Revert "[PATCH] paravirt: Add startup infrastructure for paravirtualization"
[pv_ops_mirror.git] / drivers / net / via-rhine.c
blobadea290a9d5e4e6f0015d2c939589d67ca98ee05
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 static int rx_copybreak;
47 /* Work-around for broken BIOSes: they are unable to get the chip back out of
48 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
49 static int avoid_D3;
52 * In case you are looking for 'options[]' or 'full_duplex[]', they
53 * are gone. Use ethtool(8) instead.
56 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
57 The Rhine has a 64 element 8390-like hash table. */
58 static const int multicast_filter_limit = 32;
61 /* Operational parameters that are set at compile time. */
63 /* Keep the ring sizes a power of two for compile efficiency.
64 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
65 Making the Tx ring too large decreases the effectiveness of channel
66 bonding and packet priority.
67 There are no ill effects from too-large receive rings. */
68 #define TX_RING_SIZE 16
69 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
70 #ifdef CONFIG_VIA_RHINE_NAPI
71 #define RX_RING_SIZE 64
72 #else
73 #define RX_RING_SIZE 16
74 #endif
77 /* Operational parameters that usually are not changed. */
79 /* Time in jiffies before concluding the transmitter is hung. */
80 #define TX_TIMEOUT (2*HZ)
82 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84 #include <linux/module.h>
85 #include <linux/moduleparam.h>
86 #include <linux/kernel.h>
87 #include <linux/string.h>
88 #include <linux/timer.h>
89 #include <linux/errno.h>
90 #include <linux/ioport.h>
91 #include <linux/slab.h>
92 #include <linux/interrupt.h>
93 #include <linux/pci.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/netdevice.h>
96 #include <linux/etherdevice.h>
97 #include <linux/skbuff.h>
98 #include <linux/init.h>
99 #include <linux/delay.h>
100 #include <linux/mii.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/processor.h> /* Processor type for cache alignment. */
105 #include <asm/io.h>
106 #include <asm/irq.h>
107 #include <asm/uaccess.h>
108 #include <linux/dmi.h>
110 /* These identify the driver base version and may not be removed. */
111 static char version[] __devinitdata =
112 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
114 /* This driver was written to use PCI memory space. Some early versions
115 of the Rhine may only work correctly with I/O space accesses. */
116 #ifdef CONFIG_VIA_RHINE_MMIO
117 #define USE_MMIO
118 #else
119 #endif
121 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
122 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
123 MODULE_LICENSE("GPL");
125 module_param(max_interrupt_work, int, 0);
126 module_param(debug, int, 0);
127 module_param(rx_copybreak, int, 0);
128 module_param(avoid_D3, bool, 0);
129 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
130 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
131 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
132 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
135 Theory of Operation
137 I. Board Compatibility
139 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
140 controller.
142 II. Board-specific settings
144 Boards with this chip are functional only in a bus-master PCI slot.
146 Many operational settings are loaded from the EEPROM to the Config word at
147 offset 0x78. For most of these settings, this driver assumes that they are
148 correct.
149 If this driver is compiled to use PCI memory space operations the EEPROM
150 must be configured to enable memory ops.
152 III. Driver operation
154 IIIa. Ring buffers
156 This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160 IIIb/c. Transmit/Receive Structure
162 This driver attempts to use a zero-copy receive and transmit scheme.
164 Alas, all data buffers are required to start on a 32 bit boundary, so
165 the driver must often copy transmit packets into bounce buffers.
167 The driver allocates full frame size skbuffs for the Rx ring buffers at
168 open() time and passes the skb->data field to the chip as receive data
169 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
170 a fresh skbuff is allocated and the frame is copied to the new skbuff.
171 When the incoming frame is larger, the skbuff is passed directly up the
172 protocol stack. Buffers consumed this way are replaced by newly allocated
173 skbuffs in the last phase of rhine_rx().
175 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
176 using a full-sized skbuff for small frames vs. the copying costs of larger
177 frames. New boards are typically used in generously configured machines
178 and the underfilled buffers have negligible impact compared to the benefit of
179 a single allocation size, so the default value of zero results in never
180 copying packets. When copying is done, the cost is usually mitigated by using
181 a combined copy/checksum routine. Copying also preloads the cache, which is
182 most useful with small frames.
184 Since the VIA chips are only able to transfer data to buffers on 32 bit
185 boundaries, the IP header at offset 14 in an ethernet frame isn't
186 longword aligned for further processing. Copying these unaligned buffers
187 has the beneficial effect of 16-byte aligning the IP header.
189 IIId. Synchronization
191 The driver runs as two independent, single-threaded flows of control. One
192 is the send-packet routine, which enforces single-threaded use by the
193 dev->priv->lock spinlock. The other thread is the interrupt handler, which
194 is single threaded by the hardware and interrupt handling software.
196 The send packet thread has partial control over the Tx ring. It locks the
197 dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
198 is not available it stops the transmit queue by calling netif_stop_queue.
200 The interrupt handler has exclusive control over the Rx ring and records stats
201 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
202 empty by incrementing the dirty_tx mark. If at least half of the entries in
203 the Rx ring are available the transmit queue is woken up if it was stopped.
205 IV. Notes
207 IVb. References
209 Preliminary VT86C100A manual from http://www.via.com.tw/
210 http://www.scyld.com/expert/100mbps.html
211 http://www.scyld.com/expert/NWay.html
212 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
213 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
216 IVc. Errata
218 The VT86C100A manual is not reliable information.
219 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
220 in significant performance degradation for bounce buffer copies on transmit
221 and unaligned IP headers on receive.
222 The chip does not pad to minimum transmit length.
227 /* This table drives the PCI probe routines. It's mostly boilerplate in all
228 of the drivers, and will likely be provided by some future kernel.
229 Note the matching code -- the first table entry matchs all 56** cards but
230 second only the 1234 card.
233 enum rhine_revs {
234 VT86C100A = 0x00,
235 VTunknown0 = 0x20,
236 VT6102 = 0x40,
237 VT8231 = 0x50, /* Integrated MAC */
238 VT8233 = 0x60, /* Integrated MAC */
239 VT8235 = 0x74, /* Integrated MAC */
240 VT8237 = 0x78, /* Integrated MAC */
241 VTunknown1 = 0x7C,
242 VT6105 = 0x80,
243 VT6105_B0 = 0x83,
244 VT6105L = 0x8A,
245 VT6107 = 0x8C,
246 VTunknown2 = 0x8E,
247 VT6105M = 0x90, /* Management adapter */
250 enum rhine_quirks {
251 rqWOL = 0x0001, /* Wake-On-LAN support */
252 rqForceReset = 0x0002,
253 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
254 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
255 rqRhineI = 0x0100, /* See comment below */
258 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
259 * MMIO as well as for the collision counter and the Tx FIFO underflow
260 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
263 /* Beware of PCI posted writes */
264 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
266 static const struct pci_device_id rhine_pci_tbl[] = {
267 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
268 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
269 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
270 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
271 { } /* terminate list */
273 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
276 /* Offsets to the device registers. */
277 enum register_offsets {
278 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
279 ChipCmd1=0x09,
280 IntrStatus=0x0C, IntrEnable=0x0E,
281 MulticastFilter0=0x10, MulticastFilter1=0x14,
282 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
283 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
284 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
285 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
286 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
287 StickyHW=0x83, IntrStatus2=0x84,
288 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
289 WOLcrClr1=0xA6, WOLcgClr=0xA7,
290 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
293 /* Bits in ConfigD */
294 enum backoff_bits {
295 BackOptional=0x01, BackModify=0x02,
296 BackCaptureEffect=0x04, BackRandom=0x08
299 #ifdef USE_MMIO
300 /* Registers we check that mmio and reg are the same. */
301 static const int mmio_verify_registers[] = {
302 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
305 #endif
307 /* Bits in the interrupt status/mask registers. */
308 enum intr_status_bits {
309 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
310 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
311 IntrPCIErr=0x0040,
312 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
313 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
314 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
315 IntrRxWakeUp=0x8000,
316 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
317 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
318 IntrTxErrSummary=0x082218,
321 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
322 enum wol_bits {
323 WOLucast = 0x10,
324 WOLmagic = 0x20,
325 WOLbmcast = 0x30,
326 WOLlnkon = 0x40,
327 WOLlnkoff = 0x80,
330 /* The Rx and Tx buffer descriptors. */
331 struct rx_desc {
332 s32 rx_status;
333 u32 desc_length; /* Chain flag, Buffer/frame length */
334 u32 addr;
335 u32 next_desc;
337 struct tx_desc {
338 s32 tx_status;
339 u32 desc_length; /* Chain flag, Tx Config, Frame length */
340 u32 addr;
341 u32 next_desc;
344 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
345 #define TXDESC 0x00e08000
347 enum rx_status_bits {
348 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
351 /* Bits in *_desc.*_status */
352 enum desc_status_bits {
353 DescOwn=0x80000000
356 /* Bits in ChipCmd. */
357 enum chip_cmd_bits {
358 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
359 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
360 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
361 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
364 struct rhine_private {
365 /* Descriptor rings */
366 struct rx_desc *rx_ring;
367 struct tx_desc *tx_ring;
368 dma_addr_t rx_ring_dma;
369 dma_addr_t tx_ring_dma;
371 /* The addresses of receive-in-place skbuffs. */
372 struct sk_buff *rx_skbuff[RX_RING_SIZE];
373 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
375 /* The saved address of a sent-in-place packet/buffer, for later free(). */
376 struct sk_buff *tx_skbuff[TX_RING_SIZE];
377 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
379 /* Tx bounce buffers (Rhine-I only) */
380 unsigned char *tx_buf[TX_RING_SIZE];
381 unsigned char *tx_bufs;
382 dma_addr_t tx_bufs_dma;
384 struct pci_dev *pdev;
385 long pioaddr;
386 struct net_device_stats stats;
387 spinlock_t lock;
389 /* Frequently used values: keep some adjacent for cache effect. */
390 u32 quirks;
391 struct rx_desc *rx_head_desc;
392 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
393 unsigned int cur_tx, dirty_tx;
394 unsigned int rx_buf_sz; /* Based on MTU+slack. */
395 u8 wolopts;
397 u8 tx_thresh, rx_thresh;
399 struct mii_if_info mii_if;
400 void __iomem *base;
403 static int mdio_read(struct net_device *dev, int phy_id, int location);
404 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
405 static int rhine_open(struct net_device *dev);
406 static void rhine_tx_timeout(struct net_device *dev);
407 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
408 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
409 static void rhine_tx(struct net_device *dev);
410 static int rhine_rx(struct net_device *dev, int limit);
411 static void rhine_error(struct net_device *dev, int intr_status);
412 static void rhine_set_rx_mode(struct net_device *dev);
413 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
414 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
415 static const struct ethtool_ops netdev_ethtool_ops;
416 static int rhine_close(struct net_device *dev);
417 static void rhine_shutdown (struct pci_dev *pdev);
419 #define RHINE_WAIT_FOR(condition) do { \
420 int i=1024; \
421 while (!(condition) && --i) \
423 if (debug > 1 && i < 512) \
424 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
425 DRV_NAME, 1024-i, __func__, __LINE__); \
426 } while(0)
428 static inline u32 get_intr_status(struct net_device *dev)
430 struct rhine_private *rp = netdev_priv(dev);
431 void __iomem *ioaddr = rp->base;
432 u32 intr_status;
434 intr_status = ioread16(ioaddr + IntrStatus);
435 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
436 if (rp->quirks & rqStatusWBRace)
437 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
438 return intr_status;
442 * Get power related registers into sane state.
443 * Notify user about past WOL event.
445 static void rhine_power_init(struct net_device *dev)
447 struct rhine_private *rp = netdev_priv(dev);
448 void __iomem *ioaddr = rp->base;
449 u16 wolstat;
451 if (rp->quirks & rqWOL) {
452 /* Make sure chip is in power state D0 */
453 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
455 /* Disable "force PME-enable" */
456 iowrite8(0x80, ioaddr + WOLcgClr);
458 /* Clear power-event config bits (WOL) */
459 iowrite8(0xFF, ioaddr + WOLcrClr);
460 /* More recent cards can manage two additional patterns */
461 if (rp->quirks & rq6patterns)
462 iowrite8(0x03, ioaddr + WOLcrClr1);
464 /* Save power-event status bits */
465 wolstat = ioread8(ioaddr + PwrcsrSet);
466 if (rp->quirks & rq6patterns)
467 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
469 /* Clear power-event status bits */
470 iowrite8(0xFF, ioaddr + PwrcsrClr);
471 if (rp->quirks & rq6patterns)
472 iowrite8(0x03, ioaddr + PwrcsrClr1);
474 if (wolstat) {
475 char *reason;
476 switch (wolstat) {
477 case WOLmagic:
478 reason = "Magic packet";
479 break;
480 case WOLlnkon:
481 reason = "Link went up";
482 break;
483 case WOLlnkoff:
484 reason = "Link went down";
485 break;
486 case WOLucast:
487 reason = "Unicast packet";
488 break;
489 case WOLbmcast:
490 reason = "Multicast/broadcast packet";
491 break;
492 default:
493 reason = "Unknown";
495 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
496 DRV_NAME, reason);
501 static void rhine_chip_reset(struct net_device *dev)
503 struct rhine_private *rp = netdev_priv(dev);
504 void __iomem *ioaddr = rp->base;
506 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
507 IOSYNC;
509 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
510 printk(KERN_INFO "%s: Reset not complete yet. "
511 "Trying harder.\n", DRV_NAME);
513 /* Force reset */
514 if (rp->quirks & rqForceReset)
515 iowrite8(0x40, ioaddr + MiscCmd);
517 /* Reset can take somewhat longer (rare) */
518 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
521 if (debug > 1)
522 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
523 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
524 "failed" : "succeeded");
527 #ifdef USE_MMIO
528 static void enable_mmio(long pioaddr, u32 quirks)
530 int n;
531 if (quirks & rqRhineI) {
532 /* More recent docs say that this bit is reserved ... */
533 n = inb(pioaddr + ConfigA) | 0x20;
534 outb(n, pioaddr + ConfigA);
535 } else {
536 n = inb(pioaddr + ConfigD) | 0x80;
537 outb(n, pioaddr + ConfigD);
540 #endif
543 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
544 * (plus 0x6C for Rhine-I/II)
546 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
548 struct rhine_private *rp = netdev_priv(dev);
549 void __iomem *ioaddr = rp->base;
551 outb(0x20, pioaddr + MACRegEEcsr);
552 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
554 #ifdef USE_MMIO
556 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
557 * MMIO. If reloading EEPROM was done first this could be avoided, but
558 * it is not known if that still works with the "win98-reboot" problem.
560 enable_mmio(pioaddr, rp->quirks);
561 #endif
563 /* Turn off EEPROM-controlled wake-up (magic packet) */
564 if (rp->quirks & rqWOL)
565 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
569 #ifdef CONFIG_NET_POLL_CONTROLLER
570 static void rhine_poll(struct net_device *dev)
572 disable_irq(dev->irq);
573 rhine_interrupt(dev->irq, (void *)dev);
574 enable_irq(dev->irq);
576 #endif
578 #ifdef CONFIG_VIA_RHINE_NAPI
579 static int rhine_napipoll(struct net_device *dev, int *budget)
581 struct rhine_private *rp = netdev_priv(dev);
582 void __iomem *ioaddr = rp->base;
583 int done, limit = min(dev->quota, *budget);
585 done = rhine_rx(dev, limit);
586 *budget -= done;
587 dev->quota -= done;
589 if (done < limit) {
590 netif_rx_complete(dev);
592 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
593 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
594 IntrTxDone | IntrTxError | IntrTxUnderrun |
595 IntrPCIErr | IntrStatsMax | IntrLinkChange,
596 ioaddr + IntrEnable);
597 return 0;
599 else
600 return 1;
602 #endif
604 static void rhine_hw_init(struct net_device *dev, long pioaddr)
606 struct rhine_private *rp = netdev_priv(dev);
608 /* Reset the chip to erase previous misconfiguration. */
609 rhine_chip_reset(dev);
611 /* Rhine-I needs extra time to recuperate before EEPROM reload */
612 if (rp->quirks & rqRhineI)
613 msleep(5);
615 /* Reload EEPROM controlled bytes cleared by soft reset */
616 rhine_reload_eeprom(pioaddr, dev);
619 static int __devinit rhine_init_one(struct pci_dev *pdev,
620 const struct pci_device_id *ent)
622 struct net_device *dev;
623 struct rhine_private *rp;
624 int i, rc;
625 u8 pci_rev;
626 u32 quirks;
627 long pioaddr;
628 long memaddr;
629 void __iomem *ioaddr;
630 int io_size, phy_id;
631 const char *name;
632 #ifdef USE_MMIO
633 int bar = 1;
634 #else
635 int bar = 0;
636 #endif
638 /* when built into the kernel, we only print version if device is found */
639 #ifndef MODULE
640 static int printed_version;
641 if (!printed_version++)
642 printk(version);
643 #endif
645 pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);
647 io_size = 256;
648 phy_id = 0;
649 quirks = 0;
650 name = "Rhine";
651 if (pci_rev < VTunknown0) {
652 quirks = rqRhineI;
653 io_size = 128;
655 else if (pci_rev >= VT6102) {
656 quirks = rqWOL | rqForceReset;
657 if (pci_rev < VT6105) {
658 name = "Rhine II";
659 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
661 else {
662 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
663 if (pci_rev >= VT6105_B0)
664 quirks |= rq6patterns;
665 if (pci_rev < VT6105M)
666 name = "Rhine III";
667 else
668 name = "Rhine III (Management Adapter)";
672 rc = pci_enable_device(pdev);
673 if (rc)
674 goto err_out;
676 /* this should always be supported */
677 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
678 if (rc) {
679 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
680 "the card!?\n");
681 goto err_out;
684 /* sanity check */
685 if ((pci_resource_len(pdev, 0) < io_size) ||
686 (pci_resource_len(pdev, 1) < io_size)) {
687 rc = -EIO;
688 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
689 goto err_out;
692 pioaddr = pci_resource_start(pdev, 0);
693 memaddr = pci_resource_start(pdev, 1);
695 pci_set_master(pdev);
697 dev = alloc_etherdev(sizeof(struct rhine_private));
698 if (!dev) {
699 rc = -ENOMEM;
700 printk(KERN_ERR "alloc_etherdev failed\n");
701 goto err_out;
703 SET_MODULE_OWNER(dev);
704 SET_NETDEV_DEV(dev, &pdev->dev);
706 rp = netdev_priv(dev);
707 rp->quirks = quirks;
708 rp->pioaddr = pioaddr;
709 rp->pdev = pdev;
711 rc = pci_request_regions(pdev, DRV_NAME);
712 if (rc)
713 goto err_out_free_netdev;
715 ioaddr = pci_iomap(pdev, bar, io_size);
716 if (!ioaddr) {
717 rc = -EIO;
718 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
719 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
720 goto err_out_free_res;
723 #ifdef USE_MMIO
724 enable_mmio(pioaddr, quirks);
726 /* Check that selected MMIO registers match the PIO ones */
727 i = 0;
728 while (mmio_verify_registers[i]) {
729 int reg = mmio_verify_registers[i++];
730 unsigned char a = inb(pioaddr+reg);
731 unsigned char b = readb(ioaddr+reg);
732 if (a != b) {
733 rc = -EIO;
734 printk(KERN_ERR "MMIO do not match PIO [%02x] "
735 "(%02x != %02x)\n", reg, a, b);
736 goto err_out_unmap;
739 #endif /* USE_MMIO */
741 dev->base_addr = (unsigned long)ioaddr;
742 rp->base = ioaddr;
744 /* Get chip registers into a sane state */
745 rhine_power_init(dev);
746 rhine_hw_init(dev, pioaddr);
748 for (i = 0; i < 6; i++)
749 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
750 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
752 if (!is_valid_ether_addr(dev->perm_addr)) {
753 rc = -EIO;
754 printk(KERN_ERR "Invalid MAC address\n");
755 goto err_out_unmap;
758 /* For Rhine-I/II, phy_id is loaded from EEPROM */
759 if (!phy_id)
760 phy_id = ioread8(ioaddr + 0x6C);
762 dev->irq = pdev->irq;
764 spin_lock_init(&rp->lock);
765 rp->mii_if.dev = dev;
766 rp->mii_if.mdio_read = mdio_read;
767 rp->mii_if.mdio_write = mdio_write;
768 rp->mii_if.phy_id_mask = 0x1f;
769 rp->mii_if.reg_num_mask = 0x1f;
771 /* The chip-specific entries in the device structure. */
772 dev->open = rhine_open;
773 dev->hard_start_xmit = rhine_start_tx;
774 dev->stop = rhine_close;
775 dev->get_stats = rhine_get_stats;
776 dev->set_multicast_list = rhine_set_rx_mode;
777 dev->do_ioctl = netdev_ioctl;
778 dev->ethtool_ops = &netdev_ethtool_ops;
779 dev->tx_timeout = rhine_tx_timeout;
780 dev->watchdog_timeo = TX_TIMEOUT;
781 #ifdef CONFIG_NET_POLL_CONTROLLER
782 dev->poll_controller = rhine_poll;
783 #endif
784 #ifdef CONFIG_VIA_RHINE_NAPI
785 dev->poll = rhine_napipoll;
786 dev->weight = 64;
787 #endif
788 if (rp->quirks & rqRhineI)
789 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
791 /* dev->name not defined before register_netdev()! */
792 rc = register_netdev(dev);
793 if (rc)
794 goto err_out_unmap;
796 printk(KERN_INFO "%s: VIA %s at 0x%lx, ",
797 dev->name, name,
798 #ifdef USE_MMIO
799 memaddr
800 #else
801 (long)ioaddr
802 #endif
805 for (i = 0; i < 5; i++)
806 printk("%2.2x:", dev->dev_addr[i]);
807 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], pdev->irq);
809 pci_set_drvdata(pdev, dev);
812 u16 mii_cmd;
813 int mii_status = mdio_read(dev, phy_id, 1);
814 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
815 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
816 if (mii_status != 0xffff && mii_status != 0x0000) {
817 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
818 printk(KERN_INFO "%s: MII PHY found at address "
819 "%d, status 0x%4.4x advertising %4.4x "
820 "Link %4.4x.\n", dev->name, phy_id,
821 mii_status, rp->mii_if.advertising,
822 mdio_read(dev, phy_id, 5));
824 /* set IFF_RUNNING */
825 if (mii_status & BMSR_LSTATUS)
826 netif_carrier_on(dev);
827 else
828 netif_carrier_off(dev);
832 rp->mii_if.phy_id = phy_id;
833 if (debug > 1 && avoid_D3)
834 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
835 dev->name);
837 return 0;
839 err_out_unmap:
840 pci_iounmap(pdev, ioaddr);
841 err_out_free_res:
842 pci_release_regions(pdev);
843 err_out_free_netdev:
844 free_netdev(dev);
845 err_out:
846 return rc;
849 static int alloc_ring(struct net_device* dev)
851 struct rhine_private *rp = netdev_priv(dev);
852 void *ring;
853 dma_addr_t ring_dma;
855 ring = pci_alloc_consistent(rp->pdev,
856 RX_RING_SIZE * sizeof(struct rx_desc) +
857 TX_RING_SIZE * sizeof(struct tx_desc),
858 &ring_dma);
859 if (!ring) {
860 printk(KERN_ERR "Could not allocate DMA memory.\n");
861 return -ENOMEM;
863 if (rp->quirks & rqRhineI) {
864 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
865 PKT_BUF_SZ * TX_RING_SIZE,
866 &rp->tx_bufs_dma);
867 if (rp->tx_bufs == NULL) {
868 pci_free_consistent(rp->pdev,
869 RX_RING_SIZE * sizeof(struct rx_desc) +
870 TX_RING_SIZE * sizeof(struct tx_desc),
871 ring, ring_dma);
872 return -ENOMEM;
876 rp->rx_ring = ring;
877 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
878 rp->rx_ring_dma = ring_dma;
879 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
881 return 0;
884 static void free_ring(struct net_device* dev)
886 struct rhine_private *rp = netdev_priv(dev);
888 pci_free_consistent(rp->pdev,
889 RX_RING_SIZE * sizeof(struct rx_desc) +
890 TX_RING_SIZE * sizeof(struct tx_desc),
891 rp->rx_ring, rp->rx_ring_dma);
892 rp->tx_ring = NULL;
894 if (rp->tx_bufs)
895 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
896 rp->tx_bufs, rp->tx_bufs_dma);
898 rp->tx_bufs = NULL;
902 static void alloc_rbufs(struct net_device *dev)
904 struct rhine_private *rp = netdev_priv(dev);
905 dma_addr_t next;
906 int i;
908 rp->dirty_rx = rp->cur_rx = 0;
910 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
911 rp->rx_head_desc = &rp->rx_ring[0];
912 next = rp->rx_ring_dma;
914 /* Init the ring entries */
915 for (i = 0; i < RX_RING_SIZE; i++) {
916 rp->rx_ring[i].rx_status = 0;
917 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
918 next += sizeof(struct rx_desc);
919 rp->rx_ring[i].next_desc = cpu_to_le32(next);
920 rp->rx_skbuff[i] = NULL;
922 /* Mark the last entry as wrapping the ring. */
923 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
925 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
926 for (i = 0; i < RX_RING_SIZE; i++) {
927 struct sk_buff *skb = dev_alloc_skb(rp->rx_buf_sz);
928 rp->rx_skbuff[i] = skb;
929 if (skb == NULL)
930 break;
931 skb->dev = dev; /* Mark as being used by this device. */
933 rp->rx_skbuff_dma[i] =
934 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
935 PCI_DMA_FROMDEVICE);
937 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
938 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
940 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
943 static void free_rbufs(struct net_device* dev)
945 struct rhine_private *rp = netdev_priv(dev);
946 int i;
948 /* Free all the skbuffs in the Rx queue. */
949 for (i = 0; i < RX_RING_SIZE; i++) {
950 rp->rx_ring[i].rx_status = 0;
951 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
952 if (rp->rx_skbuff[i]) {
953 pci_unmap_single(rp->pdev,
954 rp->rx_skbuff_dma[i],
955 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
956 dev_kfree_skb(rp->rx_skbuff[i]);
958 rp->rx_skbuff[i] = NULL;
962 static void alloc_tbufs(struct net_device* dev)
964 struct rhine_private *rp = netdev_priv(dev);
965 dma_addr_t next;
966 int i;
968 rp->dirty_tx = rp->cur_tx = 0;
969 next = rp->tx_ring_dma;
970 for (i = 0; i < TX_RING_SIZE; i++) {
971 rp->tx_skbuff[i] = NULL;
972 rp->tx_ring[i].tx_status = 0;
973 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
974 next += sizeof(struct tx_desc);
975 rp->tx_ring[i].next_desc = cpu_to_le32(next);
976 if (rp->quirks & rqRhineI)
977 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
979 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
983 static void free_tbufs(struct net_device* dev)
985 struct rhine_private *rp = netdev_priv(dev);
986 int i;
988 for (i = 0; i < TX_RING_SIZE; i++) {
989 rp->tx_ring[i].tx_status = 0;
990 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
991 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
992 if (rp->tx_skbuff[i]) {
993 if (rp->tx_skbuff_dma[i]) {
994 pci_unmap_single(rp->pdev,
995 rp->tx_skbuff_dma[i],
996 rp->tx_skbuff[i]->len,
997 PCI_DMA_TODEVICE);
999 dev_kfree_skb(rp->tx_skbuff[i]);
1001 rp->tx_skbuff[i] = NULL;
1002 rp->tx_buf[i] = NULL;
1006 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1008 struct rhine_private *rp = netdev_priv(dev);
1009 void __iomem *ioaddr = rp->base;
1011 mii_check_media(&rp->mii_if, debug, init_media);
1013 if (rp->mii_if.full_duplex)
1014 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1015 ioaddr + ChipCmd1);
1016 else
1017 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1018 ioaddr + ChipCmd1);
1019 if (debug > 1)
1020 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1021 rp->mii_if.force_media, netif_carrier_ok(dev));
1024 /* Called after status of force_media possibly changed */
1025 static void rhine_set_carrier(struct mii_if_info *mii)
1027 if (mii->force_media) {
1028 /* autoneg is off: Link is always assumed to be up */
1029 if (!netif_carrier_ok(mii->dev))
1030 netif_carrier_on(mii->dev);
1032 else /* Let MMI library update carrier status */
1033 rhine_check_media(mii->dev, 0);
1034 if (debug > 1)
1035 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1036 mii->dev->name, mii->force_media,
1037 netif_carrier_ok(mii->dev));
1040 static void init_registers(struct net_device *dev)
1042 struct rhine_private *rp = netdev_priv(dev);
1043 void __iomem *ioaddr = rp->base;
1044 int i;
1046 for (i = 0; i < 6; i++)
1047 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1049 /* Initialize other registers. */
1050 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1051 /* Configure initial FIFO thresholds. */
1052 iowrite8(0x20, ioaddr + TxConfig);
1053 rp->tx_thresh = 0x20;
1054 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1056 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1057 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1059 rhine_set_rx_mode(dev);
1061 netif_poll_enable(dev);
1063 /* Enable interrupts by setting the interrupt mask. */
1064 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1065 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1066 IntrTxDone | IntrTxError | IntrTxUnderrun |
1067 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1068 ioaddr + IntrEnable);
1070 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1071 ioaddr + ChipCmd);
1072 rhine_check_media(dev, 1);
1075 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1076 static void rhine_enable_linkmon(void __iomem *ioaddr)
1078 iowrite8(0, ioaddr + MIICmd);
1079 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1080 iowrite8(0x80, ioaddr + MIICmd);
1082 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1084 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1087 /* Disable MII link status auto-polling (required for MDIO access) */
1088 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1090 iowrite8(0, ioaddr + MIICmd);
1092 if (quirks & rqRhineI) {
1093 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1095 /* Can be called from ISR. Evil. */
1096 mdelay(1);
1098 /* 0x80 must be set immediately before turning it off */
1099 iowrite8(0x80, ioaddr + MIICmd);
1101 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1103 /* Heh. Now clear 0x80 again. */
1104 iowrite8(0, ioaddr + MIICmd);
1106 else
1107 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1110 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1112 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1114 struct rhine_private *rp = netdev_priv(dev);
1115 void __iomem *ioaddr = rp->base;
1116 int result;
1118 rhine_disable_linkmon(ioaddr, rp->quirks);
1120 /* rhine_disable_linkmon already cleared MIICmd */
1121 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1122 iowrite8(regnum, ioaddr + MIIRegAddr);
1123 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1124 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1125 result = ioread16(ioaddr + MIIData);
1127 rhine_enable_linkmon(ioaddr);
1128 return result;
1131 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1133 struct rhine_private *rp = netdev_priv(dev);
1134 void __iomem *ioaddr = rp->base;
1136 rhine_disable_linkmon(ioaddr, rp->quirks);
1138 /* rhine_disable_linkmon already cleared MIICmd */
1139 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1140 iowrite8(regnum, ioaddr + MIIRegAddr);
1141 iowrite16(value, ioaddr + MIIData);
1142 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1143 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1145 rhine_enable_linkmon(ioaddr);
1148 static int rhine_open(struct net_device *dev)
1150 struct rhine_private *rp = netdev_priv(dev);
1151 void __iomem *ioaddr = rp->base;
1152 int rc;
1154 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1155 dev);
1156 if (rc)
1157 return rc;
1159 if (debug > 1)
1160 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1161 dev->name, rp->pdev->irq);
1163 rc = alloc_ring(dev);
1164 if (rc) {
1165 free_irq(rp->pdev->irq, dev);
1166 return rc;
1168 alloc_rbufs(dev);
1169 alloc_tbufs(dev);
1170 rhine_chip_reset(dev);
1171 init_registers(dev);
1172 if (debug > 2)
1173 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1174 "MII status: %4.4x.\n",
1175 dev->name, ioread16(ioaddr + ChipCmd),
1176 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1178 netif_start_queue(dev);
1180 return 0;
1183 static void rhine_tx_timeout(struct net_device *dev)
1185 struct rhine_private *rp = netdev_priv(dev);
1186 void __iomem *ioaddr = rp->base;
1188 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1189 "%4.4x, resetting...\n",
1190 dev->name, ioread16(ioaddr + IntrStatus),
1191 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1193 /* protect against concurrent rx interrupts */
1194 disable_irq(rp->pdev->irq);
1196 spin_lock(&rp->lock);
1198 /* clear all descriptors */
1199 free_tbufs(dev);
1200 free_rbufs(dev);
1201 alloc_tbufs(dev);
1202 alloc_rbufs(dev);
1204 /* Reinitialize the hardware. */
1205 rhine_chip_reset(dev);
1206 init_registers(dev);
1208 spin_unlock(&rp->lock);
1209 enable_irq(rp->pdev->irq);
1211 dev->trans_start = jiffies;
1212 rp->stats.tx_errors++;
1213 netif_wake_queue(dev);
1216 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1218 struct rhine_private *rp = netdev_priv(dev);
1219 void __iomem *ioaddr = rp->base;
1220 unsigned entry;
1222 /* Caution: the write order is important here, set the field
1223 with the "ownership" bits last. */
1225 /* Calculate the next Tx descriptor entry. */
1226 entry = rp->cur_tx % TX_RING_SIZE;
1228 if (skb_padto(skb, ETH_ZLEN))
1229 return 0;
1231 rp->tx_skbuff[entry] = skb;
1233 if ((rp->quirks & rqRhineI) &&
1234 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1235 /* Must use alignment buffer. */
1236 if (skb->len > PKT_BUF_SZ) {
1237 /* packet too long, drop it */
1238 dev_kfree_skb(skb);
1239 rp->tx_skbuff[entry] = NULL;
1240 rp->stats.tx_dropped++;
1241 return 0;
1244 /* Padding is not copied and so must be redone. */
1245 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1246 if (skb->len < ETH_ZLEN)
1247 memset(rp->tx_buf[entry] + skb->len, 0,
1248 ETH_ZLEN - skb->len);
1249 rp->tx_skbuff_dma[entry] = 0;
1250 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1251 (rp->tx_buf[entry] -
1252 rp->tx_bufs));
1253 } else {
1254 rp->tx_skbuff_dma[entry] =
1255 pci_map_single(rp->pdev, skb->data, skb->len,
1256 PCI_DMA_TODEVICE);
1257 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1260 rp->tx_ring[entry].desc_length =
1261 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1263 /* lock eth irq */
1264 spin_lock_irq(&rp->lock);
1265 wmb();
1266 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1267 wmb();
1269 rp->cur_tx++;
1271 /* Non-x86 Todo: explicitly flush cache lines here. */
1273 /* Wake the potentially-idle transmit channel */
1274 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1275 ioaddr + ChipCmd1);
1276 IOSYNC;
1278 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1279 netif_stop_queue(dev);
1281 dev->trans_start = jiffies;
1283 spin_unlock_irq(&rp->lock);
1285 if (debug > 4) {
1286 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1287 dev->name, rp->cur_tx-1, entry);
1289 return 0;
1292 /* The interrupt handler does all of the Rx thread work and cleans up
1293 after the Tx thread. */
1294 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1296 struct net_device *dev = dev_instance;
1297 struct rhine_private *rp = netdev_priv(dev);
1298 void __iomem *ioaddr = rp->base;
1299 u32 intr_status;
1300 int boguscnt = max_interrupt_work;
1301 int handled = 0;
1303 while ((intr_status = get_intr_status(dev))) {
1304 handled = 1;
1306 /* Acknowledge all of the current interrupt sources ASAP. */
1307 if (intr_status & IntrTxDescRace)
1308 iowrite8(0x08, ioaddr + IntrStatus2);
1309 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1310 IOSYNC;
1312 if (debug > 4)
1313 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1314 dev->name, intr_status);
1316 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1317 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1318 #ifdef CONFIG_VIA_RHINE_NAPI
1319 iowrite16(IntrTxAborted |
1320 IntrTxDone | IntrTxError | IntrTxUnderrun |
1321 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1322 ioaddr + IntrEnable);
1324 netif_rx_schedule(dev);
1325 #else
1326 rhine_rx(dev, RX_RING_SIZE);
1327 #endif
1330 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1331 if (intr_status & IntrTxErrSummary) {
1332 /* Avoid scavenging before Tx engine turned off */
1333 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1334 if (debug > 2 &&
1335 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1336 printk(KERN_WARNING "%s: "
1337 "rhine_interrupt() Tx engine"
1338 "still on.\n", dev->name);
1340 rhine_tx(dev);
1343 /* Abnormal error summary/uncommon events handlers. */
1344 if (intr_status & (IntrPCIErr | IntrLinkChange |
1345 IntrStatsMax | IntrTxError | IntrTxAborted |
1346 IntrTxUnderrun | IntrTxDescRace))
1347 rhine_error(dev, intr_status);
1349 if (--boguscnt < 0) {
1350 printk(KERN_WARNING "%s: Too much work at interrupt, "
1351 "status=%#8.8x.\n",
1352 dev->name, intr_status);
1353 break;
1357 if (debug > 3)
1358 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1359 dev->name, ioread16(ioaddr + IntrStatus));
1360 return IRQ_RETVAL(handled);
1363 /* This routine is logically part of the interrupt handler, but isolated
1364 for clarity. */
1365 static void rhine_tx(struct net_device *dev)
1367 struct rhine_private *rp = netdev_priv(dev);
1368 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1370 spin_lock(&rp->lock);
1372 /* find and cleanup dirty tx descriptors */
1373 while (rp->dirty_tx != rp->cur_tx) {
1374 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1375 if (debug > 6)
1376 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1377 entry, txstatus);
1378 if (txstatus & DescOwn)
1379 break;
1380 if (txstatus & 0x8000) {
1381 if (debug > 1)
1382 printk(KERN_DEBUG "%s: Transmit error, "
1383 "Tx status %8.8x.\n",
1384 dev->name, txstatus);
1385 rp->stats.tx_errors++;
1386 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1387 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1388 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1389 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1390 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1391 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1392 rp->stats.tx_fifo_errors++;
1393 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1394 break; /* Keep the skb - we try again */
1396 /* Transmitter restarted in 'abnormal' handler. */
1397 } else {
1398 if (rp->quirks & rqRhineI)
1399 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1400 else
1401 rp->stats.collisions += txstatus & 0x0F;
1402 if (debug > 6)
1403 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1404 (txstatus >> 3) & 0xF,
1405 txstatus & 0xF);
1406 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1407 rp->stats.tx_packets++;
1409 /* Free the original skb. */
1410 if (rp->tx_skbuff_dma[entry]) {
1411 pci_unmap_single(rp->pdev,
1412 rp->tx_skbuff_dma[entry],
1413 rp->tx_skbuff[entry]->len,
1414 PCI_DMA_TODEVICE);
1416 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1417 rp->tx_skbuff[entry] = NULL;
1418 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1420 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1421 netif_wake_queue(dev);
1423 spin_unlock(&rp->lock);
1426 /* Process up to limit frames from receive ring */
1427 static int rhine_rx(struct net_device *dev, int limit)
1429 struct rhine_private *rp = netdev_priv(dev);
1430 int count;
1431 int entry = rp->cur_rx % RX_RING_SIZE;
1433 if (debug > 4) {
1434 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1435 dev->name, entry,
1436 le32_to_cpu(rp->rx_head_desc->rx_status));
1439 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1440 for (count = 0; count < limit; ++count) {
1441 struct rx_desc *desc = rp->rx_head_desc;
1442 u32 desc_status = le32_to_cpu(desc->rx_status);
1443 int data_size = desc_status >> 16;
1445 if (desc_status & DescOwn)
1446 break;
1448 if (debug > 4)
1449 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1450 desc_status);
1452 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1453 if ((desc_status & RxWholePkt) != RxWholePkt) {
1454 printk(KERN_WARNING "%s: Oversized Ethernet "
1455 "frame spanned multiple buffers, entry "
1456 "%#x length %d status %8.8x!\n",
1457 dev->name, entry, data_size,
1458 desc_status);
1459 printk(KERN_WARNING "%s: Oversized Ethernet "
1460 "frame %p vs %p.\n", dev->name,
1461 rp->rx_head_desc, &rp->rx_ring[entry]);
1462 rp->stats.rx_length_errors++;
1463 } else if (desc_status & RxErr) {
1464 /* There was a error. */
1465 if (debug > 2)
1466 printk(KERN_DEBUG "rhine_rx() Rx "
1467 "error was %8.8x.\n",
1468 desc_status);
1469 rp->stats.rx_errors++;
1470 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1471 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1472 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1473 if (desc_status & 0x0002) {
1474 /* this can also be updated outside the interrupt handler */
1475 spin_lock(&rp->lock);
1476 rp->stats.rx_crc_errors++;
1477 spin_unlock(&rp->lock);
1480 } else {
1481 struct sk_buff *skb;
1482 /* Length should omit the CRC */
1483 int pkt_len = data_size - 4;
1485 /* Check if the packet is long enough to accept without
1486 copying to a minimally-sized skbuff. */
1487 if (pkt_len < rx_copybreak &&
1488 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1489 skb_reserve(skb, 2); /* 16 byte align the IP header */
1490 pci_dma_sync_single_for_cpu(rp->pdev,
1491 rp->rx_skbuff_dma[entry],
1492 rp->rx_buf_sz,
1493 PCI_DMA_FROMDEVICE);
1495 eth_copy_and_sum(skb,
1496 rp->rx_skbuff[entry]->data,
1497 pkt_len, 0);
1498 skb_put(skb, pkt_len);
1499 pci_dma_sync_single_for_device(rp->pdev,
1500 rp->rx_skbuff_dma[entry],
1501 rp->rx_buf_sz,
1502 PCI_DMA_FROMDEVICE);
1503 } else {
1504 skb = rp->rx_skbuff[entry];
1505 if (skb == NULL) {
1506 printk(KERN_ERR "%s: Inconsistent Rx "
1507 "descriptor chain.\n",
1508 dev->name);
1509 break;
1511 rp->rx_skbuff[entry] = NULL;
1512 skb_put(skb, pkt_len);
1513 pci_unmap_single(rp->pdev,
1514 rp->rx_skbuff_dma[entry],
1515 rp->rx_buf_sz,
1516 PCI_DMA_FROMDEVICE);
1518 skb->protocol = eth_type_trans(skb, dev);
1519 #ifdef CONFIG_VIA_RHINE_NAPI
1520 netif_receive_skb(skb);
1521 #else
1522 netif_rx(skb);
1523 #endif
1524 dev->last_rx = jiffies;
1525 rp->stats.rx_bytes += pkt_len;
1526 rp->stats.rx_packets++;
1528 entry = (++rp->cur_rx) % RX_RING_SIZE;
1529 rp->rx_head_desc = &rp->rx_ring[entry];
1532 /* Refill the Rx ring buffers. */
1533 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1534 struct sk_buff *skb;
1535 entry = rp->dirty_rx % RX_RING_SIZE;
1536 if (rp->rx_skbuff[entry] == NULL) {
1537 skb = dev_alloc_skb(rp->rx_buf_sz);
1538 rp->rx_skbuff[entry] = skb;
1539 if (skb == NULL)
1540 break; /* Better luck next round. */
1541 skb->dev = dev; /* Mark as being used by this device. */
1542 rp->rx_skbuff_dma[entry] =
1543 pci_map_single(rp->pdev, skb->data,
1544 rp->rx_buf_sz,
1545 PCI_DMA_FROMDEVICE);
1546 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1548 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1551 return count;
1555 * Clears the "tally counters" for CRC errors and missed frames(?).
1556 * It has been reported that some chips need a write of 0 to clear
1557 * these, for others the counters are set to 1 when written to and
1558 * instead cleared when read. So we clear them both ways ...
1560 static inline void clear_tally_counters(void __iomem *ioaddr)
1562 iowrite32(0, ioaddr + RxMissed);
1563 ioread16(ioaddr + RxCRCErrs);
1564 ioread16(ioaddr + RxMissed);
1567 static void rhine_restart_tx(struct net_device *dev) {
1568 struct rhine_private *rp = netdev_priv(dev);
1569 void __iomem *ioaddr = rp->base;
1570 int entry = rp->dirty_tx % TX_RING_SIZE;
1571 u32 intr_status;
1574 * If new errors occured, we need to sort them out before doing Tx.
1575 * In that case the ISR will be back here RSN anyway.
1577 intr_status = get_intr_status(dev);
1579 if ((intr_status & IntrTxErrSummary) == 0) {
1581 /* We know better than the chip where it should continue. */
1582 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1583 ioaddr + TxRingPtr);
1585 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1586 ioaddr + ChipCmd);
1587 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1588 ioaddr + ChipCmd1);
1589 IOSYNC;
1591 else {
1592 /* This should never happen */
1593 if (debug > 1)
1594 printk(KERN_WARNING "%s: rhine_restart_tx() "
1595 "Another error occured %8.8x.\n",
1596 dev->name, intr_status);
1601 static void rhine_error(struct net_device *dev, int intr_status)
1603 struct rhine_private *rp = netdev_priv(dev);
1604 void __iomem *ioaddr = rp->base;
1606 spin_lock(&rp->lock);
1608 if (intr_status & IntrLinkChange)
1609 rhine_check_media(dev, 0);
1610 if (intr_status & IntrStatsMax) {
1611 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1612 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1613 clear_tally_counters(ioaddr);
1615 if (intr_status & IntrTxAborted) {
1616 if (debug > 1)
1617 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1618 dev->name, intr_status);
1620 if (intr_status & IntrTxUnderrun) {
1621 if (rp->tx_thresh < 0xE0)
1622 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1623 if (debug > 1)
1624 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1625 "threshold now %2.2x.\n",
1626 dev->name, rp->tx_thresh);
1628 if (intr_status & IntrTxDescRace) {
1629 if (debug > 2)
1630 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1631 dev->name);
1633 if ((intr_status & IntrTxError) &&
1634 (intr_status & (IntrTxAborted |
1635 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1636 if (rp->tx_thresh < 0xE0) {
1637 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1639 if (debug > 1)
1640 printk(KERN_INFO "%s: Unspecified error. Tx "
1641 "threshold now %2.2x.\n",
1642 dev->name, rp->tx_thresh);
1644 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1645 IntrTxError))
1646 rhine_restart_tx(dev);
1648 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1649 IntrTxError | IntrTxAborted | IntrNormalSummary |
1650 IntrTxDescRace)) {
1651 if (debug > 1)
1652 printk(KERN_ERR "%s: Something Wicked happened! "
1653 "%8.8x.\n", dev->name, intr_status);
1656 spin_unlock(&rp->lock);
1659 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1661 struct rhine_private *rp = netdev_priv(dev);
1662 void __iomem *ioaddr = rp->base;
1663 unsigned long flags;
1665 spin_lock_irqsave(&rp->lock, flags);
1666 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1667 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1668 clear_tally_counters(ioaddr);
1669 spin_unlock_irqrestore(&rp->lock, flags);
1671 return &rp->stats;
1674 static void rhine_set_rx_mode(struct net_device *dev)
1676 struct rhine_private *rp = netdev_priv(dev);
1677 void __iomem *ioaddr = rp->base;
1678 u32 mc_filter[2]; /* Multicast hash filter */
1679 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1681 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1682 rx_mode = 0x1C;
1683 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1684 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1685 } else if ((dev->mc_count > multicast_filter_limit)
1686 || (dev->flags & IFF_ALLMULTI)) {
1687 /* Too many to match, or accept all multicasts. */
1688 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1689 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1690 rx_mode = 0x0C;
1691 } else {
1692 struct dev_mc_list *mclist;
1693 int i;
1694 memset(mc_filter, 0, sizeof(mc_filter));
1695 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1696 i++, mclist = mclist->next) {
1697 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1699 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1701 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1702 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1703 rx_mode = 0x0C;
1705 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1708 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1710 struct rhine_private *rp = netdev_priv(dev);
1712 strcpy(info->driver, DRV_NAME);
1713 strcpy(info->version, DRV_VERSION);
1714 strcpy(info->bus_info, pci_name(rp->pdev));
1717 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1719 struct rhine_private *rp = netdev_priv(dev);
1720 int rc;
1722 spin_lock_irq(&rp->lock);
1723 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1724 spin_unlock_irq(&rp->lock);
1726 return rc;
1729 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1731 struct rhine_private *rp = netdev_priv(dev);
1732 int rc;
1734 spin_lock_irq(&rp->lock);
1735 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1736 spin_unlock_irq(&rp->lock);
1737 rhine_set_carrier(&rp->mii_if);
1739 return rc;
1742 static int netdev_nway_reset(struct net_device *dev)
1744 struct rhine_private *rp = netdev_priv(dev);
1746 return mii_nway_restart(&rp->mii_if);
1749 static u32 netdev_get_link(struct net_device *dev)
1751 struct rhine_private *rp = netdev_priv(dev);
1753 return mii_link_ok(&rp->mii_if);
1756 static u32 netdev_get_msglevel(struct net_device *dev)
1758 return debug;
1761 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1763 debug = value;
1766 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1768 struct rhine_private *rp = netdev_priv(dev);
1770 if (!(rp->quirks & rqWOL))
1771 return;
1773 spin_lock_irq(&rp->lock);
1774 wol->supported = WAKE_PHY | WAKE_MAGIC |
1775 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1776 wol->wolopts = rp->wolopts;
1777 spin_unlock_irq(&rp->lock);
1780 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1782 struct rhine_private *rp = netdev_priv(dev);
1783 u32 support = WAKE_PHY | WAKE_MAGIC |
1784 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1786 if (!(rp->quirks & rqWOL))
1787 return -EINVAL;
1789 if (wol->wolopts & ~support)
1790 return -EINVAL;
1792 spin_lock_irq(&rp->lock);
1793 rp->wolopts = wol->wolopts;
1794 spin_unlock_irq(&rp->lock);
1796 return 0;
1799 static const struct ethtool_ops netdev_ethtool_ops = {
1800 .get_drvinfo = netdev_get_drvinfo,
1801 .get_settings = netdev_get_settings,
1802 .set_settings = netdev_set_settings,
1803 .nway_reset = netdev_nway_reset,
1804 .get_link = netdev_get_link,
1805 .get_msglevel = netdev_get_msglevel,
1806 .set_msglevel = netdev_set_msglevel,
1807 .get_wol = rhine_get_wol,
1808 .set_wol = rhine_set_wol,
1809 .get_sg = ethtool_op_get_sg,
1810 .get_tx_csum = ethtool_op_get_tx_csum,
1811 .get_perm_addr = ethtool_op_get_perm_addr,
1814 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1816 struct rhine_private *rp = netdev_priv(dev);
1817 int rc;
1819 if (!netif_running(dev))
1820 return -EINVAL;
1822 spin_lock_irq(&rp->lock);
1823 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1824 spin_unlock_irq(&rp->lock);
1825 rhine_set_carrier(&rp->mii_if);
1827 return rc;
1830 static int rhine_close(struct net_device *dev)
1832 struct rhine_private *rp = netdev_priv(dev);
1833 void __iomem *ioaddr = rp->base;
1835 spin_lock_irq(&rp->lock);
1837 netif_stop_queue(dev);
1838 netif_poll_disable(dev);
1840 if (debug > 1)
1841 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1842 "status was %4.4x.\n",
1843 dev->name, ioread16(ioaddr + ChipCmd));
1845 /* Switch to loopback mode to avoid hardware races. */
1846 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1848 /* Disable interrupts by clearing the interrupt mask. */
1849 iowrite16(0x0000, ioaddr + IntrEnable);
1851 /* Stop the chip's Tx and Rx processes. */
1852 iowrite16(CmdStop, ioaddr + ChipCmd);
1854 spin_unlock_irq(&rp->lock);
1856 free_irq(rp->pdev->irq, dev);
1857 free_rbufs(dev);
1858 free_tbufs(dev);
1859 free_ring(dev);
1861 return 0;
1865 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1867 struct net_device *dev = pci_get_drvdata(pdev);
1868 struct rhine_private *rp = netdev_priv(dev);
1870 unregister_netdev(dev);
1872 pci_iounmap(pdev, rp->base);
1873 pci_release_regions(pdev);
1875 free_netdev(dev);
1876 pci_disable_device(pdev);
1877 pci_set_drvdata(pdev, NULL);
1880 static void rhine_shutdown (struct pci_dev *pdev)
1882 struct net_device *dev = pci_get_drvdata(pdev);
1883 struct rhine_private *rp = netdev_priv(dev);
1884 void __iomem *ioaddr = rp->base;
1886 if (!(rp->quirks & rqWOL))
1887 return; /* Nothing to do for non-WOL adapters */
1889 rhine_power_init(dev);
1891 /* Make sure we use pattern 0, 1 and not 4, 5 */
1892 if (rp->quirks & rq6patterns)
1893 iowrite8(0x04, ioaddr + 0xA7);
1895 if (rp->wolopts & WAKE_MAGIC) {
1896 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1898 * Turn EEPROM-controlled wake-up back on -- some hardware may
1899 * not cooperate otherwise.
1901 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1904 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1905 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1907 if (rp->wolopts & WAKE_PHY)
1908 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1910 if (rp->wolopts & WAKE_UCAST)
1911 iowrite8(WOLucast, ioaddr + WOLcrSet);
1913 if (rp->wolopts) {
1914 /* Enable legacy WOL (for old motherboards) */
1915 iowrite8(0x01, ioaddr + PwcfgSet);
1916 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1919 /* Hit power state D3 (sleep) */
1920 if (!avoid_D3)
1921 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1923 /* TODO: Check use of pci_enable_wake() */
1927 #ifdef CONFIG_PM
1928 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1930 struct net_device *dev = pci_get_drvdata(pdev);
1931 struct rhine_private *rp = netdev_priv(dev);
1932 unsigned long flags;
1934 if (!netif_running(dev))
1935 return 0;
1937 netif_device_detach(dev);
1938 pci_save_state(pdev);
1940 spin_lock_irqsave(&rp->lock, flags);
1941 rhine_shutdown(pdev);
1942 spin_unlock_irqrestore(&rp->lock, flags);
1944 free_irq(dev->irq, dev);
1945 return 0;
1948 static int rhine_resume(struct pci_dev *pdev)
1950 struct net_device *dev = pci_get_drvdata(pdev);
1951 struct rhine_private *rp = netdev_priv(dev);
1952 unsigned long flags;
1953 int ret;
1955 if (!netif_running(dev))
1956 return 0;
1958 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1959 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1961 ret = pci_set_power_state(pdev, PCI_D0);
1962 if (debug > 1)
1963 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1964 dev->name, ret ? "failed" : "succeeded", ret);
1966 pci_restore_state(pdev);
1968 spin_lock_irqsave(&rp->lock, flags);
1969 #ifdef USE_MMIO
1970 enable_mmio(rp->pioaddr, rp->quirks);
1971 #endif
1972 rhine_power_init(dev);
1973 free_tbufs(dev);
1974 free_rbufs(dev);
1975 alloc_tbufs(dev);
1976 alloc_rbufs(dev);
1977 init_registers(dev);
1978 spin_unlock_irqrestore(&rp->lock, flags);
1980 netif_device_attach(dev);
1982 return 0;
1984 #endif /* CONFIG_PM */
1986 static struct pci_driver rhine_driver = {
1987 .name = DRV_NAME,
1988 .id_table = rhine_pci_tbl,
1989 .probe = rhine_init_one,
1990 .remove = __devexit_p(rhine_remove_one),
1991 #ifdef CONFIG_PM
1992 .suspend = rhine_suspend,
1993 .resume = rhine_resume,
1994 #endif /* CONFIG_PM */
1995 .shutdown = rhine_shutdown,
1998 static struct dmi_system_id __initdata rhine_dmi_table[] = {
2000 .ident = "EPIA-M",
2001 .matches = {
2002 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2003 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2007 .ident = "KV7",
2008 .matches = {
2009 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2010 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2013 { NULL }
2016 static int __init rhine_init(void)
2018 /* when a module, this is printed whether or not devices are found in probe */
2019 #ifdef MODULE
2020 printk(version);
2021 #endif
2022 if (dmi_check_system(rhine_dmi_table)) {
2023 /* these BIOSes fail at PXE boot if chip is in D3 */
2024 avoid_D3 = 1;
2025 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2026 "enabled.\n",
2027 DRV_NAME);
2029 else if (avoid_D3)
2030 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2032 return pci_register_driver(&rhine_driver);
2036 static void __exit rhine_cleanup(void)
2038 pci_unregister_driver(&rhine_driver);
2042 module_init(rhine_init);
2043 module_exit(rhine_cleanup);