2 * linux/arch/ia64/kernel/time.c
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/ptrace.h>
29 #include <asm/sections.h>
30 #include <asm/system.h>
32 #include "fsyscall_gtod_data.h"
34 static cycle_t
itc_get_cycles(void);
36 struct fsyscall_gtod_data_t fsyscall_gtod_data
= {
37 .lock
= SEQLOCK_UNLOCKED
,
40 struct itc_jitter_data_t itc_jitter_data
;
42 volatile int time_keeper_id
= 0; /* smp_processor_id() of time-keeper */
44 #ifdef CONFIG_IA64_DEBUG_IRQ
46 unsigned long last_cli_ip
;
47 EXPORT_SYMBOL(last_cli_ip
);
51 static struct clocksource clocksource_itc
= {
54 .read
= itc_get_cycles
,
55 .mask
= CLOCKSOURCE_MASK(64),
56 .mult
= 0, /*to be calculated*/
58 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
60 static struct clocksource
*itc_clocksource
;
63 timer_interrupt (int irq
, void *dev_id
)
65 unsigned long new_itm
;
67 if (unlikely(cpu_is_offline(smp_processor_id()))) {
71 platform_timer_interrupt(irq
, dev_id
);
73 new_itm
= local_cpu_data
->itm_next
;
75 if (!time_after(ia64_get_itc(), new_itm
))
76 printk(KERN_ERR
"Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
77 ia64_get_itc(), new_itm
);
79 profile_tick(CPU_PROFILING
);
82 update_process_times(user_mode(get_irq_regs()));
84 new_itm
+= local_cpu_data
->itm_delta
;
86 if (smp_processor_id() == time_keeper_id
) {
88 * Here we are in the timer irq handler. We have irqs locally
89 * disabled, but we don't know if the timer_bh is running on
90 * another CPU. We need to avoid to SMP race by acquiring the
93 write_seqlock(&xtime_lock
);
95 local_cpu_data
->itm_next
= new_itm
;
96 write_sequnlock(&xtime_lock
);
98 local_cpu_data
->itm_next
= new_itm
;
100 if (time_after(new_itm
, ia64_get_itc()))
104 * Allow IPIs to interrupt the timer loop.
112 * If we're too close to the next clock tick for
113 * comfort, we increase the safety margin by
114 * intentionally dropping the next tick(s). We do NOT
115 * update itm.next because that would force us to call
116 * do_timer() which in turn would let our clock run
117 * too fast (with the potentially devastating effect
118 * of losing monotony of time).
120 while (!time_after(new_itm
, ia64_get_itc() + local_cpu_data
->itm_delta
/2))
121 new_itm
+= local_cpu_data
->itm_delta
;
122 ia64_set_itm(new_itm
);
123 /* double check, in case we got hit by a (slow) PMI: */
124 } while (time_after_eq(ia64_get_itc(), new_itm
));
129 * Encapsulate access to the itm structure for SMP.
132 ia64_cpu_local_tick (void)
134 int cpu
= smp_processor_id();
135 unsigned long shift
= 0, delta
;
137 /* arrange for the cycle counter to generate a timer interrupt: */
138 ia64_set_itv(IA64_TIMER_VECTOR
);
140 delta
= local_cpu_data
->itm_delta
;
142 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
146 unsigned long hi
= 1UL << ia64_fls(cpu
);
147 shift
= (2*(cpu
- hi
) + 1) * delta
/hi
/2;
149 local_cpu_data
->itm_next
= ia64_get_itc() + delta
+ shift
;
150 ia64_set_itm(local_cpu_data
->itm_next
);
155 static int __init
nojitter_setup(char *str
)
158 printk("Jitter checking for ITC timers disabled\n");
162 __setup("nojitter", nojitter_setup
);
168 unsigned long platform_base_freq
, itc_freq
;
169 struct pal_freq_ratio itc_ratio
, proc_ratio
;
170 long status
, platform_base_drift
, itc_drift
;
173 * According to SAL v2.6, we need to use a SAL call to determine the platform base
174 * frequency and then a PAL call to determine the frequency ratio between the ITC
175 * and the base frequency.
177 status
= ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM
,
178 &platform_base_freq
, &platform_base_drift
);
180 printk(KERN_ERR
"SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status
));
182 status
= ia64_pal_freq_ratios(&proc_ratio
, NULL
, &itc_ratio
);
184 printk(KERN_ERR
"PAL_FREQ_RATIOS failed with status=%ld\n", status
);
187 /* invent "random" values */
189 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
190 platform_base_freq
= 100000000;
191 platform_base_drift
= -1; /* no drift info */
195 if (platform_base_freq
< 40000000) {
196 printk(KERN_ERR
"Platform base frequency %lu bogus---resetting to 75MHz!\n",
198 platform_base_freq
= 75000000;
199 platform_base_drift
= -1;
202 proc_ratio
.den
= 1; /* avoid division by zero */
204 itc_ratio
.den
= 1; /* avoid division by zero */
206 itc_freq
= (platform_base_freq
*itc_ratio
.num
)/itc_ratio
.den
;
208 local_cpu_data
->itm_delta
= (itc_freq
+ HZ
/2) / HZ
;
209 printk(KERN_DEBUG
"CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
210 "ITC freq=%lu.%03luMHz", smp_processor_id(),
211 platform_base_freq
/ 1000000, (platform_base_freq
/ 1000) % 1000,
212 itc_ratio
.num
, itc_ratio
.den
, itc_freq
/ 1000000, (itc_freq
/ 1000) % 1000);
214 if (platform_base_drift
!= -1) {
215 itc_drift
= platform_base_drift
*itc_ratio
.num
/itc_ratio
.den
;
216 printk("+/-%ldppm\n", itc_drift
);
222 local_cpu_data
->proc_freq
= (platform_base_freq
*proc_ratio
.num
)/proc_ratio
.den
;
223 local_cpu_data
->itc_freq
= itc_freq
;
224 local_cpu_data
->cyc_per_usec
= (itc_freq
+ USEC_PER_SEC
/2) / USEC_PER_SEC
;
225 local_cpu_data
->nsec_per_cyc
= ((NSEC_PER_SEC
<<IA64_NSEC_PER_CYC_SHIFT
)
226 + itc_freq
/2)/itc_freq
;
228 if (!(sal_platform_features
& IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT
)) {
230 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
231 * Jitter compensation requires a cmpxchg which may limit
232 * the scalability of the syscalls for retrieving time.
233 * The ITC synchronization is usually successful to within a few
234 * ITC ticks but this is not a sure thing. If you need to improve
235 * timer performance in SMP situations then boot the kernel with the
236 * "nojitter" option. However, doing so may result in time fluctuating (maybe
237 * even going backward) if the ITC offsets between the individual CPUs
241 itc_jitter_data
.itc_jitter
= 1;
245 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
246 * ITC values may fluctuate significantly between processors.
247 * Clock should not be used for hrtimers. Mark itc as only
248 * useful for boot and testing.
250 * Note that jitter compensation is off! There is no point of
251 * synchronizing ITCs since they may be large differentials
252 * that change over time.
254 * The only way to fix this would be to repeatedly sync the
255 * ITCs. Until that time we have to avoid ITC.
257 clocksource_itc
.rating
= 50;
259 /* Setup the CPU local timer tick */
260 ia64_cpu_local_tick();
262 if (!itc_clocksource
) {
263 /* Sort out mult/shift values: */
264 clocksource_itc
.mult
=
265 clocksource_hz2mult(local_cpu_data
->itc_freq
,
266 clocksource_itc
.shift
);
267 clocksource_register(&clocksource_itc
);
268 itc_clocksource
= &clocksource_itc
;
272 static cycle_t
itc_get_cycles(void)
274 u64 lcycle
, now
, ret
;
276 if (!itc_jitter_data
.itc_jitter
)
279 lcycle
= itc_jitter_data
.itc_lastcycle
;
281 if (lcycle
&& time_after(lcycle
, now
))
285 * Keep track of the last timer value returned.
286 * In an SMP environment, you could lose out in contention of
287 * cmpxchg. If so, your cmpxchg returns new value which the
288 * winner of contention updated to. Use the new value instead.
290 ret
= cmpxchg(&itc_jitter_data
.itc_lastcycle
, lcycle
, now
);
291 if (unlikely(ret
!= lcycle
))
298 static struct irqaction timer_irqaction
= {
299 .handler
= timer_interrupt
,
300 .flags
= IRQF_DISABLED
| IRQF_IRQPOLL
,
304 void __devinit
ia64_disable_timer(void)
306 ia64_set_itv(1 << 16);
312 register_percpu_irq(IA64_TIMER_VECTOR
, &timer_irqaction
);
313 efi_gettimeofday(&xtime
);
317 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
318 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
320 set_normalized_timespec(&wall_to_monotonic
, -xtime
.tv_sec
, -xtime
.tv_nsec
);
324 * Generic udelay assumes that if preemption is allowed and the thread
325 * migrates to another CPU, that the ITC values are synchronized across
329 ia64_itc_udelay (unsigned long usecs
)
331 unsigned long start
= ia64_get_itc();
332 unsigned long end
= start
+ usecs
*local_cpu_data
->cyc_per_usec
;
334 while (time_before(ia64_get_itc(), end
))
338 void (*ia64_udelay
)(unsigned long usecs
) = &ia64_itc_udelay
;
341 udelay (unsigned long usecs
)
343 (*ia64_udelay
)(usecs
);
345 EXPORT_SYMBOL(udelay
);
347 /* IA64 doesn't cache the timezone */
348 void update_vsyscall_tz(void)
352 void update_vsyscall(struct timespec
*wall
, struct clocksource
*c
)
356 write_seqlock_irqsave(&fsyscall_gtod_data
.lock
, flags
);
358 /* copy fsyscall clock data */
359 fsyscall_gtod_data
.clk_mask
= c
->mask
;
360 fsyscall_gtod_data
.clk_mult
= c
->mult
;
361 fsyscall_gtod_data
.clk_shift
= c
->shift
;
362 fsyscall_gtod_data
.clk_fsys_mmio
= c
->fsys_mmio
;
363 fsyscall_gtod_data
.clk_cycle_last
= c
->cycle_last
;
365 /* copy kernel time structures */
366 fsyscall_gtod_data
.wall_time
.tv_sec
= wall
->tv_sec
;
367 fsyscall_gtod_data
.wall_time
.tv_nsec
= wall
->tv_nsec
;
368 fsyscall_gtod_data
.monotonic_time
.tv_sec
= wall_to_monotonic
.tv_sec
370 fsyscall_gtod_data
.monotonic_time
.tv_nsec
= wall_to_monotonic
.tv_nsec
374 while (fsyscall_gtod_data
.monotonic_time
.tv_nsec
>= NSEC_PER_SEC
) {
375 fsyscall_gtod_data
.monotonic_time
.tv_nsec
-= NSEC_PER_SEC
;
376 fsyscall_gtod_data
.monotonic_time
.tv_sec
++;
379 write_sequnlock_irqrestore(&fsyscall_gtod_data
.lock
, flags
);