2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
21 * Ville Nuorvala: Fixed routing subtrees.
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
33 #include <linux/proc_fs.h>
37 #include <net/ndisc.h>
38 #include <net/addrconf.h>
40 #include <net/ip6_fib.h>
41 #include <net/ip6_route.h>
46 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
48 #define RT6_TRACE(x...) do { ; } while (0)
51 struct rt6_statistics rt6_stats
;
53 static kmem_cache_t
* fib6_node_kmem __read_mostly
;
57 #ifdef CONFIG_IPV6_SUBTREES
68 struct fib6_walker_t w
;
69 int (*func
)(struct rt6_info
*, void *arg
);
73 static DEFINE_RWLOCK(fib6_walker_lock
);
75 #ifdef CONFIG_IPV6_SUBTREES
76 #define FWS_INIT FWS_S
78 #define FWS_INIT FWS_L
81 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
);
82 static struct rt6_info
* fib6_find_prefix(struct fib6_node
*fn
);
83 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
);
84 static int fib6_walk(struct fib6_walker_t
*w
);
85 static int fib6_walk_continue(struct fib6_walker_t
*w
);
88 * A routing update causes an increase of the serial number on the
89 * affected subtree. This allows for cached routes to be asynchronously
90 * tested when modifications are made to the destination cache as a
91 * result of redirects, path MTU changes, etc.
94 static __u32 rt_sernum
;
96 static DEFINE_TIMER(ip6_fib_timer
, fib6_run_gc
, 0, 0);
98 static struct fib6_walker_t fib6_walker_list
= {
99 .prev
= &fib6_walker_list
,
100 .next
= &fib6_walker_list
,
103 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
105 static inline void fib6_walker_link(struct fib6_walker_t
*w
)
107 write_lock_bh(&fib6_walker_lock
);
108 w
->next
= fib6_walker_list
.next
;
109 w
->prev
= &fib6_walker_list
;
112 write_unlock_bh(&fib6_walker_lock
);
115 static inline void fib6_walker_unlink(struct fib6_walker_t
*w
)
117 write_lock_bh(&fib6_walker_lock
);
118 w
->next
->prev
= w
->prev
;
119 w
->prev
->next
= w
->next
;
120 w
->prev
= w
->next
= w
;
121 write_unlock_bh(&fib6_walker_lock
);
123 static __inline__ u32
fib6_new_sernum(void)
132 * Auxiliary address test functions for the radix tree.
134 * These assume a 32bit processor (although it will work on
142 static __inline__
int addr_bit_set(void *token
, int fn_bit
)
146 return htonl(1 << ((~fn_bit
)&0x1F)) & addr
[fn_bit
>>5];
149 static __inline__
struct fib6_node
* node_alloc(void)
151 struct fib6_node
*fn
;
153 if ((fn
= kmem_cache_alloc(fib6_node_kmem
, SLAB_ATOMIC
)) != NULL
)
154 memset(fn
, 0, sizeof(struct fib6_node
));
159 static __inline__
void node_free(struct fib6_node
* fn
)
161 kmem_cache_free(fib6_node_kmem
, fn
);
164 static __inline__
void rt6_release(struct rt6_info
*rt
)
166 if (atomic_dec_and_test(&rt
->rt6i_ref
))
167 dst_free(&rt
->u
.dst
);
170 static struct fib6_table fib6_main_tbl
= {
171 .tb6_id
= RT6_TABLE_MAIN
,
172 .tb6_lock
= RW_LOCK_UNLOCKED
,
174 .leaf
= &ip6_null_entry
,
175 .fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
,
179 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
180 #define FIB_TABLE_HASHSZ 256
182 #define FIB_TABLE_HASHSZ 1
184 static struct hlist_head fib_table_hash
[FIB_TABLE_HASHSZ
];
186 static void fib6_link_table(struct fib6_table
*tb
)
190 h
= tb
->tb6_id
& (FIB_TABLE_HASHSZ
- 1);
193 * No protection necessary, this is the only list mutatation
194 * operation, tables never disappear once they exist.
196 hlist_add_head_rcu(&tb
->tb6_hlist
, &fib_table_hash
[h
]);
199 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
200 static struct fib6_table fib6_local_tbl
= {
201 .tb6_id
= RT6_TABLE_LOCAL
,
202 .tb6_lock
= RW_LOCK_UNLOCKED
,
204 .leaf
= &ip6_null_entry
,
205 .fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
,
209 static struct fib6_table
*fib6_alloc_table(u32 id
)
211 struct fib6_table
*table
;
213 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
216 table
->tb6_lock
= RW_LOCK_UNLOCKED
;
217 table
->tb6_root
.leaf
= &ip6_null_entry
;
218 table
->tb6_root
.fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
224 struct fib6_table
*fib6_new_table(u32 id
)
226 struct fib6_table
*tb
;
230 tb
= fib6_get_table(id
);
234 tb
= fib6_alloc_table(id
);
241 struct fib6_table
*fib6_get_table(u32 id
)
243 struct fib6_table
*tb
;
244 struct hlist_node
*node
;
249 h
= id
& (FIB_TABLE_HASHSZ
- 1);
251 hlist_for_each_entry_rcu(tb
, node
, &fib_table_hash
[h
], tb6_hlist
) {
252 if (tb
->tb6_id
== id
) {
262 static void __init
fib6_tables_init(void)
264 fib6_link_table(&fib6_main_tbl
);
265 fib6_link_table(&fib6_local_tbl
);
270 struct fib6_table
*fib6_new_table(u32 id
)
272 return fib6_get_table(id
);
275 struct fib6_table
*fib6_get_table(u32 id
)
277 return &fib6_main_tbl
;
280 struct dst_entry
*fib6_rule_lookup(struct flowi
*fl
, int flags
,
283 return (struct dst_entry
*) lookup(&fib6_main_tbl
, fl
, flags
);
286 static void __init
fib6_tables_init(void)
288 fib6_link_table(&fib6_main_tbl
);
293 static int fib6_dump_node(struct fib6_walker_t
*w
)
298 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.next
) {
299 res
= rt6_dump_route(rt
, w
->args
);
301 /* Frame is full, suspend walking */
311 static void fib6_dump_end(struct netlink_callback
*cb
)
313 struct fib6_walker_t
*w
= (void*)cb
->args
[2];
319 cb
->done
= (void*)cb
->args
[3];
323 static int fib6_dump_done(struct netlink_callback
*cb
)
326 return cb
->done
? cb
->done(cb
) : 0;
329 static int fib6_dump_table(struct fib6_table
*table
, struct sk_buff
*skb
,
330 struct netlink_callback
*cb
)
332 struct fib6_walker_t
*w
;
335 w
= (void *)cb
->args
[2];
336 w
->root
= &table
->tb6_root
;
338 if (cb
->args
[4] == 0) {
339 read_lock_bh(&table
->tb6_lock
);
341 read_unlock_bh(&table
->tb6_lock
);
345 read_lock_bh(&table
->tb6_lock
);
346 res
= fib6_walk_continue(w
);
347 read_unlock_bh(&table
->tb6_lock
);
350 fib6_walker_unlink(w
);
353 fib6_walker_unlink(w
);
360 int inet6_dump_fib(struct sk_buff
*skb
, struct netlink_callback
*cb
)
363 unsigned int e
= 0, s_e
;
364 struct rt6_rtnl_dump_arg arg
;
365 struct fib6_walker_t
*w
;
366 struct fib6_table
*tb
;
367 struct hlist_node
*node
;
373 w
= (void *)cb
->args
[2];
377 * 1. hook callback destructor.
379 cb
->args
[3] = (long)cb
->done
;
380 cb
->done
= fib6_dump_done
;
383 * 2. allocate and initialize walker.
385 w
= kzalloc(sizeof(*w
), GFP_ATOMIC
);
388 w
->func
= fib6_dump_node
;
389 cb
->args
[2] = (long)w
;
396 for (h
= s_h
; h
< FIB_TABLE_HASHSZ
; h
++, s_e
= 0) {
398 hlist_for_each_entry(tb
, node
, &fib_table_hash
[h
], tb6_hlist
) {
401 res
= fib6_dump_table(tb
, skb
, cb
);
412 res
= res
< 0 ? res
: skb
->len
;
421 * return the appropriate node for a routing tree "add" operation
422 * by either creating and inserting or by returning an existing
426 static struct fib6_node
* fib6_add_1(struct fib6_node
*root
, void *addr
,
427 int addrlen
, int plen
,
430 struct fib6_node
*fn
, *in
, *ln
;
431 struct fib6_node
*pn
= NULL
;
435 __u32 sernum
= fib6_new_sernum();
437 RT6_TRACE("fib6_add_1\n");
439 /* insert node in tree */
444 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
449 if (plen
< fn
->fn_bit
||
450 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
457 if (plen
== fn
->fn_bit
) {
458 /* clean up an intermediate node */
459 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
460 rt6_release(fn
->leaf
);
464 fn
->fn_sernum
= sernum
;
470 * We have more bits to go
473 /* Try to walk down on tree. */
474 fn
->fn_sernum
= sernum
;
475 dir
= addr_bit_set(addr
, fn
->fn_bit
);
477 fn
= dir
? fn
->right
: fn
->left
;
481 * We walked to the bottom of tree.
482 * Create new leaf node without children.
492 ln
->fn_sernum
= sernum
;
504 * split since we don't have a common prefix anymore or
505 * we have a less significant route.
506 * we've to insert an intermediate node on the list
507 * this new node will point to the one we need to create
513 /* find 1st bit in difference between the 2 addrs.
515 See comment in __ipv6_addr_diff: bit may be an invalid value,
516 but if it is >= plen, the value is ignored in any case.
519 bit
= __ipv6_addr_diff(addr
, &key
->addr
, addrlen
);
524 * (new leaf node)[ln] (old node)[fn]
530 if (in
== NULL
|| ln
== NULL
) {
539 * new intermediate node.
541 * be off since that an address that chooses one of
542 * the branches would not match less specific routes
543 * in the other branch
550 atomic_inc(&in
->leaf
->rt6i_ref
);
552 in
->fn_sernum
= sernum
;
554 /* update parent pointer */
565 ln
->fn_sernum
= sernum
;
567 if (addr_bit_set(addr
, bit
)) {
574 } else { /* plen <= bit */
577 * (new leaf node)[ln]
579 * (old node)[fn] NULL
591 ln
->fn_sernum
= sernum
;
598 if (addr_bit_set(&key
->addr
, plen
))
609 * Insert routing information in a node.
612 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
613 struct nl_info
*info
)
615 struct rt6_info
*iter
= NULL
;
616 struct rt6_info
**ins
;
620 if (fn
->fn_flags
&RTN_TL_ROOT
&&
621 fn
->leaf
== &ip6_null_entry
&&
622 !(rt
->rt6i_flags
& (RTF_DEFAULT
| RTF_ADDRCONF
)) ){
628 for (iter
= fn
->leaf
; iter
; iter
=iter
->u
.next
) {
630 * Search for duplicates
633 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
635 * Same priority level
638 if (iter
->rt6i_dev
== rt
->rt6i_dev
&&
639 iter
->rt6i_idev
== rt
->rt6i_idev
&&
640 ipv6_addr_equal(&iter
->rt6i_gateway
,
641 &rt
->rt6i_gateway
)) {
642 if (!(iter
->rt6i_flags
&RTF_EXPIRES
))
644 iter
->rt6i_expires
= rt
->rt6i_expires
;
645 if (!(rt
->rt6i_flags
&RTF_EXPIRES
)) {
646 iter
->rt6i_flags
&= ~RTF_EXPIRES
;
647 iter
->rt6i_expires
= 0;
653 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
667 atomic_inc(&rt
->rt6i_ref
);
668 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
);
669 rt6_stats
.fib_rt_entries
++;
671 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
672 rt6_stats
.fib_route_nodes
++;
673 fn
->fn_flags
|= RTN_RTINFO
;
679 static __inline__
void fib6_start_gc(struct rt6_info
*rt
)
681 if (ip6_fib_timer
.expires
== 0 &&
682 (rt
->rt6i_flags
& (RTF_EXPIRES
|RTF_CACHE
)))
683 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
686 void fib6_force_start_gc(void)
688 if (ip6_fib_timer
.expires
== 0)
689 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
693 * Add routing information to the routing tree.
694 * <destination addr>/<source addr>
695 * with source addr info in sub-trees
698 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
, struct nl_info
*info
)
700 struct fib6_node
*fn
, *pn
= NULL
;
703 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, sizeof(struct in6_addr
),
704 rt
->rt6i_dst
.plen
, offsetof(struct rt6_info
, rt6i_dst
));
711 #ifdef CONFIG_IPV6_SUBTREES
712 if (rt
->rt6i_src
.plen
) {
713 struct fib6_node
*sn
;
715 if (fn
->subtree
== NULL
) {
716 struct fib6_node
*sfn
;
728 /* Create subtree root node */
733 sfn
->leaf
= &ip6_null_entry
;
734 atomic_inc(&ip6_null_entry
.rt6i_ref
);
735 sfn
->fn_flags
= RTN_ROOT
;
736 sfn
->fn_sernum
= fib6_new_sernum();
738 /* Now add the first leaf node to new subtree */
740 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
741 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
742 offsetof(struct rt6_info
, rt6i_src
));
745 /* If it is failed, discard just allocated
746 root, and then (in st_failure) stale node
753 /* Now link new subtree to main tree */
757 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
758 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
759 offsetof(struct rt6_info
, rt6i_src
));
765 if (fn
->leaf
== NULL
) {
767 atomic_inc(&rt
->rt6i_ref
);
773 err
= fib6_add_rt2node(fn
, rt
, info
);
777 if (!(rt
->rt6i_flags
&RTF_CACHE
))
778 fib6_prune_clones(pn
, rt
);
783 #ifdef CONFIG_IPV6_SUBTREES
785 * If fib6_add_1 has cleared the old leaf pointer in the
786 * super-tree leaf node we have to find a new one for it.
788 if (pn
!= fn
&& !pn
->leaf
&& !(pn
->fn_flags
& RTN_RTINFO
)) {
789 pn
->leaf
= fib6_find_prefix(pn
);
792 BUG_TRAP(pn
->leaf
!= NULL
);
793 pn
->leaf
= &ip6_null_entry
;
796 atomic_inc(&pn
->leaf
->rt6i_ref
);
799 dst_free(&rt
->u
.dst
);
803 #ifdef CONFIG_IPV6_SUBTREES
804 /* Subtree creation failed, probably main tree node
805 is orphan. If it is, shoot it.
808 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
809 fib6_repair_tree(fn
);
810 dst_free(&rt
->u
.dst
);
816 * Routing tree lookup
821 int offset
; /* key offset on rt6_info */
822 struct in6_addr
*addr
; /* search key */
825 static struct fib6_node
* fib6_lookup_1(struct fib6_node
*root
,
826 struct lookup_args
*args
)
828 struct fib6_node
*fn
;
831 if (unlikely(args
->offset
== 0))
841 struct fib6_node
*next
;
843 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
845 next
= dir
? fn
->right
: fn
->left
;
856 if (FIB6_SUBTREE(fn
) || fn
->fn_flags
& RTN_RTINFO
) {
859 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
862 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
)) {
863 #ifdef CONFIG_IPV6_SUBTREES
865 fn
= fib6_lookup_1(fn
->subtree
, args
+ 1);
867 if (!fn
|| fn
->fn_flags
& RTN_RTINFO
)
872 if (fn
->fn_flags
& RTN_ROOT
)
881 struct fib6_node
* fib6_lookup(struct fib6_node
*root
, struct in6_addr
*daddr
,
882 struct in6_addr
*saddr
)
884 struct fib6_node
*fn
;
885 struct lookup_args args
[] = {
887 .offset
= offsetof(struct rt6_info
, rt6i_dst
),
890 #ifdef CONFIG_IPV6_SUBTREES
892 .offset
= offsetof(struct rt6_info
, rt6i_src
),
897 .offset
= 0, /* sentinel */
901 fn
= fib6_lookup_1(root
, daddr
? args
: args
+ 1);
903 if (fn
== NULL
|| fn
->fn_flags
& RTN_TL_ROOT
)
910 * Get node with specified destination prefix (and source prefix,
911 * if subtrees are used)
915 static struct fib6_node
* fib6_locate_1(struct fib6_node
*root
,
916 struct in6_addr
*addr
,
917 int plen
, int offset
)
919 struct fib6_node
*fn
;
921 for (fn
= root
; fn
; ) {
922 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
927 if (plen
< fn
->fn_bit
||
928 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
931 if (plen
== fn
->fn_bit
)
935 * We have more bits to go
937 if (addr_bit_set(addr
, fn
->fn_bit
))
945 struct fib6_node
* fib6_locate(struct fib6_node
*root
,
946 struct in6_addr
*daddr
, int dst_len
,
947 struct in6_addr
*saddr
, int src_len
)
949 struct fib6_node
*fn
;
951 fn
= fib6_locate_1(root
, daddr
, dst_len
,
952 offsetof(struct rt6_info
, rt6i_dst
));
954 #ifdef CONFIG_IPV6_SUBTREES
956 BUG_TRAP(saddr
!=NULL
);
957 if (fn
&& fn
->subtree
)
958 fn
= fib6_locate_1(fn
->subtree
, saddr
, src_len
,
959 offsetof(struct rt6_info
, rt6i_src
));
963 if (fn
&& fn
->fn_flags
&RTN_RTINFO
)
975 static struct rt6_info
* fib6_find_prefix(struct fib6_node
*fn
)
977 if (fn
->fn_flags
&RTN_ROOT
)
978 return &ip6_null_entry
;
982 return fn
->left
->leaf
;
985 return fn
->right
->leaf
;
987 fn
= FIB6_SUBTREE(fn
);
993 * Called to trim the tree of intermediate nodes when possible. "fn"
994 * is the node we want to try and remove.
997 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
)
1001 struct fib6_node
*child
, *pn
;
1002 struct fib6_walker_t
*w
;
1006 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
1009 BUG_TRAP(!(fn
->fn_flags
&RTN_RTINFO
));
1010 BUG_TRAP(!(fn
->fn_flags
&RTN_TL_ROOT
));
1011 BUG_TRAP(fn
->leaf
==NULL
);
1015 if (fn
->right
) child
= fn
->right
, children
|= 1;
1016 if (fn
->left
) child
= fn
->left
, children
|= 2;
1018 if (children
== 3 || FIB6_SUBTREE(fn
)
1019 #ifdef CONFIG_IPV6_SUBTREES
1020 /* Subtree root (i.e. fn) may have one child */
1021 || (children
&& fn
->fn_flags
&RTN_ROOT
)
1024 fn
->leaf
= fib6_find_prefix(fn
);
1026 if (fn
->leaf
==NULL
) {
1028 fn
->leaf
= &ip6_null_entry
;
1031 atomic_inc(&fn
->leaf
->rt6i_ref
);
1036 #ifdef CONFIG_IPV6_SUBTREES
1037 if (FIB6_SUBTREE(pn
) == fn
) {
1038 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
1039 FIB6_SUBTREE(pn
) = NULL
;
1042 BUG_TRAP(!(fn
->fn_flags
&RTN_ROOT
));
1044 if (pn
->right
== fn
) pn
->right
= child
;
1045 else if (pn
->left
== fn
) pn
->left
= child
;
1052 #ifdef CONFIG_IPV6_SUBTREES
1056 read_lock(&fib6_walker_lock
);
1058 if (child
== NULL
) {
1059 if (w
->root
== fn
) {
1060 w
->root
= w
->node
= NULL
;
1061 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
1062 } else if (w
->node
== fn
) {
1063 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
1068 if (w
->root
== fn
) {
1070 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
1072 if (w
->node
== fn
) {
1075 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1076 w
->state
= w
->state
>=FWS_R
? FWS_U
: FWS_INIT
;
1078 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1079 w
->state
= w
->state
>=FWS_C
? FWS_U
: FWS_INIT
;
1084 read_unlock(&fib6_walker_lock
);
1087 if (pn
->fn_flags
&RTN_RTINFO
|| FIB6_SUBTREE(pn
))
1090 rt6_release(pn
->leaf
);
1096 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
1097 struct nl_info
*info
)
1099 struct fib6_walker_t
*w
;
1100 struct rt6_info
*rt
= *rtp
;
1102 RT6_TRACE("fib6_del_route\n");
1106 rt
->rt6i_node
= NULL
;
1107 rt6_stats
.fib_rt_entries
--;
1108 rt6_stats
.fib_discarded_routes
++;
1110 /* Adjust walkers */
1111 read_lock(&fib6_walker_lock
);
1113 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
1114 RT6_TRACE("walker %p adjusted by delroute\n", w
);
1115 w
->leaf
= rt
->u
.next
;
1116 if (w
->leaf
== NULL
)
1120 read_unlock(&fib6_walker_lock
);
1124 if (fn
->leaf
== NULL
&& fn
->fn_flags
&RTN_TL_ROOT
)
1125 fn
->leaf
= &ip6_null_entry
;
1127 /* If it was last route, expunge its radix tree node */
1128 if (fn
->leaf
== NULL
) {
1129 fn
->fn_flags
&= ~RTN_RTINFO
;
1130 rt6_stats
.fib_route_nodes
--;
1131 fn
= fib6_repair_tree(fn
);
1134 if (atomic_read(&rt
->rt6i_ref
) != 1) {
1135 /* This route is used as dummy address holder in some split
1136 * nodes. It is not leaked, but it still holds other resources,
1137 * which must be released in time. So, scan ascendant nodes
1138 * and replace dummy references to this route with references
1139 * to still alive ones.
1142 if (!(fn
->fn_flags
&RTN_RTINFO
) && fn
->leaf
== rt
) {
1143 fn
->leaf
= fib6_find_prefix(fn
);
1144 atomic_inc(&fn
->leaf
->rt6i_ref
);
1149 /* No more references are possible at this point. */
1150 if (atomic_read(&rt
->rt6i_ref
) != 1) BUG();
1153 inet6_rt_notify(RTM_DELROUTE
, rt
, info
);
1157 int fib6_del(struct rt6_info
*rt
, struct nl_info
*info
)
1159 struct fib6_node
*fn
= rt
->rt6i_node
;
1160 struct rt6_info
**rtp
;
1163 if (rt
->u
.dst
.obsolete
>0) {
1168 if (fn
== NULL
|| rt
== &ip6_null_entry
)
1171 BUG_TRAP(fn
->fn_flags
&RTN_RTINFO
);
1173 if (!(rt
->rt6i_flags
&RTF_CACHE
)) {
1174 struct fib6_node
*pn
= fn
;
1175 #ifdef CONFIG_IPV6_SUBTREES
1176 /* clones of this route might be in another subtree */
1177 if (rt
->rt6i_src
.plen
) {
1178 while (!(pn
->fn_flags
&RTN_ROOT
))
1183 fib6_prune_clones(pn
, rt
);
1187 * Walk the leaf entries looking for ourself
1190 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->u
.next
) {
1192 fib6_del_route(fn
, rtp
, info
);
1200 * Tree traversal function.
1202 * Certainly, it is not interrupt safe.
1203 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1204 * It means, that we can modify tree during walking
1205 * and use this function for garbage collection, clone pruning,
1206 * cleaning tree when a device goes down etc. etc.
1208 * It guarantees that every node will be traversed,
1209 * and that it will be traversed only once.
1211 * Callback function w->func may return:
1212 * 0 -> continue walking.
1213 * positive value -> walking is suspended (used by tree dumps,
1214 * and probably by gc, if it will be split to several slices)
1215 * negative value -> terminate walking.
1217 * The function itself returns:
1218 * 0 -> walk is complete.
1219 * >0 -> walk is incomplete (i.e. suspended)
1220 * <0 -> walk is terminated by an error.
1223 static int fib6_walk_continue(struct fib6_walker_t
*w
)
1225 struct fib6_node
*fn
, *pn
;
1232 if (w
->prune
&& fn
!= w
->root
&&
1233 fn
->fn_flags
&RTN_RTINFO
&& w
->state
< FWS_C
) {
1238 #ifdef CONFIG_IPV6_SUBTREES
1240 if (FIB6_SUBTREE(fn
)) {
1241 w
->node
= FIB6_SUBTREE(fn
);
1249 w
->state
= FWS_INIT
;
1255 w
->node
= fn
->right
;
1256 w
->state
= FWS_INIT
;
1262 if (w
->leaf
&& fn
->fn_flags
&RTN_RTINFO
) {
1263 int err
= w
->func(w
);
1274 #ifdef CONFIG_IPV6_SUBTREES
1275 if (FIB6_SUBTREE(pn
) == fn
) {
1276 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
1281 if (pn
->left
== fn
) {
1285 if (pn
->right
== fn
) {
1287 w
->leaf
= w
->node
->leaf
;
1297 static int fib6_walk(struct fib6_walker_t
*w
)
1301 w
->state
= FWS_INIT
;
1304 fib6_walker_link(w
);
1305 res
= fib6_walk_continue(w
);
1307 fib6_walker_unlink(w
);
1311 static int fib6_clean_node(struct fib6_walker_t
*w
)
1314 struct rt6_info
*rt
;
1315 struct fib6_cleaner_t
*c
= (struct fib6_cleaner_t
*)w
;
1317 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.next
) {
1318 res
= c
->func(rt
, c
->arg
);
1321 res
= fib6_del(rt
, NULL
);
1324 printk(KERN_DEBUG
"fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt
, rt
->rt6i_node
, res
);
1337 * Convenient frontend to tree walker.
1339 * func is called on each route.
1340 * It may return -1 -> delete this route.
1341 * 0 -> continue walking
1343 * prune==1 -> only immediate children of node (certainly,
1344 * ignoring pure split nodes) will be scanned.
1347 static void fib6_clean_tree(struct fib6_node
*root
,
1348 int (*func
)(struct rt6_info
*, void *arg
),
1349 int prune
, void *arg
)
1351 struct fib6_cleaner_t c
;
1354 c
.w
.func
= fib6_clean_node
;
1362 void fib6_clean_all(int (*func
)(struct rt6_info
*, void *arg
),
1363 int prune
, void *arg
)
1365 struct fib6_table
*table
;
1366 struct hlist_node
*node
;
1370 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
1371 hlist_for_each_entry_rcu(table
, node
, &fib_table_hash
[h
],
1373 write_lock_bh(&table
->tb6_lock
);
1374 fib6_clean_tree(&table
->tb6_root
, func
, prune
, arg
);
1375 write_unlock_bh(&table
->tb6_lock
);
1381 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1383 if (rt
->rt6i_flags
& RTF_CACHE
) {
1384 RT6_TRACE("pruning clone %p\n", rt
);
1391 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
)
1393 fib6_clean_tree(fn
, fib6_prune_clone
, 1, rt
);
1397 * Garbage collection
1400 static struct fib6_gc_args
1406 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1408 unsigned long now
= jiffies
;
1411 * check addrconf expiration here.
1412 * Routes are expired even if they are in use.
1414 * Also age clones. Note, that clones are aged out
1415 * only if they are not in use now.
1418 if (rt
->rt6i_flags
&RTF_EXPIRES
&& rt
->rt6i_expires
) {
1419 if (time_after(now
, rt
->rt6i_expires
)) {
1420 RT6_TRACE("expiring %p\n", rt
);
1424 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1425 if (atomic_read(&rt
->u
.dst
.__refcnt
) == 0 &&
1426 time_after_eq(now
, rt
->u
.dst
.lastuse
+ gc_args
.timeout
)) {
1427 RT6_TRACE("aging clone %p\n", rt
);
1429 } else if ((rt
->rt6i_flags
& RTF_GATEWAY
) &&
1430 (!(rt
->rt6i_nexthop
->flags
& NTF_ROUTER
))) {
1431 RT6_TRACE("purging route %p via non-router but gateway\n",
1441 static DEFINE_SPINLOCK(fib6_gc_lock
);
1443 void fib6_run_gc(unsigned long dummy
)
1445 if (dummy
!= ~0UL) {
1446 spin_lock_bh(&fib6_gc_lock
);
1447 gc_args
.timeout
= dummy
? (int)dummy
: ip6_rt_gc_interval
;
1450 if (!spin_trylock(&fib6_gc_lock
)) {
1451 mod_timer(&ip6_fib_timer
, jiffies
+ HZ
);
1455 gc_args
.timeout
= ip6_rt_gc_interval
;
1459 ndisc_dst_gc(&gc_args
.more
);
1460 fib6_clean_all(fib6_age
, 0, NULL
);
1463 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
1465 del_timer(&ip6_fib_timer
);
1466 ip6_fib_timer
.expires
= 0;
1468 spin_unlock_bh(&fib6_gc_lock
);
1471 void __init
fib6_init(void)
1473 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1474 sizeof(struct fib6_node
),
1475 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1481 void fib6_gc_cleanup(void)
1483 del_timer(&ip6_fib_timer
);
1484 kmem_cache_destroy(fib6_node_kmem
);