[SCSI] advansys: make 3 functions static
[pv_ops_mirror.git] / mm / vmalloc.c
blob0536dde139d1e1f6f28fc93ccd05a9fc337e2c7e
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
18 #include <linux/vmalloc.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
24 DEFINE_RWLOCK(vmlist_lock);
25 struct vm_struct *vmlist;
27 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
28 int node);
30 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
32 pte_t *pte;
34 pte = pte_offset_kernel(pmd, addr);
35 do {
36 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
37 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
38 } while (pte++, addr += PAGE_SIZE, addr != end);
41 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
42 unsigned long end)
44 pmd_t *pmd;
45 unsigned long next;
47 pmd = pmd_offset(pud, addr);
48 do {
49 next = pmd_addr_end(addr, end);
50 if (pmd_none_or_clear_bad(pmd))
51 continue;
52 vunmap_pte_range(pmd, addr, next);
53 } while (pmd++, addr = next, addr != end);
56 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
57 unsigned long end)
59 pud_t *pud;
60 unsigned long next;
62 pud = pud_offset(pgd, addr);
63 do {
64 next = pud_addr_end(addr, end);
65 if (pud_none_or_clear_bad(pud))
66 continue;
67 vunmap_pmd_range(pud, addr, next);
68 } while (pud++, addr = next, addr != end);
71 void unmap_kernel_range(unsigned long addr, unsigned long size)
73 pgd_t *pgd;
74 unsigned long next;
75 unsigned long start = addr;
76 unsigned long end = addr + size;
78 BUG_ON(addr >= end);
79 pgd = pgd_offset_k(addr);
80 flush_cache_vunmap(addr, end);
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
87 flush_tlb_kernel_range(start, end);
90 static void unmap_vm_area(struct vm_struct *area)
92 unmap_kernel_range((unsigned long)area->addr, area->size);
95 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
96 unsigned long end, pgprot_t prot, struct page ***pages)
98 pte_t *pte;
100 pte = pte_alloc_kernel(pmd, addr);
101 if (!pte)
102 return -ENOMEM;
103 do {
104 struct page *page = **pages;
105 WARN_ON(!pte_none(*pte));
106 if (!page)
107 return -ENOMEM;
108 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
109 (*pages)++;
110 } while (pte++, addr += PAGE_SIZE, addr != end);
111 return 0;
114 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
115 unsigned long end, pgprot_t prot, struct page ***pages)
117 pmd_t *pmd;
118 unsigned long next;
120 pmd = pmd_alloc(&init_mm, pud, addr);
121 if (!pmd)
122 return -ENOMEM;
123 do {
124 next = pmd_addr_end(addr, end);
125 if (vmap_pte_range(pmd, addr, next, prot, pages))
126 return -ENOMEM;
127 } while (pmd++, addr = next, addr != end);
128 return 0;
131 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
132 unsigned long end, pgprot_t prot, struct page ***pages)
134 pud_t *pud;
135 unsigned long next;
137 pud = pud_alloc(&init_mm, pgd, addr);
138 if (!pud)
139 return -ENOMEM;
140 do {
141 next = pud_addr_end(addr, end);
142 if (vmap_pmd_range(pud, addr, next, prot, pages))
143 return -ENOMEM;
144 } while (pud++, addr = next, addr != end);
145 return 0;
148 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
150 pgd_t *pgd;
151 unsigned long next;
152 unsigned long addr = (unsigned long) area->addr;
153 unsigned long end = addr + area->size - PAGE_SIZE;
154 int err;
156 BUG_ON(addr >= end);
157 pgd = pgd_offset_k(addr);
158 do {
159 next = pgd_addr_end(addr, end);
160 err = vmap_pud_range(pgd, addr, next, prot, pages);
161 if (err)
162 break;
163 } while (pgd++, addr = next, addr != end);
164 flush_cache_vmap((unsigned long) area->addr, end);
165 return err;
167 EXPORT_SYMBOL_GPL(map_vm_area);
170 * Map a vmalloc()-space virtual address to the physical page.
172 struct page *vmalloc_to_page(const void *vmalloc_addr)
174 unsigned long addr = (unsigned long) vmalloc_addr;
175 struct page *page = NULL;
176 pgd_t *pgd = pgd_offset_k(addr);
177 pud_t *pud;
178 pmd_t *pmd;
179 pte_t *ptep, pte;
181 if (!pgd_none(*pgd)) {
182 pud = pud_offset(pgd, addr);
183 if (!pud_none(*pud)) {
184 pmd = pmd_offset(pud, addr);
185 if (!pmd_none(*pmd)) {
186 ptep = pte_offset_map(pmd, addr);
187 pte = *ptep;
188 if (pte_present(pte))
189 page = pte_page(pte);
190 pte_unmap(ptep);
194 return page;
196 EXPORT_SYMBOL(vmalloc_to_page);
199 * Map a vmalloc()-space virtual address to the physical page frame number.
201 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
203 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
205 EXPORT_SYMBOL(vmalloc_to_pfn);
207 static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
208 unsigned long start, unsigned long end,
209 int node, gfp_t gfp_mask)
211 struct vm_struct **p, *tmp, *area;
212 unsigned long align = 1;
213 unsigned long addr;
215 BUG_ON(in_interrupt());
216 if (flags & VM_IOREMAP) {
217 int bit = fls(size);
219 if (bit > IOREMAP_MAX_ORDER)
220 bit = IOREMAP_MAX_ORDER;
221 else if (bit < PAGE_SHIFT)
222 bit = PAGE_SHIFT;
224 align = 1ul << bit;
226 addr = ALIGN(start, align);
227 size = PAGE_ALIGN(size);
228 if (unlikely(!size))
229 return NULL;
231 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
233 if (unlikely(!area))
234 return NULL;
237 * We always allocate a guard page.
239 size += PAGE_SIZE;
241 write_lock(&vmlist_lock);
242 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
243 if ((unsigned long)tmp->addr < addr) {
244 if((unsigned long)tmp->addr + tmp->size >= addr)
245 addr = ALIGN(tmp->size +
246 (unsigned long)tmp->addr, align);
247 continue;
249 if ((size + addr) < addr)
250 goto out;
251 if (size + addr <= (unsigned long)tmp->addr)
252 goto found;
253 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
254 if (addr > end - size)
255 goto out;
257 if ((size + addr) < addr)
258 goto out;
259 if (addr > end - size)
260 goto out;
262 found:
263 area->next = *p;
264 *p = area;
266 area->flags = flags;
267 area->addr = (void *)addr;
268 area->size = size;
269 area->pages = NULL;
270 area->nr_pages = 0;
271 area->phys_addr = 0;
272 write_unlock(&vmlist_lock);
274 return area;
276 out:
277 write_unlock(&vmlist_lock);
278 kfree(area);
279 if (printk_ratelimit())
280 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
281 return NULL;
284 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
285 unsigned long start, unsigned long end)
287 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL);
289 EXPORT_SYMBOL_GPL(__get_vm_area);
292 * get_vm_area - reserve a contiguous kernel virtual area
293 * @size: size of the area
294 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
296 * Search an area of @size in the kernel virtual mapping area,
297 * and reserved it for out purposes. Returns the area descriptor
298 * on success or %NULL on failure.
300 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
302 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
305 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
306 int node, gfp_t gfp_mask)
308 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
309 gfp_mask);
312 /* Caller must hold vmlist_lock */
313 static struct vm_struct *__find_vm_area(const void *addr)
315 struct vm_struct *tmp;
317 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
318 if (tmp->addr == addr)
319 break;
322 return tmp;
325 /* Caller must hold vmlist_lock */
326 static struct vm_struct *__remove_vm_area(const void *addr)
328 struct vm_struct **p, *tmp;
330 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
331 if (tmp->addr == addr)
332 goto found;
334 return NULL;
336 found:
337 unmap_vm_area(tmp);
338 *p = tmp->next;
341 * Remove the guard page.
343 tmp->size -= PAGE_SIZE;
344 return tmp;
348 * remove_vm_area - find and remove a continuous kernel virtual area
349 * @addr: base address
351 * Search for the kernel VM area starting at @addr, and remove it.
352 * This function returns the found VM area, but using it is NOT safe
353 * on SMP machines, except for its size or flags.
355 struct vm_struct *remove_vm_area(const void *addr)
357 struct vm_struct *v;
358 write_lock(&vmlist_lock);
359 v = __remove_vm_area(addr);
360 write_unlock(&vmlist_lock);
361 return v;
364 static void __vunmap(const void *addr, int deallocate_pages)
366 struct vm_struct *area;
368 if (!addr)
369 return;
371 if ((PAGE_SIZE-1) & (unsigned long)addr) {
372 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
373 WARN_ON(1);
374 return;
377 area = remove_vm_area(addr);
378 if (unlikely(!area)) {
379 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
380 addr);
381 WARN_ON(1);
382 return;
385 debug_check_no_locks_freed(addr, area->size);
387 if (deallocate_pages) {
388 int i;
390 for (i = 0; i < area->nr_pages; i++) {
391 struct page *page = area->pages[i];
393 BUG_ON(!page);
394 __free_page(page);
397 if (area->flags & VM_VPAGES)
398 vfree(area->pages);
399 else
400 kfree(area->pages);
403 kfree(area);
404 return;
408 * vfree - release memory allocated by vmalloc()
409 * @addr: memory base address
411 * Free the virtually continuous memory area starting at @addr, as
412 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
413 * NULL, no operation is performed.
415 * Must not be called in interrupt context.
417 void vfree(const void *addr)
419 BUG_ON(in_interrupt());
420 __vunmap(addr, 1);
422 EXPORT_SYMBOL(vfree);
425 * vunmap - release virtual mapping obtained by vmap()
426 * @addr: memory base address
428 * Free the virtually contiguous memory area starting at @addr,
429 * which was created from the page array passed to vmap().
431 * Must not be called in interrupt context.
433 void vunmap(const void *addr)
435 BUG_ON(in_interrupt());
436 __vunmap(addr, 0);
438 EXPORT_SYMBOL(vunmap);
441 * vmap - map an array of pages into virtually contiguous space
442 * @pages: array of page pointers
443 * @count: number of pages to map
444 * @flags: vm_area->flags
445 * @prot: page protection for the mapping
447 * Maps @count pages from @pages into contiguous kernel virtual
448 * space.
450 void *vmap(struct page **pages, unsigned int count,
451 unsigned long flags, pgprot_t prot)
453 struct vm_struct *area;
455 if (count > num_physpages)
456 return NULL;
458 area = get_vm_area((count << PAGE_SHIFT), flags);
459 if (!area)
460 return NULL;
461 if (map_vm_area(area, prot, &pages)) {
462 vunmap(area->addr);
463 return NULL;
466 return area->addr;
468 EXPORT_SYMBOL(vmap);
470 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
471 pgprot_t prot, int node)
473 struct page **pages;
474 unsigned int nr_pages, array_size, i;
476 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
477 array_size = (nr_pages * sizeof(struct page *));
479 area->nr_pages = nr_pages;
480 /* Please note that the recursion is strictly bounded. */
481 if (array_size > PAGE_SIZE) {
482 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
483 PAGE_KERNEL, node);
484 area->flags |= VM_VPAGES;
485 } else {
486 pages = kmalloc_node(array_size,
487 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
488 node);
490 area->pages = pages;
491 if (!area->pages) {
492 remove_vm_area(area->addr);
493 kfree(area);
494 return NULL;
497 for (i = 0; i < area->nr_pages; i++) {
498 struct page *page;
500 if (node < 0)
501 page = alloc_page(gfp_mask);
502 else
503 page = alloc_pages_node(node, gfp_mask, 0);
505 if (unlikely(!page)) {
506 /* Successfully allocated i pages, free them in __vunmap() */
507 area->nr_pages = i;
508 goto fail;
510 area->pages[i] = page;
513 if (map_vm_area(area, prot, &pages))
514 goto fail;
515 return area->addr;
517 fail:
518 vfree(area->addr);
519 return NULL;
522 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
524 return __vmalloc_area_node(area, gfp_mask, prot, -1);
528 * __vmalloc_node - allocate virtually contiguous memory
529 * @size: allocation size
530 * @gfp_mask: flags for the page level allocator
531 * @prot: protection mask for the allocated pages
532 * @node: node to use for allocation or -1
534 * Allocate enough pages to cover @size from the page level
535 * allocator with @gfp_mask flags. Map them into contiguous
536 * kernel virtual space, using a pagetable protection of @prot.
538 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
539 int node)
541 struct vm_struct *area;
543 size = PAGE_ALIGN(size);
544 if (!size || (size >> PAGE_SHIFT) > num_physpages)
545 return NULL;
547 area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask);
548 if (!area)
549 return NULL;
551 return __vmalloc_area_node(area, gfp_mask, prot, node);
554 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
556 return __vmalloc_node(size, gfp_mask, prot, -1);
558 EXPORT_SYMBOL(__vmalloc);
561 * vmalloc - allocate virtually contiguous memory
562 * @size: allocation size
563 * Allocate enough pages to cover @size from the page level
564 * allocator and map them into contiguous kernel virtual space.
566 * For tight control over page level allocator and protection flags
567 * use __vmalloc() instead.
569 void *vmalloc(unsigned long size)
571 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
573 EXPORT_SYMBOL(vmalloc);
576 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
577 * @size: allocation size
579 * The resulting memory area is zeroed so it can be mapped to userspace
580 * without leaking data.
582 void *vmalloc_user(unsigned long size)
584 struct vm_struct *area;
585 void *ret;
587 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
588 if (ret) {
589 write_lock(&vmlist_lock);
590 area = __find_vm_area(ret);
591 area->flags |= VM_USERMAP;
592 write_unlock(&vmlist_lock);
594 return ret;
596 EXPORT_SYMBOL(vmalloc_user);
599 * vmalloc_node - allocate memory on a specific node
600 * @size: allocation size
601 * @node: numa node
603 * Allocate enough pages to cover @size from the page level
604 * allocator and map them into contiguous kernel virtual space.
606 * For tight control over page level allocator and protection flags
607 * use __vmalloc() instead.
609 void *vmalloc_node(unsigned long size, int node)
611 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
613 EXPORT_SYMBOL(vmalloc_node);
615 #ifndef PAGE_KERNEL_EXEC
616 # define PAGE_KERNEL_EXEC PAGE_KERNEL
617 #endif
620 * vmalloc_exec - allocate virtually contiguous, executable memory
621 * @size: allocation size
623 * Kernel-internal function to allocate enough pages to cover @size
624 * the page level allocator and map them into contiguous and
625 * executable kernel virtual space.
627 * For tight control over page level allocator and protection flags
628 * use __vmalloc() instead.
631 void *vmalloc_exec(unsigned long size)
633 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
636 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
637 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
638 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
639 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
640 #else
641 #define GFP_VMALLOC32 GFP_KERNEL
642 #endif
645 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
646 * @size: allocation size
648 * Allocate enough 32bit PA addressable pages to cover @size from the
649 * page level allocator and map them into contiguous kernel virtual space.
651 void *vmalloc_32(unsigned long size)
653 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
655 EXPORT_SYMBOL(vmalloc_32);
658 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
659 * @size: allocation size
661 * The resulting memory area is 32bit addressable and zeroed so it can be
662 * mapped to userspace without leaking data.
664 void *vmalloc_32_user(unsigned long size)
666 struct vm_struct *area;
667 void *ret;
669 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
670 if (ret) {
671 write_lock(&vmlist_lock);
672 area = __find_vm_area(ret);
673 area->flags |= VM_USERMAP;
674 write_unlock(&vmlist_lock);
676 return ret;
678 EXPORT_SYMBOL(vmalloc_32_user);
680 long vread(char *buf, char *addr, unsigned long count)
682 struct vm_struct *tmp;
683 char *vaddr, *buf_start = buf;
684 unsigned long n;
686 /* Don't allow overflow */
687 if ((unsigned long) addr + count < count)
688 count = -(unsigned long) addr;
690 read_lock(&vmlist_lock);
691 for (tmp = vmlist; tmp; tmp = tmp->next) {
692 vaddr = (char *) tmp->addr;
693 if (addr >= vaddr + tmp->size - PAGE_SIZE)
694 continue;
695 while (addr < vaddr) {
696 if (count == 0)
697 goto finished;
698 *buf = '\0';
699 buf++;
700 addr++;
701 count--;
703 n = vaddr + tmp->size - PAGE_SIZE - addr;
704 do {
705 if (count == 0)
706 goto finished;
707 *buf = *addr;
708 buf++;
709 addr++;
710 count--;
711 } while (--n > 0);
713 finished:
714 read_unlock(&vmlist_lock);
715 return buf - buf_start;
718 long vwrite(char *buf, char *addr, unsigned long count)
720 struct vm_struct *tmp;
721 char *vaddr, *buf_start = buf;
722 unsigned long n;
724 /* Don't allow overflow */
725 if ((unsigned long) addr + count < count)
726 count = -(unsigned long) addr;
728 read_lock(&vmlist_lock);
729 for (tmp = vmlist; tmp; tmp = tmp->next) {
730 vaddr = (char *) tmp->addr;
731 if (addr >= vaddr + tmp->size - PAGE_SIZE)
732 continue;
733 while (addr < vaddr) {
734 if (count == 0)
735 goto finished;
736 buf++;
737 addr++;
738 count--;
740 n = vaddr + tmp->size - PAGE_SIZE - addr;
741 do {
742 if (count == 0)
743 goto finished;
744 *addr = *buf;
745 buf++;
746 addr++;
747 count--;
748 } while (--n > 0);
750 finished:
751 read_unlock(&vmlist_lock);
752 return buf - buf_start;
756 * remap_vmalloc_range - map vmalloc pages to userspace
757 * @vma: vma to cover (map full range of vma)
758 * @addr: vmalloc memory
759 * @pgoff: number of pages into addr before first page to map
760 * @returns: 0 for success, -Exxx on failure
762 * This function checks that addr is a valid vmalloc'ed area, and
763 * that it is big enough to cover the vma. Will return failure if
764 * that criteria isn't met.
766 * Similar to remap_pfn_range() (see mm/memory.c)
768 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
769 unsigned long pgoff)
771 struct vm_struct *area;
772 unsigned long uaddr = vma->vm_start;
773 unsigned long usize = vma->vm_end - vma->vm_start;
774 int ret;
776 if ((PAGE_SIZE-1) & (unsigned long)addr)
777 return -EINVAL;
779 read_lock(&vmlist_lock);
780 area = __find_vm_area(addr);
781 if (!area)
782 goto out_einval_locked;
784 if (!(area->flags & VM_USERMAP))
785 goto out_einval_locked;
787 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
788 goto out_einval_locked;
789 read_unlock(&vmlist_lock);
791 addr += pgoff << PAGE_SHIFT;
792 do {
793 struct page *page = vmalloc_to_page(addr);
794 ret = vm_insert_page(vma, uaddr, page);
795 if (ret)
796 return ret;
798 uaddr += PAGE_SIZE;
799 addr += PAGE_SIZE;
800 usize -= PAGE_SIZE;
801 } while (usize > 0);
803 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
804 vma->vm_flags |= VM_RESERVED;
806 return ret;
808 out_einval_locked:
809 read_unlock(&vmlist_lock);
810 return -EINVAL;
812 EXPORT_SYMBOL(remap_vmalloc_range);
815 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
816 * have one.
818 void __attribute__((weak)) vmalloc_sync_all(void)
823 static int f(pte_t *pte, struct page *pmd_page, unsigned long addr, void *data)
825 /* apply_to_page_range() does all the hard work. */
826 return 0;
830 * alloc_vm_area - allocate a range of kernel address space
831 * @size: size of the area
832 * @returns: NULL on failure, vm_struct on success
834 * This function reserves a range of kernel address space, and
835 * allocates pagetables to map that range. No actual mappings
836 * are created. If the kernel address space is not shared
837 * between processes, it syncs the pagetable across all
838 * processes.
840 struct vm_struct *alloc_vm_area(size_t size)
842 struct vm_struct *area;
844 area = get_vm_area(size, VM_IOREMAP);
845 if (area == NULL)
846 return NULL;
849 * This ensures that page tables are constructed for this region
850 * of kernel virtual address space and mapped into init_mm.
852 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
853 area->size, f, NULL)) {
854 free_vm_area(area);
855 return NULL;
858 /* Make sure the pagetables are constructed in process kernel
859 mappings */
860 vmalloc_sync_all();
862 return area;
864 EXPORT_SYMBOL_GPL(alloc_vm_area);
866 void free_vm_area(struct vm_struct *area)
868 struct vm_struct *ret;
869 ret = remove_vm_area(area->addr);
870 BUG_ON(ret != area);
871 kfree(area);
873 EXPORT_SYMBOL_GPL(free_vm_area);