb);
721 pci_unmap_single(cp->pdev, le64_to_cpu(txd->addr),
722 le32_to_cpu(txd->opts1) & 0xffff,
723 PCI_DMA_TODEVICE);
725 if (status & LastFrag) {
726 if (status & (TxError | TxFIFOUnder)) {
727 if (netif_msg_tx_err(cp))
728 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
729 cp->dev->name, status);
730 cp->net_stats.tx_errors++;
731 if (status & TxOWC)
732 cp->net_stats.tx_window_errors++;
733 if (status & TxMaxCol)
734 cp->net_stats.tx_aborted_errors++;
735 if (status & TxLinkFail)
736 cp->net_stats.tx_carrier_errors++;
737 if (status & TxFIFOUnder)
738 cp->net_stats.tx_fifo_errors++;
739 } else {
740 cp->net_stats.collisions +=
741 ((status >> TxColCntShift) & TxColCntMask);
742 cp->net_stats.tx_packets++;
743 cp->net_stats.tx_bytes += skb->len;
744 if (netif_msg_tx_done(cp))
745 printk(KERN_DEBUG "%s: tx done, slot %d\n", cp->dev->name, tx_tail);
747 dev_kfree_skb_irq(skb);
750 cp->tx_skb[tx_tail] = NULL;
752 tx_tail = NEXT_TX(tx_tail);
755 cp->tx_tail = tx_tail;
757 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
758 netif_wake_queue(cp->dev);
761 static int cp_start_xmit (struct sk_buff *skb, struct net_device *dev)
763 struct cp_private *cp = netdev_priv(dev);
764 unsigned entry;
765 u32 eor, flags;
766 unsigned long intr_flags;
767 #if CP_VLAN_TAG_USED
768 u32 vlan_tag = 0;
769 #endif
770 int mss = 0;
772 spin_lock_irqsave(&cp->lock, intr_flags);
774 /* This is a hard error, log it. */
775 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
776 netif_stop_queue(dev);
777 spin_unlock_irqrestore(&cp->lock, intr_flags);
778 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
779 dev->name);
780 return 1;
783 #if CP_VLAN_TAG_USED
784 if (cp->vlgrp && vlan_tx_tag_present(skb))
785 vlan_tag = TxVlanTag | cpu_to_be16(vlan_tx_tag_get(skb));
786 #endif
788 entry = cp->tx_head;
789 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
790 if (dev->features & NETIF_F_TSO)
791 mss = skb_shinfo(skb)->gso_size;
793 if (skb_shinfo(skb)->nr_frags == 0) {
794 struct cp_desc *txd = &cp->tx_ring[entry];
795 u32 len;
796 dma_addr_t mapping;
798 len = skb->len;
799 mapping = pci_map_single(cp->pdev, skb->data, len, PCI_DMA_TODEVICE);
800 CP_VLAN_TX_TAG(txd, vlan_tag);
801 txd->addr = cpu_to_le64(mapping);
802 wmb();
804 flags = eor | len | DescOwn | FirstFrag | LastFrag;
806 if (mss)
807 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
808 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
809 const struct iphdr *ip = ip_hdr(skb);
810 if (ip->protocol == IPPROTO_TCP)
811 flags |= IPCS | TCPCS;
812 else if (ip->protocol == IPPROTO_UDP)
813 flags |= IPCS | UDPCS;
814 else
815 WARN_ON(1); /* we need a WARN() */
818 txd->opts1 = cpu_to_le32(flags);
819 wmb();
821 cp->tx_skb[entry] = skb;
822 entry = NEXT_TX(entry);
823 } else {
824 struct cp_desc *txd;
825 u32 first_len, first_eor;
826 dma_addr_t first_mapping;
827 int frag, first_entry = entry;
828 const struct iphdr *ip = ip_hdr(skb);
830 /* We must give this initial chunk to the device last.
831 * Otherwise we could race with the device.
833 first_eor = eor;
834 first_len = skb_headlen(skb);
835 first_mapping = pci_map_single(cp->pdev, skb->data,
836 first_len, PCI_DMA_TODEVICE);
837 cp->tx_skb[entry] = skb;
838 entry = NEXT_TX(entry);
840 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
841 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
842 u32 len;
843 u32 ctrl;
844 dma_addr_t mapping;
846 len = this_frag->size;
847 mapping = pci_map_single(cp->pdev,
848 ((void *) page_address(this_frag->page) +
849 this_frag->page_offset),
850 len, PCI_DMA_TODEVICE);
851 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
853 ctrl = eor | len | DescOwn;
855 if (mss)
856 ctrl |= LargeSend |
857 ((mss & MSSMask) << MSSShift);
858 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
859 if (ip->protocol == IPPROTO_TCP)
860 ctrl |= IPCS | TCPCS;
861 else if (ip->protocol == IPPROTO_UDP)
862 ctrl |= IPCS | UDPCS;
863 else
864 BUG();
867 if (frag == skb_shinfo(skb)->nr_frags - 1)
868 ctrl |= LastFrag;
870 txd = &cp->tx_ring[entry];
871 CP_VLAN_TX_TAG(txd, vlan_tag);
872 txd->addr = cpu_to_le64(mapping);
873 wmb();
875 txd->opts1 = cpu_to_le32(ctrl);
876 wmb();
878 cp->tx_skb[entry] = skb;
879 entry = NEXT_TX(entry);
882 txd = &cp->tx_ring[first_entry];
883 CP_VLAN_TX_TAG(txd, vlan_tag);
884 txd->addr = cpu_to_le64(first_mapping);
885 wmb();
887 if (skb->ip_summed == CHECKSUM_PARTIAL) {
888 if (ip->protocol == IPPROTO_TCP)
889 txd->opts1 = cpu_to_le32(first_eor | first_len |
890 FirstFrag | DescOwn |
891 IPCS | TCPCS);
892 else if (ip->protocol == IPPROTO_UDP)
893 txd->opts1 = cpu_to_le32(first_eor | first_len |
894 FirstFrag | DescOwn |
895 IPCS | UDPCS);
896 else
897 BUG();
898 } else
899 txd->opts1 = cpu_to_le32(first_eor | first_len |
900 FirstFrag | DescOwn);
901 wmb();
903 cp->tx_head = entry;
904 if (netif_msg_tx_queued(cp))
905 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
906 dev->name, entry, skb->len);
907 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
908 netif_stop_queue(dev);
910 spin_unlock_irqrestore(&cp->lock, intr_flags);
912 cpw8(TxPoll, NormalTxPoll);
913 dev->trans_start = jiffies;
915 return 0;
918 /* Set or clear the multicast filter for this adaptor.
919 This routine is not state sensitive and need not be SMP locked. */
921 static void __cp_set_rx_mode (struct net_device *dev)
923 struct cp_private *cp = netdev_priv(dev);
924 u32 mc_filter[2]; /* Multicast hash filter */
925 int i, rx_mode;
926 u32 tmp;
928 /* Note: do not reorder, GCC is clever about common statements. */
929 if (dev->flags & IFF_PROMISC) {
930 /* Unconditionally log net taps. */
931 rx_mode =
932 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
933 AcceptAllPhys;
934 mc_filter[1] = mc_filter[0] = 0xffffffff;
935 } else if ((dev->mc_count > multicast_filter_limit)
936 || (dev->flags & IFF_ALLMULTI)) {
937 /* Too many to filter perfectly -- accept all multicasts. */
938 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
939 mc_filter[1] = mc_filter[0] = 0xffffffff;
940 } else {
941 struct dev_mc_list *mclist;
942 rx_mode = AcceptBroadcast | AcceptMyPhys;
943 mc_filter[1] = mc_filter[0] = 0;
944 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
945 i++, mclist = mclist->next) {
946 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
948 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
949 rx_mode |= AcceptMulticast;
953 /* We can safely update without stopping the chip. */
954 tmp = cp_rx_config | rx_mode;
955 if (cp->rx_config != tmp) {
956 cpw32_f (RxConfig, tmp);
957 cp->rx_config = tmp;
959 cpw32_f (MAR0 + 0, mc_filter[0]);
960 cpw32_f (MAR0 + 4, mc_filter[1]);
963 static void cp_set_rx_mode (struct net_device *dev)
965 unsigned long flags;
966 struct cp_private *cp = netdev_priv(dev);
968 spin_lock_irqsave (&cp->lock, flags);
969 __cp_set_rx_mode(dev);
970 spin_unlock_irqrestore (&cp->lock, flags);
973 static void __cp_get_stats(struct cp_private *cp)
975 /* only lower 24 bits valid; write any value to clear */
976 cp->net_stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
977 cpw32 (RxMissed, 0);
980 static struct net_device_stats *cp_get_stats(struct net_device *dev)
982 struct cp_private *cp = netdev_priv(dev);
983 unsigned long flags;
985 /* The chip only need report frame silently dropped. */
986 spin_lock_irqsave(&cp->lock, flags);
987 if (netif_running(dev) && netif_device_present(dev))
988 __cp_get_stats(cp);
989 spin_unlock_irqrestore(&cp->lock, flags);
991 return &cp->net_stats;
994 static void cp_stop_hw (struct cp_private *cp)
996 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
997 cpw16_f(IntrMask, 0);
998 cpw8(Cmd, 0);
999 cpw16_f(CpCmd, 0);
1000 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
1002 cp->rx_tail = 0;
1003 cp->tx_head = cp->tx_tail = 0;
1006 static void cp_reset_hw (struct cp_private *cp)
1008 unsigned work = 1000;
1010 cpw8(Cmd, CmdReset);
1012 while (work--) {
1013 if (!(cpr8(Cmd) & CmdReset))
1014 return;
1016 schedule_timeout_uninterruptible(10);
1019 printk(KERN_ERR "%s: hardware reset timeout\n", cp->dev->name);
1022 static inline void cp_start_hw (struct cp_private *cp)
1024 cpw16(CpCmd, cp->cpcmd);
1025 cpw8(Cmd, RxOn | TxOn);
1028 static void cp_init_hw (struct cp_private *cp)
1030 struct net_device *dev = cp->dev;
1031 dma_addr_t ring_dma;
1033 cp_reset_hw(cp);
1035 cpw8_f (Cfg9346, Cfg9346_Unlock);
1037 /* Restore our idea of the MAC address. */
1038 cpw32_f (MAC0 + 0, cpu_to_le32 (*(u32 *) (dev->dev_addr + 0)));
1039 cpw32_f (MAC0 + 4, cpu_to_le32 (*(u32 *) (dev->dev_addr + 4)));
1041 cp_start_hw(cp);
1042 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1044 __cp_set_rx_mode(dev);
1045 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1047 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1048 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1049 cpw8(Config3, PARMEnable);
1050 cp->wol_enabled = 0;
1052 cpw8(Config5, cpr8(Config5) & PMEStatus);
1054 cpw32_f(HiTxRingAddr, 0);
1055 cpw32_f(HiTxRingAddr + 4, 0);
1057 ring_dma = cp->ring_dma;
1058 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1059 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1061 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1062 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1063 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1065 cpw16(MultiIntr, 0);
1067 cpw16_f(IntrMask, cp_intr_mask);
1069 cpw8_f(Cfg9346, Cfg9346_Lock);
1072 static int cp_refill_rx (struct cp_private *cp)
1074 unsigned i;
1076 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1077 struct sk_buff *skb;
1078 dma_addr_t mapping;
1080 skb = dev_alloc_skb(cp->rx_buf_sz + RX_OFFSET);
1081 if (!skb)
1082 goto err_out;
1084 skb_reserve(skb, RX_OFFSET);
1086 mapping = pci_map_single(cp->pdev, skb->data, cp->rx_buf_sz,
1087 PCI_DMA_FROMDEVICE);
1088 cp->rx_skb[i] = skb;
1090 cp->rx_ring[i].opts2 = 0;
1091 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1092 if (i == (CP_RX_RING_SIZE - 1))
1093 cp->rx_ring[i].opts1 =
1094 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1095 else
1096 cp->rx_ring[i].opts1 =
1097 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1100 return 0;
1102 err_out:
1103 cp_clean_rings(cp);
1104 return -ENOMEM;
1107 static void cp_init_rings_index (struct cp_private *cp)
1109 cp->rx_tail = 0;
1110 cp->tx_head = cp->tx_tail = 0;
1113 static int cp_init_rings (struct cp_private *cp)
1115 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1116 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1118 cp_init_rings_index(cp);
1120 return cp_refill_rx (cp);
1123 static int cp_alloc_rings (struct cp_private *cp)
1125 void *mem;
1127 mem = pci_alloc_consistent(cp->pdev, CP_RING_BYTES, &cp->ring_dma);
1128 if (!mem)
1129 return -ENOMEM;
1131 cp->rx_ring = mem;
1132 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1134 return cp_init_rings(cp);
1137 static void cp_clean_rings (struct cp_private *cp)
1139 struct cp_desc *desc;
1140 unsigned i;
1142 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1143 if (cp->rx_skb[i]) {
1144 desc = cp->rx_ring + i;
1145 pci_unmap_single(cp->pdev, le64_to_cpu(desc->addr),
1146 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1147 dev_kfree_skb(cp->rx_skb[i]);
1151 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1152 if (cp->tx_skb[i]) {
1153 struct sk_buff *skb = cp->tx_skb[i];
1155 desc = cp->tx_ring + i;
1156 pci_unmap_single(cp->pdev, le64_to_cpu(desc->addr),
1157 le32_to_cpu(desc->opts1) & 0xffff,
1158 PCI_DMA_TODEVICE);
1159 if (le32_to_cpu(desc->opts1) & LastFrag)
1160 dev_kfree_skb(skb);
1161 cp->net_stats.tx_dropped++;
1165 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1166 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1168 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1169 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1172 static void cp_free_rings (struct cp_private *cp)
1174 cp_clean_rings(cp);
1175 pci_free_consistent(cp->pdev, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1176 cp->rx_ring = NULL;
1177 cp->tx_ring = NULL;
1180 static int cp_open (struct net_device *dev)
1182 struct cp_private *cp = netdev_priv(dev);
1183 int rc;
1185 if (netif_msg_ifup(cp))
1186 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1188 rc = cp_alloc_rings(cp);
1189 if (rc)
1190 return rc;
1192 cp_init_hw(cp);
1194 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1195 if (rc)
1196 goto err_out_hw;
1198 netif_carrier_off(dev);
1199 mii_check_media(&cp->mii_if, netif_msg_link(cp), TRUE);
1200 netif_start_queue(dev);
1202 return 0;
1204 err_out_hw:
1205 cp_stop_hw(cp);
1206 cp_free_rings(cp);
1207 return rc;
1210 static int cp_close (struct net_device *dev)
1212 struct cp_private *cp = netdev_priv(dev);
1213 unsigned long flags;
1215 if (netif_msg_ifdown(cp))
1216 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1218 spin_lock_irqsave(&cp->lock, flags);
1220 netif_stop_queue(dev);
1221 netif_carrier_off(dev);
1223 cp_stop_hw(cp);
1225 spin_unlock_irqrestore(&cp->lock, flags);
1227 synchronize_irq(dev->irq);
1228 free_irq(dev->irq, dev);
1230 cp_free_rings(cp);
1231 return 0;
1234 #ifdef BROKEN
1235 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1237 struct cp_private *cp = netdev_priv(dev);
1238 int rc;
1239 unsigned long flags;
1241 /* check for invalid MTU, according to hardware limits */
1242 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1243 return -EINVAL;
1245 /* if network interface not up, no need for complexity */
1246 if (!netif_running(dev)) {
1247 dev->mtu = new_mtu;
1248 cp_set_rxbufsize(cp); /* set new rx buf size */
1249 return 0;
1252 spin_lock_irqsave(&cp->lock, flags);
1254 cp_stop_hw(cp); /* stop h/w and free rings */
1255 cp_clean_rings(cp);
1257 dev->mtu = new_mtu;
1258 cp_set_rxbufsize(cp); /* set new rx buf size */
1260 rc = cp_init_rings(cp); /* realloc and restart h/w */
1261 cp_start_hw(cp);
1263 spin_unlock_irqrestore(&cp->lock, flags);
1265 return rc;
1267 #endif /* BROKEN */
1269 static const char mii_2_8139_map[8] = {
1270 BasicModeCtrl,
1271 BasicModeStatus,
1274 NWayAdvert,
1275 NWayLPAR,
1276 NWayExpansion,
1280 static int mdio_read(struct net_device *dev, int phy_id, int location)
1282 struct cp_private *cp = netdev_priv(dev);
1284 return location < 8 && mii_2_8139_map[location] ?
1285 readw(cp->regs + mii_2_8139_map[location]) : 0;
1289 static void mdio_write(struct net_device *dev, int phy_id, int location,
1290 int value)
1292 struct cp_private *cp = netdev_priv(dev);
1294 if (location == 0) {
1295 cpw8(Cfg9346, Cfg9346_Unlock);
1296 cpw16(BasicModeCtrl, value);
1297 cpw8(Cfg9346, Cfg9346_Lock);
1298 } else if (location < 8 && mii_2_8139_map[location])
1299 cpw16(mii_2_8139_map[location], value);
1302 /* Set the ethtool Wake-on-LAN settings */
1303 static int netdev_set_wol (struct cp_private *cp,
1304 const struct ethtool_wolinfo *wol)
1306 u8 options;
1308 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1309 /* If WOL is being disabled, no need for complexity */
1310 if (wol->wolopts) {
1311 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1312 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1315 cpw8 (Cfg9346, Cfg9346_Unlock);
1316 cpw8 (Config3, options);
1317 cpw8 (Cfg9346, Cfg9346_Lock);
1319 options = 0; /* Paranoia setting */
1320 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1321 /* If WOL is being disabled, no need for complexity */
1322 if (wol->wolopts) {
1323 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1324 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1325 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1328 cpw8 (Config5, options);
1330 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1332 return 0;
1335 /* Get the ethtool Wake-on-LAN settings */
1336 static void netdev_get_wol (struct cp_private *cp,
1337 struct ethtool_wolinfo *wol)
1339 u8 options;
1341 wol->wolopts = 0; /* Start from scratch */
1342 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1343 WAKE_MCAST | WAKE_UCAST;
1344 /* We don't need to go on if WOL is disabled */
1345 if (!cp->wol_enabled) return;
1347 options = cpr8 (Config3);
1348 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1349 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1351 options = 0; /* Paranoia setting */
1352 options = cpr8 (Config5);
1353 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1354 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1355 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1358 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1360 struct cp_private *cp = netdev_priv(dev);
1362 strcpy (info->driver, DRV_NAME);
1363 strcpy (info->version, DRV_VERSION);
1364 strcpy (info->bus_info, pci_name(cp->pdev));
1367 static int cp_get_regs_len(struct net_device *dev)
1369 return CP_REGS_SIZE;
1372 static int cp_get_stats_count (struct net_device *dev)
1374 return CP_NUM_STATS;
1377 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1379 struct cp_private *cp = netdev_priv(dev);
1380 int rc;
1381 unsigned long flags;
1383 spin_lock_irqsave(&cp->lock, flags);
1384 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1385 spin_unlock_irqrestore(&cp->lock, flags);
1387 return rc;
1390 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1392 struct cp_private *cp = netdev_priv(dev);
1393 int rc;
1394 unsigned long flags;
1396 spin_lock_irqsave(&cp->lock, flags);
1397 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1398 spin_unlock_irqrestore(&cp->lock, flags);
1400 return rc;
1403 static int cp_nway_reset(struct net_device *dev)
1405 struct cp_private *cp = netdev_priv(dev);
1406 return mii_nway_restart(&cp->mii_if);
1409 static u32 cp_get_msglevel(struct net_device *dev)
1411 struct cp_private *cp = netdev_priv(dev);
1412 return cp->msg_enable;
1415 static void cp_set_msglevel(struct net_device *dev, u32 value)
1417 struct cp_private *cp = netdev_priv(dev);
1418 cp->msg_enable = value;
1421 static u32 cp_get_rx_csum(struct net_device *dev)
1423 struct cp_private *cp = netdev_priv(dev);
1424 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1427 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1429 struct cp_private *cp = netdev_priv(dev);
1430 u16 cmd = cp->cpcmd, newcmd;
1432 newcmd = cmd;
1434 if (data)
1435 newcmd |= RxChkSum;
1436 else
1437 newcmd &= ~RxChkSum;
1439 if (newcmd != cmd) {
1440 unsigned long flags;
1442 spin_lock_irqsave(&cp->lock, flags);
1443 cp->cpcmd = newcmd;
1444 cpw16_f(CpCmd, newcmd);
1445 spin_unlock_irqrestore(&cp->lock, flags);
1448 return 0;
1451 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1452 void *p)
1454 struct cp_private *cp = netdev_priv(dev);
1455 unsigned long flags;
1457 if (regs->len < CP_REGS_SIZE)
1458 return /* -EINVAL */;
1460 regs->version = CP_REGS_VER;
1462 spin_lock_irqsave(&cp->lock, flags);
1463 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1464 spin_unlock_irqrestore(&cp->lock, flags);
1467 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1469 struct cp_private *cp = netdev_priv(dev);
1470 unsigned long flags;
1472 spin_lock_irqsave (&cp->lock, flags);
1473 netdev_get_wol (cp, wol);
1474 spin_unlock_irqrestore (&cp->lock, flags);
1477 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1479 struct cp_private *cp = netdev_priv(dev);
1480 unsigned long flags;
1481 int rc;
1483 spin_lock_irqsave (&cp->lock, flags);
1484 rc = netdev_set_wol (cp, wol);
1485 spin_unlock_irqrestore (&cp->lock, flags);
1487 return rc;
1490 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1492 switch (stringset) {
1493 case ETH_SS_STATS:
1494 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1495 break;
1496 default:
1497 BUG();
1498 break;
1502 static void cp_get_ethtool_stats (struct net_device *dev,
1503 struct ethtool_stats *estats, u64 *tmp_stats)
1505 struct cp_private *cp = netdev_priv(dev);
1506 struct cp_dma_stats *nic_stats;
1507 dma_addr_t dma;
1508 int i;
1510 nic_stats = pci_alloc_consistent(cp->pdev, sizeof(*nic_stats), &dma);
1511 if (!nic_stats)
1512 return;
1514 /* begin NIC statistics dump */
1515 cpw32(StatsAddr + 4, (u64)dma >> 32);
1516 cpw32(StatsAddr, ((u64)dma & DMA_32BIT_MASK) | DumpStats);
1517 cpr32(StatsAddr);
1519 for (i = 0; i < 1000; i++) {
1520 if ((cpr32(StatsAddr) & DumpStats) == 0)
1521 break;
1522 udelay(10);
1524 cpw32(StatsAddr, 0);
1525 cpw32(StatsAddr + 4, 0);
1526 cpr32(StatsAddr);
1528 i = 0;
1529 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1530 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1531 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1532 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1533 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1534 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1535 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1536 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1537 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1538 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1539 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1540 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1541 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1542 tmp_stats[i++] = cp->cp_stats.rx_frags;
1543 BUG_ON(i != CP_NUM_STATS);
1545 pci_free_consistent(cp->pdev, sizeof(*nic_stats), nic_stats, dma);
1548 static const struct ethtool_ops cp_ethtool_ops = {
1549 .get_drvinfo = cp_get_drvinfo,
1550 .get_regs_len = cp_get_regs_len,
1551 .get_stats_count = cp_get_stats_count,
1552 .get_settings = cp_get_settings,
1553 .set_settings = cp_set_settings,
1554 .nway_reset = cp_nway_reset,
1555 .get_link = ethtool_op_get_link,
1556 .get_msglevel = cp_get_msglevel,
1557 .set_msglevel = cp_set_msglevel,
1558 .get_rx_csum = cp_get_rx_csum,
1559 .set_rx_csum = cp_set_rx_csum,
1560 .get_tx_csum = ethtool_op_get_tx_csum,
1561 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1562 .get_sg = ethtool_op_get_sg,
1563 .set_sg = ethtool_op_set_sg,
1564 .get_tso = ethtool_op_get_tso,
1565 .set_tso = ethtool_op_set_tso,
1566 .get_regs = cp_get_regs,
1567 .get_wol = cp_get_wol,
1568 .set_wol = cp_set_wol,
1569 .get_strings = cp_get_strings,
1570 .get_ethtool_stats = cp_get_ethtool_stats,
1571 .get_perm_addr = ethtool_op_get_perm_addr,
1572 .get_eeprom_len = cp_get_eeprom_len,
1573 .get_eeprom = cp_get_eeprom,
1574 .set_eeprom = cp_set_eeprom,
1577 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1579 struct cp_private *cp = netdev_priv(dev);
1580 int rc;
1581 unsigned long flags;
1583 if (!netif_running(dev))
1584 return -EINVAL;
1586 spin_lock_irqsave(&cp->lock, flags);
1587 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1588 spin_unlock_irqrestore(&cp->lock, flags);
1589 return rc;
1592 /* Serial EEPROM section. */
1594 /* EEPROM_Ctrl bits. */
1595 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1596 #define EE_CS 0x08 /* EEPROM chip select. */
1597 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1598 #define EE_WRITE_0 0x00
1599 #define EE_WRITE_1 0x02
1600 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1601 #define EE_ENB (0x80 | EE_CS)
1603 /* Delay between EEPROM clock transitions.
1604 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1607 #define eeprom_delay() readl(ee_addr)
1609 /* The EEPROM commands include the alway-set leading bit. */
1610 #define EE_EXTEND_CMD (4)
1611 #define EE_WRITE_CMD (5)
1612 #define EE_READ_CMD (6)
1613 #define EE_ERASE_CMD (7)
1615 #define EE_EWDS_ADDR (0)
1616 #define EE_WRAL_ADDR (1)
1617 #define EE_ERAL_ADDR (2)
1618 #define EE_EWEN_ADDR (3)
1620 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1622 static void eeprom_cmd_start(void __iomem *ee_addr)
1624 writeb (EE_ENB & ~EE_CS, ee_addr);
1625 writeb (EE_ENB, ee_addr);
1626 eeprom_delay ();
1629 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1631 int i;
1633 /* Shift the command bits out. */
1634 for (i = cmd_len - 1; i >= 0; i--) {
1635 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1636 writeb (EE_ENB | dataval, ee_addr);
1637 eeprom_delay ();
1638 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1639 eeprom_delay ();
1641 writeb (EE_ENB, ee_addr);
1642 eeprom_delay ();
1645 static void eeprom_cmd_end(void __iomem *ee_addr)
1647 writeb (~EE_CS, ee_addr);
1648 eeprom_delay ();
1651 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1652 int addr_len)
1654 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1656 eeprom_cmd_start(ee_addr);
1657 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1658 eeprom_cmd_end(ee_addr);
1661 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1663 int i;
1664 u16 retval = 0;
1665 void __iomem *ee_addr = ioaddr + Cfg9346;
1666 int read_cmd = location | (EE_READ_CMD << addr_len);
1668 eeprom_cmd_start(ee_addr);
1669 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1671 for (i = 16; i > 0; i--) {
1672 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1673 eeprom_delay ();
1674 retval =
1675 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1677 writeb (EE_ENB, ee_addr);
1678 eeprom_delay ();
1681 eeprom_cmd_end(ee_addr);
1683 return retval;
1686 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1687 int addr_len)
1689 int i;
1690 void __iomem *ee_addr = ioaddr + Cfg9346;
1691 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1693 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1695 eeprom_cmd_start(ee_addr);
1696 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1697 eeprom_cmd(ee_addr, val, 16);
1698 eeprom_cmd_end(ee_addr);
1700 eeprom_cmd_start(ee_addr);
1701 for (i = 0; i < 20000; i++)
1702 if (readb(ee_addr) & EE_DATA_READ)
1703 break;
1704 eeprom_cmd_end(ee_addr);
1706 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1709 static int cp_get_eeprom_len(struct net_device *dev)
1711 struct cp_private *cp = netdev_priv(dev);
1712 int size;
1714 spin_lock_irq(&cp->lock);
1715 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1716 spin_unlock_irq(&cp->lock);
1718 return size;
1721 static int cp_get_eeprom(struct net_device *dev,
1722 struct ethtool_eeprom *eeprom, u8 *data)
1724 struct cp_private *cp = netdev_priv(dev);
1725 unsigned int addr_len;
1726 u16 val;
1727 u32 offset = eeprom->offset >> 1;
1728 u32 len = eeprom->len;
1729 u32 i = 0;
1731 eeprom->magic = CP_EEPROM_MAGIC;
1733 spin_lock_irq(&cp->lock);
1735 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1737 if (eeprom->offset & 1) {
1738 val = read_eeprom(cp->regs, offset, addr_len);
1739 data[i++] = (u8)(val >> 8);
1740 offset++;
1743 while (i < len - 1) {
1744 val = read_eeprom(cp->regs, offset, addr_len);
1745 data[i++] = (u8)val;
1746 data[i++] = (u8)(val >> 8);
1747 offset++;
1750 if (i < len) {
1751 val = read_eeprom(cp->regs, offset, addr_len);
1752 data[i] = (u8)val;
1755 spin_unlock_irq(&cp->lock);
1756 return 0;
1759 static int cp_set_eeprom(struct net_device *dev,
1760 struct ethtool_eeprom *eeprom, u8 *data)
1762 struct cp_private *cp = netdev_priv(dev);
1763 unsigned int addr_len;
1764 u16 val;
1765 u32 offset = eeprom->offset >> 1;
1766 u32 len = eeprom->len;
1767 u32 i = 0;
1769 if (eeprom->magic != CP_EEPROM_MAGIC)
1770 return -EINVAL;
1772 spin_lock_irq(&cp->lock);
1774 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1776 if (eeprom->offset & 1) {
1777 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1778 val |= (u16)data[i++] << 8;
1779 write_eeprom(cp->regs, offset, val, addr_len);
1780 offset++;
1783 while (i < len - 1) {
1784 val = (u16)data[i++];
1785 val |= (u16)data[i++] << 8;
1786 write_eeprom(cp->regs, offset, val, addr_len);
1787 offset++;
1790 if (i < len) {
1791 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1792 val |= (u16)data[i];
1793 write_eeprom(cp->regs, offset, val, addr_len);
1796 spin_unlock_irq(&cp->lock);
1797 return 0;
1800 /* Put the board into D3cold state and wait for WakeUp signal */
1801 static void cp_set_d3_state (struct cp_private *cp)
1803 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1804 pci_set_power_state (cp->pdev, PCI_D3hot);
1807 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1809 struct net_device *dev;
1810 struct cp_private *cp;
1811 int rc;
1812 void __iomem *regs;
1813 resource_size_t pciaddr;
1814 unsigned int addr_len, i, pci_using_dac;
1815 u8 pci_rev;
1817 #ifndef MODULE
1818 static int version_printed;
1819 if (version_printed++ == 0)
1820 printk("%s", version);
1821 #endif
1823 pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);
1825 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1826 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pci_rev < 0x20) {
1827 dev_err(&pdev->dev,
1828 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip\n",
1829 pdev->vendor, pdev->device, pci_rev);
1830 dev_err(&pdev->dev, "Try the \"8139too\" driver instead.\n");
1831 return -ENODEV;
1834 dev = alloc_etherdev(sizeof(struct cp_private));
1835 if (!dev)
1836 return -ENOMEM;
1837 SET_MODULE_OWNER(dev);
1838 SET_NETDEV_DEV(dev, &pdev->dev);
1840 cp = netdev_priv(dev);
1841 cp->pdev = pdev;
1842 cp->dev = dev;
1843 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1844 spin_lock_init (&cp->lock);
1845 cp->mii_if.dev = dev;
1846 cp->mii_if.mdio_read = mdio_read;
1847 cp->mii_if.mdio_write = mdio_write;
1848 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1849 cp->mii_if.phy_id_mask = 0x1f;
1850 cp->mii_if.reg_num_mask = 0x1f;
1851 cp_set_rxbufsize(cp);
1853 rc = pci_enable_device(pdev);
1854 if (rc)
1855 goto err_out_free;
1857 rc = pci_set_mwi(pdev);
1858 if (rc)
1859 goto err_out_disable;
1861 rc = pci_request_regions(pdev, DRV_NAME);
1862 if (rc)
1863 goto err_out_mwi;
1865 pciaddr = pci_resource_start(pdev, 1);
1866 if (!pciaddr) {
1867 rc = -EIO;
1868 dev_err(&pdev->dev, "no MMIO resource\n");
1869 goto err_out_res;
1871 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1872 rc = -EIO;
1873 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1874 (unsigned long long)pci_resource_len(pdev, 1));
1875 goto err_out_res;
1878 /* Configure DMA attributes. */
1879 if ((sizeof(dma_addr_t) > 4) &&
1880 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) &&
1881 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1882 pci_using_dac = 1;
1883 } else {
1884 pci_using_dac = 0;
1886 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1887 if (rc) {
1888 dev_err(&pdev->dev,
1889 "No usable DMA configuration, aborting.\n");
1890 goto err_out_res;
1892 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1893 if (rc) {
1894 dev_err(&pdev->dev,
1895 "No usable consistent DMA configuration, "
1896 "aborting.\n");
1897 goto err_out_res;
1901 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1902 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1904 regs = ioremap(pciaddr, CP_REGS_SIZE);
1905 if (!regs) {
1906 rc = -EIO;
1907 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1908 (unsigned long long)pci_resource_len(pdev, 1),
1909 (unsigned long long)pciaddr);
1910 goto err_out_res;
1912 dev->base_addr = (unsigned long) regs;
1913 cp->regs = regs;
1915 cp_stop_hw(cp);
1917 /* read MAC address from EEPROM */
1918 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1919 for (i = 0; i < 3; i++)
1920 ((u16 *) (dev->dev_addr))[i] =
1921 le16_to_cpu (read_eeprom (regs, i + 7, addr_len));
1922 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1924 dev->open = cp_open;
1925 dev->stop = cp_close;
1926 dev->set_multicast_list = cp_set_rx_mode;
1927 dev->hard_start_xmit = cp_start_xmit;
1928 dev->get_stats = cp_get_stats;
1929 dev->do_ioctl = cp_ioctl;
1930 dev->poll = cp_rx_poll;
1931 #ifdef CONFIG_NET_POLL_CONTROLLER
1932 dev->poll_controller = cp_poll_controller;
1933 #endif
1934 dev->weight = 16; /* arbitrary? from NAPI_HOWTO.txt. */
1935 #ifdef BROKEN
1936 dev->change_mtu = cp_change_mtu;
1937 #endif
1938 dev->ethtool_ops = &cp_ethtool_ops;
1939 #if 0
1940 dev->tx_timeout = cp_tx_timeout;
1941 dev->watchdog_timeo = TX_TIMEOUT;
1942 #endif
1944 #if CP_VLAN_TAG_USED
1945 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1946 dev->vlan_rx_register = cp_vlan_rx_register;
1947 dev->vlan_rx_kill_vid = cp_vlan_rx_kill_vid;
1948 #endif
1950 if (pci_using_dac)
1951 dev->features |= NETIF_F_HIGHDMA;
1953 #if 0 /* disabled by default until verified */
1954 dev->features |= NETIF_F_TSO;
1955 #endif
1957 dev->irq = pdev->irq;
1959 rc = register_netdev(dev);
1960 if (rc)
1961 goto err_out_iomap;
1963 printk (KERN_INFO "%s: RTL-8139C+ at 0x%lx, "
1964 "%02x:%02x:%02x:%02x:%02x:%02x, "
1965 "IRQ %d\n",
1966 dev->name,
1967 dev->base_addr,
1968 dev->dev_addr[0], dev->dev_addr[1],
1969 dev->dev_addr[2], dev->dev_addr[3],
1970 dev->dev_addr[4], dev->dev_addr[5],
1971 dev->irq);
1973 pci_set_drvdata(pdev, dev);
1975 /* enable busmastering and memory-write-invalidate */
1976 pci_set_master(pdev);
1978 if (cp->wol_enabled)
1979 cp_set_d3_state (cp);
1981 return 0;
1983 err_out_iomap:
1984 iounmap(regs);
1985 err_out_res:
1986 pci_release_regions(pdev);
1987 err_out_mwi:
1988 pci_clear_mwi(pdev);
1989 err_out_disable:
1990 pci_disable_device(pdev);
1991 err_out_free:
1992 free_netdev(dev);
1993 return rc;
1996 static void cp_remove_one (struct pci_dev *pdev)
1998 struct net_device *dev = pci_get_drvdata(pdev);
1999 struct cp_private *cp = netdev_priv(dev);
2001 unregister_netdev(dev);
2002 iounmap(cp->regs);
2003 if (cp->wol_enabled)
2004 pci_set_power_state (pdev, PCI_D0);
2005 pci_release_regions(pdev);
2006 pci_clear_mwi(pdev);
2007 pci_disable_device(pdev);
2008 pci_set_drvdata(pdev, NULL);
2009 free_netdev(dev);
2012 #ifdef CONFIG_PM
2013 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2015 struct net_device *dev = pci_get_drvdata(pdev);
2016 struct cp_private *cp = netdev_priv(dev);
2017 unsigned long flags;
2019 if (!netif_running(dev))
2020 return 0;
2022 netif_device_detach (dev);
2023 netif_stop_queue (dev);
2025 spin_lock_irqsave (&cp->lock, flags);
2027 /* Disable Rx and Tx */
2028 cpw16 (IntrMask, 0);
2029 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2031 spin_unlock_irqrestore (&cp->lock, flags);
2033 pci_save_state(pdev);
2034 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2035 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2037 return 0;
2040 static int cp_resume (struct pci_dev *pdev)
2042 struct net_device *dev = pci_get_drvdata (pdev);
2043 struct cp_private *cp = netdev_priv(dev);
2044 unsigned long flags;
2046 if (!netif_running(dev))
2047 return 0;
2049 netif_device_attach (dev);
2051 pci_set_power_state(pdev, PCI_D0);
2052 pci_restore_state(pdev);
2053 pci_enable_wake(pdev, PCI_D0, 0);
2055 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2056 cp_init_rings_index (cp);
2057 cp_init_hw (cp);
2058 netif_start_queue (dev);
2060 spin_lock_irqsave (&cp->lock, flags);
2062 mii_check_media(&cp->mii_if, netif_msg_link(cp), FALSE);
2064 spin_unlock_irqrestore (&cp->lock, flags);
2066 return 0;
2068 #endif /* CONFIG_PM */
2070 static struct pci_driver cp_driver = {
2071 .name = DRV_NAME,
2072 .id_table = cp_pci_tbl,
2073 .probe = cp_init_one,
2074 .remove = cp_remove_one,
2075 #ifdef CONFIG_PM
2076 .resume = cp_resume,
2077 .suspend = cp_suspend,
2078 #endif
2081 static int __init cp_init (void)
2083 #ifdef MODULE
2084 printk("%s", version);
2085 #endif
2086 return pci_register_driver(&cp_driver);
2089 static void __exit cp_exit (void)
2091 pci_unregister_driver (&cp_driver);
2094 module_init(cp_init);
2095 module_exit(cp_exit);