Pull bugzilla-9429 into release branch
[pv_ops_mirror.git] / drivers / net / wireless / bcm43xx / bcm43xx_phy.c
blobb37f1e348700c9c775dce61695bd2bde12101b6e
1 /*
3 Broadcom BCM43xx wireless driver
5 Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
6 Stefano Brivio <st3@riseup.net>
7 Michael Buesch <mbuesch@freenet.de>
8 Danny van Dyk <kugelfang@gentoo.org>
9 Andreas Jaggi <andreas.jaggi@waterwave.ch>
11 Some parts of the code in this file are derived from the ipw2200
12 driver Copyright(c) 2003 - 2004 Intel Corporation.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; see the file COPYING. If not, write to
26 the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
27 Boston, MA 02110-1301, USA.
31 #include <linux/delay.h>
32 #include <linux/pci.h>
33 #include <linux/types.h>
35 #include "bcm43xx.h"
36 #include "bcm43xx_phy.h"
37 #include "bcm43xx_main.h"
38 #include "bcm43xx_radio.h"
39 #include "bcm43xx_ilt.h"
40 #include "bcm43xx_power.h"
43 static const s8 bcm43xx_tssi2dbm_b_table[] = {
44 0x4D, 0x4C, 0x4B, 0x4A,
45 0x4A, 0x49, 0x48, 0x47,
46 0x47, 0x46, 0x45, 0x45,
47 0x44, 0x43, 0x42, 0x42,
48 0x41, 0x40, 0x3F, 0x3E,
49 0x3D, 0x3C, 0x3B, 0x3A,
50 0x39, 0x38, 0x37, 0x36,
51 0x35, 0x34, 0x32, 0x31,
52 0x30, 0x2F, 0x2D, 0x2C,
53 0x2B, 0x29, 0x28, 0x26,
54 0x25, 0x23, 0x21, 0x1F,
55 0x1D, 0x1A, 0x17, 0x14,
56 0x10, 0x0C, 0x06, 0x00,
57 -7, -7, -7, -7,
58 -7, -7, -7, -7,
59 -7, -7, -7, -7,
62 static const s8 bcm43xx_tssi2dbm_g_table[] = {
63 77, 77, 77, 76,
64 76, 76, 75, 75,
65 74, 74, 73, 73,
66 73, 72, 72, 71,
67 71, 70, 70, 69,
68 68, 68, 67, 67,
69 66, 65, 65, 64,
70 63, 63, 62, 61,
71 60, 59, 58, 57,
72 56, 55, 54, 53,
73 52, 50, 49, 47,
74 45, 43, 40, 37,
75 33, 28, 22, 14,
76 5, -7, -20, -20,
77 -20, -20, -20, -20,
78 -20, -20, -20, -20,
81 static void bcm43xx_phy_initg(struct bcm43xx_private *bcm);
84 static inline
85 void bcm43xx_voluntary_preempt(void)
87 assert(!in_atomic() && !in_irq() &&
88 !in_interrupt() && !irqs_disabled());
89 #ifndef CONFIG_PREEMPT
90 cond_resched();
91 #endif /* CONFIG_PREEMPT */
94 void bcm43xx_raw_phy_lock(struct bcm43xx_private *bcm)
96 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
98 assert(irqs_disabled());
99 if (bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD) == 0x00000000) {
100 phy->is_locked = 0;
101 return;
103 if (bcm->current_core->rev < 3) {
104 bcm43xx_mac_suspend(bcm);
105 spin_lock(&phy->lock);
106 } else {
107 if (bcm->ieee->iw_mode != IW_MODE_MASTER)
108 bcm43xx_power_saving_ctl_bits(bcm, -1, 1);
110 phy->is_locked = 1;
113 void bcm43xx_raw_phy_unlock(struct bcm43xx_private *bcm)
115 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
117 assert(irqs_disabled());
118 if (bcm->current_core->rev < 3) {
119 if (phy->is_locked) {
120 spin_unlock(&phy->lock);
121 bcm43xx_mac_enable(bcm);
123 } else {
124 if (bcm->ieee->iw_mode != IW_MODE_MASTER)
125 bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
127 phy->is_locked = 0;
130 u16 bcm43xx_phy_read(struct bcm43xx_private *bcm, u16 offset)
132 bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_CONTROL, offset);
133 return bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_DATA);
136 void bcm43xx_phy_write(struct bcm43xx_private *bcm, u16 offset, u16 val)
138 bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_CONTROL, offset);
139 mmiowb();
140 bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_DATA, val);
143 void bcm43xx_phy_calibrate(struct bcm43xx_private *bcm)
145 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
147 bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* Dummy read. */
148 if (phy->calibrated)
149 return;
150 if (phy->type == BCM43xx_PHYTYPE_G && phy->rev == 1) {
151 bcm43xx_wireless_core_reset(bcm, 0);
152 bcm43xx_phy_initg(bcm);
153 bcm43xx_wireless_core_reset(bcm, 1);
155 phy->calibrated = 1;
158 /* Connect the PHY
159 * http://bcm-specs.sipsolutions.net/SetPHY
161 int bcm43xx_phy_connect(struct bcm43xx_private *bcm, int connect)
163 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
164 u32 flags;
166 if (bcm->current_core->rev < 5)
167 goto out;
169 flags = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
170 if (connect) {
171 if (!(flags & BCM43xx_SBTMSTATEHIGH_G_PHY_AVAIL))
172 return -ENODEV;
173 flags = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
174 flags |= BCM43xx_SBTMSTATELOW_G_MODE_ENABLE;
175 bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, flags);
176 } else {
177 if (!(flags & BCM43xx_SBTMSTATEHIGH_A_PHY_AVAIL))
178 return -ENODEV;
179 flags = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
180 flags &= ~BCM43xx_SBTMSTATELOW_G_MODE_ENABLE;
181 bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, flags);
183 out:
184 phy->connected = connect;
185 if (connect)
186 dprintk(KERN_INFO PFX "PHY connected\n");
187 else
188 dprintk(KERN_INFO PFX "PHY disconnected\n");
190 return 0;
193 /* intialize B PHY power control
194 * as described in http://bcm-specs.sipsolutions.net/InitPowerControl
196 static void bcm43xx_phy_init_pctl(struct bcm43xx_private *bcm)
198 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
199 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
200 u16 saved_batt = 0, saved_ratt = 0, saved_txctl1 = 0;
201 int must_reset_txpower = 0;
203 assert(phy->type != BCM43xx_PHYTYPE_A);
204 if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM) &&
205 (bcm->board_type == 0x0416))
206 return;
208 bcm43xx_phy_write(bcm, 0x0028, 0x8018);
209 bcm43xx_write16(bcm, 0x03E6, bcm43xx_read16(bcm, 0x03E6) & 0xFFDF);
211 if (phy->type == BCM43xx_PHYTYPE_G) {
212 if (!phy->connected)
213 return;
214 bcm43xx_phy_write(bcm, 0x047A, 0xC111);
216 if (phy->savedpctlreg != 0xFFFF)
217 return;
219 if (phy->type == BCM43xx_PHYTYPE_B &&
220 phy->rev >= 2 &&
221 radio->version == 0x2050) {
222 bcm43xx_radio_write16(bcm, 0x0076,
223 bcm43xx_radio_read16(bcm, 0x0076) | 0x0084);
224 } else {
225 saved_batt = radio->baseband_atten;
226 saved_ratt = radio->radio_atten;
227 saved_txctl1 = radio->txctl1;
228 if ((radio->revision >= 6) && (radio->revision <= 8)
229 && /*FIXME: incomplete specs for 5 < revision < 9 */ 0)
230 bcm43xx_radio_set_txpower_bg(bcm, 0xB, 0x1F, 0);
231 else
232 bcm43xx_radio_set_txpower_bg(bcm, 0xB, 9, 0);
233 must_reset_txpower = 1;
235 bcm43xx_dummy_transmission(bcm);
237 phy->savedpctlreg = bcm43xx_phy_read(bcm, BCM43xx_PHY_G_PCTL);
239 if (must_reset_txpower)
240 bcm43xx_radio_set_txpower_bg(bcm, saved_batt, saved_ratt, saved_txctl1);
241 else
242 bcm43xx_radio_write16(bcm, 0x0076, bcm43xx_radio_read16(bcm, 0x0076) & 0xFF7B);
243 bcm43xx_radio_clear_tssi(bcm);
246 static void bcm43xx_phy_agcsetup(struct bcm43xx_private *bcm)
248 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
249 u16 offset = 0x0000;
251 if (phy->rev == 1)
252 offset = 0x4C00;
254 bcm43xx_ilt_write(bcm, offset, 0x00FE);
255 bcm43xx_ilt_write(bcm, offset + 1, 0x000D);
256 bcm43xx_ilt_write(bcm, offset + 2, 0x0013);
257 bcm43xx_ilt_write(bcm, offset + 3, 0x0019);
259 if (phy->rev == 1) {
260 bcm43xx_ilt_write(bcm, 0x1800, 0x2710);
261 bcm43xx_ilt_write(bcm, 0x1801, 0x9B83);
262 bcm43xx_ilt_write(bcm, 0x1802, 0x9B83);
263 bcm43xx_ilt_write(bcm, 0x1803, 0x0F8D);
264 bcm43xx_phy_write(bcm, 0x0455, 0x0004);
267 bcm43xx_phy_write(bcm, 0x04A5, (bcm43xx_phy_read(bcm, 0x04A5) & 0x00FF) | 0x5700);
268 bcm43xx_phy_write(bcm, 0x041A, (bcm43xx_phy_read(bcm, 0x041A) & 0xFF80) | 0x000F);
269 bcm43xx_phy_write(bcm, 0x041A, (bcm43xx_phy_read(bcm, 0x041A) & 0xC07F) | 0x2B80);
270 bcm43xx_phy_write(bcm, 0x048C, (bcm43xx_phy_read(bcm, 0x048C) & 0xF0FF) | 0x0300);
272 bcm43xx_radio_write16(bcm, 0x007A, bcm43xx_radio_read16(bcm, 0x007A) | 0x0008);
274 bcm43xx_phy_write(bcm, 0x04A0, (bcm43xx_phy_read(bcm, 0x04A0) & 0xFFF0) | 0x0008);
275 bcm43xx_phy_write(bcm, 0x04A1, (bcm43xx_phy_read(bcm, 0x04A1) & 0xF0FF) | 0x0600);
276 bcm43xx_phy_write(bcm, 0x04A2, (bcm43xx_phy_read(bcm, 0x04A2) & 0xF0FF) | 0x0700);
277 bcm43xx_phy_write(bcm, 0x04A0, (bcm43xx_phy_read(bcm, 0x04A0) & 0xF0FF) | 0x0100);
279 if (phy->rev == 1)
280 bcm43xx_phy_write(bcm, 0x04A2, (bcm43xx_phy_read(bcm, 0x04A2) & 0xFFF0) | 0x0007);
282 bcm43xx_phy_write(bcm, 0x0488, (bcm43xx_phy_read(bcm, 0x0488) & 0xFF00) | 0x001C);
283 bcm43xx_phy_write(bcm, 0x0488, (bcm43xx_phy_read(bcm, 0x0488) & 0xC0FF) | 0x0200);
284 bcm43xx_phy_write(bcm, 0x0496, (bcm43xx_phy_read(bcm, 0x0496) & 0xFF00) | 0x001C);
285 bcm43xx_phy_write(bcm, 0x0489, (bcm43xx_phy_read(bcm, 0x0489) & 0xFF00) | 0x0020);
286 bcm43xx_phy_write(bcm, 0x0489, (bcm43xx_phy_read(bcm, 0x0489) & 0xC0FF) | 0x0200);
287 bcm43xx_phy_write(bcm, 0x0482, (bcm43xx_phy_read(bcm, 0x0482) & 0xFF00) | 0x002E);
288 bcm43xx_phy_write(bcm, 0x0496, (bcm43xx_phy_read(bcm, 0x0496) & 0x00FF) | 0x1A00);
289 bcm43xx_phy_write(bcm, 0x0481, (bcm43xx_phy_read(bcm, 0x0481) & 0xFF00) | 0x0028);
290 bcm43xx_phy_write(bcm, 0x0481, (bcm43xx_phy_read(bcm, 0x0481) & 0x00FF) | 0x2C00);
292 if (phy->rev == 1) {
293 bcm43xx_phy_write(bcm, 0x0430, 0x092B);
294 bcm43xx_phy_write(bcm, 0x041B, (bcm43xx_phy_read(bcm, 0x041B) & 0xFFE1) | 0x0002);
295 } else {
296 bcm43xx_phy_write(bcm, 0x041B, bcm43xx_phy_read(bcm, 0x041B) & 0xFFE1);
297 bcm43xx_phy_write(bcm, 0x041F, 0x287A);
298 bcm43xx_phy_write(bcm, 0x0420, (bcm43xx_phy_read(bcm, 0x0420) & 0xFFF0) | 0x0004);
301 if (phy->rev > 2) {
302 bcm43xx_phy_write(bcm, 0x0422, 0x287A);
303 bcm43xx_phy_write(bcm, 0x0420, (bcm43xx_phy_read(bcm, 0x0420)
304 & 0x0FFF) | 0x3000);
307 bcm43xx_phy_write(bcm, 0x04A8, (bcm43xx_phy_read(bcm, 0x04A8) & 0x8080)
308 | 0x7874);
309 bcm43xx_phy_write(bcm, 0x048E, 0x1C00);
311 if (phy->rev == 1) {
312 bcm43xx_phy_write(bcm, 0x04AB, (bcm43xx_phy_read(bcm, 0x04AB)
313 & 0xF0FF) | 0x0600);
314 bcm43xx_phy_write(bcm, 0x048B, 0x005E);
315 bcm43xx_phy_write(bcm, 0x048C, (bcm43xx_phy_read(bcm, 0x048C)
316 & 0xFF00) | 0x001E);
317 bcm43xx_phy_write(bcm, 0x048D, 0x0002);
320 bcm43xx_ilt_write(bcm, offset + 0x0800, 0);
321 bcm43xx_ilt_write(bcm, offset + 0x0801, 7);
322 bcm43xx_ilt_write(bcm, offset + 0x0802, 16);
323 bcm43xx_ilt_write(bcm, offset + 0x0803, 28);
325 if (phy->rev >= 6) {
326 bcm43xx_phy_write(bcm, 0x0426, (bcm43xx_phy_read(bcm, 0x0426)
327 & 0xFFFC));
328 bcm43xx_phy_write(bcm, 0x0426, (bcm43xx_phy_read(bcm, 0x0426)
329 & 0xEFFF));
333 static void bcm43xx_phy_setupg(struct bcm43xx_private *bcm)
335 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
336 u16 i;
338 assert(phy->type == BCM43xx_PHYTYPE_G);
339 if (phy->rev == 1) {
340 bcm43xx_phy_write(bcm, 0x0406, 0x4F19);
341 bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS,
342 (bcm43xx_phy_read(bcm, BCM43xx_PHY_G_CRS)
343 & 0xFC3F) | 0x0340);
344 bcm43xx_phy_write(bcm, 0x042C, 0x005A);
345 bcm43xx_phy_write(bcm, 0x0427, 0x001A);
347 for (i = 0; i < BCM43xx_ILT_FINEFREQG_SIZE; i++)
348 bcm43xx_ilt_write(bcm, 0x5800 + i, bcm43xx_ilt_finefreqg[i]);
349 for (i = 0; i < BCM43xx_ILT_NOISEG1_SIZE; i++)
350 bcm43xx_ilt_write(bcm, 0x1800 + i, bcm43xx_ilt_noiseg1[i]);
351 for (i = 0; i < BCM43xx_ILT_ROTOR_SIZE; i++)
352 bcm43xx_ilt_write32(bcm, 0x2000 + i, bcm43xx_ilt_rotor[i]);
353 } else {
354 /* nrssi values are signed 6-bit values. Not sure why we write 0x7654 here... */
355 bcm43xx_nrssi_hw_write(bcm, 0xBA98, (s16)0x7654);
357 if (phy->rev == 2) {
358 bcm43xx_phy_write(bcm, 0x04C0, 0x1861);
359 bcm43xx_phy_write(bcm, 0x04C1, 0x0271);
360 } else if (phy->rev > 2) {
361 bcm43xx_phy_write(bcm, 0x04C0, 0x0098);
362 bcm43xx_phy_write(bcm, 0x04C1, 0x0070);
363 bcm43xx_phy_write(bcm, 0x04C9, 0x0080);
365 bcm43xx_phy_write(bcm, 0x042B, bcm43xx_phy_read(bcm, 0x042B) | 0x800);
367 for (i = 0; i < 64; i++)
368 bcm43xx_ilt_write(bcm, 0x4000 + i, i);
369 for (i = 0; i < BCM43xx_ILT_NOISEG2_SIZE; i++)
370 bcm43xx_ilt_write(bcm, 0x1800 + i, bcm43xx_ilt_noiseg2[i]);
373 if (phy->rev <= 2)
374 for (i = 0; i < BCM43xx_ILT_NOISESCALEG_SIZE; i++)
375 bcm43xx_ilt_write(bcm, 0x1400 + i, bcm43xx_ilt_noisescaleg1[i]);
376 else if ((phy->rev >= 7) && (bcm43xx_phy_read(bcm, 0x0449) & 0x0200))
377 for (i = 0; i < BCM43xx_ILT_NOISESCALEG_SIZE; i++)
378 bcm43xx_ilt_write(bcm, 0x1400 + i, bcm43xx_ilt_noisescaleg3[i]);
379 else
380 for (i = 0; i < BCM43xx_ILT_NOISESCALEG_SIZE; i++)
381 bcm43xx_ilt_write(bcm, 0x1400 + i, bcm43xx_ilt_noisescaleg2[i]);
383 if (phy->rev == 2)
384 for (i = 0; i < BCM43xx_ILT_SIGMASQR_SIZE; i++)
385 bcm43xx_ilt_write(bcm, 0x5000 + i, bcm43xx_ilt_sigmasqr1[i]);
386 else if ((phy->rev > 2) && (phy->rev <= 8))
387 for (i = 0; i < BCM43xx_ILT_SIGMASQR_SIZE; i++)
388 bcm43xx_ilt_write(bcm, 0x5000 + i, bcm43xx_ilt_sigmasqr2[i]);
390 if (phy->rev == 1) {
391 for (i = 0; i < BCM43xx_ILT_RETARD_SIZE; i++)
392 bcm43xx_ilt_write32(bcm, 0x2400 + i, bcm43xx_ilt_retard[i]);
393 for (i = 0; i < 4; i++) {
394 bcm43xx_ilt_write(bcm, 0x5404 + i, 0x0020);
395 bcm43xx_ilt_write(bcm, 0x5408 + i, 0x0020);
396 bcm43xx_ilt_write(bcm, 0x540C + i, 0x0020);
397 bcm43xx_ilt_write(bcm, 0x5410 + i, 0x0020);
399 bcm43xx_phy_agcsetup(bcm);
401 if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM) &&
402 (bcm->board_type == 0x0416) &&
403 (bcm->board_revision == 0x0017))
404 return;
406 bcm43xx_ilt_write(bcm, 0x5001, 0x0002);
407 bcm43xx_ilt_write(bcm, 0x5002, 0x0001);
408 } else {
409 for (i = 0; i <= 0x2F; i++)
410 bcm43xx_ilt_write(bcm, 0x1000 + i, 0x0820);
411 bcm43xx_phy_agcsetup(bcm);
412 bcm43xx_phy_read(bcm, 0x0400); /* dummy read */
413 bcm43xx_phy_write(bcm, 0x0403, 0x1000);
414 bcm43xx_ilt_write(bcm, 0x3C02, 0x000F);
415 bcm43xx_ilt_write(bcm, 0x3C03, 0x0014);
417 if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM) &&
418 (bcm->board_type == 0x0416) &&
419 (bcm->board_revision == 0x0017))
420 return;
422 bcm43xx_ilt_write(bcm, 0x0401, 0x0002);
423 bcm43xx_ilt_write(bcm, 0x0402, 0x0001);
427 /* Initialize the noisescaletable for APHY */
428 static void bcm43xx_phy_init_noisescaletbl(struct bcm43xx_private *bcm)
430 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
431 int i;
433 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_CTRL, 0x1400);
434 for (i = 0; i < 12; i++) {
435 if (phy->rev == 2)
436 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x6767);
437 else
438 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x2323);
440 if (phy->rev == 2)
441 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x6700);
442 else
443 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x2300);
444 for (i = 0; i < 11; i++) {
445 if (phy->rev == 2)
446 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x6767);
447 else
448 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x2323);
450 if (phy->rev == 2)
451 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x0067);
452 else
453 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x0023);
456 static void bcm43xx_phy_setupa(struct bcm43xx_private *bcm)
458 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
459 u16 i;
461 assert(phy->type == BCM43xx_PHYTYPE_A);
462 switch (phy->rev) {
463 case 2:
464 bcm43xx_phy_write(bcm, 0x008E, 0x3800);
465 bcm43xx_phy_write(bcm, 0x0035, 0x03FF);
466 bcm43xx_phy_write(bcm, 0x0036, 0x0400);
468 bcm43xx_ilt_write(bcm, 0x3807, 0x0051);
470 bcm43xx_phy_write(bcm, 0x001C, 0x0FF9);
471 bcm43xx_phy_write(bcm, 0x0020, bcm43xx_phy_read(bcm, 0x0020) & 0xFF0F);
472 bcm43xx_ilt_write(bcm, 0x3C0C, 0x07BF);
473 bcm43xx_radio_write16(bcm, 0x0002, 0x07BF);
475 bcm43xx_phy_write(bcm, 0x0024, 0x4680);
476 bcm43xx_phy_write(bcm, 0x0020, 0x0003);
477 bcm43xx_phy_write(bcm, 0x001D, 0x0F40);
478 bcm43xx_phy_write(bcm, 0x001F, 0x1C00);
480 bcm43xx_phy_write(bcm, 0x002A, (bcm43xx_phy_read(bcm, 0x002A) & 0x00FF) | 0x0400);
481 bcm43xx_phy_write(bcm, 0x002B, bcm43xx_phy_read(bcm, 0x002B) & 0xFBFF);
482 bcm43xx_phy_write(bcm, 0x008E, 0x58C1);
484 bcm43xx_ilt_write(bcm, 0x0803, 0x000F);
485 bcm43xx_ilt_write(bcm, 0x0804, 0x001F);
486 bcm43xx_ilt_write(bcm, 0x0805, 0x002A);
487 bcm43xx_ilt_write(bcm, 0x0805, 0x0030);
488 bcm43xx_ilt_write(bcm, 0x0807, 0x003A);
490 bcm43xx_ilt_write(bcm, 0x0000, 0x0013);
491 bcm43xx_ilt_write(bcm, 0x0001, 0x0013);
492 bcm43xx_ilt_write(bcm, 0x0002, 0x0013);
493 bcm43xx_ilt_write(bcm, 0x0003, 0x0013);
494 bcm43xx_ilt_write(bcm, 0x0004, 0x0015);
495 bcm43xx_ilt_write(bcm, 0x0005, 0x0015);
496 bcm43xx_ilt_write(bcm, 0x0006, 0x0019);
498 bcm43xx_ilt_write(bcm, 0x0404, 0x0003);
499 bcm43xx_ilt_write(bcm, 0x0405, 0x0003);
500 bcm43xx_ilt_write(bcm, 0x0406, 0x0007);
502 for (i = 0; i < 16; i++)
503 bcm43xx_ilt_write(bcm, 0x4000 + i, (0x8 + i) & 0x000F);
505 bcm43xx_ilt_write(bcm, 0x3003, 0x1044);
506 bcm43xx_ilt_write(bcm, 0x3004, 0x7201);
507 bcm43xx_ilt_write(bcm, 0x3006, 0x0040);
508 bcm43xx_ilt_write(bcm, 0x3001, (bcm43xx_ilt_read(bcm, 0x3001) & 0x0010) | 0x0008);
510 for (i = 0; i < BCM43xx_ILT_FINEFREQA_SIZE; i++)
511 bcm43xx_ilt_write(bcm, 0x5800 + i, bcm43xx_ilt_finefreqa[i]);
512 for (i = 0; i < BCM43xx_ILT_NOISEA2_SIZE; i++)
513 bcm43xx_ilt_write(bcm, 0x1800 + i, bcm43xx_ilt_noisea2[i]);
514 for (i = 0; i < BCM43xx_ILT_ROTOR_SIZE; i++)
515 bcm43xx_ilt_write32(bcm, 0x2000 + i, bcm43xx_ilt_rotor[i]);
516 bcm43xx_phy_init_noisescaletbl(bcm);
517 for (i = 0; i < BCM43xx_ILT_RETARD_SIZE; i++)
518 bcm43xx_ilt_write32(bcm, 0x2400 + i, bcm43xx_ilt_retard[i]);
519 break;
520 case 3:
521 for (i = 0; i < 64; i++)
522 bcm43xx_ilt_write(bcm, 0x4000 + i, i);
524 bcm43xx_ilt_write(bcm, 0x3807, 0x0051);
526 bcm43xx_phy_write(bcm, 0x001C, 0x0FF9);
527 bcm43xx_phy_write(bcm, 0x0020, bcm43xx_phy_read(bcm, 0x0020) & 0xFF0F);
528 bcm43xx_radio_write16(bcm, 0x0002, 0x07BF);
530 bcm43xx_phy_write(bcm, 0x0024, 0x4680);
531 bcm43xx_phy_write(bcm, 0x0020, 0x0003);
532 bcm43xx_phy_write(bcm, 0x001D, 0x0F40);
533 bcm43xx_phy_write(bcm, 0x001F, 0x1C00);
534 bcm43xx_phy_write(bcm, 0x002A, (bcm43xx_phy_read(bcm, 0x002A) & 0x00FF) | 0x0400);
536 bcm43xx_ilt_write(bcm, 0x3001, (bcm43xx_ilt_read(bcm, 0x3001) & 0x0010) | 0x0008);
537 for (i = 0; i < BCM43xx_ILT_NOISEA3_SIZE; i++)
538 bcm43xx_ilt_write(bcm, 0x1800 + i, bcm43xx_ilt_noisea3[i]);
539 bcm43xx_phy_init_noisescaletbl(bcm);
540 for (i = 0; i < BCM43xx_ILT_SIGMASQR_SIZE; i++)
541 bcm43xx_ilt_write(bcm, 0x5000 + i, bcm43xx_ilt_sigmasqr1[i]);
543 bcm43xx_phy_write(bcm, 0x0003, 0x1808);
545 bcm43xx_ilt_write(bcm, 0x0803, 0x000F);
546 bcm43xx_ilt_write(bcm, 0x0804, 0x001F);
547 bcm43xx_ilt_write(bcm, 0x0805, 0x002A);
548 bcm43xx_ilt_write(bcm, 0x0805, 0x0030);
549 bcm43xx_ilt_write(bcm, 0x0807, 0x003A);
551 bcm43xx_ilt_write(bcm, 0x0000, 0x0013);
552 bcm43xx_ilt_write(bcm, 0x0001, 0x0013);
553 bcm43xx_ilt_write(bcm, 0x0002, 0x0013);
554 bcm43xx_ilt_write(bcm, 0x0003, 0x0013);
555 bcm43xx_ilt_write(bcm, 0x0004, 0x0015);
556 bcm43xx_ilt_write(bcm, 0x0005, 0x0015);
557 bcm43xx_ilt_write(bcm, 0x0006, 0x0019);
559 bcm43xx_ilt_write(bcm, 0x0404, 0x0003);
560 bcm43xx_ilt_write(bcm, 0x0405, 0x0003);
561 bcm43xx_ilt_write(bcm, 0x0406, 0x0007);
563 bcm43xx_ilt_write(bcm, 0x3C02, 0x000F);
564 bcm43xx_ilt_write(bcm, 0x3C03, 0x0014);
565 break;
566 default:
567 assert(0);
571 /* Initialize APHY. This is also called for the GPHY in some cases. */
572 static void bcm43xx_phy_inita(struct bcm43xx_private *bcm)
574 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
575 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
576 u16 tval;
578 if (phy->type == BCM43xx_PHYTYPE_A) {
579 bcm43xx_phy_setupa(bcm);
580 } else {
581 bcm43xx_phy_setupg(bcm);
582 if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
583 bcm43xx_phy_write(bcm, 0x046E, 0x03CF);
584 return;
587 bcm43xx_phy_write(bcm, BCM43xx_PHY_A_CRS,
588 (bcm43xx_phy_read(bcm, BCM43xx_PHY_A_CRS) & 0xF83C) | 0x0340);
589 bcm43xx_phy_write(bcm, 0x0034, 0x0001);
591 TODO();//TODO: RSSI AGC
592 bcm43xx_phy_write(bcm, BCM43xx_PHY_A_CRS,
593 bcm43xx_phy_read(bcm, BCM43xx_PHY_A_CRS) | (1 << 14));
594 bcm43xx_radio_init2060(bcm);
596 if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM)
597 && ((bcm->board_type == 0x0416) || (bcm->board_type == 0x040A))) {
598 if (radio->lofcal == 0xFFFF) {
599 TODO();//TODO: LOF Cal
600 bcm43xx_radio_set_tx_iq(bcm);
601 } else
602 bcm43xx_radio_write16(bcm, 0x001E, radio->lofcal);
605 bcm43xx_phy_write(bcm, 0x007A, 0xF111);
607 if (phy->savedpctlreg == 0xFFFF) {
608 bcm43xx_radio_write16(bcm, 0x0019, 0x0000);
609 bcm43xx_radio_write16(bcm, 0x0017, 0x0020);
611 tval = bcm43xx_ilt_read(bcm, 0x3001);
612 if (phy->rev == 1) {
613 bcm43xx_ilt_write(bcm, 0x3001,
614 (bcm43xx_ilt_read(bcm, 0x3001) & 0xFF87)
615 | 0x0058);
616 } else {
617 bcm43xx_ilt_write(bcm, 0x3001,
618 (bcm43xx_ilt_read(bcm, 0x3001) & 0xFFC3)
619 | 0x002C);
621 bcm43xx_dummy_transmission(bcm);
622 phy->savedpctlreg = bcm43xx_phy_read(bcm, BCM43xx_PHY_A_PCTL);
623 bcm43xx_ilt_write(bcm, 0x3001, tval);
625 bcm43xx_radio_set_txpower_a(bcm, 0x0018);
627 bcm43xx_radio_clear_tssi(bcm);
630 static void bcm43xx_phy_initb2(struct bcm43xx_private *bcm)
632 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
633 u16 offset, val;
635 bcm43xx_write16(bcm, 0x03EC, 0x3F22);
636 bcm43xx_phy_write(bcm, 0x0020, 0x301C);
637 bcm43xx_phy_write(bcm, 0x0026, 0x0000);
638 bcm43xx_phy_write(bcm, 0x0030, 0x00C6);
639 bcm43xx_phy_write(bcm, 0x0088, 0x3E00);
640 val = 0x3C3D;
641 for (offset = 0x0089; offset < 0x00A7; offset++) {
642 bcm43xx_phy_write(bcm, offset, val);
643 val -= 0x0202;
645 bcm43xx_phy_write(bcm, 0x03E4, 0x3000);
646 if (radio->channel == 0xFF)
647 bcm43xx_radio_selectchannel(bcm, BCM43xx_RADIO_DEFAULT_CHANNEL_BG, 0);
648 else
649 bcm43xx_radio_selectchannel(bcm, radio->channel, 0);
650 if (radio->version != 0x2050) {
651 bcm43xx_radio_write16(bcm, 0x0075, 0x0080);
652 bcm43xx_radio_write16(bcm, 0x0079, 0x0081);
654 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
655 bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
656 if (radio->version == 0x2050) {
657 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
658 bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
659 bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
660 bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
661 bcm43xx_radio_write16(bcm, 0x007A, 0x000F);
662 bcm43xx_phy_write(bcm, 0x0038, 0x0677);
663 bcm43xx_radio_init2050(bcm);
665 bcm43xx_phy_write(bcm, 0x0014, 0x0080);
666 bcm43xx_phy_write(bcm, 0x0032, 0x00CA);
667 bcm43xx_phy_write(bcm, 0x0032, 0x00CC);
668 bcm43xx_phy_write(bcm, 0x0035, 0x07C2);
669 bcm43xx_phy_lo_b_measure(bcm);
670 bcm43xx_phy_write(bcm, 0x0026, 0xCC00);
671 if (radio->version != 0x2050)
672 bcm43xx_phy_write(bcm, 0x0026, 0xCE00);
673 bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, 0x1000);
674 bcm43xx_phy_write(bcm, 0x002A, 0x88A3);
675 if (radio->version != 0x2050)
676 bcm43xx_phy_write(bcm, 0x002A, 0x88C2);
677 bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
678 bcm43xx_phy_init_pctl(bcm);
681 static void bcm43xx_phy_initb4(struct bcm43xx_private *bcm)
683 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
684 u16 offset, val;
686 bcm43xx_write16(bcm, 0x03EC, 0x3F22);
687 bcm43xx_phy_write(bcm, 0x0020, 0x301C);
688 bcm43xx_phy_write(bcm, 0x0026, 0x0000);
689 bcm43xx_phy_write(bcm, 0x0030, 0x00C6);
690 bcm43xx_phy_write(bcm, 0x0088, 0x3E00);
691 val = 0x3C3D;
692 for (offset = 0x0089; offset < 0x00A7; offset++) {
693 bcm43xx_phy_write(bcm, offset, val);
694 val -= 0x0202;
696 bcm43xx_phy_write(bcm, 0x03E4, 0x3000);
697 if (radio->channel == 0xFF)
698 bcm43xx_radio_selectchannel(bcm, BCM43xx_RADIO_DEFAULT_CHANNEL_BG, 0);
699 else
700 bcm43xx_radio_selectchannel(bcm, radio->channel, 0);
701 if (radio->version != 0x2050) {
702 bcm43xx_radio_write16(bcm, 0x0075, 0x0080);
703 bcm43xx_radio_write16(bcm, 0x0079, 0x0081);
705 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
706 bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
707 if (radio->version == 0x2050) {
708 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
709 bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
710 bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
711 bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
712 bcm43xx_radio_write16(bcm, 0x007A, 0x000F);
713 bcm43xx_phy_write(bcm, 0x0038, 0x0677);
714 bcm43xx_radio_init2050(bcm);
716 bcm43xx_phy_write(bcm, 0x0014, 0x0080);
717 bcm43xx_phy_write(bcm, 0x0032, 0x00CA);
718 if (radio->version == 0x2050)
719 bcm43xx_phy_write(bcm, 0x0032, 0x00E0);
720 bcm43xx_phy_write(bcm, 0x0035, 0x07C2);
722 bcm43xx_phy_lo_b_measure(bcm);
724 bcm43xx_phy_write(bcm, 0x0026, 0xCC00);
725 if (radio->version == 0x2050)
726 bcm43xx_phy_write(bcm, 0x0026, 0xCE00);
727 bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, 0x1100);
728 bcm43xx_phy_write(bcm, 0x002A, 0x88A3);
729 if (radio->version == 0x2050)
730 bcm43xx_phy_write(bcm, 0x002A, 0x88C2);
731 bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
732 if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
733 bcm43xx_calc_nrssi_slope(bcm);
734 bcm43xx_calc_nrssi_threshold(bcm);
736 bcm43xx_phy_init_pctl(bcm);
739 static void bcm43xx_phy_initb5(struct bcm43xx_private *bcm)
741 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
742 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
743 u16 offset;
744 u16 value;
745 u8 old_channel;
747 if (phy->analog == 1)
748 bcm43xx_radio_write16(bcm, 0x007A,
749 bcm43xx_radio_read16(bcm, 0x007A)
750 | 0x0050);
751 if ((bcm->board_vendor != PCI_VENDOR_ID_BROADCOM) &&
752 (bcm->board_type != 0x0416)) {
753 value = 0x2120;
754 for (offset = 0x00A8 ; offset < 0x00C7; offset++) {
755 bcm43xx_phy_write(bcm, offset, value);
756 value += 0x0202;
759 bcm43xx_phy_write(bcm, 0x0035,
760 (bcm43xx_phy_read(bcm, 0x0035) & 0xF0FF)
761 | 0x0700);
762 if (radio->version == 0x2050)
763 bcm43xx_phy_write(bcm, 0x0038, 0x0667);
765 if (phy->connected) {
766 if (radio->version == 0x2050) {
767 bcm43xx_radio_write16(bcm, 0x007A,
768 bcm43xx_radio_read16(bcm, 0x007A)
769 | 0x0020);
770 bcm43xx_radio_write16(bcm, 0x0051,
771 bcm43xx_radio_read16(bcm, 0x0051)
772 | 0x0004);
774 bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_RADIO, 0x0000);
776 bcm43xx_phy_write(bcm, 0x0802, bcm43xx_phy_read(bcm, 0x0802) | 0x0100);
777 bcm43xx_phy_write(bcm, 0x042B, bcm43xx_phy_read(bcm, 0x042B) | 0x2000);
779 bcm43xx_phy_write(bcm, 0x001C, 0x186A);
781 bcm43xx_phy_write(bcm, 0x0013, (bcm43xx_phy_read(bcm, 0x0013) & 0x00FF) | 0x1900);
782 bcm43xx_phy_write(bcm, 0x0035, (bcm43xx_phy_read(bcm, 0x0035) & 0xFFC0) | 0x0064);
783 bcm43xx_phy_write(bcm, 0x005D, (bcm43xx_phy_read(bcm, 0x005D) & 0xFF80) | 0x000A);
786 if (bcm->bad_frames_preempt) {
787 bcm43xx_phy_write(bcm, BCM43xx_PHY_RADIO_BITFIELD,
788 bcm43xx_phy_read(bcm, BCM43xx_PHY_RADIO_BITFIELD) | (1 << 11));
791 if (phy->analog == 1) {
792 bcm43xx_phy_write(bcm, 0x0026, 0xCE00);
793 bcm43xx_phy_write(bcm, 0x0021, 0x3763);
794 bcm43xx_phy_write(bcm, 0x0022, 0x1BC3);
795 bcm43xx_phy_write(bcm, 0x0023, 0x06F9);
796 bcm43xx_phy_write(bcm, 0x0024, 0x037E);
797 } else
798 bcm43xx_phy_write(bcm, 0x0026, 0xCC00);
799 bcm43xx_phy_write(bcm, 0x0030, 0x00C6);
800 bcm43xx_write16(bcm, 0x03EC, 0x3F22);
802 if (phy->analog == 1)
803 bcm43xx_phy_write(bcm, 0x0020, 0x3E1C);
804 else
805 bcm43xx_phy_write(bcm, 0x0020, 0x301C);
807 if (phy->analog == 0)
808 bcm43xx_write16(bcm, 0x03E4, 0x3000);
810 old_channel = radio->channel;
811 /* Force to channel 7, even if not supported. */
812 bcm43xx_radio_selectchannel(bcm, 7, 0);
814 if (radio->version != 0x2050) {
815 bcm43xx_radio_write16(bcm, 0x0075, 0x0080);
816 bcm43xx_radio_write16(bcm, 0x0079, 0x0081);
819 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
820 bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
822 if (radio->version == 0x2050) {
823 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
824 bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
827 bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
828 bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
830 bcm43xx_radio_write16(bcm, 0x007A, bcm43xx_radio_read16(bcm, 0x007A) | 0x0007);
832 bcm43xx_radio_selectchannel(bcm, old_channel, 0);
834 bcm43xx_phy_write(bcm, 0x0014, 0x0080);
835 bcm43xx_phy_write(bcm, 0x0032, 0x00CA);
836 bcm43xx_phy_write(bcm, 0x002A, 0x88A3);
838 bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
840 if (radio->version == 0x2050)
841 bcm43xx_radio_write16(bcm, 0x005D, 0x000D);
843 bcm43xx_write16(bcm, 0x03E4, (bcm43xx_read16(bcm, 0x03E4) & 0xFFC0) | 0x0004);
846 static void bcm43xx_phy_initb6(struct bcm43xx_private *bcm)
848 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
849 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
850 u16 offset, val;
851 u8 old_channel;
853 bcm43xx_phy_write(bcm, 0x003E, 0x817A);
854 bcm43xx_radio_write16(bcm, 0x007A,
855 (bcm43xx_radio_read16(bcm, 0x007A) | 0x0058));
856 if (radio->revision == 4 ||
857 radio->revision == 5) {
858 bcm43xx_radio_write16(bcm, 0x0051, 0x0037);
859 bcm43xx_radio_write16(bcm, 0x0052, 0x0070);
860 bcm43xx_radio_write16(bcm, 0x0053, 0x00B3);
861 bcm43xx_radio_write16(bcm, 0x0054, 0x009B);
862 bcm43xx_radio_write16(bcm, 0x005A, 0x0088);
863 bcm43xx_radio_write16(bcm, 0x005B, 0x0088);
864 bcm43xx_radio_write16(bcm, 0x005D, 0x0088);
865 bcm43xx_radio_write16(bcm, 0x005E, 0x0088);
866 bcm43xx_radio_write16(bcm, 0x007D, 0x0088);
867 bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
868 BCM43xx_UCODEFLAGS_OFFSET,
869 (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
870 BCM43xx_UCODEFLAGS_OFFSET)
871 | 0x00000200));
873 if (radio->revision == 8) {
874 bcm43xx_radio_write16(bcm, 0x0051, 0x0000);
875 bcm43xx_radio_write16(bcm, 0x0052, 0x0040);
876 bcm43xx_radio_write16(bcm, 0x0053, 0x00B7);
877 bcm43xx_radio_write16(bcm, 0x0054, 0x0098);
878 bcm43xx_radio_write16(bcm, 0x005A, 0x0088);
879 bcm43xx_radio_write16(bcm, 0x005B, 0x006B);
880 bcm43xx_radio_write16(bcm, 0x005C, 0x000F);
881 if (bcm->sprom.boardflags & 0x8000) {
882 bcm43xx_radio_write16(bcm, 0x005D, 0x00FA);
883 bcm43xx_radio_write16(bcm, 0x005E, 0x00D8);
884 } else {
885 bcm43xx_radio_write16(bcm, 0x005D, 0x00F5);
886 bcm43xx_radio_write16(bcm, 0x005E, 0x00B8);
888 bcm43xx_radio_write16(bcm, 0x0073, 0x0003);
889 bcm43xx_radio_write16(bcm, 0x007D, 0x00A8);
890 bcm43xx_radio_write16(bcm, 0x007C, 0x0001);
891 bcm43xx_radio_write16(bcm, 0x007E, 0x0008);
893 val = 0x1E1F;
894 for (offset = 0x0088; offset < 0x0098; offset++) {
895 bcm43xx_phy_write(bcm, offset, val);
896 val -= 0x0202;
898 val = 0x3E3F;
899 for (offset = 0x0098; offset < 0x00A8; offset++) {
900 bcm43xx_phy_write(bcm, offset, val);
901 val -= 0x0202;
903 val = 0x2120;
904 for (offset = 0x00A8; offset < 0x00C8; offset++) {
905 bcm43xx_phy_write(bcm, offset, (val & 0x3F3F));
906 val += 0x0202;
908 if (phy->type == BCM43xx_PHYTYPE_G) {
909 bcm43xx_radio_write16(bcm, 0x007A,
910 bcm43xx_radio_read16(bcm, 0x007A) | 0x0020);
911 bcm43xx_radio_write16(bcm, 0x0051,
912 bcm43xx_radio_read16(bcm, 0x0051) | 0x0004);
913 bcm43xx_phy_write(bcm, 0x0802,
914 bcm43xx_phy_read(bcm, 0x0802) | 0x0100);
915 bcm43xx_phy_write(bcm, 0x042B,
916 bcm43xx_phy_read(bcm, 0x042B) | 0x2000);
917 bcm43xx_phy_write(bcm, 0x5B, 0x0000);
918 bcm43xx_phy_write(bcm, 0x5C, 0x0000);
921 old_channel = radio->channel;
922 if (old_channel >= 8)
923 bcm43xx_radio_selectchannel(bcm, 1, 0);
924 else
925 bcm43xx_radio_selectchannel(bcm, 13, 0);
927 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
928 bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
929 udelay(40);
930 if (radio->revision < 6 || radio-> revision == 8) {
931 bcm43xx_radio_write16(bcm, 0x007C, (bcm43xx_radio_read16(bcm, 0x007C)
932 | 0x0002));
933 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
935 if (radio->revision <= 2) {
936 bcm43xx_radio_write16(bcm, 0x007C, 0x0020);
937 bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
938 bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
939 bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
941 bcm43xx_radio_write16(bcm, 0x007A,
942 (bcm43xx_radio_read16(bcm, 0x007A) & 0x00F8) | 0x0007);
944 bcm43xx_radio_selectchannel(bcm, old_channel, 0);
946 bcm43xx_phy_write(bcm, 0x0014, 0x0200);
947 if (radio->revision >= 6)
948 bcm43xx_phy_write(bcm, 0x002A, 0x88C2);
949 else
950 bcm43xx_phy_write(bcm, 0x002A, 0x8AC0);
951 bcm43xx_phy_write(bcm, 0x0038, 0x0668);
952 bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
953 if (radio->revision <= 5)
954 bcm43xx_phy_write(bcm, 0x005D, (bcm43xx_phy_read(bcm, 0x005D)
955 & 0xFF80) | 0x0003);
956 if (radio->revision <= 2)
957 bcm43xx_radio_write16(bcm, 0x005D, 0x000D);
959 if (phy->analog == 4){
960 bcm43xx_write16(bcm, 0x03E4, 0x0009);
961 bcm43xx_phy_write(bcm, 0x61, bcm43xx_phy_read(bcm, 0x61) & 0xFFF);
962 } else {
963 bcm43xx_phy_write(bcm, 0x0002, (bcm43xx_phy_read(bcm, 0x0002) & 0xFFC0) | 0x0004);
965 if (phy->type == BCM43xx_PHYTYPE_G)
966 bcm43xx_write16(bcm, 0x03E6, 0x0);
967 if (phy->type == BCM43xx_PHYTYPE_B) {
968 bcm43xx_write16(bcm, 0x03E6, 0x8140);
969 bcm43xx_phy_write(bcm, 0x0016, 0x0410);
970 bcm43xx_phy_write(bcm, 0x0017, 0x0820);
971 bcm43xx_phy_write(bcm, 0x0062, 0x0007);
972 bcm43xx_radio_init2050(bcm);
973 bcm43xx_phy_lo_g_measure(bcm);
974 if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
975 bcm43xx_calc_nrssi_slope(bcm);
976 bcm43xx_calc_nrssi_threshold(bcm);
978 bcm43xx_phy_init_pctl(bcm);
982 static void bcm43xx_calc_loopback_gain(struct bcm43xx_private *bcm)
984 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
985 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
986 u16 backup_phy[15] = {0};
987 u16 backup_radio[3];
988 u16 backup_bband;
989 u16 i;
990 u16 loop1_cnt, loop1_done, loop1_omitted;
991 u16 loop2_done;
993 backup_phy[0] = bcm43xx_phy_read(bcm, 0x0429);
994 backup_phy[1] = bcm43xx_phy_read(bcm, 0x0001);
995 backup_phy[2] = bcm43xx_phy_read(bcm, 0x0811);
996 backup_phy[3] = bcm43xx_phy_read(bcm, 0x0812);
997 if (phy->rev != 1) {
998 backup_phy[4] = bcm43xx_phy_read(bcm, 0x0814);
999 backup_phy[5] = bcm43xx_phy_read(bcm, 0x0815);
1001 backup_phy[6] = bcm43xx_phy_read(bcm, 0x005A);
1002 backup_phy[7] = bcm43xx_phy_read(bcm, 0x0059);
1003 backup_phy[8] = bcm43xx_phy_read(bcm, 0x0058);
1004 backup_phy[9] = bcm43xx_phy_read(bcm, 0x000A);
1005 backup_phy[10] = bcm43xx_phy_read(bcm, 0x0003);
1006 backup_phy[11] = bcm43xx_phy_read(bcm, 0x080F);
1007 backup_phy[12] = bcm43xx_phy_read(bcm, 0x0810);
1008 backup_phy[13] = bcm43xx_phy_read(bcm, 0x002B);
1009 backup_phy[14] = bcm43xx_phy_read(bcm, 0x0015);
1010 bcm43xx_phy_read(bcm, 0x002D); /* dummy read */
1011 backup_bband = radio->baseband_atten;
1012 backup_radio[0] = bcm43xx_radio_read16(bcm, 0x0052);
1013 backup_radio[1] = bcm43xx_radio_read16(bcm, 0x0043);
1014 backup_radio[2] = bcm43xx_radio_read16(bcm, 0x007A);
1016 bcm43xx_phy_write(bcm, 0x0429,
1017 bcm43xx_phy_read(bcm, 0x0429) & 0x3FFF);
1018 bcm43xx_phy_write(bcm, 0x0001,
1019 bcm43xx_phy_read(bcm, 0x0001) & 0x8000);
1020 bcm43xx_phy_write(bcm, 0x0811,
1021 bcm43xx_phy_read(bcm, 0x0811) | 0x0002);
1022 bcm43xx_phy_write(bcm, 0x0812,
1023 bcm43xx_phy_read(bcm, 0x0812) & 0xFFFD);
1024 bcm43xx_phy_write(bcm, 0x0811,
1025 bcm43xx_phy_read(bcm, 0x0811) | 0x0001);
1026 bcm43xx_phy_write(bcm, 0x0812,
1027 bcm43xx_phy_read(bcm, 0x0812) & 0xFFFE);
1028 if (phy->rev != 1) {
1029 bcm43xx_phy_write(bcm, 0x0814,
1030 bcm43xx_phy_read(bcm, 0x0814) | 0x0001);
1031 bcm43xx_phy_write(bcm, 0x0815,
1032 bcm43xx_phy_read(bcm, 0x0815) & 0xFFFE);
1033 bcm43xx_phy_write(bcm, 0x0814,
1034 bcm43xx_phy_read(bcm, 0x0814) | 0x0002);
1035 bcm43xx_phy_write(bcm, 0x0815,
1036 bcm43xx_phy_read(bcm, 0x0815) & 0xFFFD);
1038 bcm43xx_phy_write(bcm, 0x0811,
1039 bcm43xx_phy_read(bcm, 0x0811) | 0x000C);
1040 bcm43xx_phy_write(bcm, 0x0812,
1041 bcm43xx_phy_read(bcm, 0x0812) | 0x000C);
1043 bcm43xx_phy_write(bcm, 0x0811,
1044 (bcm43xx_phy_read(bcm, 0x0811)
1045 & 0xFFCF) | 0x0030);
1046 bcm43xx_phy_write(bcm, 0x0812,
1047 (bcm43xx_phy_read(bcm, 0x0812)
1048 & 0xFFCF) | 0x0010);
1050 bcm43xx_phy_write(bcm, 0x005A, 0x0780);
1051 bcm43xx_phy_write(bcm, 0x0059, 0xC810);
1052 bcm43xx_phy_write(bcm, 0x0058, 0x000D);
1053 if (phy->analog == 0) {
1054 bcm43xx_phy_write(bcm, 0x0003, 0x0122);
1055 } else {
1056 bcm43xx_phy_write(bcm, 0x000A,
1057 bcm43xx_phy_read(bcm, 0x000A)
1058 | 0x2000);
1060 if (phy->rev != 1) {
1061 bcm43xx_phy_write(bcm, 0x0814,
1062 bcm43xx_phy_read(bcm, 0x0814) | 0x0004);
1063 bcm43xx_phy_write(bcm, 0x0815,
1064 bcm43xx_phy_read(bcm, 0x0815) & 0xFFFB);
1066 bcm43xx_phy_write(bcm, 0x0003,
1067 (bcm43xx_phy_read(bcm, 0x0003)
1068 & 0xFF9F) | 0x0040);
1069 if (radio->version == 0x2050 && radio->revision == 2) {
1070 bcm43xx_radio_write16(bcm, 0x0052, 0x0000);
1071 bcm43xx_radio_write16(bcm, 0x0043,
1072 (bcm43xx_radio_read16(bcm, 0x0043)
1073 & 0xFFF0) | 0x0009);
1074 loop1_cnt = 9;
1075 } else if (radio->revision == 8) {
1076 bcm43xx_radio_write16(bcm, 0x0043, 0x000F);
1077 loop1_cnt = 15;
1078 } else
1079 loop1_cnt = 0;
1081 bcm43xx_phy_set_baseband_attenuation(bcm, 11);
1083 if (phy->rev >= 3)
1084 bcm43xx_phy_write(bcm, 0x080F, 0xC020);
1085 else
1086 bcm43xx_phy_write(bcm, 0x080F, 0x8020);
1087 bcm43xx_phy_write(bcm, 0x0810, 0x0000);
1089 bcm43xx_phy_write(bcm, 0x002B,
1090 (bcm43xx_phy_read(bcm, 0x002B)
1091 & 0xFFC0) | 0x0001);
1092 bcm43xx_phy_write(bcm, 0x002B,
1093 (bcm43xx_phy_read(bcm, 0x002B)
1094 & 0xC0FF) | 0x0800);
1095 bcm43xx_phy_write(bcm, 0x0811,
1096 bcm43xx_phy_read(bcm, 0x0811) | 0x0100);
1097 bcm43xx_phy_write(bcm, 0x0812,
1098 bcm43xx_phy_read(bcm, 0x0812) & 0xCFFF);
1099 if (bcm->sprom.boardflags & BCM43xx_BFL_EXTLNA) {
1100 if (phy->rev >= 7) {
1101 bcm43xx_phy_write(bcm, 0x0811,
1102 bcm43xx_phy_read(bcm, 0x0811)
1103 | 0x0800);
1104 bcm43xx_phy_write(bcm, 0x0812,
1105 bcm43xx_phy_read(bcm, 0x0812)
1106 | 0x8000);
1109 bcm43xx_radio_write16(bcm, 0x007A,
1110 bcm43xx_radio_read16(bcm, 0x007A)
1111 & 0x00F7);
1113 for (i = 0; i < loop1_cnt; i++) {
1114 bcm43xx_radio_write16(bcm, 0x0043, loop1_cnt);
1115 bcm43xx_phy_write(bcm, 0x0812,
1116 (bcm43xx_phy_read(bcm, 0x0812)
1117 & 0xF0FF) | (i << 8));
1118 bcm43xx_phy_write(bcm, 0x0015,
1119 (bcm43xx_phy_read(bcm, 0x0015)
1120 & 0x0FFF) | 0xA000);
1121 bcm43xx_phy_write(bcm, 0x0015,
1122 (bcm43xx_phy_read(bcm, 0x0015)
1123 & 0x0FFF) | 0xF000);
1124 udelay(20);
1125 if (bcm43xx_phy_read(bcm, 0x002D) >= 0x0DFC)
1126 break;
1128 loop1_done = i;
1129 loop1_omitted = loop1_cnt - loop1_done;
1131 loop2_done = 0;
1132 if (loop1_done >= 8) {
1133 bcm43xx_phy_write(bcm, 0x0812,
1134 bcm43xx_phy_read(bcm, 0x0812)
1135 | 0x0030);
1136 for (i = loop1_done - 8; i < 16; i++) {
1137 bcm43xx_phy_write(bcm, 0x0812,
1138 (bcm43xx_phy_read(bcm, 0x0812)
1139 & 0xF0FF) | (i << 8));
1140 bcm43xx_phy_write(bcm, 0x0015,
1141 (bcm43xx_phy_read(bcm, 0x0015)
1142 & 0x0FFF) | 0xA000);
1143 bcm43xx_phy_write(bcm, 0x0015,
1144 (bcm43xx_phy_read(bcm, 0x0015)
1145 & 0x0FFF) | 0xF000);
1146 udelay(20);
1147 if (bcm43xx_phy_read(bcm, 0x002D) >= 0x0DFC)
1148 break;
1152 if (phy->rev != 1) {
1153 bcm43xx_phy_write(bcm, 0x0814, backup_phy[4]);
1154 bcm43xx_phy_write(bcm, 0x0815, backup_phy[5]);
1156 bcm43xx_phy_write(bcm, 0x005A, backup_phy[6]);
1157 bcm43xx_phy_write(bcm, 0x0059, backup_phy[7]);
1158 bcm43xx_phy_write(bcm, 0x0058, backup_phy[8]);
1159 bcm43xx_phy_write(bcm, 0x000A, backup_phy[9]);
1160 bcm43xx_phy_write(bcm, 0x0003, backup_phy[10]);
1161 bcm43xx_phy_write(bcm, 0x080F, backup_phy[11]);
1162 bcm43xx_phy_write(bcm, 0x0810, backup_phy[12]);
1163 bcm43xx_phy_write(bcm, 0x002B, backup_phy[13]);
1164 bcm43xx_phy_write(bcm, 0x0015, backup_phy[14]);
1166 bcm43xx_phy_set_baseband_attenuation(bcm, backup_bband);
1168 bcm43xx_radio_write16(bcm, 0x0052, backup_radio[0]);
1169 bcm43xx_radio_write16(bcm, 0x0043, backup_radio[1]);
1170 bcm43xx_radio_write16(bcm, 0x007A, backup_radio[2]);
1172 bcm43xx_phy_write(bcm, 0x0811, backup_phy[2] | 0x0003);
1173 udelay(10);
1174 bcm43xx_phy_write(bcm, 0x0811, backup_phy[2]);
1175 bcm43xx_phy_write(bcm, 0x0812, backup_phy[3]);
1176 bcm43xx_phy_write(bcm, 0x0429, backup_phy[0]);
1177 bcm43xx_phy_write(bcm, 0x0001, backup_phy[1]);
1179 phy->loopback_gain[0] = ((loop1_done * 6) - (loop1_omitted * 4)) - 11;
1180 phy->loopback_gain[1] = (24 - (3 * loop2_done)) * 2;
1183 static void bcm43xx_phy_initg(struct bcm43xx_private *bcm)
1185 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1186 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1187 u16 tmp;
1189 if (phy->rev == 1)
1190 bcm43xx_phy_initb5(bcm);
1191 else
1192 bcm43xx_phy_initb6(bcm);
1193 if (phy->rev >= 2 || phy->connected)
1194 bcm43xx_phy_inita(bcm);
1196 if (phy->rev >= 2) {
1197 bcm43xx_phy_write(bcm, 0x0814, 0x0000);
1198 bcm43xx_phy_write(bcm, 0x0815, 0x0000);
1200 if (phy->rev == 2) {
1201 bcm43xx_phy_write(bcm, 0x0811, 0x0000);
1202 bcm43xx_phy_write(bcm, 0x0015, 0x00C0);
1204 if (phy->rev > 5) {
1205 bcm43xx_phy_write(bcm, 0x0811, 0x0400);
1206 bcm43xx_phy_write(bcm, 0x0015, 0x00C0);
1208 if (phy->rev >= 2 && phy->connected) {
1209 tmp = bcm43xx_phy_read(bcm, 0x0400) & 0xFF;
1210 if (tmp ==3 || tmp == 5) {
1211 bcm43xx_phy_write(bcm, 0x04C2, 0x1816);
1212 bcm43xx_phy_write(bcm, 0x04C3, 0x8006);
1213 if (tmp == 5) {
1214 bcm43xx_phy_write(bcm, 0x04CC,
1215 (bcm43xx_phy_read(bcm, 0x04CC)
1216 & 0x00FF) | 0x1F00);
1219 bcm43xx_phy_write(bcm, 0x047E, 0x0078);
1221 if (radio->revision == 8) {
1222 bcm43xx_phy_write(bcm, 0x0801, bcm43xx_phy_read(bcm, 0x0801) | 0x0080);
1223 bcm43xx_phy_write(bcm, 0x043E, bcm43xx_phy_read(bcm, 0x043E) | 0x0004);
1225 if (phy->rev >= 2 && phy->connected)
1226 bcm43xx_calc_loopback_gain(bcm);
1227 if (radio->revision != 8) {
1228 if (radio->initval == 0xFFFF)
1229 radio->initval = bcm43xx_radio_init2050(bcm);
1230 else
1231 bcm43xx_radio_write16(bcm, 0x0078, radio->initval);
1233 if (radio->txctl2 == 0xFFFF) {
1234 bcm43xx_phy_lo_g_measure(bcm);
1235 } else {
1236 if (radio->version == 0x2050 && radio->revision == 8) {
1237 bcm43xx_radio_write16(bcm, 0x0052,
1238 (radio->txctl1 << 4) | radio->txctl2);
1239 } else {
1240 bcm43xx_radio_write16(bcm, 0x0052,
1241 (bcm43xx_radio_read16(bcm, 0x0052)
1242 & 0xFFF0) | radio->txctl1);
1244 if (phy->rev >= 6) {
1245 bcm43xx_phy_write(bcm, 0x0036,
1246 (bcm43xx_phy_read(bcm, 0x0036)
1247 & 0x0FFF) | (radio->txctl2 << 12));
1249 if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
1250 bcm43xx_phy_write(bcm, 0x002E, 0x8075);
1251 else
1252 bcm43xx_phy_write(bcm, 0x002E, 0x807F);
1253 if (phy->rev < 2)
1254 bcm43xx_phy_write(bcm, 0x002F, 0x0101);
1255 else
1256 bcm43xx_phy_write(bcm, 0x002F, 0x0202);
1258 if (phy->connected || phy->rev >= 2) {
1259 bcm43xx_phy_lo_adjust(bcm, 0);
1260 bcm43xx_phy_write(bcm, 0x080F, 0x8078);
1263 if (!(bcm->sprom.boardflags & BCM43xx_BFL_RSSI)) {
1264 /* The specs state to update the NRSSI LT with
1265 * the value 0x7FFFFFFF here. I think that is some weird
1266 * compiler optimization in the original driver.
1267 * Essentially, what we do here is resetting all NRSSI LT
1268 * entries to -32 (see the limit_value() in nrssi_hw_update())
1270 bcm43xx_nrssi_hw_update(bcm, 0xFFFF);
1271 bcm43xx_calc_nrssi_threshold(bcm);
1272 } else if (phy->connected || phy->rev >= 2) {
1273 if (radio->nrssi[0] == -1000) {
1274 assert(radio->nrssi[1] == -1000);
1275 bcm43xx_calc_nrssi_slope(bcm);
1276 } else {
1277 assert(radio->nrssi[1] != -1000);
1278 bcm43xx_calc_nrssi_threshold(bcm);
1281 if (radio->revision == 8)
1282 bcm43xx_phy_write(bcm, 0x0805, 0x3230);
1283 bcm43xx_phy_init_pctl(bcm);
1284 if (bcm->chip_id == 0x4306 && bcm->chip_package == 2) {
1285 bcm43xx_phy_write(bcm, 0x0429,
1286 bcm43xx_phy_read(bcm, 0x0429) & 0xBFFF);
1287 bcm43xx_phy_write(bcm, 0x04C3,
1288 bcm43xx_phy_read(bcm, 0x04C3) & 0x7FFF);
1292 static u16 bcm43xx_phy_lo_b_r15_loop(struct bcm43xx_private *bcm)
1294 int i;
1295 u16 ret = 0;
1296 unsigned long flags;
1298 local_irq_save(flags);
1299 for (i = 0; i < 10; i++){
1300 bcm43xx_phy_write(bcm, 0x0015, 0xAFA0);
1301 udelay(1);
1302 bcm43xx_phy_write(bcm, 0x0015, 0xEFA0);
1303 udelay(10);
1304 bcm43xx_phy_write(bcm, 0x0015, 0xFFA0);
1305 udelay(40);
1306 ret += bcm43xx_phy_read(bcm, 0x002C);
1308 local_irq_restore(flags);
1309 bcm43xx_voluntary_preempt();
1311 return ret;
1314 void bcm43xx_phy_lo_b_measure(struct bcm43xx_private *bcm)
1316 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1317 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1318 u16 regstack[12] = { 0 };
1319 u16 mls;
1320 u16 fval;
1321 int i, j;
1323 regstack[0] = bcm43xx_phy_read(bcm, 0x0015);
1324 regstack[1] = bcm43xx_radio_read16(bcm, 0x0052) & 0xFFF0;
1326 if (radio->version == 0x2053) {
1327 regstack[2] = bcm43xx_phy_read(bcm, 0x000A);
1328 regstack[3] = bcm43xx_phy_read(bcm, 0x002A);
1329 regstack[4] = bcm43xx_phy_read(bcm, 0x0035);
1330 regstack[5] = bcm43xx_phy_read(bcm, 0x0003);
1331 regstack[6] = bcm43xx_phy_read(bcm, 0x0001);
1332 regstack[7] = bcm43xx_phy_read(bcm, 0x0030);
1334 regstack[8] = bcm43xx_radio_read16(bcm, 0x0043);
1335 regstack[9] = bcm43xx_radio_read16(bcm, 0x007A);
1336 regstack[10] = bcm43xx_read16(bcm, 0x03EC);
1337 regstack[11] = bcm43xx_radio_read16(bcm, 0x0052) & 0x00F0;
1339 bcm43xx_phy_write(bcm, 0x0030, 0x00FF);
1340 bcm43xx_write16(bcm, 0x03EC, 0x3F3F);
1341 bcm43xx_phy_write(bcm, 0x0035, regstack[4] & 0xFF7F);
1342 bcm43xx_radio_write16(bcm, 0x007A, regstack[9] & 0xFFF0);
1344 bcm43xx_phy_write(bcm, 0x0015, 0xB000);
1345 bcm43xx_phy_write(bcm, 0x002B, 0x0004);
1347 if (radio->version == 0x2053) {
1348 bcm43xx_phy_write(bcm, 0x002B, 0x0203);
1349 bcm43xx_phy_write(bcm, 0x002A, 0x08A3);
1352 phy->minlowsig[0] = 0xFFFF;
1354 for (i = 0; i < 4; i++) {
1355 bcm43xx_radio_write16(bcm, 0x0052, regstack[1] | i);
1356 bcm43xx_phy_lo_b_r15_loop(bcm);
1358 for (i = 0; i < 10; i++) {
1359 bcm43xx_radio_write16(bcm, 0x0052, regstack[1] | i);
1360 mls = bcm43xx_phy_lo_b_r15_loop(bcm) / 10;
1361 if (mls < phy->minlowsig[0]) {
1362 phy->minlowsig[0] = mls;
1363 phy->minlowsigpos[0] = i;
1366 bcm43xx_radio_write16(bcm, 0x0052, regstack[1] | phy->minlowsigpos[0]);
1368 phy->minlowsig[1] = 0xFFFF;
1370 for (i = -4; i < 5; i += 2) {
1371 for (j = -4; j < 5; j += 2) {
1372 if (j < 0)
1373 fval = (0x0100 * i) + j + 0x0100;
1374 else
1375 fval = (0x0100 * i) + j;
1376 bcm43xx_phy_write(bcm, 0x002F, fval);
1377 mls = bcm43xx_phy_lo_b_r15_loop(bcm) / 10;
1378 if (mls < phy->minlowsig[1]) {
1379 phy->minlowsig[1] = mls;
1380 phy->minlowsigpos[1] = fval;
1384 phy->minlowsigpos[1] += 0x0101;
1386 bcm43xx_phy_write(bcm, 0x002F, phy->minlowsigpos[1]);
1387 if (radio->version == 0x2053) {
1388 bcm43xx_phy_write(bcm, 0x000A, regstack[2]);
1389 bcm43xx_phy_write(bcm, 0x002A, regstack[3]);
1390 bcm43xx_phy_write(bcm, 0x0035, regstack[4]);
1391 bcm43xx_phy_write(bcm, 0x0003, regstack[5]);
1392 bcm43xx_phy_write(bcm, 0x0001, regstack[6]);
1393 bcm43xx_phy_write(bcm, 0x0030, regstack[7]);
1395 bcm43xx_radio_write16(bcm, 0x0043, regstack[8]);
1396 bcm43xx_radio_write16(bcm, 0x007A, regstack[9]);
1398 bcm43xx_radio_write16(bcm, 0x0052,
1399 (bcm43xx_radio_read16(bcm, 0x0052) & 0x000F)
1400 | regstack[11]);
1402 bcm43xx_write16(bcm, 0x03EC, regstack[10]);
1404 bcm43xx_phy_write(bcm, 0x0015, regstack[0]);
1407 static inline
1408 u16 bcm43xx_phy_lo_g_deviation_subval(struct bcm43xx_private *bcm, u16 control)
1410 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1411 u16 ret;
1412 unsigned long flags;
1414 local_irq_save(flags);
1415 if (phy->connected) {
1416 bcm43xx_phy_write(bcm, 0x15, 0xE300);
1417 control <<= 8;
1418 bcm43xx_phy_write(bcm, 0x0812, control | 0x00B0);
1419 udelay(5);
1420 bcm43xx_phy_write(bcm, 0x0812, control | 0x00B2);
1421 udelay(2);
1422 bcm43xx_phy_write(bcm, 0x0812, control | 0x00B3);
1423 udelay(4);
1424 bcm43xx_phy_write(bcm, 0x0015, 0xF300);
1425 udelay(8);
1426 } else {
1427 bcm43xx_phy_write(bcm, 0x0015, control | 0xEFA0);
1428 udelay(2);
1429 bcm43xx_phy_write(bcm, 0x0015, control | 0xEFE0);
1430 udelay(4);
1431 bcm43xx_phy_write(bcm, 0x0015, control | 0xFFE0);
1432 udelay(8);
1434 ret = bcm43xx_phy_read(bcm, 0x002D);
1435 local_irq_restore(flags);
1436 bcm43xx_voluntary_preempt();
1438 return ret;
1441 static u32 bcm43xx_phy_lo_g_singledeviation(struct bcm43xx_private *bcm, u16 control)
1443 int i;
1444 u32 ret = 0;
1446 for (i = 0; i < 8; i++)
1447 ret += bcm43xx_phy_lo_g_deviation_subval(bcm, control);
1449 return ret;
1452 /* Write the LocalOscillator CONTROL */
1453 static inline
1454 void bcm43xx_lo_write(struct bcm43xx_private *bcm,
1455 struct bcm43xx_lopair *pair)
1457 u16 value;
1459 value = (u8)(pair->low);
1460 value |= ((u8)(pair->high)) << 8;
1462 #ifdef CONFIG_BCM43XX_DEBUG
1463 /* Sanity check. */
1464 if (pair->low < -8 || pair->low > 8 ||
1465 pair->high < -8 || pair->high > 8) {
1466 printk(KERN_WARNING PFX
1467 "WARNING: Writing invalid LOpair "
1468 "(low: %d, high: %d, index: %lu)\n",
1469 pair->low, pair->high,
1470 (unsigned long)(pair - bcm43xx_current_phy(bcm)->_lo_pairs));
1471 dump_stack();
1473 #endif
1475 bcm43xx_phy_write(bcm, BCM43xx_PHY_G_LO_CONTROL, value);
1478 static inline
1479 struct bcm43xx_lopair * bcm43xx_find_lopair(struct bcm43xx_private *bcm,
1480 u16 baseband_attenuation,
1481 u16 radio_attenuation,
1482 u16 tx)
1484 static const u8 dict[10] = { 11, 10, 11, 12, 13, 12, 13, 12, 13, 12 };
1485 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1487 if (baseband_attenuation > 6)
1488 baseband_attenuation = 6;
1489 assert(radio_attenuation < 10);
1491 if (tx == 3) {
1492 return bcm43xx_get_lopair(phy,
1493 radio_attenuation,
1494 baseband_attenuation);
1496 return bcm43xx_get_lopair(phy, dict[radio_attenuation], baseband_attenuation);
1499 static inline
1500 struct bcm43xx_lopair * bcm43xx_current_lopair(struct bcm43xx_private *bcm)
1502 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1504 return bcm43xx_find_lopair(bcm,
1505 radio->baseband_atten,
1506 radio->radio_atten,
1507 radio->txctl1);
1510 /* Adjust B/G LO */
1511 void bcm43xx_phy_lo_adjust(struct bcm43xx_private *bcm, int fixed)
1513 struct bcm43xx_lopair *pair;
1515 if (fixed) {
1516 /* Use fixed values. Only for initialization. */
1517 pair = bcm43xx_find_lopair(bcm, 2, 3, 0);
1518 } else
1519 pair = bcm43xx_current_lopair(bcm);
1520 bcm43xx_lo_write(bcm, pair);
1523 static void bcm43xx_phy_lo_g_measure_txctl2(struct bcm43xx_private *bcm)
1525 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1526 u16 txctl2 = 0, i;
1527 u32 smallest, tmp;
1529 bcm43xx_radio_write16(bcm, 0x0052, 0x0000);
1530 udelay(10);
1531 smallest = bcm43xx_phy_lo_g_singledeviation(bcm, 0);
1532 for (i = 0; i < 16; i++) {
1533 bcm43xx_radio_write16(bcm, 0x0052, i);
1534 udelay(10);
1535 tmp = bcm43xx_phy_lo_g_singledeviation(bcm, 0);
1536 if (tmp < smallest) {
1537 smallest = tmp;
1538 txctl2 = i;
1541 radio->txctl2 = txctl2;
1544 static
1545 void bcm43xx_phy_lo_g_state(struct bcm43xx_private *bcm,
1546 const struct bcm43xx_lopair *in_pair,
1547 struct bcm43xx_lopair *out_pair,
1548 u16 r27)
1550 static const struct bcm43xx_lopair transitions[8] = {
1551 { .high = 1, .low = 1, },
1552 { .high = 1, .low = 0, },
1553 { .high = 1, .low = -1, },
1554 { .high = 0, .low = -1, },
1555 { .high = -1, .low = -1, },
1556 { .high = -1, .low = 0, },
1557 { .high = -1, .low = 1, },
1558 { .high = 0, .low = 1, },
1560 struct bcm43xx_lopair lowest_transition = {
1561 .high = in_pair->high,
1562 .low = in_pair->low,
1564 struct bcm43xx_lopair tmp_pair;
1565 struct bcm43xx_lopair transition;
1566 int i = 12;
1567 int state = 0;
1568 int found_lower;
1569 int j, begin, end;
1570 u32 lowest_deviation;
1571 u32 tmp;
1573 /* Note that in_pair and out_pair can point to the same pair. Be careful. */
1575 bcm43xx_lo_write(bcm, &lowest_transition);
1576 lowest_deviation = bcm43xx_phy_lo_g_singledeviation(bcm, r27);
1577 do {
1578 found_lower = 0;
1579 assert(state >= 0 && state <= 8);
1580 if (state == 0) {
1581 begin = 1;
1582 end = 8;
1583 } else if (state % 2 == 0) {
1584 begin = state - 1;
1585 end = state + 1;
1586 } else {
1587 begin = state - 2;
1588 end = state + 2;
1590 if (begin < 1)
1591 begin += 8;
1592 if (end > 8)
1593 end -= 8;
1595 j = begin;
1596 tmp_pair.high = lowest_transition.high;
1597 tmp_pair.low = lowest_transition.low;
1598 while (1) {
1599 assert(j >= 1 && j <= 8);
1600 transition.high = tmp_pair.high + transitions[j - 1].high;
1601 transition.low = tmp_pair.low + transitions[j - 1].low;
1602 if ((abs(transition.low) < 9) && (abs(transition.high) < 9)) {
1603 bcm43xx_lo_write(bcm, &transition);
1604 tmp = bcm43xx_phy_lo_g_singledeviation(bcm, r27);
1605 if (tmp < lowest_deviation) {
1606 lowest_deviation = tmp;
1607 state = j;
1608 found_lower = 1;
1610 lowest_transition.high = transition.high;
1611 lowest_transition.low = transition.low;
1614 if (j == end)
1615 break;
1616 if (j == 8)
1617 j = 1;
1618 else
1619 j++;
1621 } while (i-- && found_lower);
1623 out_pair->high = lowest_transition.high;
1624 out_pair->low = lowest_transition.low;
1627 /* Set the baseband attenuation value on chip. */
1628 void bcm43xx_phy_set_baseband_attenuation(struct bcm43xx_private *bcm,
1629 u16 baseband_attenuation)
1631 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1632 u16 value;
1634 if (phy->analog == 0) {
1635 value = (bcm43xx_read16(bcm, 0x03E6) & 0xFFF0);
1636 value |= (baseband_attenuation & 0x000F);
1637 bcm43xx_write16(bcm, 0x03E6, value);
1638 return;
1641 if (phy->analog > 1) {
1642 value = bcm43xx_phy_read(bcm, 0x0060) & ~0x003C;
1643 value |= (baseband_attenuation << 2) & 0x003C;
1644 } else {
1645 value = bcm43xx_phy_read(bcm, 0x0060) & ~0x0078;
1646 value |= (baseband_attenuation << 3) & 0x0078;
1648 bcm43xx_phy_write(bcm, 0x0060, value);
1651 /* http://bcm-specs.sipsolutions.net/LocalOscillator/Measure */
1652 void bcm43xx_phy_lo_g_measure(struct bcm43xx_private *bcm)
1654 static const u8 pairorder[10] = { 3, 1, 5, 7, 9, 2, 0, 4, 6, 8 };
1655 const int is_initializing = (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZING);
1656 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1657 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1658 u16 h, i, oldi = 0, j;
1659 struct bcm43xx_lopair control;
1660 struct bcm43xx_lopair *tmp_control;
1661 u16 tmp;
1662 u16 regstack[16] = { 0 };
1663 u8 oldchannel;
1665 //XXX: What are these?
1666 u8 r27 = 0, r31;
1668 oldchannel = radio->channel;
1669 /* Setup */
1670 if (phy->connected) {
1671 regstack[0] = bcm43xx_phy_read(bcm, BCM43xx_PHY_G_CRS);
1672 regstack[1] = bcm43xx_phy_read(bcm, 0x0802);
1673 bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0] & 0x7FFF);
1674 bcm43xx_phy_write(bcm, 0x0802, regstack[1] & 0xFFFC);
1676 regstack[3] = bcm43xx_read16(bcm, 0x03E2);
1677 bcm43xx_write16(bcm, 0x03E2, regstack[3] | 0x8000);
1678 regstack[4] = bcm43xx_read16(bcm, BCM43xx_MMIO_CHANNEL_EXT);
1679 regstack[5] = bcm43xx_phy_read(bcm, 0x15);
1680 regstack[6] = bcm43xx_phy_read(bcm, 0x2A);
1681 regstack[7] = bcm43xx_phy_read(bcm, 0x35);
1682 regstack[8] = bcm43xx_phy_read(bcm, 0x60);
1683 regstack[9] = bcm43xx_radio_read16(bcm, 0x43);
1684 regstack[10] = bcm43xx_radio_read16(bcm, 0x7A);
1685 regstack[11] = bcm43xx_radio_read16(bcm, 0x52);
1686 if (phy->connected) {
1687 regstack[12] = bcm43xx_phy_read(bcm, 0x0811);
1688 regstack[13] = bcm43xx_phy_read(bcm, 0x0812);
1689 regstack[14] = bcm43xx_phy_read(bcm, 0x0814);
1690 regstack[15] = bcm43xx_phy_read(bcm, 0x0815);
1692 bcm43xx_radio_selectchannel(bcm, 6, 0);
1693 if (phy->connected) {
1694 bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0] & 0x7FFF);
1695 bcm43xx_phy_write(bcm, 0x0802, regstack[1] & 0xFFFC);
1696 bcm43xx_dummy_transmission(bcm);
1698 bcm43xx_radio_write16(bcm, 0x0043, 0x0006);
1700 bcm43xx_phy_set_baseband_attenuation(bcm, 2);
1702 bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, 0x0000);
1703 bcm43xx_phy_write(bcm, 0x002E, 0x007F);
1704 bcm43xx_phy_write(bcm, 0x080F, 0x0078);
1705 bcm43xx_phy_write(bcm, 0x0035, regstack[7] & ~(1 << 7));
1706 bcm43xx_radio_write16(bcm, 0x007A, regstack[10] & 0xFFF0);
1707 bcm43xx_phy_write(bcm, 0x002B, 0x0203);
1708 bcm43xx_phy_write(bcm, 0x002A, 0x08A3);
1709 if (phy->connected) {
1710 bcm43xx_phy_write(bcm, 0x0814, regstack[14] | 0x0003);
1711 bcm43xx_phy_write(bcm, 0x0815, regstack[15] & 0xFFFC);
1712 bcm43xx_phy_write(bcm, 0x0811, 0x01B3);
1713 bcm43xx_phy_write(bcm, 0x0812, 0x00B2);
1715 if (is_initializing)
1716 bcm43xx_phy_lo_g_measure_txctl2(bcm);
1717 bcm43xx_phy_write(bcm, 0x080F, 0x8078);
1719 /* Measure */
1720 control.low = 0;
1721 control.high = 0;
1722 for (h = 0; h < 10; h++) {
1723 /* Loop over each possible RadioAttenuation (0-9) */
1724 i = pairorder[h];
1725 if (is_initializing) {
1726 if (i == 3) {
1727 control.low = 0;
1728 control.high = 0;
1729 } else if (((i % 2 == 1) && (oldi % 2 == 1)) ||
1730 ((i % 2 == 0) && (oldi % 2 == 0))) {
1731 tmp_control = bcm43xx_get_lopair(phy, oldi, 0);
1732 memcpy(&control, tmp_control, sizeof(control));
1733 } else {
1734 tmp_control = bcm43xx_get_lopair(phy, 3, 0);
1735 memcpy(&control, tmp_control, sizeof(control));
1738 /* Loop over each possible BasebandAttenuation/2 */
1739 for (j = 0; j < 4; j++) {
1740 if (is_initializing) {
1741 tmp = i * 2 + j;
1742 r27 = 0;
1743 r31 = 0;
1744 if (tmp > 14) {
1745 r31 = 1;
1746 if (tmp > 17)
1747 r27 = 1;
1748 if (tmp > 19)
1749 r27 = 2;
1751 } else {
1752 tmp_control = bcm43xx_get_lopair(phy, i, j * 2);
1753 if (!tmp_control->used)
1754 continue;
1755 memcpy(&control, tmp_control, sizeof(control));
1756 r27 = 3;
1757 r31 = 0;
1759 bcm43xx_radio_write16(bcm, 0x43, i);
1760 bcm43xx_radio_write16(bcm, 0x52, radio->txctl2);
1761 udelay(10);
1762 bcm43xx_voluntary_preempt();
1764 bcm43xx_phy_set_baseband_attenuation(bcm, j * 2);
1766 tmp = (regstack[10] & 0xFFF0);
1767 if (r31)
1768 tmp |= 0x0008;
1769 bcm43xx_radio_write16(bcm, 0x007A, tmp);
1771 tmp_control = bcm43xx_get_lopair(phy, i, j * 2);
1772 bcm43xx_phy_lo_g_state(bcm, &control, tmp_control, r27);
1774 oldi = i;
1776 /* Loop over each possible RadioAttenuation (10-13) */
1777 for (i = 10; i < 14; i++) {
1778 /* Loop over each possible BasebandAttenuation/2 */
1779 for (j = 0; j < 4; j++) {
1780 if (is_initializing) {
1781 tmp_control = bcm43xx_get_lopair(phy, i - 9, j * 2);
1782 memcpy(&control, tmp_control, sizeof(control));
1783 tmp = (i - 9) * 2 + j - 5;//FIXME: This is wrong, as the following if statement can never trigger.
1784 r27 = 0;
1785 r31 = 0;
1786 if (tmp > 14) {
1787 r31 = 1;
1788 if (tmp > 17)
1789 r27 = 1;
1790 if (tmp > 19)
1791 r27 = 2;
1793 } else {
1794 tmp_control = bcm43xx_get_lopair(phy, i - 9, j * 2);
1795 if (!tmp_control->used)
1796 continue;
1797 memcpy(&control, tmp_control, sizeof(control));
1798 r27 = 3;
1799 r31 = 0;
1801 bcm43xx_radio_write16(bcm, 0x43, i - 9);
1802 bcm43xx_radio_write16(bcm, 0x52,
1803 radio->txctl2
1804 | (3/*txctl1*/ << 4));//FIXME: shouldn't txctl1 be zero here and 3 in the loop above?
1805 udelay(10);
1806 bcm43xx_voluntary_preempt();
1808 bcm43xx_phy_set_baseband_attenuation(bcm, j * 2);
1810 tmp = (regstack[10] & 0xFFF0);
1811 if (r31)
1812 tmp |= 0x0008;
1813 bcm43xx_radio_write16(bcm, 0x7A, tmp);
1815 tmp_control = bcm43xx_get_lopair(phy, i, j * 2);
1816 bcm43xx_phy_lo_g_state(bcm, &control, tmp_control, r27);
1820 /* Restoration */
1821 if (phy->connected) {
1822 bcm43xx_phy_write(bcm, 0x0015, 0xE300);
1823 bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA0);
1824 udelay(5);
1825 bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA2);
1826 udelay(2);
1827 bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA3);
1828 bcm43xx_voluntary_preempt();
1829 } else
1830 bcm43xx_phy_write(bcm, 0x0015, r27 | 0xEFA0);
1831 bcm43xx_phy_lo_adjust(bcm, is_initializing);
1832 bcm43xx_phy_write(bcm, 0x002E, 0x807F);
1833 if (phy->connected)
1834 bcm43xx_phy_write(bcm, 0x002F, 0x0202);
1835 else
1836 bcm43xx_phy_write(bcm, 0x002F, 0x0101);
1837 bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, regstack[4]);
1838 bcm43xx_phy_write(bcm, 0x0015, regstack[5]);
1839 bcm43xx_phy_write(bcm, 0x002A, regstack[6]);
1840 bcm43xx_phy_write(bcm, 0x0035, regstack[7]);
1841 bcm43xx_phy_write(bcm, 0x0060, regstack[8]);
1842 bcm43xx_radio_write16(bcm, 0x0043, regstack[9]);
1843 bcm43xx_radio_write16(bcm, 0x007A, regstack[10]);
1844 regstack[11] &= 0x00F0;
1845 regstack[11] |= (bcm43xx_radio_read16(bcm, 0x52) & 0x000F);
1846 bcm43xx_radio_write16(bcm, 0x52, regstack[11]);
1847 bcm43xx_write16(bcm, 0x03E2, regstack[3]);
1848 if (phy->connected) {
1849 bcm43xx_phy_write(bcm, 0x0811, regstack[12]);
1850 bcm43xx_phy_write(bcm, 0x0812, regstack[13]);
1851 bcm43xx_phy_write(bcm, 0x0814, regstack[14]);
1852 bcm43xx_phy_write(bcm, 0x0815, regstack[15]);
1853 bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0]);
1854 bcm43xx_phy_write(bcm, 0x0802, regstack[1]);
1856 bcm43xx_radio_selectchannel(bcm, oldchannel, 1);
1858 #ifdef CONFIG_BCM43XX_DEBUG
1860 /* Sanity check for all lopairs. */
1861 for (i = 0; i < BCM43xx_LO_COUNT; i++) {
1862 tmp_control = phy->_lo_pairs + i;
1863 if (tmp_control->low < -8 || tmp_control->low > 8 ||
1864 tmp_control->high < -8 || tmp_control->high > 8) {
1865 printk(KERN_WARNING PFX
1866 "WARNING: Invalid LOpair (low: %d, high: %d, index: %d)\n",
1867 tmp_control->low, tmp_control->high, i);
1871 #endif /* CONFIG_BCM43XX_DEBUG */
1874 static
1875 void bcm43xx_phy_lo_mark_current_used(struct bcm43xx_private *bcm)
1877 struct bcm43xx_lopair *pair;
1879 pair = bcm43xx_current_lopair(bcm);
1880 pair->used = 1;
1883 void bcm43xx_phy_lo_mark_all_unused(struct bcm43xx_private *bcm)
1885 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1886 struct bcm43xx_lopair *pair;
1887 int i;
1889 for (i = 0; i < BCM43xx_LO_COUNT; i++) {
1890 pair = phy->_lo_pairs + i;
1891 pair->used = 0;
1895 /* http://bcm-specs.sipsolutions.net/EstimatePowerOut
1896 * This function converts a TSSI value to dBm in Q5.2
1898 static s8 bcm43xx_phy_estimate_power_out(struct bcm43xx_private *bcm, s8 tssi)
1900 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1901 s8 dbm = 0;
1902 s32 tmp;
1904 tmp = phy->idle_tssi;
1905 tmp += tssi;
1906 tmp -= phy->savedpctlreg;
1908 switch (phy->type) {
1909 case BCM43xx_PHYTYPE_A:
1910 tmp += 0x80;
1911 tmp = limit_value(tmp, 0x00, 0xFF);
1912 dbm = phy->tssi2dbm[tmp];
1913 TODO(); //TODO: There's a FIXME on the specs
1914 break;
1915 case BCM43xx_PHYTYPE_B:
1916 case BCM43xx_PHYTYPE_G:
1917 tmp = limit_value(tmp, 0x00, 0x3F);
1918 dbm = phy->tssi2dbm[tmp];
1919 break;
1920 default:
1921 assert(0);
1924 return dbm;
1927 /* http://bcm-specs.sipsolutions.net/RecalculateTransmissionPower */
1928 void bcm43xx_phy_xmitpower(struct bcm43xx_private *bcm)
1930 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1931 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1933 if (phy->savedpctlreg == 0xFFFF)
1934 return;
1935 if ((bcm->board_type == 0x0416) &&
1936 (bcm->board_vendor == PCI_VENDOR_ID_BROADCOM))
1937 return;
1939 switch (phy->type) {
1940 case BCM43xx_PHYTYPE_A: {
1942 TODO(); //TODO: Nothing for A PHYs yet :-/
1944 break;
1946 case BCM43xx_PHYTYPE_B:
1947 case BCM43xx_PHYTYPE_G: {
1948 u16 tmp;
1949 u16 txpower;
1950 s8 v0, v1, v2, v3;
1951 s8 average;
1952 u8 max_pwr;
1953 s16 desired_pwr, estimated_pwr, pwr_adjust;
1954 s16 radio_att_delta, baseband_att_delta;
1955 s16 radio_attenuation, baseband_attenuation;
1956 unsigned long phylock_flags;
1958 tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x0058);
1959 v0 = (s8)(tmp & 0x00FF);
1960 v1 = (s8)((tmp & 0xFF00) >> 8);
1961 tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x005A);
1962 v2 = (s8)(tmp & 0x00FF);
1963 v3 = (s8)((tmp & 0xFF00) >> 8);
1964 tmp = 0;
1966 if (v0 == 0x7F || v1 == 0x7F || v2 == 0x7F || v3 == 0x7F) {
1967 tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x0070);
1968 v0 = (s8)(tmp & 0x00FF);
1969 v1 = (s8)((tmp & 0xFF00) >> 8);
1970 tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x0072);
1971 v2 = (s8)(tmp & 0x00FF);
1972 v3 = (s8)((tmp & 0xFF00) >> 8);
1973 if (v0 == 0x7F || v1 == 0x7F || v2 == 0x7F || v3 == 0x7F)
1974 return;
1975 v0 = (v0 + 0x20) & 0x3F;
1976 v1 = (v1 + 0x20) & 0x3F;
1977 v2 = (v2 + 0x20) & 0x3F;
1978 v3 = (v3 + 0x20) & 0x3F;
1979 tmp = 1;
1981 bcm43xx_radio_clear_tssi(bcm);
1983 average = (v0 + v1 + v2 + v3 + 2) / 4;
1985 if (tmp && (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x005E) & 0x8))
1986 average -= 13;
1988 estimated_pwr = bcm43xx_phy_estimate_power_out(bcm, average);
1990 max_pwr = bcm->sprom.maxpower_bgphy;
1992 if ((bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) &&
1993 (phy->type == BCM43xx_PHYTYPE_G))
1994 max_pwr -= 0x3;
1996 /*TODO:
1997 max_pwr = min(REG - bcm->sprom.antennagain_bgphy - 0x6, max_pwr)
1998 where REG is the max power as per the regulatory domain
2001 desired_pwr = limit_value(radio->txpower_desired, 0, max_pwr);
2002 /* Check if we need to adjust the current power. */
2003 pwr_adjust = desired_pwr - estimated_pwr;
2004 radio_att_delta = -(pwr_adjust + 7) >> 3;
2005 baseband_att_delta = -(pwr_adjust >> 1) - (4 * radio_att_delta);
2006 if ((radio_att_delta == 0) && (baseband_att_delta == 0)) {
2007 bcm43xx_phy_lo_mark_current_used(bcm);
2008 return;
2011 /* Calculate the new attenuation values. */
2012 baseband_attenuation = radio->baseband_atten;
2013 baseband_attenuation += baseband_att_delta;
2014 radio_attenuation = radio->radio_atten;
2015 radio_attenuation += radio_att_delta;
2017 /* Get baseband and radio attenuation values into their permitted ranges.
2018 * baseband 0-11, radio 0-9.
2019 * Radio attenuation affects power level 4 times as much as baseband.
2021 if (radio_attenuation < 0) {
2022 baseband_attenuation -= (4 * -radio_attenuation);
2023 radio_attenuation = 0;
2024 } else if (radio_attenuation > 9) {
2025 baseband_attenuation += (4 * (radio_attenuation - 9));
2026 radio_attenuation = 9;
2027 } else {
2028 while (baseband_attenuation < 0 && radio_attenuation > 0) {
2029 baseband_attenuation += 4;
2030 radio_attenuation--;
2032 while (baseband_attenuation > 11 && radio_attenuation < 9) {
2033 baseband_attenuation -= 4;
2034 radio_attenuation++;
2037 baseband_attenuation = limit_value(baseband_attenuation, 0, 11);
2039 txpower = radio->txctl1;
2040 if ((radio->version == 0x2050) && (radio->revision == 2)) {
2041 if (radio_attenuation <= 1) {
2042 if (txpower == 0) {
2043 txpower = 3;
2044 radio_attenuation += 2;
2045 baseband_attenuation += 2;
2046 } else if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) {
2047 baseband_attenuation += 4 * (radio_attenuation - 2);
2048 radio_attenuation = 2;
2050 } else if (radio_attenuation > 4 && txpower != 0) {
2051 txpower = 0;
2052 if (baseband_attenuation < 3) {
2053 radio_attenuation -= 3;
2054 baseband_attenuation += 2;
2055 } else {
2056 radio_attenuation -= 2;
2057 baseband_attenuation -= 2;
2061 radio->txctl1 = txpower;
2062 baseband_attenuation = limit_value(baseband_attenuation, 0, 11);
2063 radio_attenuation = limit_value(radio_attenuation, 0, 9);
2065 bcm43xx_phy_lock(bcm, phylock_flags);
2066 bcm43xx_radio_lock(bcm);
2067 bcm43xx_radio_set_txpower_bg(bcm, baseband_attenuation,
2068 radio_attenuation, txpower);
2069 bcm43xx_phy_lo_mark_current_used(bcm);
2070 bcm43xx_radio_unlock(bcm);
2071 bcm43xx_phy_unlock(bcm, phylock_flags);
2072 break;
2074 default:
2075 assert(0);
2079 static inline
2080 s32 bcm43xx_tssi2dbm_ad(s32 num, s32 den)
2082 if (num < 0)
2083 return num/den;
2084 else
2085 return (num+den/2)/den;
2088 static inline
2089 s8 bcm43xx_tssi2dbm_entry(s8 entry [], u8 index, s16 pab0, s16 pab1, s16 pab2)
2091 s32 m1, m2, f = 256, q, delta;
2092 s8 i = 0;
2094 m1 = bcm43xx_tssi2dbm_ad(16 * pab0 + index * pab1, 32);
2095 m2 = max(bcm43xx_tssi2dbm_ad(32768 + index * pab2, 256), 1);
2096 do {
2097 if (i > 15)
2098 return -EINVAL;
2099 q = bcm43xx_tssi2dbm_ad(f * 4096 -
2100 bcm43xx_tssi2dbm_ad(m2 * f, 16) * f, 2048);
2101 delta = abs(q - f);
2102 f = q;
2103 i++;
2104 } while (delta >= 2);
2105 entry[index] = limit_value(bcm43xx_tssi2dbm_ad(m1 * f, 8192), -127, 128);
2106 return 0;
2109 /* http://bcm-specs.sipsolutions.net/TSSI_to_DBM_Table */
2110 int bcm43xx_phy_init_tssi2dbm_table(struct bcm43xx_private *bcm)
2112 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
2113 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
2114 s16 pab0, pab1, pab2;
2115 u8 idx;
2116 s8 *dyn_tssi2dbm;
2118 if (phy->type == BCM43xx_PHYTYPE_A) {
2119 pab0 = (s16)(bcm->sprom.pa1b0);
2120 pab1 = (s16)(bcm->sprom.pa1b1);
2121 pab2 = (s16)(bcm->sprom.pa1b2);
2122 } else {
2123 pab0 = (s16)(bcm->sprom.pa0b0);
2124 pab1 = (s16)(bcm->sprom.pa0b1);
2125 pab2 = (s16)(bcm->sprom.pa0b2);
2128 if ((bcm->chip_id == 0x4301) && (radio->version != 0x2050)) {
2129 phy->idle_tssi = 0x34;
2130 phy->tssi2dbm = bcm43xx_tssi2dbm_b_table;
2131 return 0;
2134 if (pab0 != 0 && pab1 != 0 && pab2 != 0 &&
2135 pab0 != -1 && pab1 != -1 && pab2 != -1) {
2136 /* The pabX values are set in SPROM. Use them. */
2137 if (phy->type == BCM43xx_PHYTYPE_A) {
2138 if ((s8)bcm->sprom.idle_tssi_tgt_aphy != 0 &&
2139 (s8)bcm->sprom.idle_tssi_tgt_aphy != -1)
2140 phy->idle_tssi = (s8)(bcm->sprom.idle_tssi_tgt_aphy);
2141 else
2142 phy->idle_tssi = 62;
2143 } else {
2144 if ((s8)bcm->sprom.idle_tssi_tgt_bgphy != 0 &&
2145 (s8)bcm->sprom.idle_tssi_tgt_bgphy != -1)
2146 phy->idle_tssi = (s8)(bcm->sprom.idle_tssi_tgt_bgphy);
2147 else
2148 phy->idle_tssi = 62;
2150 dyn_tssi2dbm = kmalloc(64, GFP_KERNEL);
2151 if (dyn_tssi2dbm == NULL) {
2152 printk(KERN_ERR PFX "Could not allocate memory"
2153 "for tssi2dbm table\n");
2154 return -ENOMEM;
2156 for (idx = 0; idx < 64; idx++)
2157 if (bcm43xx_tssi2dbm_entry(dyn_tssi2dbm, idx, pab0, pab1, pab2)) {
2158 phy->tssi2dbm = NULL;
2159 printk(KERN_ERR PFX "Could not generate "
2160 "tssi2dBm table\n");
2161 kfree(dyn_tssi2dbm);
2162 return -ENODEV;
2164 phy->tssi2dbm = dyn_tssi2dbm;
2165 phy->dyn_tssi_tbl = 1;
2166 } else {
2167 /* pabX values not set in SPROM. */
2168 switch (phy->type) {
2169 case BCM43xx_PHYTYPE_A:
2170 /* APHY needs a generated table. */
2171 phy->tssi2dbm = NULL;
2172 printk(KERN_ERR PFX "Could not generate tssi2dBm "
2173 "table (wrong SPROM info)!\n");
2174 return -ENODEV;
2175 case BCM43xx_PHYTYPE_B:
2176 phy->idle_tssi = 0x34;
2177 phy->tssi2dbm = bcm43xx_tssi2dbm_b_table;
2178 break;
2179 case BCM43xx_PHYTYPE_G:
2180 phy->idle_tssi = 0x34;
2181 phy->tssi2dbm = bcm43xx_tssi2dbm_g_table;
2182 break;
2186 return 0;
2189 int bcm43xx_phy_init(struct bcm43xx_private *bcm)
2191 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
2192 int err = -ENODEV;
2194 switch (phy->type) {
2195 case BCM43xx_PHYTYPE_A:
2196 if (phy->rev == 2 || phy->rev == 3) {
2197 bcm43xx_phy_inita(bcm);
2198 err = 0;
2200 break;
2201 case BCM43xx_PHYTYPE_B:
2202 switch (phy->rev) {
2203 case 2:
2204 bcm43xx_phy_initb2(bcm);
2205 err = 0;
2206 break;
2207 case 4:
2208 bcm43xx_phy_initb4(bcm);
2209 err = 0;
2210 break;
2211 case 5:
2212 bcm43xx_phy_initb5(bcm);
2213 err = 0;
2214 break;
2215 case 6:
2216 bcm43xx_phy_initb6(bcm);
2217 err = 0;
2218 break;
2220 break;
2221 case BCM43xx_PHYTYPE_G:
2222 bcm43xx_phy_initg(bcm);
2223 err = 0;
2224 break;
2226 if (err)
2227 printk(KERN_WARNING PFX "Unknown PHYTYPE found!\n");
2229 return err;
2232 void bcm43xx_phy_set_antenna_diversity(struct bcm43xx_private *bcm)
2234 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
2235 u16 antennadiv;
2236 u16 offset;
2237 u16 value;
2238 u32 ucodeflags;
2240 antennadiv = phy->antenna_diversity;
2242 if (antennadiv == 0xFFFF)
2243 antennadiv = 3;
2244 assert(antennadiv <= 3);
2246 ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
2247 BCM43xx_UCODEFLAGS_OFFSET);
2248 bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
2249 BCM43xx_UCODEFLAGS_OFFSET,
2250 ucodeflags & ~BCM43xx_UCODEFLAG_AUTODIV);
2252 switch (phy->type) {
2253 case BCM43xx_PHYTYPE_A:
2254 case BCM43xx_PHYTYPE_G:
2255 if (phy->type == BCM43xx_PHYTYPE_A)
2256 offset = 0x0000;
2257 else
2258 offset = 0x0400;
2260 if (antennadiv == 2)
2261 value = (3/*automatic*/ << 7);
2262 else
2263 value = (antennadiv << 7);
2264 bcm43xx_phy_write(bcm, offset + 1,
2265 (bcm43xx_phy_read(bcm, offset + 1)
2266 & 0x7E7F) | value);
2268 if (antennadiv >= 2) {
2269 if (antennadiv == 2)
2270 value = (antennadiv << 7);
2271 else
2272 value = (0/*force0*/ << 7);
2273 bcm43xx_phy_write(bcm, offset + 0x2B,
2274 (bcm43xx_phy_read(bcm, offset + 0x2B)
2275 & 0xFEFF) | value);
2278 if (phy->type == BCM43xx_PHYTYPE_G) {
2279 if (antennadiv >= 2)
2280 bcm43xx_phy_write(bcm, 0x048C,
2281 bcm43xx_phy_read(bcm, 0x048C)
2282 | 0x2000);
2283 else
2284 bcm43xx_phy_write(bcm, 0x048C,
2285 bcm43xx_phy_read(bcm, 0x048C)
2286 & ~0x2000);
2287 if (phy->rev >= 2) {
2288 bcm43xx_phy_write(bcm, 0x0461,
2289 bcm43xx_phy_read(bcm, 0x0461)
2290 | 0x0010);
2291 bcm43xx_phy_write(bcm, 0x04AD,
2292 (bcm43xx_phy_read(bcm, 0x04AD)
2293 & 0x00FF) | 0x0015);
2294 if (phy->rev == 2)
2295 bcm43xx_phy_write(bcm, 0x0427, 0x0008);
2296 else
2297 bcm43xx_phy_write(bcm, 0x0427,
2298 (bcm43xx_phy_read(bcm, 0x0427)
2299 & 0x00FF) | 0x0008);
2301 else if (phy->rev >= 6)
2302 bcm43xx_phy_write(bcm, 0x049B, 0x00DC);
2303 } else {
2304 if (phy->rev < 3)
2305 bcm43xx_phy_write(bcm, 0x002B,
2306 (bcm43xx_phy_read(bcm, 0x002B)
2307 & 0x00FF) | 0x0024);
2308 else {
2309 bcm43xx_phy_write(bcm, 0x0061,
2310 bcm43xx_phy_read(bcm, 0x0061)
2311 | 0x0010);
2312 if (phy->rev == 3) {
2313 bcm43xx_phy_write(bcm, 0x0093, 0x001D);
2314 bcm43xx_phy_write(bcm, 0x0027, 0x0008);
2315 } else {
2316 bcm43xx_phy_write(bcm, 0x0093, 0x003A);
2317 bcm43xx_phy_write(bcm, 0x0027,
2318 (bcm43xx_phy_read(bcm, 0x0027)
2319 & 0x00FF) | 0x0008);
2323 break;
2324 case BCM43xx_PHYTYPE_B:
2325 if (bcm->current_core->rev == 2)
2326 value = (3/*automatic*/ << 7);
2327 else
2328 value = (antennadiv << 7);
2329 bcm43xx_phy_write(bcm, 0x03E2,
2330 (bcm43xx_phy_read(bcm, 0x03E2)
2331 & 0xFE7F) | value);
2332 break;
2333 default:
2334 assert(0);
2337 if (antennadiv >= 2) {
2338 ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
2339 BCM43xx_UCODEFLAGS_OFFSET);
2340 bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
2341 BCM43xx_UCODEFLAGS_OFFSET,
2342 ucodeflags | BCM43xx_UCODEFLAG_AUTODIV);
2345 phy->antenna_diversity = antennadiv;