Memory controller: task migration
[pv_ops_mirror.git] / mm / memcontrol.c
blobb25df2a9d024a5673cd573ef4fc8b0adc184f671
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/page-flags.h>
25 #include <linux/bit_spinlock.h>
26 #include <linux/rcupdate.h>
28 struct cgroup_subsys mem_cgroup_subsys;
31 * The memory controller data structure. The memory controller controls both
32 * page cache and RSS per cgroup. We would eventually like to provide
33 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
34 * to help the administrator determine what knobs to tune.
36 * TODO: Add a water mark for the memory controller. Reclaim will begin when
37 * we hit the water mark. May be even add a low water mark, such that
38 * no reclaim occurs from a cgroup at it's low water mark, this is
39 * a feature that will be implemented much later in the future.
41 struct mem_cgroup {
42 struct cgroup_subsys_state css;
44 * the counter to account for memory usage
46 struct res_counter res;
48 * Per cgroup active and inactive list, similar to the
49 * per zone LRU lists.
50 * TODO: Consider making these lists per zone
52 struct list_head active_list;
53 struct list_head inactive_list;
57 * We use the lower bit of the page->page_cgroup pointer as a bit spin
58 * lock. We need to ensure that page->page_cgroup is atleast two
59 * byte aligned (based on comments from Nick Piggin)
61 #define PAGE_CGROUP_LOCK_BIT 0x0
62 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
65 * A page_cgroup page is associated with every page descriptor. The
66 * page_cgroup helps us identify information about the cgroup
68 struct page_cgroup {
69 struct list_head lru; /* per cgroup LRU list */
70 struct page *page;
71 struct mem_cgroup *mem_cgroup;
72 atomic_t ref_cnt; /* Helpful when pages move b/w */
73 /* mapped and cached states */
77 static inline
78 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
80 return container_of(cgroup_subsys_state(cont,
81 mem_cgroup_subsys_id), struct mem_cgroup,
82 css);
85 static inline
86 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
88 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
89 struct mem_cgroup, css);
92 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
94 struct mem_cgroup *mem;
96 mem = mem_cgroup_from_task(p);
97 css_get(&mem->css);
98 mm->mem_cgroup = mem;
101 void mm_free_cgroup(struct mm_struct *mm)
103 css_put(&mm->mem_cgroup->css);
106 static inline int page_cgroup_locked(struct page *page)
108 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
109 &page->page_cgroup);
112 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
114 int locked;
117 * While resetting the page_cgroup we might not hold the
118 * page_cgroup lock. free_hot_cold_page() is an example
119 * of such a scenario
121 if (pc)
122 VM_BUG_ON(!page_cgroup_locked(page));
123 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
124 page->page_cgroup = ((unsigned long)pc | locked);
127 struct page_cgroup *page_get_page_cgroup(struct page *page)
129 return (struct page_cgroup *)
130 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
133 void __always_inline lock_page_cgroup(struct page *page)
135 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
136 VM_BUG_ON(!page_cgroup_locked(page));
139 void __always_inline unlock_page_cgroup(struct page *page)
141 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
145 * Charge the memory controller for page usage.
146 * Return
147 * 0 if the charge was successful
148 * < 0 if the cgroup is over its limit
150 int mem_cgroup_charge(struct page *page, struct mm_struct *mm)
152 struct mem_cgroup *mem;
153 struct page_cgroup *pc, *race_pc;
156 * Should page_cgroup's go to their own slab?
157 * One could optimize the performance of the charging routine
158 * by saving a bit in the page_flags and using it as a lock
159 * to see if the cgroup page already has a page_cgroup associated
160 * with it
162 lock_page_cgroup(page);
163 pc = page_get_page_cgroup(page);
165 * The page_cgroup exists and the page has already been accounted
167 if (pc) {
168 atomic_inc(&pc->ref_cnt);
169 goto done;
172 unlock_page_cgroup(page);
174 pc = kzalloc(sizeof(struct page_cgroup), GFP_KERNEL);
175 if (pc == NULL)
176 goto err;
178 rcu_read_lock();
180 * We always charge the cgroup the mm_struct belongs to
181 * the mm_struct's mem_cgroup changes on task migration if the
182 * thread group leader migrates. It's possible that mm is not
183 * set, if so charge the init_mm (happens for pagecache usage).
185 if (!mm)
186 mm = &init_mm;
188 mem = rcu_dereference(mm->mem_cgroup);
190 * For every charge from the cgroup, increment reference
191 * count
193 css_get(&mem->css);
194 rcu_read_unlock();
197 * If we created the page_cgroup, we should free it on exceeding
198 * the cgroup limit.
200 if (res_counter_charge(&mem->res, 1)) {
201 css_put(&mem->css);
202 goto free_pc;
205 lock_page_cgroup(page);
207 * Check if somebody else beat us to allocating the page_cgroup
209 race_pc = page_get_page_cgroup(page);
210 if (race_pc) {
211 kfree(pc);
212 pc = race_pc;
213 atomic_inc(&pc->ref_cnt);
214 res_counter_uncharge(&mem->res, 1);
215 css_put(&mem->css);
216 goto done;
219 atomic_set(&pc->ref_cnt, 1);
220 pc->mem_cgroup = mem;
221 pc->page = page;
222 page_assign_page_cgroup(page, pc);
224 done:
225 unlock_page_cgroup(page);
226 return 0;
227 free_pc:
228 kfree(pc);
229 return -ENOMEM;
230 err:
231 unlock_page_cgroup(page);
232 return -ENOMEM;
236 * Uncharging is always a welcome operation, we never complain, simply
237 * uncharge.
239 void mem_cgroup_uncharge(struct page_cgroup *pc)
241 struct mem_cgroup *mem;
242 struct page *page;
244 if (!pc)
245 return;
247 if (atomic_dec_and_test(&pc->ref_cnt)) {
248 page = pc->page;
249 lock_page_cgroup(page);
250 mem = pc->mem_cgroup;
251 css_put(&mem->css);
252 page_assign_page_cgroup(page, NULL);
253 unlock_page_cgroup(page);
254 res_counter_uncharge(&mem->res, 1);
255 kfree(pc);
259 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
260 struct file *file, char __user *userbuf, size_t nbytes,
261 loff_t *ppos)
263 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
264 cft->private, userbuf, nbytes, ppos);
267 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
268 struct file *file, const char __user *userbuf,
269 size_t nbytes, loff_t *ppos)
271 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
272 cft->private, userbuf, nbytes, ppos);
275 static struct cftype mem_cgroup_files[] = {
277 .name = "usage",
278 .private = RES_USAGE,
279 .read = mem_cgroup_read,
282 .name = "limit",
283 .private = RES_LIMIT,
284 .write = mem_cgroup_write,
285 .read = mem_cgroup_read,
288 .name = "failcnt",
289 .private = RES_FAILCNT,
290 .read = mem_cgroup_read,
294 static struct mem_cgroup init_mem_cgroup;
296 static struct cgroup_subsys_state *
297 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
299 struct mem_cgroup *mem;
301 if (unlikely((cont->parent) == NULL)) {
302 mem = &init_mem_cgroup;
303 init_mm.mem_cgroup = mem;
304 } else
305 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
307 if (mem == NULL)
308 return NULL;
310 res_counter_init(&mem->res);
311 INIT_LIST_HEAD(&mem->active_list);
312 INIT_LIST_HEAD(&mem->inactive_list);
313 return &mem->css;
316 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
317 struct cgroup *cont)
319 kfree(mem_cgroup_from_cont(cont));
322 static int mem_cgroup_populate(struct cgroup_subsys *ss,
323 struct cgroup *cont)
325 return cgroup_add_files(cont, ss, mem_cgroup_files,
326 ARRAY_SIZE(mem_cgroup_files));
329 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
330 struct cgroup *cont,
331 struct cgroup *old_cont,
332 struct task_struct *p)
334 struct mm_struct *mm;
335 struct mem_cgroup *mem, *old_mem;
337 mm = get_task_mm(p);
338 if (mm == NULL)
339 return;
341 mem = mem_cgroup_from_cont(cont);
342 old_mem = mem_cgroup_from_cont(old_cont);
344 if (mem == old_mem)
345 goto out;
348 * Only thread group leaders are allowed to migrate, the mm_struct is
349 * in effect owned by the leader
351 if (p->tgid != p->pid)
352 goto out;
354 css_get(&mem->css);
355 rcu_assign_pointer(mm->mem_cgroup, mem);
356 css_put(&old_mem->css);
358 out:
359 mmput(mm);
360 return;
363 struct cgroup_subsys mem_cgroup_subsys = {
364 .name = "memory",
365 .subsys_id = mem_cgroup_subsys_id,
366 .create = mem_cgroup_create,
367 .destroy = mem_cgroup_destroy,
368 .populate = mem_cgroup_populate,
369 .attach = mem_cgroup_move_task,
370 .early_init = 1,