2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct
*work
);
40 static void blk_unplug_timeout(unsigned long data
);
41 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
42 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
43 static int __make_request(request_queue_t
*q
, struct bio
*bio
);
44 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
);
47 * For the allocated request tables
49 static struct kmem_cache
*request_cachep
;
52 * For queue allocation
54 static struct kmem_cache
*requestq_cachep
;
57 * For io context allocations
59 static struct kmem_cache
*iocontext_cachep
;
62 * Controlling structure to kblockd
64 static struct workqueue_struct
*kblockd_workqueue
;
66 unsigned long blk_max_low_pfn
, blk_max_pfn
;
68 EXPORT_SYMBOL(blk_max_low_pfn
);
69 EXPORT_SYMBOL(blk_max_pfn
);
71 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
73 /* Amount of time in which a process may batch requests */
74 #define BLK_BATCH_TIME (HZ/50UL)
76 /* Number of requests a "batching" process may submit */
77 #define BLK_BATCH_REQ 32
80 * Return the threshold (number of used requests) at which the queue is
81 * considered to be congested. It include a little hysteresis to keep the
82 * context switch rate down.
84 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
86 return q
->nr_congestion_on
;
90 * The threshold at which a queue is considered to be uncongested
92 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
94 return q
->nr_congestion_off
;
97 static void blk_queue_congestion_threshold(struct request_queue
*q
)
101 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
102 if (nr
> q
->nr_requests
)
104 q
->nr_congestion_on
= nr
;
106 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
109 q
->nr_congestion_off
= nr
;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * Locates the passed device's request queue and returns the address of its
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
123 struct backing_dev_info
*ret
= NULL
;
124 request_queue_t
*q
= bdev_get_queue(bdev
);
127 ret
= &q
->backing_dev_info
;
130 EXPORT_SYMBOL(blk_get_backing_dev_info
);
133 * blk_queue_prep_rq - set a prepare_request function for queue
135 * @pfn: prepare_request function
137 * It's possible for a queue to register a prepare_request callback which
138 * is invoked before the request is handed to the request_fn. The goal of
139 * the function is to prepare a request for I/O, it can be used to build a
140 * cdb from the request data for instance.
143 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
148 EXPORT_SYMBOL(blk_queue_prep_rq
);
151 * blk_queue_merge_bvec - set a merge_bvec function for queue
153 * @mbfn: merge_bvec_fn
155 * Usually queues have static limitations on the max sectors or segments that
156 * we can put in a request. Stacking drivers may have some settings that
157 * are dynamic, and thus we have to query the queue whether it is ok to
158 * add a new bio_vec to a bio at a given offset or not. If the block device
159 * has such limitations, it needs to register a merge_bvec_fn to control
160 * the size of bio's sent to it. Note that a block device *must* allow a
161 * single page to be added to an empty bio. The block device driver may want
162 * to use the bio_split() function to deal with these bio's. By default
163 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
166 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
168 q
->merge_bvec_fn
= mbfn
;
171 EXPORT_SYMBOL(blk_queue_merge_bvec
);
173 void blk_queue_softirq_done(request_queue_t
*q
, softirq_done_fn
*fn
)
175 q
->softirq_done_fn
= fn
;
178 EXPORT_SYMBOL(blk_queue_softirq_done
);
181 * blk_queue_make_request - define an alternate make_request function for a device
182 * @q: the request queue for the device to be affected
183 * @mfn: the alternate make_request function
186 * The normal way for &struct bios to be passed to a device
187 * driver is for them to be collected into requests on a request
188 * queue, and then to allow the device driver to select requests
189 * off that queue when it is ready. This works well for many block
190 * devices. However some block devices (typically virtual devices
191 * such as md or lvm) do not benefit from the processing on the
192 * request queue, and are served best by having the requests passed
193 * directly to them. This can be achieved by providing a function
194 * to blk_queue_make_request().
197 * The driver that does this *must* be able to deal appropriately
198 * with buffers in "highmemory". This can be accomplished by either calling
199 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
200 * blk_queue_bounce() to create a buffer in normal memory.
202 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
207 q
->nr_requests
= BLKDEV_MAX_RQ
;
208 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
209 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
210 q
->make_request_fn
= mfn
;
211 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
212 q
->backing_dev_info
.state
= 0;
213 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
214 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
215 blk_queue_hardsect_size(q
, 512);
216 blk_queue_dma_alignment(q
, 511);
217 blk_queue_congestion_threshold(q
);
218 q
->nr_batching
= BLK_BATCH_REQ
;
220 q
->unplug_thresh
= 4; /* hmm */
221 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
222 if (q
->unplug_delay
== 0)
225 INIT_WORK(&q
->unplug_work
, blk_unplug_work
);
227 q
->unplug_timer
.function
= blk_unplug_timeout
;
228 q
->unplug_timer
.data
= (unsigned long)q
;
231 * by default assume old behaviour and bounce for any highmem page
233 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
236 EXPORT_SYMBOL(blk_queue_make_request
);
238 static void rq_init(request_queue_t
*q
, struct request
*rq
)
240 INIT_LIST_HEAD(&rq
->queuelist
);
241 INIT_LIST_HEAD(&rq
->donelist
);
244 rq
->bio
= rq
->biotail
= NULL
;
245 INIT_HLIST_NODE(&rq
->hash
);
246 RB_CLEAR_NODE(&rq
->rb_node
);
254 rq
->nr_phys_segments
= 0;
257 rq
->end_io_data
= NULL
;
258 rq
->completion_data
= NULL
;
263 * blk_queue_ordered - does this queue support ordered writes
264 * @q: the request queue
265 * @ordered: one of QUEUE_ORDERED_*
266 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
269 * For journalled file systems, doing ordered writes on a commit
270 * block instead of explicitly doing wait_on_buffer (which is bad
271 * for performance) can be a big win. Block drivers supporting this
272 * feature should call this function and indicate so.
275 int blk_queue_ordered(request_queue_t
*q
, unsigned ordered
,
276 prepare_flush_fn
*prepare_flush_fn
)
278 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
279 prepare_flush_fn
== NULL
) {
280 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
284 if (ordered
!= QUEUE_ORDERED_NONE
&&
285 ordered
!= QUEUE_ORDERED_DRAIN
&&
286 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
287 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
288 ordered
!= QUEUE_ORDERED_TAG
&&
289 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
290 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
291 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
295 q
->ordered
= ordered
;
296 q
->next_ordered
= ordered
;
297 q
->prepare_flush_fn
= prepare_flush_fn
;
302 EXPORT_SYMBOL(blk_queue_ordered
);
305 * blk_queue_issue_flush_fn - set function for issuing a flush
306 * @q: the request queue
307 * @iff: the function to be called issuing the flush
310 * If a driver supports issuing a flush command, the support is notified
311 * to the block layer by defining it through this call.
314 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
316 q
->issue_flush_fn
= iff
;
319 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
322 * Cache flushing for ordered writes handling
324 inline unsigned blk_ordered_cur_seq(request_queue_t
*q
)
328 return 1 << ffz(q
->ordseq
);
331 unsigned blk_ordered_req_seq(struct request
*rq
)
333 request_queue_t
*q
= rq
->q
;
335 BUG_ON(q
->ordseq
== 0);
337 if (rq
== &q
->pre_flush_rq
)
338 return QUEUE_ORDSEQ_PREFLUSH
;
339 if (rq
== &q
->bar_rq
)
340 return QUEUE_ORDSEQ_BAR
;
341 if (rq
== &q
->post_flush_rq
)
342 return QUEUE_ORDSEQ_POSTFLUSH
;
345 * !fs requests don't need to follow barrier ordering. Always
346 * put them at the front. This fixes the following deadlock.
348 * http://thread.gmane.org/gmane.linux.kernel/537473
350 if (!blk_fs_request(rq
))
351 return QUEUE_ORDSEQ_DRAIN
;
353 if ((rq
->cmd_flags
& REQ_ORDERED_COLOR
) ==
354 (q
->orig_bar_rq
->cmd_flags
& REQ_ORDERED_COLOR
))
355 return QUEUE_ORDSEQ_DRAIN
;
357 return QUEUE_ORDSEQ_DONE
;
360 void blk_ordered_complete_seq(request_queue_t
*q
, unsigned seq
, int error
)
365 if (error
&& !q
->orderr
)
368 BUG_ON(q
->ordseq
& seq
);
371 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
375 * Okay, sequence complete.
378 uptodate
= q
->orderr
? q
->orderr
: 1;
382 end_that_request_first(rq
, uptodate
, rq
->hard_nr_sectors
);
383 end_that_request_last(rq
, uptodate
);
386 static void pre_flush_end_io(struct request
*rq
, int error
)
388 elv_completed_request(rq
->q
, rq
);
389 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
392 static void bar_end_io(struct request
*rq
, int error
)
394 elv_completed_request(rq
->q
, rq
);
395 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
398 static void post_flush_end_io(struct request
*rq
, int error
)
400 elv_completed_request(rq
->q
, rq
);
401 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
404 static void queue_flush(request_queue_t
*q
, unsigned which
)
407 rq_end_io_fn
*end_io
;
409 if (which
== QUEUE_ORDERED_PREFLUSH
) {
410 rq
= &q
->pre_flush_rq
;
411 end_io
= pre_flush_end_io
;
413 rq
= &q
->post_flush_rq
;
414 end_io
= post_flush_end_io
;
417 rq
->cmd_flags
= REQ_HARDBARRIER
;
419 rq
->elevator_private
= NULL
;
420 rq
->elevator_private2
= NULL
;
421 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
423 q
->prepare_flush_fn(q
, rq
);
425 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
428 static inline struct request
*start_ordered(request_queue_t
*q
,
433 q
->ordered
= q
->next_ordered
;
434 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
437 * Prep proxy barrier request.
439 blkdev_dequeue_request(rq
);
444 if (bio_data_dir(q
->orig_bar_rq
->bio
) == WRITE
)
445 rq
->cmd_flags
|= REQ_RW
;
446 rq
->cmd_flags
|= q
->ordered
& QUEUE_ORDERED_FUA
? REQ_FUA
: 0;
447 rq
->elevator_private
= NULL
;
448 rq
->elevator_private2
= NULL
;
449 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
450 rq
->end_io
= bar_end_io
;
453 * Queue ordered sequence. As we stack them at the head, we
454 * need to queue in reverse order. Note that we rely on that
455 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
456 * request gets inbetween ordered sequence.
458 if (q
->ordered
& QUEUE_ORDERED_POSTFLUSH
)
459 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
461 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
463 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
465 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
466 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
467 rq
= &q
->pre_flush_rq
;
469 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
471 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
472 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
479 int blk_do_ordered(request_queue_t
*q
, struct request
**rqp
)
481 struct request
*rq
= *rqp
;
482 int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
488 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
489 *rqp
= start_ordered(q
, rq
);
493 * This can happen when the queue switches to
494 * ORDERED_NONE while this request is on it.
496 blkdev_dequeue_request(rq
);
497 end_that_request_first(rq
, -EOPNOTSUPP
,
498 rq
->hard_nr_sectors
);
499 end_that_request_last(rq
, -EOPNOTSUPP
);
506 * Ordered sequence in progress
509 /* Special requests are not subject to ordering rules. */
510 if (!blk_fs_request(rq
) &&
511 rq
!= &q
->pre_flush_rq
&& rq
!= &q
->post_flush_rq
)
514 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
515 /* Ordered by tag. Blocking the next barrier is enough. */
516 if (is_barrier
&& rq
!= &q
->bar_rq
)
519 /* Ordered by draining. Wait for turn. */
520 WARN_ON(blk_ordered_req_seq(rq
) < blk_ordered_cur_seq(q
));
521 if (blk_ordered_req_seq(rq
) > blk_ordered_cur_seq(q
))
528 static int flush_dry_bio_endio(struct bio
*bio
, unsigned int bytes
, int error
)
530 request_queue_t
*q
= bio
->bi_private
;
533 * This is dry run, restore bio_sector and size. We'll finish
534 * this request again with the original bi_end_io after an
535 * error occurs or post flush is complete.
543 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
544 bio
->bi_size
= q
->bi_size
;
545 bio
->bi_sector
-= (q
->bi_size
>> 9);
551 static int ordered_bio_endio(struct request
*rq
, struct bio
*bio
,
552 unsigned int nbytes
, int error
)
554 request_queue_t
*q
= rq
->q
;
558 if (&q
->bar_rq
!= rq
)
562 * Okay, this is the barrier request in progress, dry finish it.
564 if (error
&& !q
->orderr
)
567 endio
= bio
->bi_end_io
;
568 private = bio
->bi_private
;
569 bio
->bi_end_io
= flush_dry_bio_endio
;
572 bio_endio(bio
, nbytes
, error
);
574 bio
->bi_end_io
= endio
;
575 bio
->bi_private
= private;
581 * blk_queue_bounce_limit - set bounce buffer limit for queue
582 * @q: the request queue for the device
583 * @dma_addr: bus address limit
586 * Different hardware can have different requirements as to what pages
587 * it can do I/O directly to. A low level driver can call
588 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
589 * buffers for doing I/O to pages residing above @page.
591 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
593 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
596 q
->bounce_gfp
= GFP_NOIO
;
597 #if BITS_PER_LONG == 64
598 /* Assume anything <= 4GB can be handled by IOMMU.
599 Actually some IOMMUs can handle everything, but I don't
600 know of a way to test this here. */
601 if (bounce_pfn
< (min_t(u64
,0xffffffff,BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
603 q
->bounce_pfn
= max_low_pfn
;
605 if (bounce_pfn
< blk_max_low_pfn
)
607 q
->bounce_pfn
= bounce_pfn
;
610 init_emergency_isa_pool();
611 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
612 q
->bounce_pfn
= bounce_pfn
;
616 EXPORT_SYMBOL(blk_queue_bounce_limit
);
619 * blk_queue_max_sectors - set max sectors for a request for this queue
620 * @q: the request queue for the device
621 * @max_sectors: max sectors in the usual 512b unit
624 * Enables a low level driver to set an upper limit on the size of
627 void blk_queue_max_sectors(request_queue_t
*q
, unsigned int max_sectors
)
629 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
630 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
631 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
634 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
635 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
637 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
638 q
->max_hw_sectors
= max_sectors
;
642 EXPORT_SYMBOL(blk_queue_max_sectors
);
645 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
646 * @q: the request queue for the device
647 * @max_segments: max number of segments
650 * Enables a low level driver to set an upper limit on the number of
651 * physical data segments in a request. This would be the largest sized
652 * scatter list the driver could handle.
654 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
658 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
661 q
->max_phys_segments
= max_segments
;
664 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
667 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
668 * @q: the request queue for the device
669 * @max_segments: max number of segments
672 * Enables a low level driver to set an upper limit on the number of
673 * hw data segments in a request. This would be the largest number of
674 * address/length pairs the host adapter can actually give as once
677 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
681 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
684 q
->max_hw_segments
= max_segments
;
687 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
690 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
691 * @q: the request queue for the device
692 * @max_size: max size of segment in bytes
695 * Enables a low level driver to set an upper limit on the size of a
698 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
700 if (max_size
< PAGE_CACHE_SIZE
) {
701 max_size
= PAGE_CACHE_SIZE
;
702 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
705 q
->max_segment_size
= max_size
;
708 EXPORT_SYMBOL(blk_queue_max_segment_size
);
711 * blk_queue_hardsect_size - set hardware sector size for the queue
712 * @q: the request queue for the device
713 * @size: the hardware sector size, in bytes
716 * This should typically be set to the lowest possible sector size
717 * that the hardware can operate on (possible without reverting to
718 * even internal read-modify-write operations). Usually the default
719 * of 512 covers most hardware.
721 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
723 q
->hardsect_size
= size
;
726 EXPORT_SYMBOL(blk_queue_hardsect_size
);
729 * Returns the minimum that is _not_ zero, unless both are zero.
731 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
734 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
735 * @t: the stacking driver (top)
736 * @b: the underlying device (bottom)
738 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
740 /* zero is "infinity" */
741 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
742 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
744 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
745 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
746 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
747 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
748 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
749 clear_bit(QUEUE_FLAG_CLUSTER
, &t
->queue_flags
);
752 EXPORT_SYMBOL(blk_queue_stack_limits
);
755 * blk_queue_segment_boundary - set boundary rules for segment merging
756 * @q: the request queue for the device
757 * @mask: the memory boundary mask
759 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
761 if (mask
< PAGE_CACHE_SIZE
- 1) {
762 mask
= PAGE_CACHE_SIZE
- 1;
763 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
766 q
->seg_boundary_mask
= mask
;
769 EXPORT_SYMBOL(blk_queue_segment_boundary
);
772 * blk_queue_dma_alignment - set dma length and memory alignment
773 * @q: the request queue for the device
774 * @mask: alignment mask
777 * set required memory and length aligment for direct dma transactions.
778 * this is used when buiding direct io requests for the queue.
781 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
783 q
->dma_alignment
= mask
;
786 EXPORT_SYMBOL(blk_queue_dma_alignment
);
789 * blk_queue_find_tag - find a request by its tag and queue
790 * @q: The request queue for the device
791 * @tag: The tag of the request
794 * Should be used when a device returns a tag and you want to match
797 * no locks need be held.
799 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
801 return blk_map_queue_find_tag(q
->queue_tags
, tag
);
804 EXPORT_SYMBOL(blk_queue_find_tag
);
807 * __blk_free_tags - release a given set of tag maintenance info
808 * @bqt: the tag map to free
810 * Tries to free the specified @bqt@. Returns true if it was
811 * actually freed and false if there are still references using it
813 static int __blk_free_tags(struct blk_queue_tag
*bqt
)
817 retval
= atomic_dec_and_test(&bqt
->refcnt
);
820 BUG_ON(!list_empty(&bqt
->busy_list
));
822 kfree(bqt
->tag_index
);
823 bqt
->tag_index
= NULL
;
836 * __blk_queue_free_tags - release tag maintenance info
837 * @q: the request queue for the device
840 * blk_cleanup_queue() will take care of calling this function, if tagging
841 * has been used. So there's no need to call this directly.
843 static void __blk_queue_free_tags(request_queue_t
*q
)
845 struct blk_queue_tag
*bqt
= q
->queue_tags
;
850 __blk_free_tags(bqt
);
852 q
->queue_tags
= NULL
;
853 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
858 * blk_free_tags - release a given set of tag maintenance info
859 * @bqt: the tag map to free
861 * For externally managed @bqt@ frees the map. Callers of this
862 * function must guarantee to have released all the queues that
863 * might have been using this tag map.
865 void blk_free_tags(struct blk_queue_tag
*bqt
)
867 if (unlikely(!__blk_free_tags(bqt
)))
870 EXPORT_SYMBOL(blk_free_tags
);
873 * blk_queue_free_tags - release tag maintenance info
874 * @q: the request queue for the device
877 * This is used to disabled tagged queuing to a device, yet leave
880 void blk_queue_free_tags(request_queue_t
*q
)
882 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
885 EXPORT_SYMBOL(blk_queue_free_tags
);
888 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
890 struct request
**tag_index
;
891 unsigned long *tag_map
;
894 if (q
&& depth
> q
->nr_requests
* 2) {
895 depth
= q
->nr_requests
* 2;
896 printk(KERN_ERR
"%s: adjusted depth to %d\n",
897 __FUNCTION__
, depth
);
900 tag_index
= kzalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
904 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
905 tag_map
= kzalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
909 tags
->real_max_depth
= depth
;
910 tags
->max_depth
= depth
;
911 tags
->tag_index
= tag_index
;
912 tags
->tag_map
= tag_map
;
920 static struct blk_queue_tag
*__blk_queue_init_tags(struct request_queue
*q
,
923 struct blk_queue_tag
*tags
;
925 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
929 if (init_tag_map(q
, tags
, depth
))
932 INIT_LIST_HEAD(&tags
->busy_list
);
934 atomic_set(&tags
->refcnt
, 1);
942 * blk_init_tags - initialize the tag info for an external tag map
943 * @depth: the maximum queue depth supported
944 * @tags: the tag to use
946 struct blk_queue_tag
*blk_init_tags(int depth
)
948 return __blk_queue_init_tags(NULL
, depth
);
950 EXPORT_SYMBOL(blk_init_tags
);
953 * blk_queue_init_tags - initialize the queue tag info
954 * @q: the request queue for the device
955 * @depth: the maximum queue depth supported
956 * @tags: the tag to use
958 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
959 struct blk_queue_tag
*tags
)
963 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
965 if (!tags
&& !q
->queue_tags
) {
966 tags
= __blk_queue_init_tags(q
, depth
);
970 } else if (q
->queue_tags
) {
971 if ((rc
= blk_queue_resize_tags(q
, depth
)))
973 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
976 atomic_inc(&tags
->refcnt
);
979 * assign it, all done
981 q
->queue_tags
= tags
;
982 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
989 EXPORT_SYMBOL(blk_queue_init_tags
);
992 * blk_queue_resize_tags - change the queueing depth
993 * @q: the request queue for the device
994 * @new_depth: the new max command queueing depth
997 * Must be called with the queue lock held.
999 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
1001 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1002 struct request
**tag_index
;
1003 unsigned long *tag_map
;
1004 int max_depth
, nr_ulongs
;
1010 * if we already have large enough real_max_depth. just
1011 * adjust max_depth. *NOTE* as requests with tag value
1012 * between new_depth and real_max_depth can be in-flight, tag
1013 * map can not be shrunk blindly here.
1015 if (new_depth
<= bqt
->real_max_depth
) {
1016 bqt
->max_depth
= new_depth
;
1021 * Currently cannot replace a shared tag map with a new
1022 * one, so error out if this is the case
1024 if (atomic_read(&bqt
->refcnt
) != 1)
1028 * save the old state info, so we can copy it back
1030 tag_index
= bqt
->tag_index
;
1031 tag_map
= bqt
->tag_map
;
1032 max_depth
= bqt
->real_max_depth
;
1034 if (init_tag_map(q
, bqt
, new_depth
))
1037 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1038 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1039 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1046 EXPORT_SYMBOL(blk_queue_resize_tags
);
1049 * blk_queue_end_tag - end tag operations for a request
1050 * @q: the request queue for the device
1051 * @rq: the request that has completed
1054 * Typically called when end_that_request_first() returns 0, meaning
1055 * all transfers have been done for a request. It's important to call
1056 * this function before end_that_request_last(), as that will put the
1057 * request back on the free list thus corrupting the internal tag list.
1060 * queue lock must be held.
1062 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
1064 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1069 if (unlikely(tag
>= bqt
->real_max_depth
))
1071 * This can happen after tag depth has been reduced.
1072 * FIXME: how about a warning or info message here?
1076 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
1077 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1082 list_del_init(&rq
->queuelist
);
1083 rq
->cmd_flags
&= ~REQ_QUEUED
;
1086 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1087 printk(KERN_ERR
"%s: tag %d is missing\n",
1090 bqt
->tag_index
[tag
] = NULL
;
1094 EXPORT_SYMBOL(blk_queue_end_tag
);
1097 * blk_queue_start_tag - find a free tag and assign it
1098 * @q: the request queue for the device
1099 * @rq: the block request that needs tagging
1102 * This can either be used as a stand-alone helper, or possibly be
1103 * assigned as the queue &prep_rq_fn (in which case &struct request
1104 * automagically gets a tag assigned). Note that this function
1105 * assumes that any type of request can be queued! if this is not
1106 * true for your device, you must check the request type before
1107 * calling this function. The request will also be removed from
1108 * the request queue, so it's the drivers responsibility to readd
1109 * it if it should need to be restarted for some reason.
1112 * queue lock must be held.
1114 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
1116 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1119 if (unlikely((rq
->cmd_flags
& REQ_QUEUED
))) {
1121 "%s: request %p for device [%s] already tagged %d",
1123 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1128 * Protect against shared tag maps, as we may not have exclusive
1129 * access to the tag map.
1132 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1133 if (tag
>= bqt
->max_depth
)
1136 } while (test_and_set_bit(tag
, bqt
->tag_map
));
1138 rq
->cmd_flags
|= REQ_QUEUED
;
1140 bqt
->tag_index
[tag
] = rq
;
1141 blkdev_dequeue_request(rq
);
1142 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1147 EXPORT_SYMBOL(blk_queue_start_tag
);
1150 * blk_queue_invalidate_tags - invalidate all pending tags
1151 * @q: the request queue for the device
1154 * Hardware conditions may dictate a need to stop all pending requests.
1155 * In this case, we will safely clear the block side of the tag queue and
1156 * readd all requests to the request queue in the right order.
1159 * queue lock must be held.
1161 void blk_queue_invalidate_tags(request_queue_t
*q
)
1163 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1164 struct list_head
*tmp
, *n
;
1167 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1168 rq
= list_entry_rq(tmp
);
1170 if (rq
->tag
== -1) {
1172 "%s: bad tag found on list\n", __FUNCTION__
);
1173 list_del_init(&rq
->queuelist
);
1174 rq
->cmd_flags
&= ~REQ_QUEUED
;
1176 blk_queue_end_tag(q
, rq
);
1178 rq
->cmd_flags
&= ~REQ_STARTED
;
1179 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1183 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1185 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1189 printk("%s: dev %s: type=%x, flags=%x\n", msg
,
1190 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
1193 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1195 rq
->current_nr_sectors
);
1196 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1198 if (blk_pc_request(rq
)) {
1200 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1201 printk("%02x ", rq
->cmd
[bit
]);
1206 EXPORT_SYMBOL(blk_dump_rq_flags
);
1208 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1210 struct bio_vec
*bv
, *bvprv
= NULL
;
1211 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1212 int high
, highprv
= 1;
1214 if (unlikely(!bio
->bi_io_vec
))
1217 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1218 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1219 bio_for_each_segment(bv
, bio
, i
) {
1221 * the trick here is making sure that a high page is never
1222 * considered part of another segment, since that might
1223 * change with the bounce page.
1225 high
= page_to_pfn(bv
->bv_page
) > q
->bounce_pfn
;
1226 if (high
|| highprv
)
1227 goto new_hw_segment
;
1229 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1231 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1233 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1235 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1236 goto new_hw_segment
;
1238 seg_size
+= bv
->bv_len
;
1239 hw_seg_size
+= bv
->bv_len
;
1244 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1245 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1246 hw_seg_size
+= bv
->bv_len
;
1249 if (hw_seg_size
> bio
->bi_hw_front_size
)
1250 bio
->bi_hw_front_size
= hw_seg_size
;
1251 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1257 seg_size
= bv
->bv_len
;
1260 if (hw_seg_size
> bio
->bi_hw_back_size
)
1261 bio
->bi_hw_back_size
= hw_seg_size
;
1262 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1263 bio
->bi_hw_front_size
= hw_seg_size
;
1264 bio
->bi_phys_segments
= nr_phys_segs
;
1265 bio
->bi_hw_segments
= nr_hw_segs
;
1266 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1268 EXPORT_SYMBOL(blk_recount_segments
);
1270 static int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1273 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1276 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1278 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1282 * bio and nxt are contigous in memory, check if the queue allows
1283 * these two to be merged into one
1285 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1291 static int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1294 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1295 blk_recount_segments(q
, bio
);
1296 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1297 blk_recount_segments(q
, nxt
);
1298 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1299 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_back_size
+ nxt
->bi_hw_front_size
))
1301 if (bio
->bi_hw_back_size
+ nxt
->bi_hw_front_size
> q
->max_segment_size
)
1308 * map a request to scatterlist, return number of sg entries setup. Caller
1309 * must make sure sg can hold rq->nr_phys_segments entries
1311 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1313 struct bio_vec
*bvec
, *bvprv
;
1315 int nsegs
, i
, cluster
;
1318 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1321 * for each bio in rq
1324 rq_for_each_bio(bio
, rq
) {
1326 * for each segment in bio
1328 bio_for_each_segment(bvec
, bio
, i
) {
1329 int nbytes
= bvec
->bv_len
;
1331 if (bvprv
&& cluster
) {
1332 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1335 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1337 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1340 sg
[nsegs
- 1].length
+= nbytes
;
1343 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1344 sg
[nsegs
].page
= bvec
->bv_page
;
1345 sg
[nsegs
].length
= nbytes
;
1346 sg
[nsegs
].offset
= bvec
->bv_offset
;
1351 } /* segments in bio */
1357 EXPORT_SYMBOL(blk_rq_map_sg
);
1360 * the standard queue merge functions, can be overridden with device
1361 * specific ones if so desired
1364 static inline int ll_new_mergeable(request_queue_t
*q
,
1365 struct request
*req
,
1368 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1370 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1371 req
->cmd_flags
|= REQ_NOMERGE
;
1372 if (req
== q
->last_merge
)
1373 q
->last_merge
= NULL
;
1378 * A hw segment is just getting larger, bump just the phys
1381 req
->nr_phys_segments
+= nr_phys_segs
;
1385 static inline int ll_new_hw_segment(request_queue_t
*q
,
1386 struct request
*req
,
1389 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1390 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1392 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1393 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1394 req
->cmd_flags
|= REQ_NOMERGE
;
1395 if (req
== q
->last_merge
)
1396 q
->last_merge
= NULL
;
1401 * This will form the start of a new hw segment. Bump both
1404 req
->nr_hw_segments
+= nr_hw_segs
;
1405 req
->nr_phys_segments
+= nr_phys_segs
;
1409 int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
, struct bio
*bio
)
1411 unsigned short max_sectors
;
1414 if (unlikely(blk_pc_request(req
)))
1415 max_sectors
= q
->max_hw_sectors
;
1417 max_sectors
= q
->max_sectors
;
1419 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1420 req
->cmd_flags
|= REQ_NOMERGE
;
1421 if (req
== q
->last_merge
)
1422 q
->last_merge
= NULL
;
1425 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1426 blk_recount_segments(q
, req
->biotail
);
1427 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1428 blk_recount_segments(q
, bio
);
1429 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1430 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1431 !BIOVEC_VIRT_OVERSIZE(len
)) {
1432 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1435 if (req
->nr_hw_segments
== 1)
1436 req
->bio
->bi_hw_front_size
= len
;
1437 if (bio
->bi_hw_segments
== 1)
1438 bio
->bi_hw_back_size
= len
;
1443 return ll_new_hw_segment(q
, req
, bio
);
1445 EXPORT_SYMBOL(ll_back_merge_fn
);
1447 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1450 unsigned short max_sectors
;
1453 if (unlikely(blk_pc_request(req
)))
1454 max_sectors
= q
->max_hw_sectors
;
1456 max_sectors
= q
->max_sectors
;
1459 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1460 req
->cmd_flags
|= REQ_NOMERGE
;
1461 if (req
== q
->last_merge
)
1462 q
->last_merge
= NULL
;
1465 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1466 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1467 blk_recount_segments(q
, bio
);
1468 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1469 blk_recount_segments(q
, req
->bio
);
1470 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1471 !BIOVEC_VIRT_OVERSIZE(len
)) {
1472 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1475 if (bio
->bi_hw_segments
== 1)
1476 bio
->bi_hw_front_size
= len
;
1477 if (req
->nr_hw_segments
== 1)
1478 req
->biotail
->bi_hw_back_size
= len
;
1483 return ll_new_hw_segment(q
, req
, bio
);
1486 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1487 struct request
*next
)
1489 int total_phys_segments
;
1490 int total_hw_segments
;
1493 * First check if the either of the requests are re-queued
1494 * requests. Can't merge them if they are.
1496 if (req
->special
|| next
->special
)
1500 * Will it become too large?
1502 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1505 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1506 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1507 total_phys_segments
--;
1509 if (total_phys_segments
> q
->max_phys_segments
)
1512 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1513 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1514 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1516 * propagate the combined length to the end of the requests
1518 if (req
->nr_hw_segments
== 1)
1519 req
->bio
->bi_hw_front_size
= len
;
1520 if (next
->nr_hw_segments
== 1)
1521 next
->biotail
->bi_hw_back_size
= len
;
1522 total_hw_segments
--;
1525 if (total_hw_segments
> q
->max_hw_segments
)
1528 /* Merge is OK... */
1529 req
->nr_phys_segments
= total_phys_segments
;
1530 req
->nr_hw_segments
= total_hw_segments
;
1535 * "plug" the device if there are no outstanding requests: this will
1536 * force the transfer to start only after we have put all the requests
1539 * This is called with interrupts off and no requests on the queue and
1540 * with the queue lock held.
1542 void blk_plug_device(request_queue_t
*q
)
1544 WARN_ON(!irqs_disabled());
1547 * don't plug a stopped queue, it must be paired with blk_start_queue()
1548 * which will restart the queueing
1550 if (blk_queue_stopped(q
))
1553 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
1554 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1555 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
1559 EXPORT_SYMBOL(blk_plug_device
);
1562 * remove the queue from the plugged list, if present. called with
1563 * queue lock held and interrupts disabled.
1565 int blk_remove_plug(request_queue_t
*q
)
1567 WARN_ON(!irqs_disabled());
1569 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1572 del_timer(&q
->unplug_timer
);
1576 EXPORT_SYMBOL(blk_remove_plug
);
1579 * remove the plug and let it rip..
1581 void __generic_unplug_device(request_queue_t
*q
)
1583 if (unlikely(blk_queue_stopped(q
)))
1586 if (!blk_remove_plug(q
))
1591 EXPORT_SYMBOL(__generic_unplug_device
);
1594 * generic_unplug_device - fire a request queue
1595 * @q: The &request_queue_t in question
1598 * Linux uses plugging to build bigger requests queues before letting
1599 * the device have at them. If a queue is plugged, the I/O scheduler
1600 * is still adding and merging requests on the queue. Once the queue
1601 * gets unplugged, the request_fn defined for the queue is invoked and
1602 * transfers started.
1604 void generic_unplug_device(request_queue_t
*q
)
1606 spin_lock_irq(q
->queue_lock
);
1607 __generic_unplug_device(q
);
1608 spin_unlock_irq(q
->queue_lock
);
1610 EXPORT_SYMBOL(generic_unplug_device
);
1612 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1615 request_queue_t
*q
= bdi
->unplug_io_data
;
1618 * devices don't necessarily have an ->unplug_fn defined
1621 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1622 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1628 static void blk_unplug_work(struct work_struct
*work
)
1630 request_queue_t
*q
= container_of(work
, request_queue_t
, unplug_work
);
1632 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1633 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1638 static void blk_unplug_timeout(unsigned long data
)
1640 request_queue_t
*q
= (request_queue_t
*)data
;
1642 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
1643 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1645 kblockd_schedule_work(&q
->unplug_work
);
1649 * blk_start_queue - restart a previously stopped queue
1650 * @q: The &request_queue_t in question
1653 * blk_start_queue() will clear the stop flag on the queue, and call
1654 * the request_fn for the queue if it was in a stopped state when
1655 * entered. Also see blk_stop_queue(). Queue lock must be held.
1657 void blk_start_queue(request_queue_t
*q
)
1659 WARN_ON(!irqs_disabled());
1661 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1664 * one level of recursion is ok and is much faster than kicking
1665 * the unplug handling
1667 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1669 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1672 kblockd_schedule_work(&q
->unplug_work
);
1676 EXPORT_SYMBOL(blk_start_queue
);
1679 * blk_stop_queue - stop a queue
1680 * @q: The &request_queue_t in question
1683 * The Linux block layer assumes that a block driver will consume all
1684 * entries on the request queue when the request_fn strategy is called.
1685 * Often this will not happen, because of hardware limitations (queue
1686 * depth settings). If a device driver gets a 'queue full' response,
1687 * or if it simply chooses not to queue more I/O at one point, it can
1688 * call this function to prevent the request_fn from being called until
1689 * the driver has signalled it's ready to go again. This happens by calling
1690 * blk_start_queue() to restart queue operations. Queue lock must be held.
1692 void blk_stop_queue(request_queue_t
*q
)
1695 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1697 EXPORT_SYMBOL(blk_stop_queue
);
1700 * blk_sync_queue - cancel any pending callbacks on a queue
1704 * The block layer may perform asynchronous callback activity
1705 * on a queue, such as calling the unplug function after a timeout.
1706 * A block device may call blk_sync_queue to ensure that any
1707 * such activity is cancelled, thus allowing it to release resources
1708 * that the callbacks might use. The caller must already have made sure
1709 * that its ->make_request_fn will not re-add plugging prior to calling
1713 void blk_sync_queue(struct request_queue
*q
)
1715 del_timer_sync(&q
->unplug_timer
);
1717 EXPORT_SYMBOL(blk_sync_queue
);
1720 * blk_run_queue - run a single device queue
1721 * @q: The queue to run
1723 void blk_run_queue(struct request_queue
*q
)
1725 unsigned long flags
;
1727 spin_lock_irqsave(q
->queue_lock
, flags
);
1731 * Only recurse once to avoid overrunning the stack, let the unplug
1732 * handling reinvoke the handler shortly if we already got there.
1734 if (!elv_queue_empty(q
)) {
1735 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1737 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1740 kblockd_schedule_work(&q
->unplug_work
);
1744 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1746 EXPORT_SYMBOL(blk_run_queue
);
1749 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1750 * @kobj: the kobj belonging of the request queue to be released
1753 * blk_cleanup_queue is the pair to blk_init_queue() or
1754 * blk_queue_make_request(). It should be called when a request queue is
1755 * being released; typically when a block device is being de-registered.
1756 * Currently, its primary task it to free all the &struct request
1757 * structures that were allocated to the queue and the queue itself.
1760 * Hopefully the low level driver will have finished any
1761 * outstanding requests first...
1763 static void blk_release_queue(struct kobject
*kobj
)
1765 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
1766 struct request_list
*rl
= &q
->rq
;
1771 mempool_destroy(rl
->rq_pool
);
1774 __blk_queue_free_tags(q
);
1776 blk_trace_shutdown(q
);
1778 kmem_cache_free(requestq_cachep
, q
);
1781 void blk_put_queue(request_queue_t
*q
)
1783 kobject_put(&q
->kobj
);
1785 EXPORT_SYMBOL(blk_put_queue
);
1787 void blk_cleanup_queue(request_queue_t
* q
)
1789 mutex_lock(&q
->sysfs_lock
);
1790 set_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
);
1791 mutex_unlock(&q
->sysfs_lock
);
1794 elevator_exit(q
->elevator
);
1799 EXPORT_SYMBOL(blk_cleanup_queue
);
1801 static int blk_init_free_list(request_queue_t
*q
)
1803 struct request_list
*rl
= &q
->rq
;
1805 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1806 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1808 init_waitqueue_head(&rl
->wait
[READ
]);
1809 init_waitqueue_head(&rl
->wait
[WRITE
]);
1811 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1812 mempool_free_slab
, request_cachep
, q
->node
);
1820 request_queue_t
*blk_alloc_queue(gfp_t gfp_mask
)
1822 return blk_alloc_queue_node(gfp_mask
, -1);
1824 EXPORT_SYMBOL(blk_alloc_queue
);
1826 static struct kobj_type queue_ktype
;
1828 request_queue_t
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1832 q
= kmem_cache_alloc_node(requestq_cachep
, gfp_mask
, node_id
);
1836 memset(q
, 0, sizeof(*q
));
1837 init_timer(&q
->unplug_timer
);
1839 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
1840 q
->kobj
.ktype
= &queue_ktype
;
1841 kobject_init(&q
->kobj
);
1843 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1844 q
->backing_dev_info
.unplug_io_data
= q
;
1846 mutex_init(&q
->sysfs_lock
);
1850 EXPORT_SYMBOL(blk_alloc_queue_node
);
1853 * blk_init_queue - prepare a request queue for use with a block device
1854 * @rfn: The function to be called to process requests that have been
1855 * placed on the queue.
1856 * @lock: Request queue spin lock
1859 * If a block device wishes to use the standard request handling procedures,
1860 * which sorts requests and coalesces adjacent requests, then it must
1861 * call blk_init_queue(). The function @rfn will be called when there
1862 * are requests on the queue that need to be processed. If the device
1863 * supports plugging, then @rfn may not be called immediately when requests
1864 * are available on the queue, but may be called at some time later instead.
1865 * Plugged queues are generally unplugged when a buffer belonging to one
1866 * of the requests on the queue is needed, or due to memory pressure.
1868 * @rfn is not required, or even expected, to remove all requests off the
1869 * queue, but only as many as it can handle at a time. If it does leave
1870 * requests on the queue, it is responsible for arranging that the requests
1871 * get dealt with eventually.
1873 * The queue spin lock must be held while manipulating the requests on the
1874 * request queue; this lock will be taken also from interrupt context, so irq
1875 * disabling is needed for it.
1877 * Function returns a pointer to the initialized request queue, or NULL if
1878 * it didn't succeed.
1881 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1882 * when the block device is deactivated (such as at module unload).
1885 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1887 return blk_init_queue_node(rfn
, lock
, -1);
1889 EXPORT_SYMBOL(blk_init_queue
);
1892 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1894 request_queue_t
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1900 if (blk_init_free_list(q
)) {
1901 kmem_cache_free(requestq_cachep
, q
);
1906 * if caller didn't supply a lock, they get per-queue locking with
1910 spin_lock_init(&q
->__queue_lock
);
1911 lock
= &q
->__queue_lock
;
1914 q
->request_fn
= rfn
;
1915 q
->prep_rq_fn
= NULL
;
1916 q
->unplug_fn
= generic_unplug_device
;
1917 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1918 q
->queue_lock
= lock
;
1920 blk_queue_segment_boundary(q
, 0xffffffff);
1922 blk_queue_make_request(q
, __make_request
);
1923 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1925 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1926 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1928 q
->sg_reserved_size
= INT_MAX
;
1933 if (!elevator_init(q
, NULL
)) {
1934 blk_queue_congestion_threshold(q
);
1941 EXPORT_SYMBOL(blk_init_queue_node
);
1943 int blk_get_queue(request_queue_t
*q
)
1945 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1946 kobject_get(&q
->kobj
);
1953 EXPORT_SYMBOL(blk_get_queue
);
1955 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
1957 if (rq
->cmd_flags
& REQ_ELVPRIV
)
1958 elv_put_request(q
, rq
);
1959 mempool_free(rq
, q
->rq
.rq_pool
);
1962 static struct request
*
1963 blk_alloc_request(request_queue_t
*q
, int rw
, int priv
, gfp_t gfp_mask
)
1965 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1971 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1972 * see bio.h and blkdev.h
1974 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
1977 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
1978 mempool_free(rq
, q
->rq
.rq_pool
);
1981 rq
->cmd_flags
|= REQ_ELVPRIV
;
1988 * ioc_batching returns true if the ioc is a valid batching request and
1989 * should be given priority access to a request.
1991 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
1997 * Make sure the process is able to allocate at least 1 request
1998 * even if the batch times out, otherwise we could theoretically
2001 return ioc
->nr_batch_requests
== q
->nr_batching
||
2002 (ioc
->nr_batch_requests
> 0
2003 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
2007 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2008 * will cause the process to be a "batcher" on all queues in the system. This
2009 * is the behaviour we want though - once it gets a wakeup it should be given
2012 static void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
2014 if (!ioc
|| ioc_batching(q
, ioc
))
2017 ioc
->nr_batch_requests
= q
->nr_batching
;
2018 ioc
->last_waited
= jiffies
;
2021 static void __freed_request(request_queue_t
*q
, int rw
)
2023 struct request_list
*rl
= &q
->rq
;
2025 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
2026 blk_clear_queue_congested(q
, rw
);
2028 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
2029 if (waitqueue_active(&rl
->wait
[rw
]))
2030 wake_up(&rl
->wait
[rw
]);
2032 blk_clear_queue_full(q
, rw
);
2037 * A request has just been released. Account for it, update the full and
2038 * congestion status, wake up any waiters. Called under q->queue_lock.
2040 static void freed_request(request_queue_t
*q
, int rw
, int priv
)
2042 struct request_list
*rl
= &q
->rq
;
2048 __freed_request(q
, rw
);
2050 if (unlikely(rl
->starved
[rw
^ 1]))
2051 __freed_request(q
, rw
^ 1);
2054 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2056 * Get a free request, queue_lock must be held.
2057 * Returns NULL on failure, with queue_lock held.
2058 * Returns !NULL on success, with queue_lock *not held*.
2060 static struct request
*get_request(request_queue_t
*q
, int rw_flags
,
2061 struct bio
*bio
, gfp_t gfp_mask
)
2063 struct request
*rq
= NULL
;
2064 struct request_list
*rl
= &q
->rq
;
2065 struct io_context
*ioc
= NULL
;
2066 const int rw
= rw_flags
& 0x01;
2067 int may_queue
, priv
;
2069 may_queue
= elv_may_queue(q
, rw_flags
);
2070 if (may_queue
== ELV_MQUEUE_NO
)
2073 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2074 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2075 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
2077 * The queue will fill after this allocation, so set
2078 * it as full, and mark this process as "batching".
2079 * This process will be allowed to complete a batch of
2080 * requests, others will be blocked.
2082 if (!blk_queue_full(q
, rw
)) {
2083 ioc_set_batching(q
, ioc
);
2084 blk_set_queue_full(q
, rw
);
2086 if (may_queue
!= ELV_MQUEUE_MUST
2087 && !ioc_batching(q
, ioc
)) {
2089 * The queue is full and the allocating
2090 * process is not a "batcher", and not
2091 * exempted by the IO scheduler
2097 blk_set_queue_congested(q
, rw
);
2101 * Only allow batching queuers to allocate up to 50% over the defined
2102 * limit of requests, otherwise we could have thousands of requests
2103 * allocated with any setting of ->nr_requests
2105 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2109 rl
->starved
[rw
] = 0;
2111 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2115 spin_unlock_irq(q
->queue_lock
);
2117 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
2118 if (unlikely(!rq
)) {
2120 * Allocation failed presumably due to memory. Undo anything
2121 * we might have messed up.
2123 * Allocating task should really be put onto the front of the
2124 * wait queue, but this is pretty rare.
2126 spin_lock_irq(q
->queue_lock
);
2127 freed_request(q
, rw
, priv
);
2130 * in the very unlikely event that allocation failed and no
2131 * requests for this direction was pending, mark us starved
2132 * so that freeing of a request in the other direction will
2133 * notice us. another possible fix would be to split the
2134 * rq mempool into READ and WRITE
2137 if (unlikely(rl
->count
[rw
] == 0))
2138 rl
->starved
[rw
] = 1;
2144 * ioc may be NULL here, and ioc_batching will be false. That's
2145 * OK, if the queue is under the request limit then requests need
2146 * not count toward the nr_batch_requests limit. There will always
2147 * be some limit enforced by BLK_BATCH_TIME.
2149 if (ioc_batching(q
, ioc
))
2150 ioc
->nr_batch_requests
--;
2154 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
2160 * No available requests for this queue, unplug the device and wait for some
2161 * requests to become available.
2163 * Called with q->queue_lock held, and returns with it unlocked.
2165 static struct request
*get_request_wait(request_queue_t
*q
, int rw_flags
,
2168 const int rw
= rw_flags
& 0x01;
2171 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
2174 struct request_list
*rl
= &q
->rq
;
2176 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2177 TASK_UNINTERRUPTIBLE
);
2179 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
2182 struct io_context
*ioc
;
2184 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
2186 __generic_unplug_device(q
);
2187 spin_unlock_irq(q
->queue_lock
);
2191 * After sleeping, we become a "batching" process and
2192 * will be able to allocate at least one request, and
2193 * up to a big batch of them for a small period time.
2194 * See ioc_batching, ioc_set_batching
2196 ioc
= current_io_context(GFP_NOIO
, q
->node
);
2197 ioc_set_batching(q
, ioc
);
2199 spin_lock_irq(q
->queue_lock
);
2201 finish_wait(&rl
->wait
[rw
], &wait
);
2207 struct request
*blk_get_request(request_queue_t
*q
, int rw
, gfp_t gfp_mask
)
2211 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2213 spin_lock_irq(q
->queue_lock
);
2214 if (gfp_mask
& __GFP_WAIT
) {
2215 rq
= get_request_wait(q
, rw
, NULL
);
2217 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2219 spin_unlock_irq(q
->queue_lock
);
2221 /* q->queue_lock is unlocked at this point */
2225 EXPORT_SYMBOL(blk_get_request
);
2228 * blk_start_queueing - initiate dispatch of requests to device
2229 * @q: request queue to kick into gear
2231 * This is basically a helper to remove the need to know whether a queue
2232 * is plugged or not if someone just wants to initiate dispatch of requests
2235 * The queue lock must be held with interrupts disabled.
2237 void blk_start_queueing(request_queue_t
*q
)
2239 if (!blk_queue_plugged(q
))
2242 __generic_unplug_device(q
);
2244 EXPORT_SYMBOL(blk_start_queueing
);
2247 * blk_requeue_request - put a request back on queue
2248 * @q: request queue where request should be inserted
2249 * @rq: request to be inserted
2252 * Drivers often keep queueing requests until the hardware cannot accept
2253 * more, when that condition happens we need to put the request back
2254 * on the queue. Must be called with queue lock held.
2256 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2258 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
2260 if (blk_rq_tagged(rq
))
2261 blk_queue_end_tag(q
, rq
);
2263 elv_requeue_request(q
, rq
);
2266 EXPORT_SYMBOL(blk_requeue_request
);
2269 * blk_insert_request - insert a special request in to a request queue
2270 * @q: request queue where request should be inserted
2271 * @rq: request to be inserted
2272 * @at_head: insert request at head or tail of queue
2273 * @data: private data
2276 * Many block devices need to execute commands asynchronously, so they don't
2277 * block the whole kernel from preemption during request execution. This is
2278 * accomplished normally by inserting aritficial requests tagged as
2279 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2280 * scheduled for actual execution by the request queue.
2282 * We have the option of inserting the head or the tail of the queue.
2283 * Typically we use the tail for new ioctls and so forth. We use the head
2284 * of the queue for things like a QUEUE_FULL message from a device, or a
2285 * host that is unable to accept a particular command.
2287 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2288 int at_head
, void *data
)
2290 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2291 unsigned long flags
;
2294 * tell I/O scheduler that this isn't a regular read/write (ie it
2295 * must not attempt merges on this) and that it acts as a soft
2298 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
2299 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
2303 spin_lock_irqsave(q
->queue_lock
, flags
);
2306 * If command is tagged, release the tag
2308 if (blk_rq_tagged(rq
))
2309 blk_queue_end_tag(q
, rq
);
2311 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2312 __elv_add_request(q
, rq
, where
, 0);
2313 blk_start_queueing(q
);
2314 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2317 EXPORT_SYMBOL(blk_insert_request
);
2319 static int __blk_rq_unmap_user(struct bio
*bio
)
2324 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2325 bio_unmap_user(bio
);
2327 ret
= bio_uncopy_user(bio
);
2333 static int __blk_rq_map_user(request_queue_t
*q
, struct request
*rq
,
2334 void __user
*ubuf
, unsigned int len
)
2336 unsigned long uaddr
;
2337 struct bio
*bio
, *orig_bio
;
2340 reading
= rq_data_dir(rq
) == READ
;
2343 * if alignment requirement is satisfied, map in user pages for
2344 * direct dma. else, set up kernel bounce buffers
2346 uaddr
= (unsigned long) ubuf
;
2347 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2348 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2350 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2353 return PTR_ERR(bio
);
2356 blk_queue_bounce(q
, &bio
);
2359 * We link the bounce buffer in and could have to traverse it
2360 * later so we have to get a ref to prevent it from being freed
2365 blk_rq_bio_prep(q
, rq
, bio
);
2366 else if (!ll_back_merge_fn(q
, rq
, bio
)) {
2370 rq
->biotail
->bi_next
= bio
;
2373 rq
->data_len
+= bio
->bi_size
;
2376 return bio
->bi_size
;
2379 /* if it was boucned we must call the end io function */
2380 bio_endio(bio
, bio
->bi_size
, 0);
2381 __blk_rq_unmap_user(orig_bio
);
2387 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2388 * @q: request queue where request should be inserted
2389 * @rq: request structure to fill
2390 * @ubuf: the user buffer
2391 * @len: length of user data
2394 * Data will be mapped directly for zero copy io, if possible. Otherwise
2395 * a kernel bounce buffer is used.
2397 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2398 * still in process context.
2400 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2401 * before being submitted to the device, as pages mapped may be out of
2402 * reach. It's the callers responsibility to make sure this happens. The
2403 * original bio must be passed back in to blk_rq_unmap_user() for proper
2406 int blk_rq_map_user(request_queue_t
*q
, struct request
*rq
, void __user
*ubuf
,
2409 unsigned long bytes_read
= 0;
2410 struct bio
*bio
= NULL
;
2413 if (len
> (q
->max_hw_sectors
<< 9))
2418 while (bytes_read
!= len
) {
2419 unsigned long map_len
, end
, start
;
2421 map_len
= min_t(unsigned long, len
- bytes_read
, BIO_MAX_SIZE
);
2422 end
= ((unsigned long)ubuf
+ map_len
+ PAGE_SIZE
- 1)
2424 start
= (unsigned long)ubuf
>> PAGE_SHIFT
;
2427 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2428 * pages. If this happens we just lower the requested
2429 * mapping len by a page so that we can fit
2431 if (end
- start
> BIO_MAX_PAGES
)
2432 map_len
-= PAGE_SIZE
;
2434 ret
= __blk_rq_map_user(q
, rq
, ubuf
, map_len
);
2443 rq
->buffer
= rq
->data
= NULL
;
2446 blk_rq_unmap_user(bio
);
2450 EXPORT_SYMBOL(blk_rq_map_user
);
2453 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2454 * @q: request queue where request should be inserted
2455 * @rq: request to map data to
2456 * @iov: pointer to the iovec
2457 * @iov_count: number of elements in the iovec
2458 * @len: I/O byte count
2461 * Data will be mapped directly for zero copy io, if possible. Otherwise
2462 * a kernel bounce buffer is used.
2464 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2465 * still in process context.
2467 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2468 * before being submitted to the device, as pages mapped may be out of
2469 * reach. It's the callers responsibility to make sure this happens. The
2470 * original bio must be passed back in to blk_rq_unmap_user() for proper
2473 int blk_rq_map_user_iov(request_queue_t
*q
, struct request
*rq
,
2474 struct sg_iovec
*iov
, int iov_count
, unsigned int len
)
2478 if (!iov
|| iov_count
<= 0)
2481 /* we don't allow misaligned data like bio_map_user() does. If the
2482 * user is using sg, they're expected to know the alignment constraints
2483 * and respect them accordingly */
2484 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2486 return PTR_ERR(bio
);
2488 if (bio
->bi_size
!= len
) {
2489 bio_endio(bio
, bio
->bi_size
, 0);
2490 bio_unmap_user(bio
);
2495 blk_rq_bio_prep(q
, rq
, bio
);
2496 rq
->buffer
= rq
->data
= NULL
;
2500 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2503 * blk_rq_unmap_user - unmap a request with user data
2504 * @bio: start of bio list
2507 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2508 * supply the original rq->bio from the blk_rq_map_user() return, since
2509 * the io completion may have changed rq->bio.
2511 int blk_rq_unmap_user(struct bio
*bio
)
2513 struct bio
*mapped_bio
;
2518 if (unlikely(bio_flagged(bio
, BIO_BOUNCED
)))
2519 mapped_bio
= bio
->bi_private
;
2521 ret2
= __blk_rq_unmap_user(mapped_bio
);
2527 bio_put(mapped_bio
);
2533 EXPORT_SYMBOL(blk_rq_unmap_user
);
2536 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2537 * @q: request queue where request should be inserted
2538 * @rq: request to fill
2539 * @kbuf: the kernel buffer
2540 * @len: length of user data
2541 * @gfp_mask: memory allocation flags
2543 int blk_rq_map_kern(request_queue_t
*q
, struct request
*rq
, void *kbuf
,
2544 unsigned int len
, gfp_t gfp_mask
)
2548 if (len
> (q
->max_hw_sectors
<< 9))
2553 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2555 return PTR_ERR(bio
);
2557 if (rq_data_dir(rq
) == WRITE
)
2558 bio
->bi_rw
|= (1 << BIO_RW
);
2560 blk_rq_bio_prep(q
, rq
, bio
);
2561 blk_queue_bounce(q
, &rq
->bio
);
2562 rq
->buffer
= rq
->data
= NULL
;
2566 EXPORT_SYMBOL(blk_rq_map_kern
);
2569 * blk_execute_rq_nowait - insert a request into queue for execution
2570 * @q: queue to insert the request in
2571 * @bd_disk: matching gendisk
2572 * @rq: request to insert
2573 * @at_head: insert request at head or tail of queue
2574 * @done: I/O completion handler
2577 * Insert a fully prepared request at the back of the io scheduler queue
2578 * for execution. Don't wait for completion.
2580 void blk_execute_rq_nowait(request_queue_t
*q
, struct gendisk
*bd_disk
,
2581 struct request
*rq
, int at_head
,
2584 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2586 rq
->rq_disk
= bd_disk
;
2587 rq
->cmd_flags
|= REQ_NOMERGE
;
2589 WARN_ON(irqs_disabled());
2590 spin_lock_irq(q
->queue_lock
);
2591 __elv_add_request(q
, rq
, where
, 1);
2592 __generic_unplug_device(q
);
2593 spin_unlock_irq(q
->queue_lock
);
2595 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2598 * blk_execute_rq - insert a request into queue for execution
2599 * @q: queue to insert the request in
2600 * @bd_disk: matching gendisk
2601 * @rq: request to insert
2602 * @at_head: insert request at head or tail of queue
2605 * Insert a fully prepared request at the back of the io scheduler queue
2606 * for execution and wait for completion.
2608 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2609 struct request
*rq
, int at_head
)
2611 DECLARE_COMPLETION_ONSTACK(wait
);
2612 char sense
[SCSI_SENSE_BUFFERSIZE
];
2616 * we need an extra reference to the request, so we can look at
2617 * it after io completion
2622 memset(sense
, 0, sizeof(sense
));
2627 rq
->end_io_data
= &wait
;
2628 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2629 wait_for_completion(&wait
);
2637 EXPORT_SYMBOL(blk_execute_rq
);
2640 * blkdev_issue_flush - queue a flush
2641 * @bdev: blockdev to issue flush for
2642 * @error_sector: error sector
2645 * Issue a flush for the block device in question. Caller can supply
2646 * room for storing the error offset in case of a flush error, if they
2647 * wish to. Caller must run wait_for_completion() on its own.
2649 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2653 if (bdev
->bd_disk
== NULL
)
2656 q
= bdev_get_queue(bdev
);
2659 if (!q
->issue_flush_fn
)
2662 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2665 EXPORT_SYMBOL(blkdev_issue_flush
);
2667 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2669 int rw
= rq_data_dir(rq
);
2671 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2675 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2677 disk_round_stats(rq
->rq_disk
);
2678 rq
->rq_disk
->in_flight
++;
2683 * add-request adds a request to the linked list.
2684 * queue lock is held and interrupts disabled, as we muck with the
2685 * request queue list.
2687 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2689 drive_stat_acct(req
, req
->nr_sectors
, 1);
2692 * elevator indicated where it wants this request to be
2693 * inserted at elevator_merge time
2695 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2699 * disk_round_stats() - Round off the performance stats on a struct
2702 * The average IO queue length and utilisation statistics are maintained
2703 * by observing the current state of the queue length and the amount of
2704 * time it has been in this state for.
2706 * Normally, that accounting is done on IO completion, but that can result
2707 * in more than a second's worth of IO being accounted for within any one
2708 * second, leading to >100% utilisation. To deal with that, we call this
2709 * function to do a round-off before returning the results when reading
2710 * /proc/diskstats. This accounts immediately for all queue usage up to
2711 * the current jiffies and restarts the counters again.
2713 void disk_round_stats(struct gendisk
*disk
)
2715 unsigned long now
= jiffies
;
2717 if (now
== disk
->stamp
)
2720 if (disk
->in_flight
) {
2721 __disk_stat_add(disk
, time_in_queue
,
2722 disk
->in_flight
* (now
- disk
->stamp
));
2723 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2728 EXPORT_SYMBOL_GPL(disk_round_stats
);
2731 * queue lock must be held
2733 void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2737 if (unlikely(--req
->ref_count
))
2740 elv_completed_request(q
, req
);
2743 * Request may not have originated from ll_rw_blk. if not,
2744 * it didn't come out of our reserved rq pools
2746 if (req
->cmd_flags
& REQ_ALLOCED
) {
2747 int rw
= rq_data_dir(req
);
2748 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
2750 BUG_ON(!list_empty(&req
->queuelist
));
2751 BUG_ON(!hlist_unhashed(&req
->hash
));
2753 blk_free_request(q
, req
);
2754 freed_request(q
, rw
, priv
);
2758 EXPORT_SYMBOL_GPL(__blk_put_request
);
2760 void blk_put_request(struct request
*req
)
2762 unsigned long flags
;
2763 request_queue_t
*q
= req
->q
;
2766 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2767 * following if (q) test.
2770 spin_lock_irqsave(q
->queue_lock
, flags
);
2771 __blk_put_request(q
, req
);
2772 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2776 EXPORT_SYMBOL(blk_put_request
);
2779 * blk_end_sync_rq - executes a completion event on a request
2780 * @rq: request to complete
2781 * @error: end io status of the request
2783 void blk_end_sync_rq(struct request
*rq
, int error
)
2785 struct completion
*waiting
= rq
->end_io_data
;
2787 rq
->end_io_data
= NULL
;
2788 __blk_put_request(rq
->q
, rq
);
2791 * complete last, if this is a stack request the process (and thus
2792 * the rq pointer) could be invalid right after this complete()
2796 EXPORT_SYMBOL(blk_end_sync_rq
);
2799 * Has to be called with the request spinlock acquired
2801 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2802 struct request
*next
)
2804 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2810 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2813 if (rq_data_dir(req
) != rq_data_dir(next
)
2814 || req
->rq_disk
!= next
->rq_disk
2819 * If we are allowed to merge, then append bio list
2820 * from next to rq and release next. merge_requests_fn
2821 * will have updated segment counts, update sector
2824 if (!ll_merge_requests_fn(q
, req
, next
))
2828 * At this point we have either done a back merge
2829 * or front merge. We need the smaller start_time of
2830 * the merged requests to be the current request
2831 * for accounting purposes.
2833 if (time_after(req
->start_time
, next
->start_time
))
2834 req
->start_time
= next
->start_time
;
2836 req
->biotail
->bi_next
= next
->bio
;
2837 req
->biotail
= next
->biotail
;
2839 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2841 elv_merge_requests(q
, req
, next
);
2844 disk_round_stats(req
->rq_disk
);
2845 req
->rq_disk
->in_flight
--;
2848 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2850 __blk_put_request(q
, next
);
2854 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2856 struct request
*next
= elv_latter_request(q
, rq
);
2859 return attempt_merge(q
, rq
, next
);
2864 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2866 struct request
*prev
= elv_former_request(q
, rq
);
2869 return attempt_merge(q
, prev
, rq
);
2874 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
2876 req
->cmd_type
= REQ_TYPE_FS
;
2879 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2881 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2882 req
->cmd_flags
|= REQ_FAILFAST
;
2885 * REQ_BARRIER implies no merging, but lets make it explicit
2887 if (unlikely(bio_barrier(bio
)))
2888 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2891 req
->cmd_flags
|= REQ_RW_SYNC
;
2892 if (bio_rw_meta(bio
))
2893 req
->cmd_flags
|= REQ_RW_META
;
2896 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
2897 req
->hard_nr_sectors
= req
->nr_sectors
= bio_sectors(bio
);
2898 req
->current_nr_sectors
= req
->hard_cur_sectors
= bio_cur_sectors(bio
);
2899 req
->nr_phys_segments
= bio_phys_segments(req
->q
, bio
);
2900 req
->nr_hw_segments
= bio_hw_segments(req
->q
, bio
);
2901 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2902 req
->bio
= req
->biotail
= bio
;
2903 req
->ioprio
= bio_prio(bio
);
2904 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2905 req
->start_time
= jiffies
;
2908 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2910 struct request
*req
;
2911 int el_ret
, nr_sectors
, barrier
, err
;
2912 const unsigned short prio
= bio_prio(bio
);
2913 const int sync
= bio_sync(bio
);
2916 nr_sectors
= bio_sectors(bio
);
2919 * low level driver can indicate that it wants pages above a
2920 * certain limit bounced to low memory (ie for highmem, or even
2921 * ISA dma in theory)
2923 blk_queue_bounce(q
, &bio
);
2925 barrier
= bio_barrier(bio
);
2926 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
2931 spin_lock_irq(q
->queue_lock
);
2933 if (unlikely(barrier
) || elv_queue_empty(q
))
2936 el_ret
= elv_merge(q
, &req
, bio
);
2938 case ELEVATOR_BACK_MERGE
:
2939 BUG_ON(!rq_mergeable(req
));
2941 if (!ll_back_merge_fn(q
, req
, bio
))
2944 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
2946 req
->biotail
->bi_next
= bio
;
2948 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2949 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2950 drive_stat_acct(req
, nr_sectors
, 0);
2951 if (!attempt_back_merge(q
, req
))
2952 elv_merged_request(q
, req
, el_ret
);
2955 case ELEVATOR_FRONT_MERGE
:
2956 BUG_ON(!rq_mergeable(req
));
2958 if (!ll_front_merge_fn(q
, req
, bio
))
2961 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
2963 bio
->bi_next
= req
->bio
;
2967 * may not be valid. if the low level driver said
2968 * it didn't need a bounce buffer then it better
2969 * not touch req->buffer either...
2971 req
->buffer
= bio_data(bio
);
2972 req
->current_nr_sectors
= bio_cur_sectors(bio
);
2973 req
->hard_cur_sectors
= req
->current_nr_sectors
;
2974 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
2975 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2976 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2977 drive_stat_acct(req
, nr_sectors
, 0);
2978 if (!attempt_front_merge(q
, req
))
2979 elv_merged_request(q
, req
, el_ret
);
2982 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2989 * This sync check and mask will be re-done in init_request_from_bio(),
2990 * but we need to set it earlier to expose the sync flag to the
2991 * rq allocator and io schedulers.
2993 rw_flags
= bio_data_dir(bio
);
2995 rw_flags
|= REQ_RW_SYNC
;
2998 * Grab a free request. This is might sleep but can not fail.
2999 * Returns with the queue unlocked.
3001 req
= get_request_wait(q
, rw_flags
, bio
);
3004 * After dropping the lock and possibly sleeping here, our request
3005 * may now be mergeable after it had proven unmergeable (above).
3006 * We don't worry about that case for efficiency. It won't happen
3007 * often, and the elevators are able to handle it.
3009 init_request_from_bio(req
, bio
);
3011 spin_lock_irq(q
->queue_lock
);
3012 if (elv_queue_empty(q
))
3014 add_request(q
, req
);
3017 __generic_unplug_device(q
);
3019 spin_unlock_irq(q
->queue_lock
);
3023 bio_endio(bio
, nr_sectors
<< 9, err
);
3028 * If bio->bi_dev is a partition, remap the location
3030 static inline void blk_partition_remap(struct bio
*bio
)
3032 struct block_device
*bdev
= bio
->bi_bdev
;
3034 if (bdev
!= bdev
->bd_contains
) {
3035 struct hd_struct
*p
= bdev
->bd_part
;
3036 const int rw
= bio_data_dir(bio
);
3038 p
->sectors
[rw
] += bio_sectors(bio
);
3041 bio
->bi_sector
+= p
->start_sect
;
3042 bio
->bi_bdev
= bdev
->bd_contains
;
3046 static void handle_bad_sector(struct bio
*bio
)
3048 char b
[BDEVNAME_SIZE
];
3050 printk(KERN_INFO
"attempt to access beyond end of device\n");
3051 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
3052 bdevname(bio
->bi_bdev
, b
),
3054 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
3055 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
3057 set_bit(BIO_EOF
, &bio
->bi_flags
);
3060 #ifdef CONFIG_FAIL_MAKE_REQUEST
3062 static DECLARE_FAULT_ATTR(fail_make_request
);
3064 static int __init
setup_fail_make_request(char *str
)
3066 return setup_fault_attr(&fail_make_request
, str
);
3068 __setup("fail_make_request=", setup_fail_make_request
);
3070 static int should_fail_request(struct bio
*bio
)
3072 if ((bio
->bi_bdev
->bd_disk
->flags
& GENHD_FL_FAIL
) ||
3073 (bio
->bi_bdev
->bd_part
&& bio
->bi_bdev
->bd_part
->make_it_fail
))
3074 return should_fail(&fail_make_request
, bio
->bi_size
);
3079 static int __init
fail_make_request_debugfs(void)
3081 return init_fault_attr_dentries(&fail_make_request
,
3082 "fail_make_request");
3085 late_initcall(fail_make_request_debugfs
);
3087 #else /* CONFIG_FAIL_MAKE_REQUEST */
3089 static inline int should_fail_request(struct bio
*bio
)
3094 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3097 * generic_make_request: hand a buffer to its device driver for I/O
3098 * @bio: The bio describing the location in memory and on the device.
3100 * generic_make_request() is used to make I/O requests of block
3101 * devices. It is passed a &struct bio, which describes the I/O that needs
3104 * generic_make_request() does not return any status. The
3105 * success/failure status of the request, along with notification of
3106 * completion, is delivered asynchronously through the bio->bi_end_io
3107 * function described (one day) else where.
3109 * The caller of generic_make_request must make sure that bi_io_vec
3110 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3111 * set to describe the device address, and the
3112 * bi_end_io and optionally bi_private are set to describe how
3113 * completion notification should be signaled.
3115 * generic_make_request and the drivers it calls may use bi_next if this
3116 * bio happens to be merged with someone else, and may change bi_dev and
3117 * bi_sector for remaps as it sees fit. So the values of these fields
3118 * should NOT be depended on after the call to generic_make_request.
3120 static inline void __generic_make_request(struct bio
*bio
)
3124 sector_t old_sector
;
3125 int ret
, nr_sectors
= bio_sectors(bio
);
3129 /* Test device or partition size, when known. */
3130 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3132 sector_t sector
= bio
->bi_sector
;
3134 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
3136 * This may well happen - the kernel calls bread()
3137 * without checking the size of the device, e.g., when
3138 * mounting a device.
3140 handle_bad_sector(bio
);
3146 * Resolve the mapping until finished. (drivers are
3147 * still free to implement/resolve their own stacking
3148 * by explicitly returning 0)
3150 * NOTE: we don't repeat the blk_size check for each new device.
3151 * Stacking drivers are expected to know what they are doing.
3156 char b
[BDEVNAME_SIZE
];
3158 q
= bdev_get_queue(bio
->bi_bdev
);
3161 "generic_make_request: Trying to access "
3162 "nonexistent block-device %s (%Lu)\n",
3163 bdevname(bio
->bi_bdev
, b
),
3164 (long long) bio
->bi_sector
);
3166 bio_endio(bio
, bio
->bi_size
, -EIO
);
3170 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
3171 printk("bio too big device %s (%u > %u)\n",
3172 bdevname(bio
->bi_bdev
, b
),
3178 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3181 if (should_fail_request(bio
))
3185 * If this device has partitions, remap block n
3186 * of partition p to block n+start(p) of the disk.
3188 blk_partition_remap(bio
);
3190 if (old_sector
!= -1)
3191 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
3194 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
3196 old_sector
= bio
->bi_sector
;
3197 old_dev
= bio
->bi_bdev
->bd_dev
;
3199 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3201 sector_t sector
= bio
->bi_sector
;
3203 if (maxsector
< nr_sectors
||
3204 maxsector
- nr_sectors
< sector
) {
3206 * This may well happen - partitions are not
3207 * checked to make sure they are within the size
3208 * of the whole device.
3210 handle_bad_sector(bio
);
3215 ret
= q
->make_request_fn(q
, bio
);
3220 * We only want one ->make_request_fn to be active at a time,
3221 * else stack usage with stacked devices could be a problem.
3222 * So use current->bio_{list,tail} to keep a list of requests
3223 * submited by a make_request_fn function.
3224 * current->bio_tail is also used as a flag to say if
3225 * generic_make_request is currently active in this task or not.
3226 * If it is NULL, then no make_request is active. If it is non-NULL,
3227 * then a make_request is active, and new requests should be added
3230 void generic_make_request(struct bio
*bio
)
3232 if (current
->bio_tail
) {
3233 /* make_request is active */
3234 *(current
->bio_tail
) = bio
;
3235 bio
->bi_next
= NULL
;
3236 current
->bio_tail
= &bio
->bi_next
;
3239 /* following loop may be a bit non-obvious, and so deserves some
3241 * Before entering the loop, bio->bi_next is NULL (as all callers
3242 * ensure that) so we have a list with a single bio.
3243 * We pretend that we have just taken it off a longer list, so
3244 * we assign bio_list to the next (which is NULL) and bio_tail
3245 * to &bio_list, thus initialising the bio_list of new bios to be
3246 * added. __generic_make_request may indeed add some more bios
3247 * through a recursive call to generic_make_request. If it
3248 * did, we find a non-NULL value in bio_list and re-enter the loop
3249 * from the top. In this case we really did just take the bio
3250 * of the top of the list (no pretending) and so fixup bio_list and
3251 * bio_tail or bi_next, and call into __generic_make_request again.
3253 * The loop was structured like this to make only one call to
3254 * __generic_make_request (which is important as it is large and
3255 * inlined) and to keep the structure simple.
3257 BUG_ON(bio
->bi_next
);
3259 current
->bio_list
= bio
->bi_next
;
3260 if (bio
->bi_next
== NULL
)
3261 current
->bio_tail
= ¤t
->bio_list
;
3263 bio
->bi_next
= NULL
;
3264 __generic_make_request(bio
);
3265 bio
= current
->bio_list
;
3267 current
->bio_tail
= NULL
; /* deactivate */
3270 EXPORT_SYMBOL(generic_make_request
);
3273 * submit_bio: submit a bio to the block device layer for I/O
3274 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3275 * @bio: The &struct bio which describes the I/O
3277 * submit_bio() is very similar in purpose to generic_make_request(), and
3278 * uses that function to do most of the work. Both are fairly rough
3279 * interfaces, @bio must be presetup and ready for I/O.
3282 void submit_bio(int rw
, struct bio
*bio
)
3284 int count
= bio_sectors(bio
);
3286 BIO_BUG_ON(!bio
->bi_size
);
3287 BIO_BUG_ON(!bio
->bi_io_vec
);
3290 count_vm_events(PGPGOUT
, count
);
3292 task_io_account_read(bio
->bi_size
);
3293 count_vm_events(PGPGIN
, count
);
3296 if (unlikely(block_dump
)) {
3297 char b
[BDEVNAME_SIZE
];
3298 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3299 current
->comm
, current
->pid
,
3300 (rw
& WRITE
) ? "WRITE" : "READ",
3301 (unsigned long long)bio
->bi_sector
,
3302 bdevname(bio
->bi_bdev
,b
));
3305 generic_make_request(bio
);
3308 EXPORT_SYMBOL(submit_bio
);
3310 static void blk_recalc_rq_segments(struct request
*rq
)
3312 struct bio
*bio
, *prevbio
= NULL
;
3313 int nr_phys_segs
, nr_hw_segs
;
3314 unsigned int phys_size
, hw_size
;
3315 request_queue_t
*q
= rq
->q
;
3320 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
3321 rq_for_each_bio(bio
, rq
) {
3322 /* Force bio hw/phys segs to be recalculated. */
3323 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3325 nr_phys_segs
+= bio_phys_segments(q
, bio
);
3326 nr_hw_segs
+= bio_hw_segments(q
, bio
);
3328 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3329 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3331 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
3332 pseg
<= q
->max_segment_size
) {
3334 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3338 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
3339 hseg
<= q
->max_segment_size
) {
3341 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3348 rq
->nr_phys_segments
= nr_phys_segs
;
3349 rq
->nr_hw_segments
= nr_hw_segs
;
3352 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3354 if (blk_fs_request(rq
)) {
3355 rq
->hard_sector
+= nsect
;
3356 rq
->hard_nr_sectors
-= nsect
;
3359 * Move the I/O submission pointers ahead if required.
3361 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3362 (rq
->sector
<= rq
->hard_sector
)) {
3363 rq
->sector
= rq
->hard_sector
;
3364 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3365 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3366 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3367 rq
->buffer
= bio_data(rq
->bio
);
3371 * if total number of sectors is less than the first segment
3372 * size, something has gone terribly wrong
3374 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3375 printk("blk: request botched\n");
3376 rq
->nr_sectors
= rq
->current_nr_sectors
;
3381 static int __end_that_request_first(struct request
*req
, int uptodate
,
3384 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3387 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
3390 * extend uptodate bool to allow < 0 value to be direct io error
3393 if (end_io_error(uptodate
))
3394 error
= !uptodate
? -EIO
: uptodate
;
3397 * for a REQ_BLOCK_PC request, we want to carry any eventual
3398 * sense key with us all the way through
3400 if (!blk_pc_request(req
))
3404 if (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))
3405 printk("end_request: I/O error, dev %s, sector %llu\n",
3406 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3407 (unsigned long long)req
->sector
);
3410 if (blk_fs_request(req
) && req
->rq_disk
) {
3411 const int rw
= rq_data_dir(req
);
3413 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3416 total_bytes
= bio_nbytes
= 0;
3417 while ((bio
= req
->bio
) != NULL
) {
3420 if (nr_bytes
>= bio
->bi_size
) {
3421 req
->bio
= bio
->bi_next
;
3422 nbytes
= bio
->bi_size
;
3423 if (!ordered_bio_endio(req
, bio
, nbytes
, error
))
3424 bio_endio(bio
, nbytes
, error
);
3428 int idx
= bio
->bi_idx
+ next_idx
;
3430 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3431 blk_dump_rq_flags(req
, "__end_that");
3432 printk("%s: bio idx %d >= vcnt %d\n",
3434 bio
->bi_idx
, bio
->bi_vcnt
);
3438 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3439 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3442 * not a complete bvec done
3444 if (unlikely(nbytes
> nr_bytes
)) {
3445 bio_nbytes
+= nr_bytes
;
3446 total_bytes
+= nr_bytes
;
3451 * advance to the next vector
3454 bio_nbytes
+= nbytes
;
3457 total_bytes
+= nbytes
;
3460 if ((bio
= req
->bio
)) {
3462 * end more in this run, or just return 'not-done'
3464 if (unlikely(nr_bytes
<= 0))
3476 * if the request wasn't completed, update state
3479 if (!ordered_bio_endio(req
, bio
, bio_nbytes
, error
))
3480 bio_endio(bio
, bio_nbytes
, error
);
3481 bio
->bi_idx
+= next_idx
;
3482 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3483 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3486 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3487 blk_recalc_rq_segments(req
);
3492 * end_that_request_first - end I/O on a request
3493 * @req: the request being processed
3494 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3495 * @nr_sectors: number of sectors to end I/O on
3498 * Ends I/O on a number of sectors attached to @req, and sets it up
3499 * for the next range of segments (if any) in the cluster.
3502 * 0 - we are done with this request, call end_that_request_last()
3503 * 1 - still buffers pending for this request
3505 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3507 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3510 EXPORT_SYMBOL(end_that_request_first
);
3513 * end_that_request_chunk - end I/O on a request
3514 * @req: the request being processed
3515 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3516 * @nr_bytes: number of bytes to complete
3519 * Ends I/O on a number of bytes attached to @req, and sets it up
3520 * for the next range of segments (if any). Like end_that_request_first(),
3521 * but deals with bytes instead of sectors.
3524 * 0 - we are done with this request, call end_that_request_last()
3525 * 1 - still buffers pending for this request
3527 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3529 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3532 EXPORT_SYMBOL(end_that_request_chunk
);
3535 * splice the completion data to a local structure and hand off to
3536 * process_completion_queue() to complete the requests
3538 static void blk_done_softirq(struct softirq_action
*h
)
3540 struct list_head
*cpu_list
, local_list
;
3542 local_irq_disable();
3543 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3544 list_replace_init(cpu_list
, &local_list
);
3547 while (!list_empty(&local_list
)) {
3548 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3550 list_del_init(&rq
->donelist
);
3551 rq
->q
->softirq_done_fn(rq
);
3555 static int blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3559 * If a CPU goes away, splice its entries to the current CPU
3560 * and trigger a run of the softirq
3562 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3563 int cpu
= (unsigned long) hcpu
;
3565 local_irq_disable();
3566 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3567 &__get_cpu_var(blk_cpu_done
));
3568 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3576 static struct notifier_block __devinitdata blk_cpu_notifier
= {
3577 .notifier_call
= blk_cpu_notify
,
3581 * blk_complete_request - end I/O on a request
3582 * @req: the request being processed
3585 * Ends all I/O on a request. It does not handle partial completions,
3586 * unless the driver actually implements this in its completion callback
3587 * through requeueing. Theh actual completion happens out-of-order,
3588 * through a softirq handler. The user must have registered a completion
3589 * callback through blk_queue_softirq_done().
3592 void blk_complete_request(struct request
*req
)
3594 struct list_head
*cpu_list
;
3595 unsigned long flags
;
3597 BUG_ON(!req
->q
->softirq_done_fn
);
3599 local_irq_save(flags
);
3601 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3602 list_add_tail(&req
->donelist
, cpu_list
);
3603 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3605 local_irq_restore(flags
);
3608 EXPORT_SYMBOL(blk_complete_request
);
3611 * queue lock must be held
3613 void end_that_request_last(struct request
*req
, int uptodate
)
3615 struct gendisk
*disk
= req
->rq_disk
;
3619 * extend uptodate bool to allow < 0 value to be direct io error
3622 if (end_io_error(uptodate
))
3623 error
= !uptodate
? -EIO
: uptodate
;
3625 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3626 laptop_io_completion();
3629 * Account IO completion. bar_rq isn't accounted as a normal
3630 * IO on queueing nor completion. Accounting the containing
3631 * request is enough.
3633 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
3634 unsigned long duration
= jiffies
- req
->start_time
;
3635 const int rw
= rq_data_dir(req
);
3637 __disk_stat_inc(disk
, ios
[rw
]);
3638 __disk_stat_add(disk
, ticks
[rw
], duration
);
3639 disk_round_stats(disk
);
3643 req
->end_io(req
, error
);
3645 __blk_put_request(req
->q
, req
);
3648 EXPORT_SYMBOL(end_that_request_last
);
3650 void end_request(struct request
*req
, int uptodate
)
3652 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3653 add_disk_randomness(req
->rq_disk
);
3654 blkdev_dequeue_request(req
);
3655 end_that_request_last(req
, uptodate
);
3659 EXPORT_SYMBOL(end_request
);
3661 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3663 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3664 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
3666 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3667 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3668 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3669 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3670 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3671 rq
->buffer
= bio_data(bio
);
3672 rq
->data_len
= bio
->bi_size
;
3674 rq
->bio
= rq
->biotail
= bio
;
3677 EXPORT_SYMBOL(blk_rq_bio_prep
);
3679 int kblockd_schedule_work(struct work_struct
*work
)
3681 return queue_work(kblockd_workqueue
, work
);
3684 EXPORT_SYMBOL(kblockd_schedule_work
);
3686 void kblockd_flush_work(struct work_struct
*work
)
3688 cancel_work_sync(work
);
3690 EXPORT_SYMBOL(kblockd_flush_work
);
3692 int __init
blk_dev_init(void)
3696 kblockd_workqueue
= create_workqueue("kblockd");
3697 if (!kblockd_workqueue
)
3698 panic("Failed to create kblockd\n");
3700 request_cachep
= kmem_cache_create("blkdev_requests",
3701 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3703 requestq_cachep
= kmem_cache_create("blkdev_queue",
3704 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3706 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3707 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3709 for_each_possible_cpu(i
)
3710 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3712 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
3713 register_hotcpu_notifier(&blk_cpu_notifier
);
3715 blk_max_low_pfn
= max_low_pfn
- 1;
3716 blk_max_pfn
= max_pfn
- 1;
3722 * IO Context helper functions
3724 void put_io_context(struct io_context
*ioc
)
3729 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3731 if (atomic_dec_and_test(&ioc
->refcount
)) {
3732 struct cfq_io_context
*cic
;
3735 if (ioc
->aic
&& ioc
->aic
->dtor
)
3736 ioc
->aic
->dtor(ioc
->aic
);
3737 if (ioc
->cic_root
.rb_node
!= NULL
) {
3738 struct rb_node
*n
= rb_first(&ioc
->cic_root
);
3740 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
3745 kmem_cache_free(iocontext_cachep
, ioc
);
3748 EXPORT_SYMBOL(put_io_context
);
3750 /* Called by the exitting task */
3751 void exit_io_context(void)
3753 struct io_context
*ioc
;
3754 struct cfq_io_context
*cic
;
3757 ioc
= current
->io_context
;
3758 current
->io_context
= NULL
;
3759 task_unlock(current
);
3762 if (ioc
->aic
&& ioc
->aic
->exit
)
3763 ioc
->aic
->exit(ioc
->aic
);
3764 if (ioc
->cic_root
.rb_node
!= NULL
) {
3765 cic
= rb_entry(rb_first(&ioc
->cic_root
), struct cfq_io_context
, rb_node
);
3769 put_io_context(ioc
);
3773 * If the current task has no IO context then create one and initialise it.
3774 * Otherwise, return its existing IO context.
3776 * This returned IO context doesn't have a specifically elevated refcount,
3777 * but since the current task itself holds a reference, the context can be
3778 * used in general code, so long as it stays within `current` context.
3780 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
)
3782 struct task_struct
*tsk
= current
;
3783 struct io_context
*ret
;
3785 ret
= tsk
->io_context
;
3789 ret
= kmem_cache_alloc_node(iocontext_cachep
, gfp_flags
, node
);
3791 atomic_set(&ret
->refcount
, 1);
3792 ret
->task
= current
;
3793 ret
->ioprio_changed
= 0;
3794 ret
->last_waited
= jiffies
; /* doesn't matter... */
3795 ret
->nr_batch_requests
= 0; /* because this is 0 */
3797 ret
->cic_root
.rb_node
= NULL
;
3798 ret
->ioc_data
= NULL
;
3799 /* make sure set_task_ioprio() sees the settings above */
3801 tsk
->io_context
= ret
;
3808 * If the current task has no IO context then create one and initialise it.
3809 * If it does have a context, take a ref on it.
3811 * This is always called in the context of the task which submitted the I/O.
3813 struct io_context
*get_io_context(gfp_t gfp_flags
, int node
)
3815 struct io_context
*ret
;
3816 ret
= current_io_context(gfp_flags
, node
);
3818 atomic_inc(&ret
->refcount
);
3821 EXPORT_SYMBOL(get_io_context
);
3823 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3825 struct io_context
*src
= *psrc
;
3826 struct io_context
*dst
= *pdst
;
3829 BUG_ON(atomic_read(&src
->refcount
) == 0);
3830 atomic_inc(&src
->refcount
);
3831 put_io_context(dst
);
3835 EXPORT_SYMBOL(copy_io_context
);
3837 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3839 struct io_context
*temp
;
3844 EXPORT_SYMBOL(swap_io_context
);
3849 struct queue_sysfs_entry
{
3850 struct attribute attr
;
3851 ssize_t (*show
)(struct request_queue
*, char *);
3852 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3856 queue_var_show(unsigned int var
, char *page
)
3858 return sprintf(page
, "%d\n", var
);
3862 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3864 char *p
= (char *) page
;
3866 *var
= simple_strtoul(p
, &p
, 10);
3870 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3872 return queue_var_show(q
->nr_requests
, (page
));
3876 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3878 struct request_list
*rl
= &q
->rq
;
3880 int ret
= queue_var_store(&nr
, page
, count
);
3881 if (nr
< BLKDEV_MIN_RQ
)
3884 spin_lock_irq(q
->queue_lock
);
3885 q
->nr_requests
= nr
;
3886 blk_queue_congestion_threshold(q
);
3888 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3889 blk_set_queue_congested(q
, READ
);
3890 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3891 blk_clear_queue_congested(q
, READ
);
3893 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3894 blk_set_queue_congested(q
, WRITE
);
3895 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3896 blk_clear_queue_congested(q
, WRITE
);
3898 if (rl
->count
[READ
] >= q
->nr_requests
) {
3899 blk_set_queue_full(q
, READ
);
3900 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3901 blk_clear_queue_full(q
, READ
);
3902 wake_up(&rl
->wait
[READ
]);
3905 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3906 blk_set_queue_full(q
, WRITE
);
3907 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3908 blk_clear_queue_full(q
, WRITE
);
3909 wake_up(&rl
->wait
[WRITE
]);
3911 spin_unlock_irq(q
->queue_lock
);
3915 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3917 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3919 return queue_var_show(ra_kb
, (page
));
3923 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3925 unsigned long ra_kb
;
3926 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3928 spin_lock_irq(q
->queue_lock
);
3929 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3930 spin_unlock_irq(q
->queue_lock
);
3935 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3937 int max_sectors_kb
= q
->max_sectors
>> 1;
3939 return queue_var_show(max_sectors_kb
, (page
));
3943 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3945 unsigned long max_sectors_kb
,
3946 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3947 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3948 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3951 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3954 * Take the queue lock to update the readahead and max_sectors
3955 * values synchronously:
3957 spin_lock_irq(q
->queue_lock
);
3959 * Trim readahead window as well, if necessary:
3961 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3962 if (ra_kb
> max_sectors_kb
)
3963 q
->backing_dev_info
.ra_pages
=
3964 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3966 q
->max_sectors
= max_sectors_kb
<< 1;
3967 spin_unlock_irq(q
->queue_lock
);
3972 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3974 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3976 return queue_var_show(max_hw_sectors_kb
, (page
));
3980 static struct queue_sysfs_entry queue_requests_entry
= {
3981 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3982 .show
= queue_requests_show
,
3983 .store
= queue_requests_store
,
3986 static struct queue_sysfs_entry queue_ra_entry
= {
3987 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3988 .show
= queue_ra_show
,
3989 .store
= queue_ra_store
,
3992 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3993 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3994 .show
= queue_max_sectors_show
,
3995 .store
= queue_max_sectors_store
,
3998 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3999 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
4000 .show
= queue_max_hw_sectors_show
,
4003 static struct queue_sysfs_entry queue_iosched_entry
= {
4004 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
4005 .show
= elv_iosched_show
,
4006 .store
= elv_iosched_store
,
4009 static struct attribute
*default_attrs
[] = {
4010 &queue_requests_entry
.attr
,
4011 &queue_ra_entry
.attr
,
4012 &queue_max_hw_sectors_entry
.attr
,
4013 &queue_max_sectors_entry
.attr
,
4014 &queue_iosched_entry
.attr
,
4018 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4021 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
4023 struct queue_sysfs_entry
*entry
= to_queue(attr
);
4024 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
4029 mutex_lock(&q
->sysfs_lock
);
4030 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
4031 mutex_unlock(&q
->sysfs_lock
);
4034 res
= entry
->show(q
, page
);
4035 mutex_unlock(&q
->sysfs_lock
);
4040 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
4041 const char *page
, size_t length
)
4043 struct queue_sysfs_entry
*entry
= to_queue(attr
);
4044 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
4050 mutex_lock(&q
->sysfs_lock
);
4051 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
4052 mutex_unlock(&q
->sysfs_lock
);
4055 res
= entry
->store(q
, page
, length
);
4056 mutex_unlock(&q
->sysfs_lock
);
4060 static struct sysfs_ops queue_sysfs_ops
= {
4061 .show
= queue_attr_show
,
4062 .store
= queue_attr_store
,
4065 static struct kobj_type queue_ktype
= {
4066 .sysfs_ops
= &queue_sysfs_ops
,
4067 .default_attrs
= default_attrs
,
4068 .release
= blk_release_queue
,
4071 int blk_register_queue(struct gendisk
*disk
)
4075 request_queue_t
*q
= disk
->queue
;
4077 if (!q
|| !q
->request_fn
)
4080 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
4082 ret
= kobject_add(&q
->kobj
);
4086 kobject_uevent(&q
->kobj
, KOBJ_ADD
);
4088 ret
= elv_register_queue(q
);
4090 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4091 kobject_del(&q
->kobj
);
4098 void blk_unregister_queue(struct gendisk
*disk
)
4100 request_queue_t
*q
= disk
->queue
;
4102 if (q
&& q
->request_fn
) {
4103 elv_unregister_queue(q
);
4105 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4106 kobject_del(&q
->kobj
);
4107 kobject_put(&disk
->kobj
);