Revert "[PATCH] paravirt: Add startup infrastructure for paravirtualization"
[pv_ops_mirror.git] / drivers / net / yellowfin.c
blobf2a90a7fa2d6ff9fb826224342ecec58ad3b6ced
1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 Written 1997-2001 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
26 #define DRV_NAME "yellowfin"
27 #define DRV_VERSION "2.1"
28 #define DRV_RELDATE "Sep 11, 2006"
30 #define PFX DRV_NAME ": "
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50 #endif
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
56 /* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #define yellowfin_debug debug
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/mii.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/uaccess.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/unaligned.h>
107 #include <asm/io.h>
109 /* These identify the driver base version and may not be removed. */
110 static char version[] __devinitdata =
111 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
112 KERN_INFO " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
114 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
115 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
116 MODULE_LICENSE("GPL");
118 module_param(max_interrupt_work, int, 0);
119 module_param(mtu, int, 0);
120 module_param(debug, int, 0);
121 module_param(rx_copybreak, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124 module_param(gx_fix, int, 0);
125 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
126 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
127 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
128 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
129 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
130 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
131 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
134 Theory of Operation
136 I. Board Compatibility
138 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
139 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
140 Symbios 53C885E dual function chip.
142 II. Board-specific settings
144 PCI bus devices are configured by the system at boot time, so no jumpers
145 need to be set on the board. The system BIOS preferably should assign the
146 PCI INTA signal to an otherwise unused system IRQ line.
147 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
148 interrupt lines.
150 III. Driver operation
152 IIIa. Ring buffers
154 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
155 This is a descriptor list scheme similar to that used by the EEPro100 and
156 Tulip. This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160 The driver allocates full frame size skbuffs for the Rx ring buffers at
161 open() time and passes the skb->data field to the Yellowfin as receive data
162 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
163 a fresh skbuff is allocated and the frame is copied to the new skbuff.
164 When the incoming frame is larger, the skbuff is passed directly up the
165 protocol stack and replaced by a newly allocated skbuff.
167 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
168 using a full-sized skbuff for small frames vs. the copying costs of larger
169 frames. For small frames the copying cost is negligible (esp. considering
170 that we are pre-loading the cache with immediately useful header
171 information). For large frames the copying cost is non-trivial, and the
172 larger copy might flush the cache of useful data.
174 IIIC. Synchronization
176 The driver runs as two independent, single-threaded flows of control. One
177 is the send-packet routine, which enforces single-threaded use by the
178 dev->tbusy flag. The other thread is the interrupt handler, which is single
179 threaded by the hardware and other software.
181 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
182 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
183 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
184 the 'yp->tx_full' flag.
186 The interrupt handler has exclusive control over the Rx ring and records stats
187 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
188 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
189 clears both the tx_full and tbusy flags.
191 IV. Notes
193 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
194 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
195 and an AlphaStation to verifty the Alpha port!
197 IVb. References
199 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
200 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
201 Data Manual v3.0
202 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
203 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
205 IVc. Errata
207 See Packet Engines confidential appendix (prototype chips only).
212 enum capability_flags {
213 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
214 HasMACAddrBug=32, /* Only on early revs. */
215 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
218 /* The PCI I/O space extent. */
219 enum {
220 YELLOWFIN_SIZE = 0x100,
223 struct pci_id_info {
224 const char *name;
225 struct match_info {
226 int pci, pci_mask, subsystem, subsystem_mask;
227 int revision, revision_mask; /* Only 8 bits. */
228 } id;
229 int drv_flags; /* Driver use, intended as capability flags. */
232 static const struct pci_id_info pci_id_tbl[] = {
233 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
234 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
235 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
236 HasMII | DontUseEeprom },
240 static const struct pci_device_id yellowfin_pci_tbl[] = {
241 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
242 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
245 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
248 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
249 enum yellowfin_offsets {
250 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
251 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
252 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
253 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
254 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
255 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
256 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
257 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
258 MII_Status=0xAE,
259 RxDepth=0xB8, FlowCtrl=0xBC,
260 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
261 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
262 EEFeature=0xF5,
265 /* The Yellowfin Rx and Tx buffer descriptors.
266 Elements are written as 32 bit for endian portability. */
267 struct yellowfin_desc {
268 u32 dbdma_cmd;
269 u32 addr;
270 u32 branch_addr;
271 u32 result_status;
274 struct tx_status_words {
275 #ifdef __BIG_ENDIAN
276 u16 tx_errs;
277 u16 tx_cnt;
278 u16 paused;
279 u16 total_tx_cnt;
280 #else /* Little endian chips. */
281 u16 tx_cnt;
282 u16 tx_errs;
283 u16 total_tx_cnt;
284 u16 paused;
285 #endif /* __BIG_ENDIAN */
288 /* Bits in yellowfin_desc.cmd */
289 enum desc_cmd_bits {
290 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
291 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
292 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
293 BRANCH_IFTRUE=0x040000,
296 /* Bits in yellowfin_desc.status */
297 enum desc_status_bits { RX_EOP=0x0040, };
299 /* Bits in the interrupt status/mask registers. */
300 enum intr_status_bits {
301 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
302 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
303 IntrEarlyRx=0x100, IntrWakeup=0x200, };
305 #define PRIV_ALIGN 31 /* Required alignment mask */
306 #define MII_CNT 4
307 struct yellowfin_private {
308 /* Descriptor rings first for alignment.
309 Tx requires a second descriptor for status. */
310 struct yellowfin_desc *rx_ring;
311 struct yellowfin_desc *tx_ring;
312 struct sk_buff* rx_skbuff[RX_RING_SIZE];
313 struct sk_buff* tx_skbuff[TX_RING_SIZE];
314 dma_addr_t rx_ring_dma;
315 dma_addr_t tx_ring_dma;
317 struct tx_status_words *tx_status;
318 dma_addr_t tx_status_dma;
320 struct timer_list timer; /* Media selection timer. */
321 struct net_device_stats stats;
322 /* Frequently used and paired value: keep adjacent for cache effect. */
323 int chip_id, drv_flags;
324 struct pci_dev *pci_dev;
325 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
326 unsigned int rx_buf_sz; /* Based on MTU+slack. */
327 struct tx_status_words *tx_tail_desc;
328 unsigned int cur_tx, dirty_tx;
329 int tx_threshold;
330 unsigned int tx_full:1; /* The Tx queue is full. */
331 unsigned int full_duplex:1; /* Full-duplex operation requested. */
332 unsigned int duplex_lock:1;
333 unsigned int medialock:1; /* Do not sense media. */
334 unsigned int default_port:4; /* Last dev->if_port value. */
335 /* MII transceiver section. */
336 int mii_cnt; /* MII device addresses. */
337 u16 advertising; /* NWay media advertisement */
338 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
339 spinlock_t lock;
340 void __iomem *base;
343 static int read_eeprom(void __iomem *ioaddr, int location);
344 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
345 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
346 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
347 static int yellowfin_open(struct net_device *dev);
348 static void yellowfin_timer(unsigned long data);
349 static void yellowfin_tx_timeout(struct net_device *dev);
350 static void yellowfin_init_ring(struct net_device *dev);
351 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev);
352 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
353 static int yellowfin_rx(struct net_device *dev);
354 static void yellowfin_error(struct net_device *dev, int intr_status);
355 static int yellowfin_close(struct net_device *dev);
356 static struct net_device_stats *yellowfin_get_stats(struct net_device *dev);
357 static void set_rx_mode(struct net_device *dev);
358 static const struct ethtool_ops ethtool_ops;
361 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
362 const struct pci_device_id *ent)
364 struct net_device *dev;
365 struct yellowfin_private *np;
366 int irq;
367 int chip_idx = ent->driver_data;
368 static int find_cnt;
369 void __iomem *ioaddr;
370 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
371 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
372 void *ring_space;
373 dma_addr_t ring_dma;
374 #ifdef USE_IO_OPS
375 int bar = 0;
376 #else
377 int bar = 1;
378 #endif
380 /* when built into the kernel, we only print version if device is found */
381 #ifndef MODULE
382 static int printed_version;
383 if (!printed_version++)
384 printk(version);
385 #endif
387 i = pci_enable_device(pdev);
388 if (i) return i;
390 dev = alloc_etherdev(sizeof(*np));
391 if (!dev) {
392 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
393 return -ENOMEM;
395 SET_MODULE_OWNER(dev);
396 SET_NETDEV_DEV(dev, &pdev->dev);
398 np = netdev_priv(dev);
400 if (pci_request_regions(pdev, DRV_NAME))
401 goto err_out_free_netdev;
403 pci_set_master (pdev);
405 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
406 if (!ioaddr)
407 goto err_out_free_res;
409 irq = pdev->irq;
411 if (drv_flags & DontUseEeprom)
412 for (i = 0; i < 6; i++)
413 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
414 else {
415 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
416 for (i = 0; i < 6; i++)
417 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
420 /* Reset the chip. */
421 iowrite32(0x80000000, ioaddr + DMACtrl);
423 dev->base_addr = (unsigned long)ioaddr;
424 dev->irq = irq;
426 pci_set_drvdata(pdev, dev);
427 spin_lock_init(&np->lock);
429 np->pci_dev = pdev;
430 np->chip_id = chip_idx;
431 np->drv_flags = drv_flags;
432 np->base = ioaddr;
434 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
435 if (!ring_space)
436 goto err_out_cleardev;
437 np->tx_ring = (struct yellowfin_desc *)ring_space;
438 np->tx_ring_dma = ring_dma;
440 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
441 if (!ring_space)
442 goto err_out_unmap_tx;
443 np->rx_ring = (struct yellowfin_desc *)ring_space;
444 np->rx_ring_dma = ring_dma;
446 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
447 if (!ring_space)
448 goto err_out_unmap_rx;
449 np->tx_status = (struct tx_status_words *)ring_space;
450 np->tx_status_dma = ring_dma;
452 if (dev->mem_start)
453 option = dev->mem_start;
455 /* The lower four bits are the media type. */
456 if (option > 0) {
457 if (option & 0x200)
458 np->full_duplex = 1;
459 np->default_port = option & 15;
460 if (np->default_port)
461 np->medialock = 1;
463 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
464 np->full_duplex = 1;
466 if (np->full_duplex)
467 np->duplex_lock = 1;
469 /* The Yellowfin-specific entries in the device structure. */
470 dev->open = &yellowfin_open;
471 dev->hard_start_xmit = &yellowfin_start_xmit;
472 dev->stop = &yellowfin_close;
473 dev->get_stats = &yellowfin_get_stats;
474 dev->set_multicast_list = &set_rx_mode;
475 dev->do_ioctl = &netdev_ioctl;
476 SET_ETHTOOL_OPS(dev, &ethtool_ops);
477 dev->tx_timeout = yellowfin_tx_timeout;
478 dev->watchdog_timeo = TX_TIMEOUT;
480 if (mtu)
481 dev->mtu = mtu;
483 i = register_netdev(dev);
484 if (i)
485 goto err_out_unmap_status;
487 printk(KERN_INFO "%s: %s type %8x at %p, ",
488 dev->name, pci_id_tbl[chip_idx].name,
489 ioread32(ioaddr + ChipRev), ioaddr);
490 for (i = 0; i < 5; i++)
491 printk("%2.2x:", dev->dev_addr[i]);
492 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
494 if (np->drv_flags & HasMII) {
495 int phy, phy_idx = 0;
496 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
497 int mii_status = mdio_read(ioaddr, phy, 1);
498 if (mii_status != 0xffff && mii_status != 0x0000) {
499 np->phys[phy_idx++] = phy;
500 np->advertising = mdio_read(ioaddr, phy, 4);
501 printk(KERN_INFO "%s: MII PHY found at address %d, status "
502 "0x%4.4x advertising %4.4x.\n",
503 dev->name, phy, mii_status, np->advertising);
506 np->mii_cnt = phy_idx;
509 find_cnt++;
511 return 0;
513 err_out_unmap_status:
514 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
515 np->tx_status_dma);
516 err_out_unmap_rx:
517 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
518 err_out_unmap_tx:
519 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
520 err_out_cleardev:
521 pci_set_drvdata(pdev, NULL);
522 pci_iounmap(pdev, ioaddr);
523 err_out_free_res:
524 pci_release_regions(pdev);
525 err_out_free_netdev:
526 free_netdev (dev);
527 return -ENODEV;
530 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
532 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
534 iowrite8(location, ioaddr + EEAddr);
535 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
536 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
538 return ioread8(ioaddr + EERead);
541 /* MII Managemen Data I/O accesses.
542 These routines assume the MDIO controller is idle, and do not exit until
543 the command is finished. */
545 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
547 int i;
549 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
550 iowrite16(1, ioaddr + MII_Cmd);
551 for (i = 10000; i >= 0; i--)
552 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
553 break;
554 return ioread16(ioaddr + MII_Rd_Data);
557 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
559 int i;
561 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
562 iowrite16(value, ioaddr + MII_Wr_Data);
564 /* Wait for the command to finish. */
565 for (i = 10000; i >= 0; i--)
566 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
567 break;
568 return;
572 static int yellowfin_open(struct net_device *dev)
574 struct yellowfin_private *yp = netdev_priv(dev);
575 void __iomem *ioaddr = yp->base;
576 int i;
578 /* Reset the chip. */
579 iowrite32(0x80000000, ioaddr + DMACtrl);
581 i = request_irq(dev->irq, &yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
582 if (i) return i;
584 if (yellowfin_debug > 1)
585 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
586 dev->name, dev->irq);
588 yellowfin_init_ring(dev);
590 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
591 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
593 for (i = 0; i < 6; i++)
594 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
596 /* Set up various condition 'select' registers.
597 There are no options here. */
598 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
599 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
600 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
601 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
602 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
603 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
605 /* Initialize other registers: with so many this eventually this will
606 converted to an offset/value list. */
607 iowrite32(dma_ctrl, ioaddr + DMACtrl);
608 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
609 /* Enable automatic generation of flow control frames, period 0xffff. */
610 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
612 yp->tx_threshold = 32;
613 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
615 if (dev->if_port == 0)
616 dev->if_port = yp->default_port;
618 netif_start_queue(dev);
620 /* Setting the Rx mode will start the Rx process. */
621 if (yp->drv_flags & IsGigabit) {
622 /* We are always in full-duplex mode with gigabit! */
623 yp->full_duplex = 1;
624 iowrite16(0x01CF, ioaddr + Cnfg);
625 } else {
626 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
627 iowrite16(0x1018, ioaddr + FrameGap1);
628 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
630 set_rx_mode(dev);
632 /* Enable interrupts by setting the interrupt mask. */
633 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
634 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
635 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
636 iowrite32(0x80008000, ioaddr + TxCtrl);
638 if (yellowfin_debug > 2) {
639 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
640 dev->name);
643 /* Set the timer to check for link beat. */
644 init_timer(&yp->timer);
645 yp->timer.expires = jiffies + 3*HZ;
646 yp->timer.data = (unsigned long)dev;
647 yp->timer.function = &yellowfin_timer; /* timer handler */
648 add_timer(&yp->timer);
650 return 0;
653 static void yellowfin_timer(unsigned long data)
655 struct net_device *dev = (struct net_device *)data;
656 struct yellowfin_private *yp = netdev_priv(dev);
657 void __iomem *ioaddr = yp->base;
658 int next_tick = 60*HZ;
660 if (yellowfin_debug > 3) {
661 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
662 dev->name, ioread16(ioaddr + IntrStatus));
665 if (yp->mii_cnt) {
666 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
667 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
668 int negotiated = lpa & yp->advertising;
669 if (yellowfin_debug > 1)
670 printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
671 "link partner capability %4.4x.\n",
672 dev->name, yp->phys[0], bmsr, lpa);
674 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
676 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
678 if (bmsr & BMSR_LSTATUS)
679 next_tick = 60*HZ;
680 else
681 next_tick = 3*HZ;
684 yp->timer.expires = jiffies + next_tick;
685 add_timer(&yp->timer);
688 static void yellowfin_tx_timeout(struct net_device *dev)
690 struct yellowfin_private *yp = netdev_priv(dev);
691 void __iomem *ioaddr = yp->base;
693 printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
694 "status %4.4x, Rx status %4.4x, resetting...\n",
695 dev->name, yp->cur_tx, yp->dirty_tx,
696 ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
698 /* Note: these should be KERN_DEBUG. */
699 if (yellowfin_debug) {
700 int i;
701 printk(KERN_WARNING " Rx ring %p: ", yp->rx_ring);
702 for (i = 0; i < RX_RING_SIZE; i++)
703 printk(" %8.8x", yp->rx_ring[i].result_status);
704 printk("\n"KERN_WARNING" Tx ring %p: ", yp->tx_ring);
705 for (i = 0; i < TX_RING_SIZE; i++)
706 printk(" %4.4x /%8.8x", yp->tx_status[i].tx_errs,
707 yp->tx_ring[i].result_status);
708 printk("\n");
711 /* If the hardware is found to hang regularly, we will update the code
712 to reinitialize the chip here. */
713 dev->if_port = 0;
715 /* Wake the potentially-idle transmit channel. */
716 iowrite32(0x10001000, yp->base + TxCtrl);
717 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
718 netif_wake_queue (dev); /* Typical path */
720 dev->trans_start = jiffies;
721 yp->stats.tx_errors++;
724 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
725 static void yellowfin_init_ring(struct net_device *dev)
727 struct yellowfin_private *yp = netdev_priv(dev);
728 int i;
730 yp->tx_full = 0;
731 yp->cur_rx = yp->cur_tx = 0;
732 yp->dirty_tx = 0;
734 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
736 for (i = 0; i < RX_RING_SIZE; i++) {
737 yp->rx_ring[i].dbdma_cmd =
738 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
739 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
740 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
743 for (i = 0; i < RX_RING_SIZE; i++) {
744 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
745 yp->rx_skbuff[i] = skb;
746 if (skb == NULL)
747 break;
748 skb->dev = dev; /* Mark as being used by this device. */
749 skb_reserve(skb, 2); /* 16 byte align the IP header. */
750 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
751 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
753 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
754 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
756 #define NO_TXSTATS
757 #ifdef NO_TXSTATS
758 /* In this mode the Tx ring needs only a single descriptor. */
759 for (i = 0; i < TX_RING_SIZE; i++) {
760 yp->tx_skbuff[i] = NULL;
761 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
762 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
763 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
765 /* Wrap ring */
766 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
767 #else
769 int j;
771 /* Tx ring needs a pair of descriptors, the second for the status. */
772 for (i = 0; i < TX_RING_SIZE; i++) {
773 j = 2*i;
774 yp->tx_skbuff[i] = 0;
775 /* Branch on Tx error. */
776 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
777 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
778 (j+1)*sizeof(struct yellowfin_desc);
779 j++;
780 if (yp->flags & FullTxStatus) {
781 yp->tx_ring[j].dbdma_cmd =
782 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
783 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
784 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
785 i*sizeof(struct tx_status_words);
786 } else {
787 /* Symbios chips write only tx_errs word. */
788 yp->tx_ring[j].dbdma_cmd =
789 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
790 yp->tx_ring[j].request_cnt = 2;
791 /* Om pade ummmmm... */
792 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
793 i*sizeof(struct tx_status_words) +
794 &(yp->tx_status[0].tx_errs) -
795 &(yp->tx_status[0]));
797 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
798 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
800 /* Wrap ring */
801 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
803 #endif
804 yp->tx_tail_desc = &yp->tx_status[0];
805 return;
808 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev)
810 struct yellowfin_private *yp = netdev_priv(dev);
811 unsigned entry;
812 int len = skb->len;
814 netif_stop_queue (dev);
816 /* Note: Ordering is important here, set the field with the
817 "ownership" bit last, and only then increment cur_tx. */
819 /* Calculate the next Tx descriptor entry. */
820 entry = yp->cur_tx % TX_RING_SIZE;
822 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
823 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
824 /* Fix GX chipset errata. */
825 if (cacheline_end > 24 || cacheline_end == 0) {
826 len = skb->len + 32 - cacheline_end + 1;
827 if (skb_padto(skb, len)) {
828 yp->tx_skbuff[entry] = NULL;
829 netif_wake_queue(dev);
830 return 0;
834 yp->tx_skbuff[entry] = skb;
836 #ifdef NO_TXSTATS
837 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
838 skb->data, len, PCI_DMA_TODEVICE));
839 yp->tx_ring[entry].result_status = 0;
840 if (entry >= TX_RING_SIZE-1) {
841 /* New stop command. */
842 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
843 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
844 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
845 } else {
846 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
847 yp->tx_ring[entry].dbdma_cmd =
848 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
850 yp->cur_tx++;
851 #else
852 yp->tx_ring[entry<<1].request_cnt = len;
853 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
854 skb->data, len, PCI_DMA_TODEVICE));
855 /* The input_last (status-write) command is constant, but we must
856 rewrite the subsequent 'stop' command. */
858 yp->cur_tx++;
860 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
861 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
863 /* Final step -- overwrite the old 'stop' command. */
865 yp->tx_ring[entry<<1].dbdma_cmd =
866 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
867 CMD_TX_PKT | BRANCH_IFTRUE) | len);
868 #endif
870 /* Non-x86 Todo: explicitly flush cache lines here. */
872 /* Wake the potentially-idle transmit channel. */
873 iowrite32(0x10001000, yp->base + TxCtrl);
875 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
876 netif_start_queue (dev); /* Typical path */
877 else
878 yp->tx_full = 1;
879 dev->trans_start = jiffies;
881 if (yellowfin_debug > 4) {
882 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
883 dev->name, yp->cur_tx, entry);
885 return 0;
888 /* The interrupt handler does all of the Rx thread work and cleans up
889 after the Tx thread. */
890 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
892 struct net_device *dev = dev_instance;
893 struct yellowfin_private *yp;
894 void __iomem *ioaddr;
895 int boguscnt = max_interrupt_work;
896 unsigned int handled = 0;
898 yp = netdev_priv(dev);
899 ioaddr = yp->base;
901 spin_lock (&yp->lock);
903 do {
904 u16 intr_status = ioread16(ioaddr + IntrClear);
906 if (yellowfin_debug > 4)
907 printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
908 dev->name, intr_status);
910 if (intr_status == 0)
911 break;
912 handled = 1;
914 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
915 yellowfin_rx(dev);
916 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
919 #ifdef NO_TXSTATS
920 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
921 int entry = yp->dirty_tx % TX_RING_SIZE;
922 struct sk_buff *skb;
924 if (yp->tx_ring[entry].result_status == 0)
925 break;
926 skb = yp->tx_skbuff[entry];
927 yp->stats.tx_packets++;
928 yp->stats.tx_bytes += skb->len;
929 /* Free the original skb. */
930 pci_unmap_single(yp->pci_dev, yp->tx_ring[entry].addr,
931 skb->len, PCI_DMA_TODEVICE);
932 dev_kfree_skb_irq(skb);
933 yp->tx_skbuff[entry] = NULL;
935 if (yp->tx_full
936 && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
937 /* The ring is no longer full, clear tbusy. */
938 yp->tx_full = 0;
939 netif_wake_queue(dev);
941 #else
942 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
943 unsigned dirty_tx = yp->dirty_tx;
945 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
946 dirty_tx++) {
947 /* Todo: optimize this. */
948 int entry = dirty_tx % TX_RING_SIZE;
949 u16 tx_errs = yp->tx_status[entry].tx_errs;
950 struct sk_buff *skb;
952 #ifndef final_version
953 if (yellowfin_debug > 5)
954 printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
955 "%4.4x %4.4x %4.4x %4.4x.\n",
956 dev->name, entry,
957 yp->tx_status[entry].tx_cnt,
958 yp->tx_status[entry].tx_errs,
959 yp->tx_status[entry].total_tx_cnt,
960 yp->tx_status[entry].paused);
961 #endif
962 if (tx_errs == 0)
963 break; /* It still hasn't been Txed */
964 skb = yp->tx_skbuff[entry];
965 if (tx_errs & 0xF810) {
966 /* There was an major error, log it. */
967 #ifndef final_version
968 if (yellowfin_debug > 1)
969 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
970 dev->name, tx_errs);
971 #endif
972 yp->stats.tx_errors++;
973 if (tx_errs & 0xF800) yp->stats.tx_aborted_errors++;
974 if (tx_errs & 0x0800) yp->stats.tx_carrier_errors++;
975 if (tx_errs & 0x2000) yp->stats.tx_window_errors++;
976 if (tx_errs & 0x8000) yp->stats.tx_fifo_errors++;
977 } else {
978 #ifndef final_version
979 if (yellowfin_debug > 4)
980 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
981 dev->name, tx_errs);
982 #endif
983 yp->stats.tx_bytes += skb->len;
984 yp->stats.collisions += tx_errs & 15;
985 yp->stats.tx_packets++;
987 /* Free the original skb. */
988 pci_unmap_single(yp->pci_dev,
989 yp->tx_ring[entry<<1].addr, skb->len,
990 PCI_DMA_TODEVICE);
991 dev_kfree_skb_irq(skb);
992 yp->tx_skbuff[entry] = 0;
993 /* Mark status as empty. */
994 yp->tx_status[entry].tx_errs = 0;
997 #ifndef final_version
998 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
999 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1000 dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
1001 dirty_tx += TX_RING_SIZE;
1003 #endif
1005 if (yp->tx_full
1006 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1007 /* The ring is no longer full, clear tbusy. */
1008 yp->tx_full = 0;
1009 netif_wake_queue(dev);
1012 yp->dirty_tx = dirty_tx;
1013 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1015 #endif
1017 /* Log errors and other uncommon events. */
1018 if (intr_status & 0x2ee) /* Abnormal error summary. */
1019 yellowfin_error(dev, intr_status);
1021 if (--boguscnt < 0) {
1022 printk(KERN_WARNING "%s: Too much work at interrupt, "
1023 "status=0x%4.4x.\n",
1024 dev->name, intr_status);
1025 break;
1027 } while (1);
1029 if (yellowfin_debug > 3)
1030 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1031 dev->name, ioread16(ioaddr + IntrStatus));
1033 spin_unlock (&yp->lock);
1034 return IRQ_RETVAL(handled);
1037 /* This routine is logically part of the interrupt handler, but separated
1038 for clarity and better register allocation. */
1039 static int yellowfin_rx(struct net_device *dev)
1041 struct yellowfin_private *yp = netdev_priv(dev);
1042 int entry = yp->cur_rx % RX_RING_SIZE;
1043 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1045 if (yellowfin_debug > 4) {
1046 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1047 entry, yp->rx_ring[entry].result_status);
1048 printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n",
1049 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1050 yp->rx_ring[entry].result_status);
1053 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1054 while (1) {
1055 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1056 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1057 s16 frame_status;
1058 u16 desc_status;
1059 int data_size;
1060 u8 *buf_addr;
1062 if(!desc->result_status)
1063 break;
1064 pci_dma_sync_single_for_cpu(yp->pci_dev, desc->addr,
1065 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1066 desc_status = le32_to_cpu(desc->result_status) >> 16;
1067 buf_addr = rx_skb->data;
1068 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1069 le32_to_cpu(desc->result_status)) & 0xffff;
1070 frame_status = le16_to_cpu(get_unaligned((s16*)&(buf_addr[data_size - 2])));
1071 if (yellowfin_debug > 4)
1072 printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n",
1073 frame_status);
1074 if (--boguscnt < 0)
1075 break;
1076 if ( ! (desc_status & RX_EOP)) {
1077 if (data_size != 0)
1078 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1079 " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
1080 yp->stats.rx_length_errors++;
1081 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1082 /* There was a error. */
1083 if (yellowfin_debug > 3)
1084 printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n",
1085 frame_status);
1086 yp->stats.rx_errors++;
1087 if (frame_status & 0x0060) yp->stats.rx_length_errors++;
1088 if (frame_status & 0x0008) yp->stats.rx_frame_errors++;
1089 if (frame_status & 0x0010) yp->stats.rx_crc_errors++;
1090 if (frame_status < 0) yp->stats.rx_dropped++;
1091 } else if ( !(yp->drv_flags & IsGigabit) &&
1092 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1093 u8 status1 = buf_addr[data_size-2];
1094 u8 status2 = buf_addr[data_size-1];
1095 yp->stats.rx_errors++;
1096 if (status1 & 0xC0) yp->stats.rx_length_errors++;
1097 if (status2 & 0x03) yp->stats.rx_frame_errors++;
1098 if (status2 & 0x04) yp->stats.rx_crc_errors++;
1099 if (status2 & 0x80) yp->stats.rx_dropped++;
1100 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1101 } else if ((yp->flags & HasMACAddrBug) &&
1102 memcmp(le32_to_cpu(yp->rx_ring_dma +
1103 entry*sizeof(struct yellowfin_desc)),
1104 dev->dev_addr, 6) != 0 &&
1105 memcmp(le32_to_cpu(yp->rx_ring_dma +
1106 entry*sizeof(struct yellowfin_desc)),
1107 "\377\377\377\377\377\377", 6) != 0) {
1108 if (bogus_rx++ == 0)
1109 printk(KERN_WARNING "%s: Bad frame to %2.2x:%2.2x:%2.2x:%2.2x:"
1110 "%2.2x:%2.2x.\n",
1111 dev->name, buf_addr[0], buf_addr[1], buf_addr[2],
1112 buf_addr[3], buf_addr[4], buf_addr[5]);
1113 #endif
1114 } else {
1115 struct sk_buff *skb;
1116 int pkt_len = data_size -
1117 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1118 /* To verify: Yellowfin Length should omit the CRC! */
1120 #ifndef final_version
1121 if (yellowfin_debug > 4)
1122 printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d"
1123 " of %d, bogus_cnt %d.\n",
1124 pkt_len, data_size, boguscnt);
1125 #endif
1126 /* Check if the packet is long enough to just pass up the skbuff
1127 without copying to a properly sized skbuff. */
1128 if (pkt_len > rx_copybreak) {
1129 skb_put(skb = rx_skb, pkt_len);
1130 pci_unmap_single(yp->pci_dev,
1131 yp->rx_ring[entry].addr,
1132 yp->rx_buf_sz,
1133 PCI_DMA_FROMDEVICE);
1134 yp->rx_skbuff[entry] = NULL;
1135 } else {
1136 skb = dev_alloc_skb(pkt_len + 2);
1137 if (skb == NULL)
1138 break;
1139 skb_reserve(skb, 2); /* 16 byte align the IP header */
1140 eth_copy_and_sum(skb, rx_skb->data, pkt_len, 0);
1141 skb_put(skb, pkt_len);
1142 pci_dma_sync_single_for_device(yp->pci_dev, desc->addr,
1143 yp->rx_buf_sz,
1144 PCI_DMA_FROMDEVICE);
1146 skb->protocol = eth_type_trans(skb, dev);
1147 netif_rx(skb);
1148 dev->last_rx = jiffies;
1149 yp->stats.rx_packets++;
1150 yp->stats.rx_bytes += pkt_len;
1152 entry = (++yp->cur_rx) % RX_RING_SIZE;
1155 /* Refill the Rx ring buffers. */
1156 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1157 entry = yp->dirty_rx % RX_RING_SIZE;
1158 if (yp->rx_skbuff[entry] == NULL) {
1159 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1160 if (skb == NULL)
1161 break; /* Better luck next round. */
1162 yp->rx_skbuff[entry] = skb;
1163 skb->dev = dev; /* Mark as being used by this device. */
1164 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1165 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1166 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1168 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1169 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1170 if (entry != 0)
1171 yp->rx_ring[entry - 1].dbdma_cmd =
1172 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1173 else
1174 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1175 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1176 | yp->rx_buf_sz);
1179 return 0;
1182 static void yellowfin_error(struct net_device *dev, int intr_status)
1184 struct yellowfin_private *yp = netdev_priv(dev);
1186 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1187 dev->name, intr_status);
1188 /* Hmmmmm, it's not clear what to do here. */
1189 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1190 yp->stats.tx_errors++;
1191 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1192 yp->stats.rx_errors++;
1195 static int yellowfin_close(struct net_device *dev)
1197 struct yellowfin_private *yp = netdev_priv(dev);
1198 void __iomem *ioaddr = yp->base;
1199 int i;
1201 netif_stop_queue (dev);
1203 if (yellowfin_debug > 1) {
1204 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1205 "Rx %4.4x Int %2.2x.\n",
1206 dev->name, ioread16(ioaddr + TxStatus),
1207 ioread16(ioaddr + RxStatus),
1208 ioread16(ioaddr + IntrStatus));
1209 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1210 dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1213 /* Disable interrupts by clearing the interrupt mask. */
1214 iowrite16(0x0000, ioaddr + IntrEnb);
1216 /* Stop the chip's Tx and Rx processes. */
1217 iowrite32(0x80000000, ioaddr + RxCtrl);
1218 iowrite32(0x80000000, ioaddr + TxCtrl);
1220 del_timer(&yp->timer);
1222 #if defined(__i386__)
1223 if (yellowfin_debug > 2) {
1224 printk("\n"KERN_DEBUG" Tx ring at %8.8llx:\n",
1225 (unsigned long long)yp->tx_ring_dma);
1226 for (i = 0; i < TX_RING_SIZE*2; i++)
1227 printk(" %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1228 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1229 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1230 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1231 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1232 for (i = 0; i < TX_RING_SIZE; i++)
1233 printk(" #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1234 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1235 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1237 printk("\n"KERN_DEBUG " Rx ring %8.8llx:\n",
1238 (unsigned long long)yp->rx_ring_dma);
1239 for (i = 0; i < RX_RING_SIZE; i++) {
1240 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1241 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1242 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1243 yp->rx_ring[i].result_status);
1244 if (yellowfin_debug > 6) {
1245 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1246 int j;
1247 for (j = 0; j < 0x50; j++)
1248 printk(" %4.4x",
1249 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1250 printk("\n");
1255 #endif /* __i386__ debugging only */
1257 free_irq(dev->irq, dev);
1259 /* Free all the skbuffs in the Rx queue. */
1260 for (i = 0; i < RX_RING_SIZE; i++) {
1261 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1262 yp->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
1263 if (yp->rx_skbuff[i]) {
1264 dev_kfree_skb(yp->rx_skbuff[i]);
1266 yp->rx_skbuff[i] = NULL;
1268 for (i = 0; i < TX_RING_SIZE; i++) {
1269 if (yp->tx_skbuff[i])
1270 dev_kfree_skb(yp->tx_skbuff[i]);
1271 yp->tx_skbuff[i] = NULL;
1274 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1275 if (yellowfin_debug > 0) {
1276 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1277 dev->name, bogus_rx);
1279 #endif
1281 return 0;
1284 static struct net_device_stats *yellowfin_get_stats(struct net_device *dev)
1286 struct yellowfin_private *yp = netdev_priv(dev);
1287 return &yp->stats;
1290 /* Set or clear the multicast filter for this adaptor. */
1292 static void set_rx_mode(struct net_device *dev)
1294 struct yellowfin_private *yp = netdev_priv(dev);
1295 void __iomem *ioaddr = yp->base;
1296 u16 cfg_value = ioread16(ioaddr + Cnfg);
1298 /* Stop the Rx process to change any value. */
1299 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1300 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1301 iowrite16(0x000F, ioaddr + AddrMode);
1302 } else if ((dev->mc_count > 64) || (dev->flags & IFF_ALLMULTI)) {
1303 /* Too many to filter well, or accept all multicasts. */
1304 iowrite16(0x000B, ioaddr + AddrMode);
1305 } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1306 struct dev_mc_list *mclist;
1307 u16 hash_table[4];
1308 int i;
1309 memset(hash_table, 0, sizeof(hash_table));
1310 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1311 i++, mclist = mclist->next) {
1312 unsigned int bit;
1314 /* Due to a bug in the early chip versions, multiple filter
1315 slots must be set for each address. */
1316 if (yp->drv_flags & HasMulticastBug) {
1317 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1318 hash_table[bit >> 4] |= (1 << bit);
1319 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1320 hash_table[bit >> 4] |= (1 << bit);
1321 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1322 hash_table[bit >> 4] |= (1 << bit);
1324 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1325 hash_table[bit >> 4] |= (1 << bit);
1327 /* Copy the hash table to the chip. */
1328 for (i = 0; i < 4; i++)
1329 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1330 iowrite16(0x0003, ioaddr + AddrMode);
1331 } else { /* Normal, unicast/broadcast-only mode. */
1332 iowrite16(0x0001, ioaddr + AddrMode);
1334 /* Restart the Rx process. */
1335 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1338 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1340 struct yellowfin_private *np = netdev_priv(dev);
1341 strcpy(info->driver, DRV_NAME);
1342 strcpy(info->version, DRV_VERSION);
1343 strcpy(info->bus_info, pci_name(np->pci_dev));
1346 static const struct ethtool_ops ethtool_ops = {
1347 .get_drvinfo = yellowfin_get_drvinfo
1350 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1352 struct yellowfin_private *np = netdev_priv(dev);
1353 void __iomem *ioaddr = np->base;
1354 struct mii_ioctl_data *data = if_mii(rq);
1356 switch(cmd) {
1357 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1358 data->phy_id = np->phys[0] & 0x1f;
1359 /* Fall Through */
1361 case SIOCGMIIREG: /* Read MII PHY register. */
1362 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1363 return 0;
1365 case SIOCSMIIREG: /* Write MII PHY register. */
1366 if (!capable(CAP_NET_ADMIN))
1367 return -EPERM;
1368 if (data->phy_id == np->phys[0]) {
1369 u16 value = data->val_in;
1370 switch (data->reg_num) {
1371 case 0:
1372 /* Check for autonegotiation on or reset. */
1373 np->medialock = (value & 0x9000) ? 0 : 1;
1374 if (np->medialock)
1375 np->full_duplex = (value & 0x0100) ? 1 : 0;
1376 break;
1377 case 4: np->advertising = value; break;
1379 /* Perhaps check_duplex(dev), depending on chip semantics. */
1381 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1382 return 0;
1383 default:
1384 return -EOPNOTSUPP;
1389 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1391 struct net_device *dev = pci_get_drvdata(pdev);
1392 struct yellowfin_private *np;
1394 BUG_ON(!dev);
1395 np = netdev_priv(dev);
1397 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1398 np->tx_status_dma);
1399 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1400 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1401 unregister_netdev (dev);
1403 pci_iounmap(pdev, np->base);
1405 pci_release_regions (pdev);
1407 free_netdev (dev);
1408 pci_set_drvdata(pdev, NULL);
1412 static struct pci_driver yellowfin_driver = {
1413 .name = DRV_NAME,
1414 .id_table = yellowfin_pci_tbl,
1415 .probe = yellowfin_init_one,
1416 .remove = __devexit_p(yellowfin_remove_one),
1420 static int __init yellowfin_init (void)
1422 /* when a module, this is printed whether or not devices are found in probe */
1423 #ifdef MODULE
1424 printk(version);
1425 #endif
1426 return pci_register_driver(&yellowfin_driver);
1430 static void __exit yellowfin_cleanup (void)
1432 pci_unregister_driver (&yellowfin_driver);
1436 module_init(yellowfin_init);
1437 module_exit(yellowfin_cleanup);
1440 * Local variables:
1441 * compile-command: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c yellowfin.c"
1442 * compile-command-alphaLX: "gcc -DMODULE -Wall -Wstrict-prototypes -O2 -c yellowfin.c -fomit-frame-pointer -fno-strength-reduce -mno-fp-regs -Wa,-m21164a -DBWX_USABLE -DBWIO_ENABLED"
1443 * simple-compile-command: "gcc -DMODULE -O6 -c yellowfin.c"
1444 * c-indent-level: 4
1445 * c-basic-offset: 4
1446 * tab-width: 4
1447 * End: