1 /*******************************************************************************
3 Intel PRO/10GbE Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * Shared functions for accessing and configuring the adapter
36 /* Local function prototypes */
38 static uint32_t ixgb_hash_mc_addr(struct ixgb_hw
*hw
, uint8_t * mc_addr
);
40 static void ixgb_mta_set(struct ixgb_hw
*hw
, uint32_t hash_value
);
42 static void ixgb_get_bus_info(struct ixgb_hw
*hw
);
44 static boolean_t
ixgb_link_reset(struct ixgb_hw
*hw
);
46 static void ixgb_optics_reset(struct ixgb_hw
*hw
);
48 static ixgb_phy_type
ixgb_identify_phy(struct ixgb_hw
*hw
);
50 static void ixgb_clear_hw_cntrs(struct ixgb_hw
*hw
);
52 static void ixgb_clear_vfta(struct ixgb_hw
*hw
);
54 static void ixgb_init_rx_addrs(struct ixgb_hw
*hw
);
56 static uint16_t ixgb_read_phy_reg(struct ixgb_hw
*hw
,
59 uint32_t device_type
);
61 static boolean_t
ixgb_setup_fc(struct ixgb_hw
*hw
);
63 static boolean_t
mac_addr_valid(uint8_t *mac_addr
);
65 static uint32_t ixgb_mac_reset(struct ixgb_hw
*hw
)
69 ctrl_reg
= IXGB_CTRL0_RST
|
70 IXGB_CTRL0_SDP3_DIR
| /* All pins are Output=1 */
74 IXGB_CTRL0_SDP3
| /* Initial value 1101 */
79 /* Workaround for 82597EX reset errata */
80 IXGB_WRITE_REG_IO(hw
, CTRL0
, ctrl_reg
);
82 IXGB_WRITE_REG(hw
, CTRL0
, ctrl_reg
);
85 /* Delay a few ms just to allow the reset to complete */
86 msleep(IXGB_DELAY_AFTER_RESET
);
87 ctrl_reg
= IXGB_READ_REG(hw
, CTRL0
);
89 /* Make sure the self-clearing global reset bit did self clear */
90 ASSERT(!(ctrl_reg
& IXGB_CTRL0_RST
));
93 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
94 ixgb_optics_reset(hw
);
100 /******************************************************************************
101 * Reset the transmit and receive units; mask and clear all interrupts.
103 * hw - Struct containing variables accessed by shared code
104 *****************************************************************************/
106 ixgb_adapter_stop(struct ixgb_hw
*hw
)
111 DEBUGFUNC("ixgb_adapter_stop");
113 /* If we are stopped or resetting exit gracefully and wait to be
114 * started again before accessing the hardware.
116 if(hw
->adapter_stopped
) {
117 DEBUGOUT("Exiting because the adapter is already stopped!!!\n");
121 /* Set the Adapter Stopped flag so other driver functions stop
122 * touching the Hardware.
124 hw
->adapter_stopped
= TRUE
;
126 /* Clear interrupt mask to stop board from generating interrupts */
127 DEBUGOUT("Masking off all interrupts\n");
128 IXGB_WRITE_REG(hw
, IMC
, 0xFFFFFFFF);
130 /* Disable the Transmit and Receive units. Then delay to allow
131 * any pending transactions to complete before we hit the MAC with
134 IXGB_WRITE_REG(hw
, RCTL
, IXGB_READ_REG(hw
, RCTL
) & ~IXGB_RCTL_RXEN
);
135 IXGB_WRITE_REG(hw
, TCTL
, IXGB_READ_REG(hw
, TCTL
) & ~IXGB_TCTL_TXEN
);
136 msleep(IXGB_DELAY_BEFORE_RESET
);
138 /* Issue a global reset to the MAC. This will reset the chip's
139 * transmit, receive, DMA, and link units. It will not effect
140 * the current PCI configuration. The global reset bit is self-
141 * clearing, and should clear within a microsecond.
143 DEBUGOUT("Issuing a global reset to MAC\n");
145 ctrl_reg
= ixgb_mac_reset(hw
);
147 /* Clear interrupt mask to stop board from generating interrupts */
148 DEBUGOUT("Masking off all interrupts\n");
149 IXGB_WRITE_REG(hw
, IMC
, 0xffffffff);
151 /* Clear any pending interrupt events. */
152 icr_reg
= IXGB_READ_REG(hw
, ICR
);
154 return (ctrl_reg
& IXGB_CTRL0_RST
);
158 /******************************************************************************
159 * Identifies the vendor of the optics module on the adapter. The SR adapters
160 * support two different types of XPAK optics, so it is necessary to determine
161 * which optics are present before applying any optics-specific workarounds.
163 * hw - Struct containing variables accessed by shared code.
165 * Returns: the vendor of the XPAK optics module.
166 *****************************************************************************/
167 static ixgb_xpak_vendor
168 ixgb_identify_xpak_vendor(struct ixgb_hw
*hw
)
171 uint16_t vendor_name
[5];
172 ixgb_xpak_vendor xpak_vendor
;
174 DEBUGFUNC("ixgb_identify_xpak_vendor");
176 /* Read the first few bytes of the vendor string from the XPAK NVR
177 * registers. These are standard XENPAK/XPAK registers, so all XPAK
178 * devices should implement them. */
179 for (i
= 0; i
< 5; i
++) {
180 vendor_name
[i
] = ixgb_read_phy_reg(hw
,
181 MDIO_PMA_PMD_XPAK_VENDOR_NAME
182 + i
, IXGB_PHY_ADDRESS
,
186 /* Determine the actual vendor */
187 if (vendor_name
[0] == 'I' &&
188 vendor_name
[1] == 'N' &&
189 vendor_name
[2] == 'T' &&
190 vendor_name
[3] == 'E' && vendor_name
[4] == 'L') {
191 xpak_vendor
= ixgb_xpak_vendor_intel
;
193 xpak_vendor
= ixgb_xpak_vendor_infineon
;
196 return (xpak_vendor
);
199 /******************************************************************************
200 * Determine the physical layer module on the adapter.
202 * hw - Struct containing variables accessed by shared code. The device_id
203 * field must be (correctly) populated before calling this routine.
205 * Returns: the phy type of the adapter.
206 *****************************************************************************/
208 ixgb_identify_phy(struct ixgb_hw
*hw
)
210 ixgb_phy_type phy_type
;
211 ixgb_xpak_vendor xpak_vendor
;
213 DEBUGFUNC("ixgb_identify_phy");
215 /* Infer the transceiver/phy type from the device id */
216 switch (hw
->device_id
) {
217 case IXGB_DEVICE_ID_82597EX
:
218 DEBUGOUT("Identified TXN17401 optics\n");
219 phy_type
= ixgb_phy_type_txn17401
;
222 case IXGB_DEVICE_ID_82597EX_SR
:
223 /* The SR adapters carry two different types of XPAK optics
224 * modules; read the vendor identifier to determine the exact
226 xpak_vendor
= ixgb_identify_xpak_vendor(hw
);
227 if (xpak_vendor
== ixgb_xpak_vendor_intel
) {
228 DEBUGOUT("Identified TXN17201 optics\n");
229 phy_type
= ixgb_phy_type_txn17201
;
231 DEBUGOUT("Identified G6005 optics\n");
232 phy_type
= ixgb_phy_type_g6005
;
235 case IXGB_DEVICE_ID_82597EX_LR
:
236 DEBUGOUT("Identified G6104 optics\n");
237 phy_type
= ixgb_phy_type_g6104
;
239 case IXGB_DEVICE_ID_82597EX_CX4
:
240 DEBUGOUT("Identified CX4\n");
241 xpak_vendor
= ixgb_identify_xpak_vendor(hw
);
242 if (xpak_vendor
== ixgb_xpak_vendor_intel
) {
243 DEBUGOUT("Identified TXN17201 optics\n");
244 phy_type
= ixgb_phy_type_txn17201
;
246 DEBUGOUT("Identified G6005 optics\n");
247 phy_type
= ixgb_phy_type_g6005
;
251 DEBUGOUT("Unknown physical layer module\n");
252 phy_type
= ixgb_phy_type_unknown
;
259 /******************************************************************************
260 * Performs basic configuration of the adapter.
262 * hw - Struct containing variables accessed by shared code
264 * Resets the controller.
265 * Reads and validates the EEPROM.
266 * Initializes the receive address registers.
267 * Initializes the multicast table.
268 * Clears all on-chip counters.
269 * Calls routine to setup flow control settings.
270 * Leaves the transmit and receive units disabled and uninitialized.
273 * TRUE if successful,
274 * FALSE if unrecoverable problems were encountered.
275 *****************************************************************************/
277 ixgb_init_hw(struct ixgb_hw
*hw
)
283 DEBUGFUNC("ixgb_init_hw");
285 /* Issue a global reset to the MAC. This will reset the chip's
286 * transmit, receive, DMA, and link units. It will not effect
287 * the current PCI configuration. The global reset bit is self-
288 * clearing, and should clear within a microsecond.
290 DEBUGOUT("Issuing a global reset to MAC\n");
292 ctrl_reg
= ixgb_mac_reset(hw
);
294 DEBUGOUT("Issuing an EE reset to MAC\n");
296 /* Workaround for 82597EX reset errata */
297 IXGB_WRITE_REG_IO(hw
, CTRL1
, IXGB_CTRL1_EE_RST
);
299 IXGB_WRITE_REG(hw
, CTRL1
, IXGB_CTRL1_EE_RST
);
302 /* Delay a few ms just to allow the reset to complete */
303 msleep(IXGB_DELAY_AFTER_EE_RESET
);
305 if (ixgb_get_eeprom_data(hw
) == FALSE
) {
309 /* Use the device id to determine the type of phy/transceiver. */
310 hw
->device_id
= ixgb_get_ee_device_id(hw
);
311 hw
->phy_type
= ixgb_identify_phy(hw
);
313 /* Setup the receive addresses.
314 * Receive Address Registers (RARs 0 - 15).
316 ixgb_init_rx_addrs(hw
);
319 * Check that a valid MAC address has been set.
320 * If it is not valid, we fail hardware init.
322 if (!mac_addr_valid(hw
->curr_mac_addr
)) {
323 DEBUGOUT("MAC address invalid after ixgb_init_rx_addrs\n");
327 /* tell the routines in this file they can access hardware again */
328 hw
->adapter_stopped
= FALSE
;
330 /* Fill in the bus_info structure */
331 ixgb_get_bus_info(hw
);
333 /* Zero out the Multicast HASH table */
334 DEBUGOUT("Zeroing the MTA\n");
335 for(i
= 0; i
< IXGB_MC_TBL_SIZE
; i
++)
336 IXGB_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
338 /* Zero out the VLAN Filter Table Array */
341 /* Zero all of the hardware counters */
342 ixgb_clear_hw_cntrs(hw
);
344 /* Call a subroutine to setup flow control. */
345 status
= ixgb_setup_fc(hw
);
347 /* 82597EX errata: Call check-for-link in case lane deskew is locked */
348 ixgb_check_for_link(hw
);
353 /******************************************************************************
354 * Initializes receive address filters.
356 * hw - Struct containing variables accessed by shared code
358 * Places the MAC address in receive address register 0 and clears the rest
359 * of the receive addresss registers. Clears the multicast table. Assumes
360 * the receiver is in reset when the routine is called.
361 *****************************************************************************/
363 ixgb_init_rx_addrs(struct ixgb_hw
*hw
)
367 DEBUGFUNC("ixgb_init_rx_addrs");
370 * If the current mac address is valid, assume it is a software override
371 * to the permanent address.
372 * Otherwise, use the permanent address from the eeprom.
374 if (!mac_addr_valid(hw
->curr_mac_addr
)) {
376 /* Get the MAC address from the eeprom for later reference */
377 ixgb_get_ee_mac_addr(hw
, hw
->curr_mac_addr
);
379 DEBUGOUT3(" Keeping Permanent MAC Addr =%.2X %.2X %.2X ",
380 hw
->curr_mac_addr
[0],
381 hw
->curr_mac_addr
[1], hw
->curr_mac_addr
[2]);
382 DEBUGOUT3("%.2X %.2X %.2X\n",
383 hw
->curr_mac_addr
[3],
384 hw
->curr_mac_addr
[4], hw
->curr_mac_addr
[5]);
387 /* Setup the receive address. */
388 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
389 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
390 hw
->curr_mac_addr
[0],
391 hw
->curr_mac_addr
[1], hw
->curr_mac_addr
[2]);
392 DEBUGOUT3("%.2X %.2X %.2X\n",
393 hw
->curr_mac_addr
[3],
394 hw
->curr_mac_addr
[4], hw
->curr_mac_addr
[5]);
396 ixgb_rar_set(hw
, hw
->curr_mac_addr
, 0);
399 /* Zero out the other 15 receive addresses. */
400 DEBUGOUT("Clearing RAR[1-15]\n");
401 for(i
= 1; i
< IXGB_RAR_ENTRIES
; i
++) {
402 /* Write high reg first to disable the AV bit first */
403 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((i
<< 1) + 1), 0);
404 IXGB_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1), 0);
410 /******************************************************************************
411 * Updates the MAC's list of multicast addresses.
413 * hw - Struct containing variables accessed by shared code
414 * mc_addr_list - the list of new multicast addresses
415 * mc_addr_count - number of addresses
416 * pad - number of bytes between addresses in the list
418 * The given list replaces any existing list. Clears the last 15 receive
419 * address registers and the multicast table. Uses receive address registers
420 * for the first 15 multicast addresses, and hashes the rest into the
422 *****************************************************************************/
424 ixgb_mc_addr_list_update(struct ixgb_hw
*hw
,
425 uint8_t *mc_addr_list
,
426 uint32_t mc_addr_count
,
431 uint32_t rar_used_count
= 1; /* RAR[0] is used for our MAC address */
433 DEBUGFUNC("ixgb_mc_addr_list_update");
435 /* Set the new number of MC addresses that we are being requested to use. */
436 hw
->num_mc_addrs
= mc_addr_count
;
438 /* Clear RAR[1-15] */
439 DEBUGOUT(" Clearing RAR[1-15]\n");
440 for(i
= rar_used_count
; i
< IXGB_RAR_ENTRIES
; i
++) {
441 IXGB_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1), 0);
442 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((i
<< 1) + 1), 0);
446 DEBUGOUT(" Clearing MTA\n");
447 for(i
= 0; i
< IXGB_MC_TBL_SIZE
; i
++) {
448 IXGB_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
451 /* Add the new addresses */
452 for(i
= 0; i
< mc_addr_count
; i
++) {
453 DEBUGOUT(" Adding the multicast addresses:\n");
454 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i
,
455 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
)],
456 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
458 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
460 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
462 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
464 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
467 /* Place this multicast address in the RAR if there is room, *
468 * else put it in the MTA
470 if(rar_used_count
< IXGB_RAR_ENTRIES
) {
473 (i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
)),
475 DEBUGOUT1("Added a multicast address to RAR[%d]\n", i
);
478 hash_value
= ixgb_hash_mc_addr(hw
,
481 (IXGB_ETH_LENGTH_OF_ADDRESS
484 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value
);
486 ixgb_mta_set(hw
, hash_value
);
490 DEBUGOUT("MC Update Complete\n");
494 /******************************************************************************
495 * Hashes an address to determine its location in the multicast table
497 * hw - Struct containing variables accessed by shared code
498 * mc_addr - the multicast address to hash
502 *****************************************************************************/
504 ixgb_hash_mc_addr(struct ixgb_hw
*hw
,
507 uint32_t hash_value
= 0;
509 DEBUGFUNC("ixgb_hash_mc_addr");
511 /* The portion of the address that is used for the hash table is
512 * determined by the mc_filter_type setting.
514 switch (hw
->mc_filter_type
) {
515 /* [0] [1] [2] [3] [4] [5]
517 * LSB MSB - According to H/W docs */
519 /* [47:36] i.e. 0x563 for above example address */
521 ((mc_addr
[4] >> 4) | (((uint16_t) mc_addr
[5]) << 4));
523 case 1: /* [46:35] i.e. 0xAC6 for above example address */
525 ((mc_addr
[4] >> 3) | (((uint16_t) mc_addr
[5]) << 5));
527 case 2: /* [45:34] i.e. 0x5D8 for above example address */
529 ((mc_addr
[4] >> 2) | (((uint16_t) mc_addr
[5]) << 6));
531 case 3: /* [43:32] i.e. 0x634 for above example address */
532 hash_value
= ((mc_addr
[4]) | (((uint16_t) mc_addr
[5]) << 8));
535 /* Invalid mc_filter_type, what should we do? */
536 DEBUGOUT("MC filter type param set incorrectly\n");
545 /******************************************************************************
546 * Sets the bit in the multicast table corresponding to the hash value.
548 * hw - Struct containing variables accessed by shared code
549 * hash_value - Multicast address hash value
550 *****************************************************************************/
552 ixgb_mta_set(struct ixgb_hw
*hw
,
555 uint32_t hash_bit
, hash_reg
;
558 /* The MTA is a register array of 128 32-bit registers.
559 * It is treated like an array of 4096 bits. We want to set
560 * bit BitArray[hash_value]. So we figure out what register
561 * the bit is in, read it, OR in the new bit, then write
562 * back the new value. The register is determined by the
563 * upper 7 bits of the hash value and the bit within that
564 * register are determined by the lower 5 bits of the value.
566 hash_reg
= (hash_value
>> 5) & 0x7F;
567 hash_bit
= hash_value
& 0x1F;
569 mta_reg
= IXGB_READ_REG_ARRAY(hw
, MTA
, hash_reg
);
571 mta_reg
|= (1 << hash_bit
);
573 IXGB_WRITE_REG_ARRAY(hw
, MTA
, hash_reg
, mta_reg
);
578 /******************************************************************************
579 * Puts an ethernet address into a receive address register.
581 * hw - Struct containing variables accessed by shared code
582 * addr - Address to put into receive address register
583 * index - Receive address register to write
584 *****************************************************************************/
586 ixgb_rar_set(struct ixgb_hw
*hw
,
590 uint32_t rar_low
, rar_high
;
592 DEBUGFUNC("ixgb_rar_set");
594 /* HW expects these in little endian so we reverse the byte order
595 * from network order (big endian) to little endian
597 rar_low
= ((uint32_t) addr
[0] |
598 ((uint32_t)addr
[1] << 8) |
599 ((uint32_t)addr
[2] << 16) |
600 ((uint32_t)addr
[3] << 24));
602 rar_high
= ((uint32_t) addr
[4] |
603 ((uint32_t)addr
[5] << 8) |
606 IXGB_WRITE_REG_ARRAY(hw
, RA
, (index
<< 1), rar_low
);
607 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((index
<< 1) + 1), rar_high
);
611 /******************************************************************************
612 * Writes a value to the specified offset in the VLAN filter table.
614 * hw - Struct containing variables accessed by shared code
615 * offset - Offset in VLAN filer table to write
616 * value - Value to write into VLAN filter table
617 *****************************************************************************/
619 ixgb_write_vfta(struct ixgb_hw
*hw
,
623 IXGB_WRITE_REG_ARRAY(hw
, VFTA
, offset
, value
);
627 /******************************************************************************
628 * Clears the VLAN filer table
630 * hw - Struct containing variables accessed by shared code
631 *****************************************************************************/
633 ixgb_clear_vfta(struct ixgb_hw
*hw
)
637 for(offset
= 0; offset
< IXGB_VLAN_FILTER_TBL_SIZE
; offset
++)
638 IXGB_WRITE_REG_ARRAY(hw
, VFTA
, offset
, 0);
642 /******************************************************************************
643 * Configures the flow control settings based on SW configuration.
645 * hw - Struct containing variables accessed by shared code
646 *****************************************************************************/
649 ixgb_setup_fc(struct ixgb_hw
*hw
)
652 uint32_t pap_reg
= 0; /* by default, assume no pause time */
653 boolean_t status
= TRUE
;
655 DEBUGFUNC("ixgb_setup_fc");
657 /* Get the current control reg 0 settings */
658 ctrl_reg
= IXGB_READ_REG(hw
, CTRL0
);
660 /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
661 ctrl_reg
&= ~(IXGB_CTRL0_RPE
| IXGB_CTRL0_TPE
);
663 /* The possible values of the "flow_control" parameter are:
664 * 0: Flow control is completely disabled
665 * 1: Rx flow control is enabled (we can receive pause frames
666 * but not send pause frames).
667 * 2: Tx flow control is enabled (we can send pause frames
668 * but we do not support receiving pause frames).
669 * 3: Both Rx and TX flow control (symmetric) are enabled.
672 switch (hw
->fc
.type
) {
673 case ixgb_fc_none
: /* 0 */
674 /* Set CMDC bit to disable Rx Flow control */
675 ctrl_reg
|= (IXGB_CTRL0_CMDC
);
677 case ixgb_fc_rx_pause
: /* 1 */
678 /* RX Flow control is enabled, and TX Flow control is
681 ctrl_reg
|= (IXGB_CTRL0_RPE
);
683 case ixgb_fc_tx_pause
: /* 2 */
684 /* TX Flow control is enabled, and RX Flow control is
685 * disabled, by a software over-ride.
687 ctrl_reg
|= (IXGB_CTRL0_TPE
);
688 pap_reg
= hw
->fc
.pause_time
;
690 case ixgb_fc_full
: /* 3 */
691 /* Flow control (both RX and TX) is enabled by a software
694 ctrl_reg
|= (IXGB_CTRL0_RPE
| IXGB_CTRL0_TPE
);
695 pap_reg
= hw
->fc
.pause_time
;
698 /* We should never get here. The value should be 0-3. */
699 DEBUGOUT("Flow control param set incorrectly\n");
704 /* Write the new settings */
705 IXGB_WRITE_REG(hw
, CTRL0
, ctrl_reg
);
708 IXGB_WRITE_REG(hw
, PAP
, pap_reg
);
711 /* Set the flow control receive threshold registers. Normally,
712 * these registers will be set to a default threshold that may be
713 * adjusted later by the driver's runtime code. However, if the
714 * ability to transmit pause frames in not enabled, then these
715 * registers will be set to 0.
717 if(!(hw
->fc
.type
& ixgb_fc_tx_pause
)) {
718 IXGB_WRITE_REG(hw
, FCRTL
, 0);
719 IXGB_WRITE_REG(hw
, FCRTH
, 0);
721 /* We need to set up the Receive Threshold high and low water
722 * marks as well as (optionally) enabling the transmission of XON
724 if(hw
->fc
.send_xon
) {
725 IXGB_WRITE_REG(hw
, FCRTL
,
726 (hw
->fc
.low_water
| IXGB_FCRTL_XONE
));
728 IXGB_WRITE_REG(hw
, FCRTL
, hw
->fc
.low_water
);
730 IXGB_WRITE_REG(hw
, FCRTH
, hw
->fc
.high_water
);
735 /******************************************************************************
736 * Reads a word from a device over the Management Data Interface (MDI) bus.
737 * This interface is used to manage Physical layer devices.
739 * hw - Struct containing variables accessed by hw code
740 * reg_address - Offset of device register being read.
741 * phy_address - Address of device on MDI.
743 * Returns: Data word (16 bits) from MDI device.
745 * The 82597EX has support for several MDI access methods. This routine
746 * uses the new protocol MDI Single Command and Address Operation.
747 * This requires that first an address cycle command is sent, followed by a
749 *****************************************************************************/
751 ixgb_read_phy_reg(struct ixgb_hw
*hw
,
752 uint32_t reg_address
,
753 uint32_t phy_address
,
754 uint32_t device_type
)
758 uint32_t command
= 0;
760 ASSERT(reg_address
<= IXGB_MAX_PHY_REG_ADDRESS
);
761 ASSERT(phy_address
<= IXGB_MAX_PHY_ADDRESS
);
762 ASSERT(device_type
<= IXGB_MAX_PHY_DEV_TYPE
);
764 /* Setup and write the address cycle command */
765 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
766 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
767 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
768 (IXGB_MSCA_ADDR_CYCLE
| IXGB_MSCA_MDI_COMMAND
));
770 IXGB_WRITE_REG(hw
, MSCA
, command
);
772 /**************************************************************
773 ** Check every 10 usec to see if the address cycle completed
774 ** The COMMAND bit will clear when the operation is complete.
775 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
776 ** from the CPU Write to the Ready bit assertion.
777 **************************************************************/
779 for(i
= 0; i
< 10; i
++)
783 command
= IXGB_READ_REG(hw
, MSCA
);
785 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
789 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
791 /* Address cycle complete, setup and write the read command */
792 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
793 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
794 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
795 (IXGB_MSCA_READ
| IXGB_MSCA_MDI_COMMAND
));
797 IXGB_WRITE_REG(hw
, MSCA
, command
);
799 /**************************************************************
800 ** Check every 10 usec to see if the read command completed
801 ** The COMMAND bit will clear when the operation is complete.
802 ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
803 ** from the CPU Write to the Ready bit assertion.
804 **************************************************************/
806 for(i
= 0; i
< 10; i
++)
810 command
= IXGB_READ_REG(hw
, MSCA
);
812 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
816 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
818 /* Operation is complete, get the data from the MDIO Read/Write Data
819 * register and return.
821 data
= IXGB_READ_REG(hw
, MSRWD
);
822 data
>>= IXGB_MSRWD_READ_DATA_SHIFT
;
823 return((uint16_t) data
);
826 /******************************************************************************
827 * Writes a word to a device over the Management Data Interface (MDI) bus.
828 * This interface is used to manage Physical layer devices.
830 * hw - Struct containing variables accessed by hw code
831 * reg_address - Offset of device register being read.
832 * phy_address - Address of device on MDI.
833 * device_type - Also known as the Device ID or DID.
834 * data - 16-bit value to be written
838 * The 82597EX has support for several MDI access methods. This routine
839 * uses the new protocol MDI Single Command and Address Operation.
840 * This requires that first an address cycle command is sent, followed by a
842 *****************************************************************************/
844 ixgb_write_phy_reg(struct ixgb_hw
*hw
,
845 uint32_t reg_address
,
846 uint32_t phy_address
,
847 uint32_t device_type
,
851 uint32_t command
= 0;
853 ASSERT(reg_address
<= IXGB_MAX_PHY_REG_ADDRESS
);
854 ASSERT(phy_address
<= IXGB_MAX_PHY_ADDRESS
);
855 ASSERT(device_type
<= IXGB_MAX_PHY_DEV_TYPE
);
857 /* Put the data in the MDIO Read/Write Data register */
858 IXGB_WRITE_REG(hw
, MSRWD
, (uint32_t)data
);
860 /* Setup and write the address cycle command */
861 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
862 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
863 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
864 (IXGB_MSCA_ADDR_CYCLE
| IXGB_MSCA_MDI_COMMAND
));
866 IXGB_WRITE_REG(hw
, MSCA
, command
);
868 /**************************************************************
869 ** Check every 10 usec to see if the address cycle completed
870 ** The COMMAND bit will clear when the operation is complete.
871 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
872 ** from the CPU Write to the Ready bit assertion.
873 **************************************************************/
875 for(i
= 0; i
< 10; i
++)
879 command
= IXGB_READ_REG(hw
, MSCA
);
881 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
885 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
887 /* Address cycle complete, setup and write the write command */
888 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
889 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
890 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
891 (IXGB_MSCA_WRITE
| IXGB_MSCA_MDI_COMMAND
));
893 IXGB_WRITE_REG(hw
, MSCA
, command
);
895 /**************************************************************
896 ** Check every 10 usec to see if the read command completed
897 ** The COMMAND bit will clear when the operation is complete.
898 ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
899 ** from the CPU Write to the Ready bit assertion.
900 **************************************************************/
902 for(i
= 0; i
< 10; i
++)
906 command
= IXGB_READ_REG(hw
, MSCA
);
908 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
912 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
914 /* Operation is complete, return. */
917 /******************************************************************************
918 * Checks to see if the link status of the hardware has changed.
920 * hw - Struct containing variables accessed by hw code
922 * Called by any function that needs to check the link status of the adapter.
923 *****************************************************************************/
925 ixgb_check_for_link(struct ixgb_hw
*hw
)
930 DEBUGFUNC("ixgb_check_for_link");
932 xpcss_reg
= IXGB_READ_REG(hw
, XPCSS
);
933 status_reg
= IXGB_READ_REG(hw
, STATUS
);
935 if ((xpcss_reg
& IXGB_XPCSS_ALIGN_STATUS
) &&
936 (status_reg
& IXGB_STATUS_LU
)) {
938 } else if (!(xpcss_reg
& IXGB_XPCSS_ALIGN_STATUS
) &&
939 (status_reg
& IXGB_STATUS_LU
)) {
940 DEBUGOUT("XPCSS Not Aligned while Status:LU is set.\n");
941 hw
->link_up
= ixgb_link_reset(hw
);
944 * 82597EX errata. Since the lane deskew problem may prevent
945 * link, reset the link before reporting link down.
947 hw
->link_up
= ixgb_link_reset(hw
);
949 /* Anything else for 10 Gig?? */
952 /******************************************************************************
953 * Check for a bad link condition that may have occured.
954 * The indication is that the RFC / LFC registers may be incrementing
955 * continually. A full adapter reset is required to recover.
957 * hw - Struct containing variables accessed by hw code
959 * Called by any function that needs to check the link status of the adapter.
960 *****************************************************************************/
961 boolean_t
ixgb_check_for_bad_link(struct ixgb_hw
*hw
)
963 uint32_t newLFC
, newRFC
;
964 boolean_t bad_link_returncode
= FALSE
;
966 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
967 newLFC
= IXGB_READ_REG(hw
, LFC
);
968 newRFC
= IXGB_READ_REG(hw
, RFC
);
969 if ((hw
->lastLFC
+ 250 < newLFC
)
970 || (hw
->lastRFC
+ 250 < newRFC
)) {
972 ("BAD LINK! too many LFC/RFC since last check\n");
973 bad_link_returncode
= TRUE
;
975 hw
->lastLFC
= newLFC
;
976 hw
->lastRFC
= newRFC
;
979 return bad_link_returncode
;
982 /******************************************************************************
983 * Clears all hardware statistics counters.
985 * hw - Struct containing variables accessed by shared code
986 *****************************************************************************/
988 ixgb_clear_hw_cntrs(struct ixgb_hw
*hw
)
990 volatile uint32_t temp_reg
;
992 DEBUGFUNC("ixgb_clear_hw_cntrs");
994 /* if we are stopped or resetting exit gracefully */
995 if(hw
->adapter_stopped
) {
996 DEBUGOUT("Exiting because the adapter is stopped!!!\n");
1000 temp_reg
= IXGB_READ_REG(hw
, TPRL
);
1001 temp_reg
= IXGB_READ_REG(hw
, TPRH
);
1002 temp_reg
= IXGB_READ_REG(hw
, GPRCL
);
1003 temp_reg
= IXGB_READ_REG(hw
, GPRCH
);
1004 temp_reg
= IXGB_READ_REG(hw
, BPRCL
);
1005 temp_reg
= IXGB_READ_REG(hw
, BPRCH
);
1006 temp_reg
= IXGB_READ_REG(hw
, MPRCL
);
1007 temp_reg
= IXGB_READ_REG(hw
, MPRCH
);
1008 temp_reg
= IXGB_READ_REG(hw
, UPRCL
);
1009 temp_reg
= IXGB_READ_REG(hw
, UPRCH
);
1010 temp_reg
= IXGB_READ_REG(hw
, VPRCL
);
1011 temp_reg
= IXGB_READ_REG(hw
, VPRCH
);
1012 temp_reg
= IXGB_READ_REG(hw
, JPRCL
);
1013 temp_reg
= IXGB_READ_REG(hw
, JPRCH
);
1014 temp_reg
= IXGB_READ_REG(hw
, GORCL
);
1015 temp_reg
= IXGB_READ_REG(hw
, GORCH
);
1016 temp_reg
= IXGB_READ_REG(hw
, TORL
);
1017 temp_reg
= IXGB_READ_REG(hw
, TORH
);
1018 temp_reg
= IXGB_READ_REG(hw
, RNBC
);
1019 temp_reg
= IXGB_READ_REG(hw
, RUC
);
1020 temp_reg
= IXGB_READ_REG(hw
, ROC
);
1021 temp_reg
= IXGB_READ_REG(hw
, RLEC
);
1022 temp_reg
= IXGB_READ_REG(hw
, CRCERRS
);
1023 temp_reg
= IXGB_READ_REG(hw
, ICBC
);
1024 temp_reg
= IXGB_READ_REG(hw
, ECBC
);
1025 temp_reg
= IXGB_READ_REG(hw
, MPC
);
1026 temp_reg
= IXGB_READ_REG(hw
, TPTL
);
1027 temp_reg
= IXGB_READ_REG(hw
, TPTH
);
1028 temp_reg
= IXGB_READ_REG(hw
, GPTCL
);
1029 temp_reg
= IXGB_READ_REG(hw
, GPTCH
);
1030 temp_reg
= IXGB_READ_REG(hw
, BPTCL
);
1031 temp_reg
= IXGB_READ_REG(hw
, BPTCH
);
1032 temp_reg
= IXGB_READ_REG(hw
, MPTCL
);
1033 temp_reg
= IXGB_READ_REG(hw
, MPTCH
);
1034 temp_reg
= IXGB_READ_REG(hw
, UPTCL
);
1035 temp_reg
= IXGB_READ_REG(hw
, UPTCH
);
1036 temp_reg
= IXGB_READ_REG(hw
, VPTCL
);
1037 temp_reg
= IXGB_READ_REG(hw
, VPTCH
);
1038 temp_reg
= IXGB_READ_REG(hw
, JPTCL
);
1039 temp_reg
= IXGB_READ_REG(hw
, JPTCH
);
1040 temp_reg
= IXGB_READ_REG(hw
, GOTCL
);
1041 temp_reg
= IXGB_READ_REG(hw
, GOTCH
);
1042 temp_reg
= IXGB_READ_REG(hw
, TOTL
);
1043 temp_reg
= IXGB_READ_REG(hw
, TOTH
);
1044 temp_reg
= IXGB_READ_REG(hw
, DC
);
1045 temp_reg
= IXGB_READ_REG(hw
, PLT64C
);
1046 temp_reg
= IXGB_READ_REG(hw
, TSCTC
);
1047 temp_reg
= IXGB_READ_REG(hw
, TSCTFC
);
1048 temp_reg
= IXGB_READ_REG(hw
, IBIC
);
1049 temp_reg
= IXGB_READ_REG(hw
, RFC
);
1050 temp_reg
= IXGB_READ_REG(hw
, LFC
);
1051 temp_reg
= IXGB_READ_REG(hw
, PFRC
);
1052 temp_reg
= IXGB_READ_REG(hw
, PFTC
);
1053 temp_reg
= IXGB_READ_REG(hw
, MCFRC
);
1054 temp_reg
= IXGB_READ_REG(hw
, MCFTC
);
1055 temp_reg
= IXGB_READ_REG(hw
, XONRXC
);
1056 temp_reg
= IXGB_READ_REG(hw
, XONTXC
);
1057 temp_reg
= IXGB_READ_REG(hw
, XOFFRXC
);
1058 temp_reg
= IXGB_READ_REG(hw
, XOFFTXC
);
1059 temp_reg
= IXGB_READ_REG(hw
, RJC
);
1063 /******************************************************************************
1064 * Turns on the software controllable LED
1066 * hw - Struct containing variables accessed by shared code
1067 *****************************************************************************/
1069 ixgb_led_on(struct ixgb_hw
*hw
)
1071 uint32_t ctrl0_reg
= IXGB_READ_REG(hw
, CTRL0
);
1073 /* To turn on the LED, clear software-definable pin 0 (SDP0). */
1074 ctrl0_reg
&= ~IXGB_CTRL0_SDP0
;
1075 IXGB_WRITE_REG(hw
, CTRL0
, ctrl0_reg
);
1079 /******************************************************************************
1080 * Turns off the software controllable LED
1082 * hw - Struct containing variables accessed by shared code
1083 *****************************************************************************/
1085 ixgb_led_off(struct ixgb_hw
*hw
)
1087 uint32_t ctrl0_reg
= IXGB_READ_REG(hw
, CTRL0
);
1089 /* To turn off the LED, set software-definable pin 0 (SDP0). */
1090 ctrl0_reg
|= IXGB_CTRL0_SDP0
;
1091 IXGB_WRITE_REG(hw
, CTRL0
, ctrl0_reg
);
1095 /******************************************************************************
1096 * Gets the current PCI bus type, speed, and width of the hardware
1098 * hw - Struct containing variables accessed by shared code
1099 *****************************************************************************/
1101 ixgb_get_bus_info(struct ixgb_hw
*hw
)
1103 uint32_t status_reg
;
1105 status_reg
= IXGB_READ_REG(hw
, STATUS
);
1107 hw
->bus
.type
= (status_reg
& IXGB_STATUS_PCIX_MODE
) ?
1108 ixgb_bus_type_pcix
: ixgb_bus_type_pci
;
1110 if (hw
->bus
.type
== ixgb_bus_type_pci
) {
1111 hw
->bus
.speed
= (status_reg
& IXGB_STATUS_PCI_SPD
) ?
1112 ixgb_bus_speed_66
: ixgb_bus_speed_33
;
1114 switch (status_reg
& IXGB_STATUS_PCIX_SPD_MASK
) {
1115 case IXGB_STATUS_PCIX_SPD_66
:
1116 hw
->bus
.speed
= ixgb_bus_speed_66
;
1118 case IXGB_STATUS_PCIX_SPD_100
:
1119 hw
->bus
.speed
= ixgb_bus_speed_100
;
1121 case IXGB_STATUS_PCIX_SPD_133
:
1122 hw
->bus
.speed
= ixgb_bus_speed_133
;
1125 hw
->bus
.speed
= ixgb_bus_speed_reserved
;
1130 hw
->bus
.width
= (status_reg
& IXGB_STATUS_BUS64
) ?
1131 ixgb_bus_width_64
: ixgb_bus_width_32
;
1136 /******************************************************************************
1137 * Tests a MAC address to ensure it is a valid Individual Address
1139 * mac_addr - pointer to MAC address.
1141 *****************************************************************************/
1143 mac_addr_valid(uint8_t *mac_addr
)
1145 boolean_t is_valid
= TRUE
;
1146 DEBUGFUNC("mac_addr_valid");
1148 /* Make sure it is not a multicast address */
1149 if (IS_MULTICAST(mac_addr
)) {
1150 DEBUGOUT("MAC address is multicast\n");
1153 /* Not a broadcast address */
1154 else if (IS_BROADCAST(mac_addr
)) {
1155 DEBUGOUT("MAC address is broadcast\n");
1158 /* Reject the zero address */
1159 else if (mac_addr
[0] == 0 &&
1165 DEBUGOUT("MAC address is all zeros\n");
1171 /******************************************************************************
1172 * Resets the 10GbE link. Waits the settle time and returns the state of
1175 * hw - Struct containing variables accessed by shared code
1176 *****************************************************************************/
1178 ixgb_link_reset(struct ixgb_hw
*hw
)
1180 boolean_t link_status
= FALSE
;
1181 uint8_t wait_retries
= MAX_RESET_ITERATIONS
;
1182 uint8_t lrst_retries
= MAX_RESET_ITERATIONS
;
1185 /* Reset the link */
1186 IXGB_WRITE_REG(hw
, CTRL0
,
1187 IXGB_READ_REG(hw
, CTRL0
) | IXGB_CTRL0_LRST
);
1189 /* Wait for link-up and lane re-alignment */
1191 udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET
);
1193 ((IXGB_READ_REG(hw
, STATUS
) & IXGB_STATUS_LU
)
1194 && (IXGB_READ_REG(hw
, XPCSS
) &
1195 IXGB_XPCSS_ALIGN_STATUS
)) ? TRUE
: FALSE
;
1196 } while (!link_status
&& --wait_retries
);
1198 } while (!link_status
&& --lrst_retries
);
1203 /******************************************************************************
1204 * Resets the 10GbE optics module.
1206 * hw - Struct containing variables accessed by shared code
1207 *****************************************************************************/
1209 ixgb_optics_reset(struct ixgb_hw
*hw
)
1211 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
1214 ixgb_write_phy_reg(hw
,
1218 MDIO_PMA_PMD_CR1_RESET
);
1220 mdio_reg
= ixgb_read_phy_reg( hw
,