Pull bugzilla-9429 into release branch
[pv_ops_mirror.git] / drivers / net / wireless / ipw2100.c
blobfc6cdd8086c1b2c49da2d7857682cda1870ee3e1
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
46 Theory of Operation
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
94 ...
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
167 #include "ipw2100.h"
169 #define IPW2100_VERSION "git-1.2.2"
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
296 #endif
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
433 len -= dif_len;
434 aligned_addr += 4;
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
471 len -= dif_len;
472 aligned_addr += 4;
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
521 return -EINVAL;
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530 return 0;
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535 ord -= IPW_START_ORD_TAB_2;
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
560 *len = total_length;
561 if (!total_length)
562 return 0;
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
567 return 0;
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
573 return -EINVAL;
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
592 write_nic_dword(priv->net_dev, addr, *val);
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596 return 0;
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
603 return -EINVAL;
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
609 int out, i, j, l;
610 char c;
612 out = snprintf(buf, count, "%08X", ofs);
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
631 out += snprintf(buf + out, count - out, "%c", c);
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
638 return buf;
641 static void printk_buf(int level, const u8 * data, u32 len)
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
657 #define MAX_RESET_BACKOFF 10
659 static void schedule_reset(struct ipw2100_priv *priv)
661 unsigned long now = get_seconds();
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
670 priv->last_reset = get_seconds();
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
710 spin_lock_irqsave(&priv->low_lock, flags);
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
741 element = priv->msg_free_list.next;
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
766 spin_unlock_irqrestore(&priv->low_lock, flags);
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
802 return 0;
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
807 return err;
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
814 static int ipw2100_verify(struct ipw2100_priv *priv)
816 u32 data1, data2;
817 u32 address;
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
845 return -EIO;
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
885 return 0;
888 udelay(50);
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
903 int i;
904 u32 r;
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
920 if (i == 1000)
921 return -EIO; // TODO: better error value
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
946 return 0;
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
962 u32 address;
963 int err;
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1047 #ifndef CONFIG_PM
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1076 return 0;
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1103 IPW_DEBUG_INFO("enter\n");
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114 ord->table2_size &= 0x0000FFFF;
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1123 u32 reg = 0;
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1158 return (value == 0);
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1163 u32 addr, len;
1164 u32 val;
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1200 return 0;
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1211 int i;
1212 u32 inta, inta_mask, gpio;
1214 IPW_DEBUG_INFO("enter\n");
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1235 ipw2100_hw_set_gpio(priv);
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1270 } while (--i);
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304 IPW_DEBUG_INFO("exit\n");
1306 return 0;
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 if (!priv->fatal_error)
1312 return;
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1322 u32 reg;
1323 int i;
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327 ipw2100_hw_set_gpio(priv);
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (--i);
1344 priv->status &= ~STATUS_RESET_PENDING;
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1362 return 0;
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1383 int err, i;
1384 u32 val1, val2;
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1404 return -EIO;
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1414 int err = 0;
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1421 mutex_lock(&priv->adapter_mutex);
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1446 fail_up:
1447 mutex_unlock(&priv->adapter_mutex);
1448 return err;
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1460 int err, i;
1461 u32 reg;
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1466 priv->status |= STATUS_STOPPING;
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1512 priv->status &= ~STATUS_ENABLED;
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1518 ipw2100_hw_set_gpio(priv);
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1554 return 0;
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1564 int err = 0;
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1579 mutex_lock(&priv->adapter_mutex);
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1597 fail_up:
1598 mutex_unlock(&priv->adapter_mutex);
1599 return err;
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1609 int err;
1611 IPW_DEBUG_INFO("enter\n");
1613 IPW_DEBUG_SCAN("setting scan options\n");
1615 cmd.host_command_parameters[0] = 0;
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1626 err = ipw2100_hw_send_command(priv, &cmd);
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1631 return err;
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1641 int err;
1643 IPW_DEBUG_HC("START_SCAN\n");
1645 cmd.host_command_parameters[0] = 0;
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1656 IPW_DEBUG_INFO("enter\n");
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1663 IPW_DEBUG_SCAN("starting scan\n");
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1670 IPW_DEBUG_INFO("exit\n");
1672 return err;
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1704 modify_acceptable_latency("ipw2100", 175);
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1721 rc = 1;
1722 goto exit;
1724 } else
1725 priv->status |= STATUS_POWERED;
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1732 rc = 1;
1733 goto exit;
1736 ipw2100_initialize_ordinals(priv);
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1743 rc = 1;
1744 goto exit;
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750 return 0;
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1754 lock = LOCK_NONE;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1759 rc = 1;
1760 goto exit;
1763 priv->status &= ~STATUS_SCANNING;
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1772 round_jiffies_relative(HZ));
1775 deferred = 1;
1778 /* Turn on the interrupt so that commands can be processed */
1779 ipw2100_enable_interrupts(priv);
1781 /* Send all of the commands that must be sent prior to
1782 * HOST_COMPLETE */
1783 if (ipw2100_adapter_setup(priv)) {
1784 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1790 if (!deferred) {
1791 /* Enable the adapter - sends HOST_COMPLETE */
1792 if (ipw2100_enable_adapter(priv)) {
1793 printk(KERN_ERR DRV_NAME ": "
1794 "%s: failed in call to enable adapter.\n",
1795 priv->net_dev->name);
1796 ipw2100_hw_stop_adapter(priv);
1797 rc = 1;
1798 goto exit;
1801 /* Start a scan . . . */
1802 ipw2100_set_scan_options(priv);
1803 ipw2100_start_scan(priv);
1806 exit:
1807 return rc;
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1813 struct ipw2100_priv *priv = ieee80211_priv(dev);
1814 return ipw2100_up(priv, 1);
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1819 unsigned long flags;
1820 union iwreq_data wrqu = {
1821 .ap_addr = {
1822 .sa_family = ARPHRD_ETHER}
1824 int associated = priv->status & STATUS_ASSOCIATED;
1826 /* Kill the RF switch timer */
1827 if (!priv->stop_rf_kill) {
1828 priv->stop_rf_kill = 1;
1829 cancel_delayed_work(&priv->rf_kill);
1832 /* Kill the firmare hang check timer */
1833 if (!priv->stop_hang_check) {
1834 priv->stop_hang_check = 1;
1835 cancel_delayed_work(&priv->hang_check);
1838 /* Kill any pending resets */
1839 if (priv->status & STATUS_RESET_PENDING)
1840 cancel_delayed_work(&priv->reset_work);
1842 /* Make sure the interrupt is on so that FW commands will be
1843 * processed correctly */
1844 spin_lock_irqsave(&priv->low_lock, flags);
1845 ipw2100_enable_interrupts(priv);
1846 spin_unlock_irqrestore(&priv->low_lock, flags);
1848 if (ipw2100_hw_stop_adapter(priv))
1849 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850 priv->net_dev->name);
1852 /* Do not disable the interrupt until _after_ we disable
1853 * the adaptor. Otherwise the CARD_DISABLE command will never
1854 * be ack'd by the firmware */
1855 spin_lock_irqsave(&priv->low_lock, flags);
1856 ipw2100_disable_interrupts(priv);
1857 spin_unlock_irqrestore(&priv->low_lock, flags);
1859 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1861 /* We have to signal any supplicant if we are disassociating */
1862 if (associated)
1863 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1865 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866 netif_carrier_off(priv->net_dev);
1867 netif_stop_queue(priv->net_dev);
1870 static void ipw2100_reset_adapter(struct work_struct *work)
1872 struct ipw2100_priv *priv =
1873 container_of(work, struct ipw2100_priv, reset_work.work);
1874 unsigned long flags;
1875 union iwreq_data wrqu = {
1876 .ap_addr = {
1877 .sa_family = ARPHRD_ETHER}
1879 int associated = priv->status & STATUS_ASSOCIATED;
1881 spin_lock_irqsave(&priv->low_lock, flags);
1882 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1883 priv->resets++;
1884 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1885 priv->status |= STATUS_SECURITY_UPDATED;
1887 /* Force a power cycle even if interface hasn't been opened
1888 * yet */
1889 cancel_delayed_work(&priv->reset_work);
1890 priv->status |= STATUS_RESET_PENDING;
1891 spin_unlock_irqrestore(&priv->low_lock, flags);
1893 mutex_lock(&priv->action_mutex);
1894 /* stop timed checks so that they don't interfere with reset */
1895 priv->stop_hang_check = 1;
1896 cancel_delayed_work(&priv->hang_check);
1898 /* We have to signal any supplicant if we are disassociating */
1899 if (associated)
1900 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1902 ipw2100_up(priv, 0);
1903 mutex_unlock(&priv->action_mutex);
1907 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1910 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1911 int ret, len, essid_len;
1912 char essid[IW_ESSID_MAX_SIZE];
1913 u32 txrate;
1914 u32 chan;
1915 char *txratename;
1916 u8 bssid[ETH_ALEN];
1917 DECLARE_MAC_BUF(mac);
1920 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1921 * an actual MAC of the AP. Seems like FW sets this
1922 * address too late. Read it later and expose through
1923 * /proc or schedule a later task to query and update
1926 essid_len = IW_ESSID_MAX_SIZE;
1927 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1928 essid, &essid_len);
1929 if (ret) {
1930 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1931 __LINE__);
1932 return;
1935 len = sizeof(u32);
1936 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1937 if (ret) {
1938 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1939 __LINE__);
1940 return;
1943 len = sizeof(u32);
1944 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1945 if (ret) {
1946 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1947 __LINE__);
1948 return;
1950 len = ETH_ALEN;
1951 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1952 if (ret) {
1953 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1954 __LINE__);
1955 return;
1957 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1959 switch (txrate) {
1960 case TX_RATE_1_MBIT:
1961 txratename = "1Mbps";
1962 break;
1963 case TX_RATE_2_MBIT:
1964 txratename = "2Mbsp";
1965 break;
1966 case TX_RATE_5_5_MBIT:
1967 txratename = "5.5Mbps";
1968 break;
1969 case TX_RATE_11_MBIT:
1970 txratename = "11Mbps";
1971 break;
1972 default:
1973 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1974 txratename = "unknown rate";
1975 break;
1978 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1979 "%s)\n",
1980 priv->net_dev->name, escape_essid(essid, essid_len),
1981 txratename, chan, print_mac(mac, bssid));
1983 /* now we copy read ssid into dev */
1984 if (!(priv->config & CFG_STATIC_ESSID)) {
1985 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1986 memcpy(priv->essid, essid, priv->essid_len);
1988 priv->channel = chan;
1989 memcpy(priv->bssid, bssid, ETH_ALEN);
1991 priv->status |= STATUS_ASSOCIATING;
1992 priv->connect_start = get_seconds();
1994 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1997 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1998 int length, int batch_mode)
2000 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2001 struct host_command cmd = {
2002 .host_command = SSID,
2003 .host_command_sequence = 0,
2004 .host_command_length = ssid_len
2006 int err;
2008 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2010 if (ssid_len)
2011 memcpy(cmd.host_command_parameters, essid, ssid_len);
2013 if (!batch_mode) {
2014 err = ipw2100_disable_adapter(priv);
2015 if (err)
2016 return err;
2019 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2020 * disable auto association -- so we cheat by setting a bogus SSID */
2021 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2022 int i;
2023 u8 *bogus = (u8 *) cmd.host_command_parameters;
2024 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2025 bogus[i] = 0x18 + i;
2026 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2029 /* NOTE: We always send the SSID command even if the provided ESSID is
2030 * the same as what we currently think is set. */
2032 err = ipw2100_hw_send_command(priv, &cmd);
2033 if (!err) {
2034 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2035 memcpy(priv->essid, essid, ssid_len);
2036 priv->essid_len = ssid_len;
2039 if (!batch_mode) {
2040 if (ipw2100_enable_adapter(priv))
2041 err = -EIO;
2044 return err;
2047 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2049 DECLARE_MAC_BUF(mac);
2051 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2052 "disassociated: '%s' %s \n",
2053 escape_essid(priv->essid, priv->essid_len),
2054 print_mac(mac, priv->bssid));
2056 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2058 if (priv->status & STATUS_STOPPING) {
2059 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2060 return;
2063 memset(priv->bssid, 0, ETH_ALEN);
2064 memset(priv->ieee->bssid, 0, ETH_ALEN);
2066 netif_carrier_off(priv->net_dev);
2067 netif_stop_queue(priv->net_dev);
2069 if (!(priv->status & STATUS_RUNNING))
2070 return;
2072 if (priv->status & STATUS_SECURITY_UPDATED)
2073 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2075 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2078 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2080 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2081 priv->net_dev->name);
2083 /* RF_KILL is now enabled (else we wouldn't be here) */
2084 priv->status |= STATUS_RF_KILL_HW;
2086 /* Make sure the RF Kill check timer is running */
2087 priv->stop_rf_kill = 0;
2088 cancel_delayed_work(&priv->rf_kill);
2089 queue_delayed_work(priv->workqueue, &priv->rf_kill,
2090 round_jiffies_relative(HZ));
2093 static void send_scan_event(void *data)
2095 struct ipw2100_priv *priv = data;
2096 union iwreq_data wrqu;
2098 wrqu.data.length = 0;
2099 wrqu.data.flags = 0;
2100 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2103 static void ipw2100_scan_event_later(struct work_struct *work)
2105 send_scan_event(container_of(work, struct ipw2100_priv,
2106 scan_event_later.work));
2109 static void ipw2100_scan_event_now(struct work_struct *work)
2111 send_scan_event(container_of(work, struct ipw2100_priv,
2112 scan_event_now));
2115 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2117 IPW_DEBUG_SCAN("scan complete\n");
2118 /* Age the scan results... */
2119 priv->ieee->scans++;
2120 priv->status &= ~STATUS_SCANNING;
2122 /* Only userspace-requested scan completion events go out immediately */
2123 if (!priv->user_requested_scan) {
2124 if (!delayed_work_pending(&priv->scan_event_later))
2125 queue_delayed_work(priv->workqueue,
2126 &priv->scan_event_later,
2127 round_jiffies_relative(msecs_to_jiffies(4000)));
2128 } else {
2129 priv->user_requested_scan = 0;
2130 cancel_delayed_work(&priv->scan_event_later);
2131 queue_work(priv->workqueue, &priv->scan_event_now);
2135 #ifdef CONFIG_IPW2100_DEBUG
2136 #define IPW2100_HANDLER(v, f) { v, f, # v }
2137 struct ipw2100_status_indicator {
2138 int status;
2139 void (*cb) (struct ipw2100_priv * priv, u32 status);
2140 char *name;
2142 #else
2143 #define IPW2100_HANDLER(v, f) { v, f }
2144 struct ipw2100_status_indicator {
2145 int status;
2146 void (*cb) (struct ipw2100_priv * priv, u32 status);
2148 #endif /* CONFIG_IPW2100_DEBUG */
2150 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2152 IPW_DEBUG_SCAN("Scanning...\n");
2153 priv->status |= STATUS_SCANNING;
2156 static const struct ipw2100_status_indicator status_handlers[] = {
2157 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2158 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2159 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2160 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2161 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2162 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2163 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2164 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2165 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2166 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2167 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2168 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2169 IPW2100_HANDLER(-1, NULL)
2172 static void isr_status_change(struct ipw2100_priv *priv, int status)
2174 int i;
2176 if (status == IPW_STATE_SCANNING &&
2177 priv->status & STATUS_ASSOCIATED &&
2178 !(priv->status & STATUS_SCANNING)) {
2179 IPW_DEBUG_INFO("Scan detected while associated, with "
2180 "no scan request. Restarting firmware.\n");
2182 /* Wake up any sleeping jobs */
2183 schedule_reset(priv);
2186 for (i = 0; status_handlers[i].status != -1; i++) {
2187 if (status == status_handlers[i].status) {
2188 IPW_DEBUG_NOTIF("Status change: %s\n",
2189 status_handlers[i].name);
2190 if (status_handlers[i].cb)
2191 status_handlers[i].cb(priv, status);
2192 priv->wstats.status = status;
2193 return;
2197 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2200 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2201 struct ipw2100_cmd_header *cmd)
2203 #ifdef CONFIG_IPW2100_DEBUG
2204 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2205 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2206 command_types[cmd->host_command_reg],
2207 cmd->host_command_reg);
2209 #endif
2210 if (cmd->host_command_reg == HOST_COMPLETE)
2211 priv->status |= STATUS_ENABLED;
2213 if (cmd->host_command_reg == CARD_DISABLE)
2214 priv->status &= ~STATUS_ENABLED;
2216 priv->status &= ~STATUS_CMD_ACTIVE;
2218 wake_up_interruptible(&priv->wait_command_queue);
2221 #ifdef CONFIG_IPW2100_DEBUG
2222 static const char *frame_types[] = {
2223 "COMMAND_STATUS_VAL",
2224 "STATUS_CHANGE_VAL",
2225 "P80211_DATA_VAL",
2226 "P8023_DATA_VAL",
2227 "HOST_NOTIFICATION_VAL"
2229 #endif
2231 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2232 struct ipw2100_rx_packet *packet)
2234 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2235 if (!packet->skb)
2236 return -ENOMEM;
2238 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2239 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2240 sizeof(struct ipw2100_rx),
2241 PCI_DMA_FROMDEVICE);
2242 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2243 * dma_addr */
2245 return 0;
2248 #define SEARCH_ERROR 0xffffffff
2249 #define SEARCH_FAIL 0xfffffffe
2250 #define SEARCH_SUCCESS 0xfffffff0
2251 #define SEARCH_DISCARD 0
2252 #define SEARCH_SNAPSHOT 1
2254 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2255 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2257 int i;
2258 if (!priv->snapshot[0])
2259 return;
2260 for (i = 0; i < 0x30; i++)
2261 kfree(priv->snapshot[i]);
2262 priv->snapshot[0] = NULL;
2265 #ifdef IPW2100_DEBUG_C3
2266 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2268 int i;
2269 if (priv->snapshot[0])
2270 return 1;
2271 for (i = 0; i < 0x30; i++) {
2272 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2273 if (!priv->snapshot[i]) {
2274 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2275 "buffer %d\n", priv->net_dev->name, i);
2276 while (i > 0)
2277 kfree(priv->snapshot[--i]);
2278 priv->snapshot[0] = NULL;
2279 return 0;
2283 return 1;
2286 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2287 size_t len, int mode)
2289 u32 i, j;
2290 u32 tmp;
2291 u8 *s, *d;
2292 u32 ret;
2294 s = in_buf;
2295 if (mode == SEARCH_SNAPSHOT) {
2296 if (!ipw2100_snapshot_alloc(priv))
2297 mode = SEARCH_DISCARD;
2300 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2301 read_nic_dword(priv->net_dev, i, &tmp);
2302 if (mode == SEARCH_SNAPSHOT)
2303 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2304 if (ret == SEARCH_FAIL) {
2305 d = (u8 *) & tmp;
2306 for (j = 0; j < 4; j++) {
2307 if (*s != *d) {
2308 s = in_buf;
2309 continue;
2312 s++;
2313 d++;
2315 if ((s - in_buf) == len)
2316 ret = (i + j) - len + 1;
2318 } else if (mode == SEARCH_DISCARD)
2319 return ret;
2322 return ret;
2324 #endif
2328 * 0) Disconnect the SKB from the firmware (just unmap)
2329 * 1) Pack the ETH header into the SKB
2330 * 2) Pass the SKB to the network stack
2332 * When packet is provided by the firmware, it contains the following:
2334 * . ieee80211_hdr
2335 * . ieee80211_snap_hdr
2337 * The size of the constructed ethernet
2340 #ifdef IPW2100_RX_DEBUG
2341 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2342 #endif
2344 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2346 #ifdef IPW2100_DEBUG_C3
2347 struct ipw2100_status *status = &priv->status_queue.drv[i];
2348 u32 match, reg;
2349 int j;
2350 #endif
2352 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2353 i * sizeof(struct ipw2100_status));
2355 #ifdef IPW2100_DEBUG_C3
2356 /* Halt the fimrware so we can get a good image */
2357 write_register(priv->net_dev, IPW_REG_RESET_REG,
2358 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2359 j = 5;
2360 do {
2361 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2362 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2364 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2365 break;
2366 } while (j--);
2368 match = ipw2100_match_buf(priv, (u8 *) status,
2369 sizeof(struct ipw2100_status),
2370 SEARCH_SNAPSHOT);
2371 if (match < SEARCH_SUCCESS)
2372 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2373 "offset 0x%06X, length %d:\n",
2374 priv->net_dev->name, match,
2375 sizeof(struct ipw2100_status));
2376 else
2377 IPW_DEBUG_INFO("%s: No DMA status match in "
2378 "Firmware.\n", priv->net_dev->name);
2380 printk_buf((u8 *) priv->status_queue.drv,
2381 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2382 #endif
2384 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2385 priv->ieee->stats.rx_errors++;
2386 schedule_reset(priv);
2389 static void isr_rx(struct ipw2100_priv *priv, int i,
2390 struct ieee80211_rx_stats *stats)
2392 struct ipw2100_status *status = &priv->status_queue.drv[i];
2393 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2395 IPW_DEBUG_RX("Handler...\n");
2397 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2398 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2399 " Dropping.\n",
2400 priv->net_dev->name,
2401 status->frame_size, skb_tailroom(packet->skb));
2402 priv->ieee->stats.rx_errors++;
2403 return;
2406 if (unlikely(!netif_running(priv->net_dev))) {
2407 priv->ieee->stats.rx_errors++;
2408 priv->wstats.discard.misc++;
2409 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2410 return;
2413 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2414 !(priv->status & STATUS_ASSOCIATED))) {
2415 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2416 priv->wstats.discard.misc++;
2417 return;
2420 pci_unmap_single(priv->pci_dev,
2421 packet->dma_addr,
2422 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2424 skb_put(packet->skb, status->frame_size);
2426 #ifdef IPW2100_RX_DEBUG
2427 /* Make a copy of the frame so we can dump it to the logs if
2428 * ieee80211_rx fails */
2429 skb_copy_from_linear_data(packet->skb, packet_data,
2430 min_t(u32, status->frame_size,
2431 IPW_RX_NIC_BUFFER_LENGTH));
2432 #endif
2434 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2435 #ifdef IPW2100_RX_DEBUG
2436 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2437 priv->net_dev->name);
2438 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2439 #endif
2440 priv->ieee->stats.rx_errors++;
2442 /* ieee80211_rx failed, so it didn't free the SKB */
2443 dev_kfree_skb_any(packet->skb);
2444 packet->skb = NULL;
2447 /* We need to allocate a new SKB and attach it to the RDB. */
2448 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2449 printk(KERN_WARNING DRV_NAME ": "
2450 "%s: Unable to allocate SKB onto RBD ring - disabling "
2451 "adapter.\n", priv->net_dev->name);
2452 /* TODO: schedule adapter shutdown */
2453 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2456 /* Update the RDB entry */
2457 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2460 #ifdef CONFIG_IPW2100_MONITOR
2462 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2463 struct ieee80211_rx_stats *stats)
2465 struct ipw2100_status *status = &priv->status_queue.drv[i];
2466 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2468 /* Magic struct that slots into the radiotap header -- no reason
2469 * to build this manually element by element, we can write it much
2470 * more efficiently than we can parse it. ORDER MATTERS HERE */
2471 struct ipw_rt_hdr {
2472 struct ieee80211_radiotap_header rt_hdr;
2473 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2474 } *ipw_rt;
2476 IPW_DEBUG_RX("Handler...\n");
2478 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2479 sizeof(struct ipw_rt_hdr))) {
2480 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2481 " Dropping.\n",
2482 priv->net_dev->name,
2483 status->frame_size,
2484 skb_tailroom(packet->skb));
2485 priv->ieee->stats.rx_errors++;
2486 return;
2489 if (unlikely(!netif_running(priv->net_dev))) {
2490 priv->ieee->stats.rx_errors++;
2491 priv->wstats.discard.misc++;
2492 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2493 return;
2496 if (unlikely(priv->config & CFG_CRC_CHECK &&
2497 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2498 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2499 priv->ieee->stats.rx_errors++;
2500 return;
2503 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2504 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2505 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2506 packet->skb->data, status->frame_size);
2508 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2510 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2511 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2512 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2514 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2516 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2518 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2520 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2521 priv->ieee->stats.rx_errors++;
2523 /* ieee80211_rx failed, so it didn't free the SKB */
2524 dev_kfree_skb_any(packet->skb);
2525 packet->skb = NULL;
2528 /* We need to allocate a new SKB and attach it to the RDB. */
2529 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2530 IPW_DEBUG_WARNING(
2531 "%s: Unable to allocate SKB onto RBD ring - disabling "
2532 "adapter.\n", priv->net_dev->name);
2533 /* TODO: schedule adapter shutdown */
2534 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2537 /* Update the RDB entry */
2538 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2541 #endif
2543 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2545 struct ipw2100_status *status = &priv->status_queue.drv[i];
2546 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2547 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2549 switch (frame_type) {
2550 case COMMAND_STATUS_VAL:
2551 return (status->frame_size != sizeof(u->rx_data.command));
2552 case STATUS_CHANGE_VAL:
2553 return (status->frame_size != sizeof(u->rx_data.status));
2554 case HOST_NOTIFICATION_VAL:
2555 return (status->frame_size < sizeof(u->rx_data.notification));
2556 case P80211_DATA_VAL:
2557 case P8023_DATA_VAL:
2558 #ifdef CONFIG_IPW2100_MONITOR
2559 return 0;
2560 #else
2561 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2562 case IEEE80211_FTYPE_MGMT:
2563 case IEEE80211_FTYPE_CTL:
2564 return 0;
2565 case IEEE80211_FTYPE_DATA:
2566 return (status->frame_size >
2567 IPW_MAX_802_11_PAYLOAD_LENGTH);
2569 #endif
2572 return 1;
2576 * ipw2100 interrupts are disabled at this point, and the ISR
2577 * is the only code that calls this method. So, we do not need
2578 * to play with any locks.
2580 * RX Queue works as follows:
2582 * Read index - firmware places packet in entry identified by the
2583 * Read index and advances Read index. In this manner,
2584 * Read index will always point to the next packet to
2585 * be filled--but not yet valid.
2587 * Write index - driver fills this entry with an unused RBD entry.
2588 * This entry has not filled by the firmware yet.
2590 * In between the W and R indexes are the RBDs that have been received
2591 * but not yet processed.
2593 * The process of handling packets will start at WRITE + 1 and advance
2594 * until it reaches the READ index.
2596 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2599 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2601 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2602 struct ipw2100_status_queue *sq = &priv->status_queue;
2603 struct ipw2100_rx_packet *packet;
2604 u16 frame_type;
2605 u32 r, w, i, s;
2606 struct ipw2100_rx *u;
2607 struct ieee80211_rx_stats stats = {
2608 .mac_time = jiffies,
2611 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2612 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2614 if (r >= rxq->entries) {
2615 IPW_DEBUG_RX("exit - bad read index\n");
2616 return;
2619 i = (rxq->next + 1) % rxq->entries;
2620 s = i;
2621 while (i != r) {
2622 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2623 r, rxq->next, i); */
2625 packet = &priv->rx_buffers[i];
2627 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2628 * the correct values */
2629 pci_dma_sync_single_for_cpu(priv->pci_dev,
2630 sq->nic +
2631 sizeof(struct ipw2100_status) * i,
2632 sizeof(struct ipw2100_status),
2633 PCI_DMA_FROMDEVICE);
2635 /* Sync the DMA for the RX buffer so CPU is sure to get
2636 * the correct values */
2637 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2638 sizeof(struct ipw2100_rx),
2639 PCI_DMA_FROMDEVICE);
2641 if (unlikely(ipw2100_corruption_check(priv, i))) {
2642 ipw2100_corruption_detected(priv, i);
2643 goto increment;
2646 u = packet->rxp;
2647 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2648 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2649 stats.len = sq->drv[i].frame_size;
2651 stats.mask = 0;
2652 if (stats.rssi != 0)
2653 stats.mask |= IEEE80211_STATMASK_RSSI;
2654 stats.freq = IEEE80211_24GHZ_BAND;
2656 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2657 priv->net_dev->name, frame_types[frame_type],
2658 stats.len);
2660 switch (frame_type) {
2661 case COMMAND_STATUS_VAL:
2662 /* Reset Rx watchdog */
2663 isr_rx_complete_command(priv, &u->rx_data.command);
2664 break;
2666 case STATUS_CHANGE_VAL:
2667 isr_status_change(priv, u->rx_data.status);
2668 break;
2670 case P80211_DATA_VAL:
2671 case P8023_DATA_VAL:
2672 #ifdef CONFIG_IPW2100_MONITOR
2673 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2674 isr_rx_monitor(priv, i, &stats);
2675 break;
2677 #endif
2678 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2679 break;
2680 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2681 case IEEE80211_FTYPE_MGMT:
2682 ieee80211_rx_mgt(priv->ieee,
2683 &u->rx_data.header, &stats);
2684 break;
2686 case IEEE80211_FTYPE_CTL:
2687 break;
2689 case IEEE80211_FTYPE_DATA:
2690 isr_rx(priv, i, &stats);
2691 break;
2694 break;
2697 increment:
2698 /* clear status field associated with this RBD */
2699 rxq->drv[i].status.info.field = 0;
2701 i = (i + 1) % rxq->entries;
2704 if (i != s) {
2705 /* backtrack one entry, wrapping to end if at 0 */
2706 rxq->next = (i ? i : rxq->entries) - 1;
2708 write_register(priv->net_dev,
2709 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2714 * __ipw2100_tx_process
2716 * This routine will determine whether the next packet on
2717 * the fw_pend_list has been processed by the firmware yet.
2719 * If not, then it does nothing and returns.
2721 * If so, then it removes the item from the fw_pend_list, frees
2722 * any associated storage, and places the item back on the
2723 * free list of its source (either msg_free_list or tx_free_list)
2725 * TX Queue works as follows:
2727 * Read index - points to the next TBD that the firmware will
2728 * process. The firmware will read the data, and once
2729 * done processing, it will advance the Read index.
2731 * Write index - driver fills this entry with an constructed TBD
2732 * entry. The Write index is not advanced until the
2733 * packet has been configured.
2735 * In between the W and R indexes are the TBDs that have NOT been
2736 * processed. Lagging behind the R index are packets that have
2737 * been processed but have not been freed by the driver.
2739 * In order to free old storage, an internal index will be maintained
2740 * that points to the next packet to be freed. When all used
2741 * packets have been freed, the oldest index will be the same as the
2742 * firmware's read index.
2744 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2746 * Because the TBD structure can not contain arbitrary data, the
2747 * driver must keep an internal queue of cached allocations such that
2748 * it can put that data back into the tx_free_list and msg_free_list
2749 * for use by future command and data packets.
2752 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2754 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2755 struct ipw2100_bd *tbd;
2756 struct list_head *element;
2757 struct ipw2100_tx_packet *packet;
2758 int descriptors_used;
2759 int e, i;
2760 u32 r, w, frag_num = 0;
2762 if (list_empty(&priv->fw_pend_list))
2763 return 0;
2765 element = priv->fw_pend_list.next;
2767 packet = list_entry(element, struct ipw2100_tx_packet, list);
2768 tbd = &txq->drv[packet->index];
2770 /* Determine how many TBD entries must be finished... */
2771 switch (packet->type) {
2772 case COMMAND:
2773 /* COMMAND uses only one slot; don't advance */
2774 descriptors_used = 1;
2775 e = txq->oldest;
2776 break;
2778 case DATA:
2779 /* DATA uses two slots; advance and loop position. */
2780 descriptors_used = tbd->num_fragments;
2781 frag_num = tbd->num_fragments - 1;
2782 e = txq->oldest + frag_num;
2783 e %= txq->entries;
2784 break;
2786 default:
2787 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2788 priv->net_dev->name);
2789 return 0;
2792 /* if the last TBD is not done by NIC yet, then packet is
2793 * not ready to be released.
2796 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2797 &r);
2798 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2799 &w);
2800 if (w != txq->next)
2801 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2802 priv->net_dev->name);
2805 * txq->next is the index of the last packet written txq->oldest is
2806 * the index of the r is the index of the next packet to be read by
2807 * firmware
2811 * Quick graphic to help you visualize the following
2812 * if / else statement
2814 * ===>| s---->|===============
2815 * e>|
2816 * | a | b | c | d | e | f | g | h | i | j | k | l
2817 * r---->|
2820 * w - updated by driver
2821 * r - updated by firmware
2822 * s - start of oldest BD entry (txq->oldest)
2823 * e - end of oldest BD entry
2826 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2827 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2828 return 0;
2831 list_del(element);
2832 DEC_STAT(&priv->fw_pend_stat);
2834 #ifdef CONFIG_IPW2100_DEBUG
2836 int i = txq->oldest;
2837 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2838 &txq->drv[i],
2839 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2840 txq->drv[i].host_addr, txq->drv[i].buf_length);
2842 if (packet->type == DATA) {
2843 i = (i + 1) % txq->entries;
2845 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2846 &txq->drv[i],
2847 (u32) (txq->nic + i *
2848 sizeof(struct ipw2100_bd)),
2849 (u32) txq->drv[i].host_addr,
2850 txq->drv[i].buf_length);
2853 #endif
2855 switch (packet->type) {
2856 case DATA:
2857 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2858 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2859 "Expecting DATA TBD but pulled "
2860 "something else: ids %d=%d.\n",
2861 priv->net_dev->name, txq->oldest, packet->index);
2863 /* DATA packet; we have to unmap and free the SKB */
2864 for (i = 0; i < frag_num; i++) {
2865 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2867 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2868 (packet->index + 1 + i) % txq->entries,
2869 tbd->host_addr, tbd->buf_length);
2871 pci_unmap_single(priv->pci_dev,
2872 tbd->host_addr,
2873 tbd->buf_length, PCI_DMA_TODEVICE);
2876 ieee80211_txb_free(packet->info.d_struct.txb);
2877 packet->info.d_struct.txb = NULL;
2879 list_add_tail(element, &priv->tx_free_list);
2880 INC_STAT(&priv->tx_free_stat);
2882 /* We have a free slot in the Tx queue, so wake up the
2883 * transmit layer if it is stopped. */
2884 if (priv->status & STATUS_ASSOCIATED)
2885 netif_wake_queue(priv->net_dev);
2887 /* A packet was processed by the hardware, so update the
2888 * watchdog */
2889 priv->net_dev->trans_start = jiffies;
2891 break;
2893 case COMMAND:
2894 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2895 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2896 "Expecting COMMAND TBD but pulled "
2897 "something else: ids %d=%d.\n",
2898 priv->net_dev->name, txq->oldest, packet->index);
2900 #ifdef CONFIG_IPW2100_DEBUG
2901 if (packet->info.c_struct.cmd->host_command_reg <
2902 ARRAY_SIZE(command_types))
2903 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2904 command_types[packet->info.c_struct.cmd->
2905 host_command_reg],
2906 packet->info.c_struct.cmd->
2907 host_command_reg,
2908 packet->info.c_struct.cmd->cmd_status_reg);
2909 #endif
2911 list_add_tail(element, &priv->msg_free_list);
2912 INC_STAT(&priv->msg_free_stat);
2913 break;
2916 /* advance oldest used TBD pointer to start of next entry */
2917 txq->oldest = (e + 1) % txq->entries;
2918 /* increase available TBDs number */
2919 txq->available += descriptors_used;
2920 SET_STAT(&priv->txq_stat, txq->available);
2922 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2923 jiffies - packet->jiffy_start);
2925 return (!list_empty(&priv->fw_pend_list));
2928 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2930 int i = 0;
2932 while (__ipw2100_tx_process(priv) && i < 200)
2933 i++;
2935 if (i == 200) {
2936 printk(KERN_WARNING DRV_NAME ": "
2937 "%s: Driver is running slow (%d iters).\n",
2938 priv->net_dev->name, i);
2942 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2944 struct list_head *element;
2945 struct ipw2100_tx_packet *packet;
2946 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2947 struct ipw2100_bd *tbd;
2948 int next = txq->next;
2950 while (!list_empty(&priv->msg_pend_list)) {
2951 /* if there isn't enough space in TBD queue, then
2952 * don't stuff a new one in.
2953 * NOTE: 3 are needed as a command will take one,
2954 * and there is a minimum of 2 that must be
2955 * maintained between the r and w indexes
2957 if (txq->available <= 3) {
2958 IPW_DEBUG_TX("no room in tx_queue\n");
2959 break;
2962 element = priv->msg_pend_list.next;
2963 list_del(element);
2964 DEC_STAT(&priv->msg_pend_stat);
2966 packet = list_entry(element, struct ipw2100_tx_packet, list);
2968 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2969 &txq->drv[txq->next],
2970 (void *)(txq->nic + txq->next *
2971 sizeof(struct ipw2100_bd)));
2973 packet->index = txq->next;
2975 tbd = &txq->drv[txq->next];
2977 /* initialize TBD */
2978 tbd->host_addr = packet->info.c_struct.cmd_phys;
2979 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2980 /* not marking number of fragments causes problems
2981 * with f/w debug version */
2982 tbd->num_fragments = 1;
2983 tbd->status.info.field =
2984 IPW_BD_STATUS_TX_FRAME_COMMAND |
2985 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2987 /* update TBD queue counters */
2988 txq->next++;
2989 txq->next %= txq->entries;
2990 txq->available--;
2991 DEC_STAT(&priv->txq_stat);
2993 list_add_tail(element, &priv->fw_pend_list);
2994 INC_STAT(&priv->fw_pend_stat);
2997 if (txq->next != next) {
2998 /* kick off the DMA by notifying firmware the
2999 * write index has moved; make sure TBD stores are sync'd */
3000 wmb();
3001 write_register(priv->net_dev,
3002 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3003 txq->next);
3008 * ipw2100_tx_send_data
3011 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3013 struct list_head *element;
3014 struct ipw2100_tx_packet *packet;
3015 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3016 struct ipw2100_bd *tbd;
3017 int next = txq->next;
3018 int i = 0;
3019 struct ipw2100_data_header *ipw_hdr;
3020 struct ieee80211_hdr_3addr *hdr;
3022 while (!list_empty(&priv->tx_pend_list)) {
3023 /* if there isn't enough space in TBD queue, then
3024 * don't stuff a new one in.
3025 * NOTE: 4 are needed as a data will take two,
3026 * and there is a minimum of 2 that must be
3027 * maintained between the r and w indexes
3029 element = priv->tx_pend_list.next;
3030 packet = list_entry(element, struct ipw2100_tx_packet, list);
3032 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3033 IPW_MAX_BDS)) {
3034 /* TODO: Support merging buffers if more than
3035 * IPW_MAX_BDS are used */
3036 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3037 "Increase fragmentation level.\n",
3038 priv->net_dev->name);
3041 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3042 IPW_DEBUG_TX("no room in tx_queue\n");
3043 break;
3046 list_del(element);
3047 DEC_STAT(&priv->tx_pend_stat);
3049 tbd = &txq->drv[txq->next];
3051 packet->index = txq->next;
3053 ipw_hdr = packet->info.d_struct.data;
3054 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3055 fragments[0]->data;
3057 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3058 /* To DS: Addr1 = BSSID, Addr2 = SA,
3059 Addr3 = DA */
3060 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3061 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3062 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3063 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3064 Addr3 = BSSID */
3065 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3066 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3069 ipw_hdr->host_command_reg = SEND;
3070 ipw_hdr->host_command_reg1 = 0;
3072 /* For now we only support host based encryption */
3073 ipw_hdr->needs_encryption = 0;
3074 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3075 if (packet->info.d_struct.txb->nr_frags > 1)
3076 ipw_hdr->fragment_size =
3077 packet->info.d_struct.txb->frag_size -
3078 IEEE80211_3ADDR_LEN;
3079 else
3080 ipw_hdr->fragment_size = 0;
3082 tbd->host_addr = packet->info.d_struct.data_phys;
3083 tbd->buf_length = sizeof(struct ipw2100_data_header);
3084 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3085 tbd->status.info.field =
3086 IPW_BD_STATUS_TX_FRAME_802_3 |
3087 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3088 txq->next++;
3089 txq->next %= txq->entries;
3091 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3092 packet->index, tbd->host_addr, tbd->buf_length);
3093 #ifdef CONFIG_IPW2100_DEBUG
3094 if (packet->info.d_struct.txb->nr_frags > 1)
3095 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3096 packet->info.d_struct.txb->nr_frags);
3097 #endif
3099 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3100 tbd = &txq->drv[txq->next];
3101 if (i == packet->info.d_struct.txb->nr_frags - 1)
3102 tbd->status.info.field =
3103 IPW_BD_STATUS_TX_FRAME_802_3 |
3104 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3105 else
3106 tbd->status.info.field =
3107 IPW_BD_STATUS_TX_FRAME_802_3 |
3108 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3110 tbd->buf_length = packet->info.d_struct.txb->
3111 fragments[i]->len - IEEE80211_3ADDR_LEN;
3113 tbd->host_addr = pci_map_single(priv->pci_dev,
3114 packet->info.d_struct.
3115 txb->fragments[i]->
3116 data +
3117 IEEE80211_3ADDR_LEN,
3118 tbd->buf_length,
3119 PCI_DMA_TODEVICE);
3121 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3122 txq->next, tbd->host_addr,
3123 tbd->buf_length);
3125 pci_dma_sync_single_for_device(priv->pci_dev,
3126 tbd->host_addr,
3127 tbd->buf_length,
3128 PCI_DMA_TODEVICE);
3130 txq->next++;
3131 txq->next %= txq->entries;
3134 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3135 SET_STAT(&priv->txq_stat, txq->available);
3137 list_add_tail(element, &priv->fw_pend_list);
3138 INC_STAT(&priv->fw_pend_stat);
3141 if (txq->next != next) {
3142 /* kick off the DMA by notifying firmware the
3143 * write index has moved; make sure TBD stores are sync'd */
3144 write_register(priv->net_dev,
3145 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3146 txq->next);
3148 return;
3151 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3153 struct net_device *dev = priv->net_dev;
3154 unsigned long flags;
3155 u32 inta, tmp;
3157 spin_lock_irqsave(&priv->low_lock, flags);
3158 ipw2100_disable_interrupts(priv);
3160 read_register(dev, IPW_REG_INTA, &inta);
3162 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3163 (unsigned long)inta & IPW_INTERRUPT_MASK);
3165 priv->in_isr++;
3166 priv->interrupts++;
3168 /* We do not loop and keep polling for more interrupts as this
3169 * is frowned upon and doesn't play nicely with other potentially
3170 * chained IRQs */
3171 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3172 (unsigned long)inta & IPW_INTERRUPT_MASK);
3174 if (inta & IPW2100_INTA_FATAL_ERROR) {
3175 printk(KERN_WARNING DRV_NAME
3176 ": Fatal interrupt. Scheduling firmware restart.\n");
3177 priv->inta_other++;
3178 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3180 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3181 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3182 priv->net_dev->name, priv->fatal_error);
3184 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3185 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3186 priv->net_dev->name, tmp);
3188 /* Wake up any sleeping jobs */
3189 schedule_reset(priv);
3192 if (inta & IPW2100_INTA_PARITY_ERROR) {
3193 printk(KERN_ERR DRV_NAME
3194 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3195 priv->inta_other++;
3196 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3199 if (inta & IPW2100_INTA_RX_TRANSFER) {
3200 IPW_DEBUG_ISR("RX interrupt\n");
3202 priv->rx_interrupts++;
3204 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3206 __ipw2100_rx_process(priv);
3207 __ipw2100_tx_complete(priv);
3210 if (inta & IPW2100_INTA_TX_TRANSFER) {
3211 IPW_DEBUG_ISR("TX interrupt\n");
3213 priv->tx_interrupts++;
3215 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3217 __ipw2100_tx_complete(priv);
3218 ipw2100_tx_send_commands(priv);
3219 ipw2100_tx_send_data(priv);
3222 if (inta & IPW2100_INTA_TX_COMPLETE) {
3223 IPW_DEBUG_ISR("TX complete\n");
3224 priv->inta_other++;
3225 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3227 __ipw2100_tx_complete(priv);
3230 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3231 /* ipw2100_handle_event(dev); */
3232 priv->inta_other++;
3233 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3236 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3237 IPW_DEBUG_ISR("FW init done interrupt\n");
3238 priv->inta_other++;
3240 read_register(dev, IPW_REG_INTA, &tmp);
3241 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3242 IPW2100_INTA_PARITY_ERROR)) {
3243 write_register(dev, IPW_REG_INTA,
3244 IPW2100_INTA_FATAL_ERROR |
3245 IPW2100_INTA_PARITY_ERROR);
3248 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3251 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3252 IPW_DEBUG_ISR("Status change interrupt\n");
3253 priv->inta_other++;
3254 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3257 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3258 IPW_DEBUG_ISR("slave host mode interrupt\n");
3259 priv->inta_other++;
3260 write_register(dev, IPW_REG_INTA,
3261 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3264 priv->in_isr--;
3265 ipw2100_enable_interrupts(priv);
3267 spin_unlock_irqrestore(&priv->low_lock, flags);
3269 IPW_DEBUG_ISR("exit\n");
3272 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3274 struct ipw2100_priv *priv = data;
3275 u32 inta, inta_mask;
3277 if (!data)
3278 return IRQ_NONE;
3280 spin_lock(&priv->low_lock);
3282 /* We check to see if we should be ignoring interrupts before
3283 * we touch the hardware. During ucode load if we try and handle
3284 * an interrupt we can cause keyboard problems as well as cause
3285 * the ucode to fail to initialize */
3286 if (!(priv->status & STATUS_INT_ENABLED)) {
3287 /* Shared IRQ */
3288 goto none;
3291 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3292 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3294 if (inta == 0xFFFFFFFF) {
3295 /* Hardware disappeared */
3296 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3297 goto none;
3300 inta &= IPW_INTERRUPT_MASK;
3302 if (!(inta & inta_mask)) {
3303 /* Shared interrupt */
3304 goto none;
3307 /* We disable the hardware interrupt here just to prevent unneeded
3308 * calls to be made. We disable this again within the actual
3309 * work tasklet, so if another part of the code re-enables the
3310 * interrupt, that is fine */
3311 ipw2100_disable_interrupts(priv);
3313 tasklet_schedule(&priv->irq_tasklet);
3314 spin_unlock(&priv->low_lock);
3316 return IRQ_HANDLED;
3317 none:
3318 spin_unlock(&priv->low_lock);
3319 return IRQ_NONE;
3322 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3323 int pri)
3325 struct ipw2100_priv *priv = ieee80211_priv(dev);
3326 struct list_head *element;
3327 struct ipw2100_tx_packet *packet;
3328 unsigned long flags;
3330 spin_lock_irqsave(&priv->low_lock, flags);
3332 if (!(priv->status & STATUS_ASSOCIATED)) {
3333 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3334 priv->ieee->stats.tx_carrier_errors++;
3335 netif_stop_queue(dev);
3336 goto fail_unlock;
3339 if (list_empty(&priv->tx_free_list))
3340 goto fail_unlock;
3342 element = priv->tx_free_list.next;
3343 packet = list_entry(element, struct ipw2100_tx_packet, list);
3345 packet->info.d_struct.txb = txb;
3347 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3348 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3350 packet->jiffy_start = jiffies;
3352 list_del(element);
3353 DEC_STAT(&priv->tx_free_stat);
3355 list_add_tail(element, &priv->tx_pend_list);
3356 INC_STAT(&priv->tx_pend_stat);
3358 ipw2100_tx_send_data(priv);
3360 spin_unlock_irqrestore(&priv->low_lock, flags);
3361 return 0;
3363 fail_unlock:
3364 netif_stop_queue(dev);
3365 spin_unlock_irqrestore(&priv->low_lock, flags);
3366 return 1;
3369 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3371 int i, j, err = -EINVAL;
3372 void *v;
3373 dma_addr_t p;
3375 priv->msg_buffers =
3376 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3377 sizeof(struct
3378 ipw2100_tx_packet),
3379 GFP_KERNEL);
3380 if (!priv->msg_buffers) {
3381 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3382 "buffers.\n", priv->net_dev->name);
3383 return -ENOMEM;
3386 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3387 v = pci_alloc_consistent(priv->pci_dev,
3388 sizeof(struct ipw2100_cmd_header), &p);
3389 if (!v) {
3390 printk(KERN_ERR DRV_NAME ": "
3391 "%s: PCI alloc failed for msg "
3392 "buffers.\n", priv->net_dev->name);
3393 err = -ENOMEM;
3394 break;
3397 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3399 priv->msg_buffers[i].type = COMMAND;
3400 priv->msg_buffers[i].info.c_struct.cmd =
3401 (struct ipw2100_cmd_header *)v;
3402 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3405 if (i == IPW_COMMAND_POOL_SIZE)
3406 return 0;
3408 for (j = 0; j < i; j++) {
3409 pci_free_consistent(priv->pci_dev,
3410 sizeof(struct ipw2100_cmd_header),
3411 priv->msg_buffers[j].info.c_struct.cmd,
3412 priv->msg_buffers[j].info.c_struct.
3413 cmd_phys);
3416 kfree(priv->msg_buffers);
3417 priv->msg_buffers = NULL;
3419 return err;
3422 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3424 int i;
3426 INIT_LIST_HEAD(&priv->msg_free_list);
3427 INIT_LIST_HEAD(&priv->msg_pend_list);
3429 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3430 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3431 SET_STAT(&priv->msg_free_stat, i);
3433 return 0;
3436 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3438 int i;
3440 if (!priv->msg_buffers)
3441 return;
3443 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3444 pci_free_consistent(priv->pci_dev,
3445 sizeof(struct ipw2100_cmd_header),
3446 priv->msg_buffers[i].info.c_struct.cmd,
3447 priv->msg_buffers[i].info.c_struct.
3448 cmd_phys);
3451 kfree(priv->msg_buffers);
3452 priv->msg_buffers = NULL;
3455 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3456 char *buf)
3458 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3459 char *out = buf;
3460 int i, j;
3461 u32 val;
3463 for (i = 0; i < 16; i++) {
3464 out += sprintf(out, "[%08X] ", i * 16);
3465 for (j = 0; j < 16; j += 4) {
3466 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3467 out += sprintf(out, "%08X ", val);
3469 out += sprintf(out, "\n");
3472 return out - buf;
3475 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3477 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3478 char *buf)
3480 struct ipw2100_priv *p = d->driver_data;
3481 return sprintf(buf, "0x%08x\n", (int)p->config);
3484 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3486 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3487 char *buf)
3489 struct ipw2100_priv *p = d->driver_data;
3490 return sprintf(buf, "0x%08x\n", (int)p->status);
3493 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3495 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3496 char *buf)
3498 struct ipw2100_priv *p = d->driver_data;
3499 return sprintf(buf, "0x%08x\n", (int)p->capability);
3502 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3504 #define IPW2100_REG(x) { IPW_ ##x, #x }
3505 static const struct {
3506 u32 addr;
3507 const char *name;
3508 } hw_data[] = {
3509 IPW2100_REG(REG_GP_CNTRL),
3510 IPW2100_REG(REG_GPIO),
3511 IPW2100_REG(REG_INTA),
3512 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3513 #define IPW2100_NIC(x, s) { x, #x, s }
3514 static const struct {
3515 u32 addr;
3516 const char *name;
3517 size_t size;
3518 } nic_data[] = {
3519 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3520 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3521 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3522 static const struct {
3523 u8 index;
3524 const char *name;
3525 const char *desc;
3526 } ord_data[] = {
3527 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3528 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3529 "successful Host Tx's (MSDU)"),
3530 IPW2100_ORD(STAT_TX_DIR_DATA,
3531 "successful Directed Tx's (MSDU)"),
3532 IPW2100_ORD(STAT_TX_DIR_DATA1,
3533 "successful Directed Tx's (MSDU) @ 1MB"),
3534 IPW2100_ORD(STAT_TX_DIR_DATA2,
3535 "successful Directed Tx's (MSDU) @ 2MB"),
3536 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3537 "successful Directed Tx's (MSDU) @ 5_5MB"),
3538 IPW2100_ORD(STAT_TX_DIR_DATA11,
3539 "successful Directed Tx's (MSDU) @ 11MB"),
3540 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3541 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3542 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3543 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3544 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3545 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3546 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3547 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3548 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3549 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3550 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3551 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3552 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3553 IPW2100_ORD(STAT_TX_ASSN_RESP,
3554 "successful Association response Tx's"),
3555 IPW2100_ORD(STAT_TX_REASSN,
3556 "successful Reassociation Tx's"),
3557 IPW2100_ORD(STAT_TX_REASSN_RESP,
3558 "successful Reassociation response Tx's"),
3559 IPW2100_ORD(STAT_TX_PROBE,
3560 "probes successfully transmitted"),
3561 IPW2100_ORD(STAT_TX_PROBE_RESP,
3562 "probe responses successfully transmitted"),
3563 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3564 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3565 IPW2100_ORD(STAT_TX_DISASSN,
3566 "successful Disassociation TX"),
3567 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3568 IPW2100_ORD(STAT_TX_DEAUTH,
3569 "successful Deauthentication TX"),
3570 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3571 "Total successful Tx data bytes"),
3572 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3573 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3574 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3575 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3576 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3577 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3578 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3579 "times max tries in a hop failed"),
3580 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3581 "times disassociation failed"),
3582 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3583 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3584 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3585 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3586 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3587 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3588 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3589 "directed packets at 5.5MB"),
3590 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3591 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3592 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3593 "nondirected packets at 1MB"),
3594 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3595 "nondirected packets at 2MB"),
3596 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3597 "nondirected packets at 5.5MB"),
3598 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3599 "nondirected packets at 11MB"),
3600 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3601 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3602 "Rx CTS"),
3603 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3604 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3605 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3606 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3607 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3608 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3609 IPW2100_ORD(STAT_RX_REASSN_RESP,
3610 "Reassociation response Rx's"),
3611 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3612 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3613 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3614 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3615 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3616 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3617 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3618 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3619 "Total rx data bytes received"),
3620 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3621 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3622 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3623 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3624 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3625 IPW2100_ORD(STAT_RX_DUPLICATE1,
3626 "duplicate rx packets at 1MB"),
3627 IPW2100_ORD(STAT_RX_DUPLICATE2,
3628 "duplicate rx packets at 2MB"),
3629 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3630 "duplicate rx packets at 5.5MB"),
3631 IPW2100_ORD(STAT_RX_DUPLICATE11,
3632 "duplicate rx packets at 11MB"),
3633 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3634 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3635 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3636 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3637 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3638 "rx frames with invalid protocol"),
3639 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3640 IPW2100_ORD(STAT_RX_NO_BUFFER,
3641 "rx frames rejected due to no buffer"),
3642 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3643 "rx frames dropped due to missing fragment"),
3644 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3645 "rx frames dropped due to non-sequential fragment"),
3646 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3647 "rx frames dropped due to unmatched 1st frame"),
3648 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3649 "rx frames dropped due to uncompleted frame"),
3650 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3651 "ICV errors during decryption"),
3652 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3653 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3654 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3655 "poll response timeouts"),
3656 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3657 "timeouts waiting for last {broad,multi}cast pkt"),
3658 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3659 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3660 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3661 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3662 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3663 "current calculation of % missed beacons"),
3664 IPW2100_ORD(STAT_PERCENT_RETRIES,
3665 "current calculation of % missed tx retries"),
3666 IPW2100_ORD(ASSOCIATED_AP_PTR,
3667 "0 if not associated, else pointer to AP table entry"),
3668 IPW2100_ORD(AVAILABLE_AP_CNT,
3669 "AP's decsribed in the AP table"),
3670 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3671 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3672 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3673 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3674 "failures due to response fail"),
3675 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3676 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3677 IPW2100_ORD(STAT_ROAM_INHIBIT,
3678 "times roaming was inhibited due to activity"),
3679 IPW2100_ORD(RSSI_AT_ASSN,
3680 "RSSI of associated AP at time of association"),
3681 IPW2100_ORD(STAT_ASSN_CAUSE1,
3682 "reassociation: no probe response or TX on hop"),
3683 IPW2100_ORD(STAT_ASSN_CAUSE2,
3684 "reassociation: poor tx/rx quality"),
3685 IPW2100_ORD(STAT_ASSN_CAUSE3,
3686 "reassociation: tx/rx quality (excessive AP load"),
3687 IPW2100_ORD(STAT_ASSN_CAUSE4,
3688 "reassociation: AP RSSI level"),
3689 IPW2100_ORD(STAT_ASSN_CAUSE5,
3690 "reassociations due to load leveling"),
3691 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3692 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3693 "times authentication response failed"),
3694 IPW2100_ORD(STATION_TABLE_CNT,
3695 "entries in association table"),
3696 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3697 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3698 IPW2100_ORD(COUNTRY_CODE,
3699 "IEEE country code as recv'd from beacon"),
3700 IPW2100_ORD(COUNTRY_CHANNELS,
3701 "channels suported by country"),
3702 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3703 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3704 IPW2100_ORD(ANTENNA_DIVERSITY,
3705 "TRUE if antenna diversity is disabled"),
3706 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3707 IPW2100_ORD(OUR_FREQ,
3708 "current radio freq lower digits - channel ID"),
3709 IPW2100_ORD(RTC_TIME, "current RTC time"),
3710 IPW2100_ORD(PORT_TYPE, "operating mode"),
3711 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3712 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3713 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3714 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3715 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3716 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3717 IPW2100_ORD(CAPABILITIES,
3718 "Management frame capability field"),
3719 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3720 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3721 IPW2100_ORD(RTS_THRESHOLD,
3722 "Min packet length for RTS handshaking"),
3723 IPW2100_ORD(INT_MODE, "International mode"),
3724 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3725 "protocol frag threshold"),
3726 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3727 "EEPROM offset in SRAM"),
3728 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3729 "EEPROM size in SRAM"),
3730 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3731 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3732 "EEPROM IBSS 11b channel set"),
3733 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3734 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3735 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3736 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3737 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3739 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3740 char *buf)
3742 int i;
3743 struct ipw2100_priv *priv = dev_get_drvdata(d);
3744 struct net_device *dev = priv->net_dev;
3745 char *out = buf;
3746 u32 val = 0;
3748 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3750 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3751 read_register(dev, hw_data[i].addr, &val);
3752 out += sprintf(out, "%30s [%08X] : %08X\n",
3753 hw_data[i].name, hw_data[i].addr, val);
3756 return out - buf;
3759 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3761 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3762 char *buf)
3764 struct ipw2100_priv *priv = dev_get_drvdata(d);
3765 struct net_device *dev = priv->net_dev;
3766 char *out = buf;
3767 int i;
3769 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3771 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3772 u8 tmp8;
3773 u16 tmp16;
3774 u32 tmp32;
3776 switch (nic_data[i].size) {
3777 case 1:
3778 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3779 out += sprintf(out, "%30s [%08X] : %02X\n",
3780 nic_data[i].name, nic_data[i].addr,
3781 tmp8);
3782 break;
3783 case 2:
3784 read_nic_word(dev, nic_data[i].addr, &tmp16);
3785 out += sprintf(out, "%30s [%08X] : %04X\n",
3786 nic_data[i].name, nic_data[i].addr,
3787 tmp16);
3788 break;
3789 case 4:
3790 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3791 out += sprintf(out, "%30s [%08X] : %08X\n",
3792 nic_data[i].name, nic_data[i].addr,
3793 tmp32);
3794 break;
3797 return out - buf;
3800 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3802 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3803 char *buf)
3805 struct ipw2100_priv *priv = dev_get_drvdata(d);
3806 struct net_device *dev = priv->net_dev;
3807 static unsigned long loop = 0;
3808 int len = 0;
3809 u32 buffer[4];
3810 int i;
3811 char line[81];
3813 if (loop >= 0x30000)
3814 loop = 0;
3816 /* sysfs provides us PAGE_SIZE buffer */
3817 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3819 if (priv->snapshot[0])
3820 for (i = 0; i < 4; i++)
3821 buffer[i] =
3822 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3823 else
3824 for (i = 0; i < 4; i++)
3825 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3827 if (priv->dump_raw)
3828 len += sprintf(buf + len,
3829 "%c%c%c%c"
3830 "%c%c%c%c"
3831 "%c%c%c%c"
3832 "%c%c%c%c",
3833 ((u8 *) buffer)[0x0],
3834 ((u8 *) buffer)[0x1],
3835 ((u8 *) buffer)[0x2],
3836 ((u8 *) buffer)[0x3],
3837 ((u8 *) buffer)[0x4],
3838 ((u8 *) buffer)[0x5],
3839 ((u8 *) buffer)[0x6],
3840 ((u8 *) buffer)[0x7],
3841 ((u8 *) buffer)[0x8],
3842 ((u8 *) buffer)[0x9],
3843 ((u8 *) buffer)[0xa],
3844 ((u8 *) buffer)[0xb],
3845 ((u8 *) buffer)[0xc],
3846 ((u8 *) buffer)[0xd],
3847 ((u8 *) buffer)[0xe],
3848 ((u8 *) buffer)[0xf]);
3849 else
3850 len += sprintf(buf + len, "%s\n",
3851 snprint_line(line, sizeof(line),
3852 (u8 *) buffer, 16, loop));
3853 loop += 16;
3856 return len;
3859 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3860 const char *buf, size_t count)
3862 struct ipw2100_priv *priv = dev_get_drvdata(d);
3863 struct net_device *dev = priv->net_dev;
3864 const char *p = buf;
3866 (void)dev; /* kill unused-var warning for debug-only code */
3868 if (count < 1)
3869 return count;
3871 if (p[0] == '1' ||
3872 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3873 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3874 dev->name);
3875 priv->dump_raw = 1;
3877 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3878 tolower(p[1]) == 'f')) {
3879 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3880 dev->name);
3881 priv->dump_raw = 0;
3883 } else if (tolower(p[0]) == 'r') {
3884 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3885 ipw2100_snapshot_free(priv);
3887 } else
3888 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3889 "reset = clear memory snapshot\n", dev->name);
3891 return count;
3894 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3896 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3897 char *buf)
3899 struct ipw2100_priv *priv = dev_get_drvdata(d);
3900 u32 val = 0;
3901 int len = 0;
3902 u32 val_len;
3903 static int loop = 0;
3905 if (priv->status & STATUS_RF_KILL_MASK)
3906 return 0;
3908 if (loop >= ARRAY_SIZE(ord_data))
3909 loop = 0;
3911 /* sysfs provides us PAGE_SIZE buffer */
3912 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3913 val_len = sizeof(u32);
3915 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3916 &val_len))
3917 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3918 ord_data[loop].index,
3919 ord_data[loop].desc);
3920 else
3921 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3922 ord_data[loop].index, val,
3923 ord_data[loop].desc);
3924 loop++;
3927 return len;
3930 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3932 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3933 char *buf)
3935 struct ipw2100_priv *priv = dev_get_drvdata(d);
3936 char *out = buf;
3938 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3939 priv->interrupts, priv->tx_interrupts,
3940 priv->rx_interrupts, priv->inta_other);
3941 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3942 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3943 #ifdef CONFIG_IPW2100_DEBUG
3944 out += sprintf(out, "packet mismatch image: %s\n",
3945 priv->snapshot[0] ? "YES" : "NO");
3946 #endif
3948 return out - buf;
3951 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3953 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3955 int err;
3957 if (mode == priv->ieee->iw_mode)
3958 return 0;
3960 err = ipw2100_disable_adapter(priv);
3961 if (err) {
3962 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3963 priv->net_dev->name, err);
3964 return err;
3967 switch (mode) {
3968 case IW_MODE_INFRA:
3969 priv->net_dev->type = ARPHRD_ETHER;
3970 break;
3971 case IW_MODE_ADHOC:
3972 priv->net_dev->type = ARPHRD_ETHER;
3973 break;
3974 #ifdef CONFIG_IPW2100_MONITOR
3975 case IW_MODE_MONITOR:
3976 priv->last_mode = priv->ieee->iw_mode;
3977 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3978 break;
3979 #endif /* CONFIG_IPW2100_MONITOR */
3982 priv->ieee->iw_mode = mode;
3984 #ifdef CONFIG_PM
3985 /* Indicate ipw2100_download_firmware download firmware
3986 * from disk instead of memory. */
3987 ipw2100_firmware.version = 0;
3988 #endif
3990 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3991 priv->reset_backoff = 0;
3992 schedule_reset(priv);
3994 return 0;
3997 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3998 char *buf)
4000 struct ipw2100_priv *priv = dev_get_drvdata(d);
4001 int len = 0;
4003 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4005 if (priv->status & STATUS_ASSOCIATED)
4006 len += sprintf(buf + len, "connected: %lu\n",
4007 get_seconds() - priv->connect_start);
4008 else
4009 len += sprintf(buf + len, "not connected\n");
4011 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4012 DUMP_VAR(status, "08lx");
4013 DUMP_VAR(config, "08lx");
4014 DUMP_VAR(capability, "08lx");
4016 len +=
4017 sprintf(buf + len, "last_rtc: %lu\n",
4018 (unsigned long)priv->last_rtc);
4020 DUMP_VAR(fatal_error, "d");
4021 DUMP_VAR(stop_hang_check, "d");
4022 DUMP_VAR(stop_rf_kill, "d");
4023 DUMP_VAR(messages_sent, "d");
4025 DUMP_VAR(tx_pend_stat.value, "d");
4026 DUMP_VAR(tx_pend_stat.hi, "d");
4028 DUMP_VAR(tx_free_stat.value, "d");
4029 DUMP_VAR(tx_free_stat.lo, "d");
4031 DUMP_VAR(msg_free_stat.value, "d");
4032 DUMP_VAR(msg_free_stat.lo, "d");
4034 DUMP_VAR(msg_pend_stat.value, "d");
4035 DUMP_VAR(msg_pend_stat.hi, "d");
4037 DUMP_VAR(fw_pend_stat.value, "d");
4038 DUMP_VAR(fw_pend_stat.hi, "d");
4040 DUMP_VAR(txq_stat.value, "d");
4041 DUMP_VAR(txq_stat.lo, "d");
4043 DUMP_VAR(ieee->scans, "d");
4044 DUMP_VAR(reset_backoff, "d");
4046 return len;
4049 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4051 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4052 char *buf)
4054 struct ipw2100_priv *priv = dev_get_drvdata(d);
4055 char essid[IW_ESSID_MAX_SIZE + 1];
4056 u8 bssid[ETH_ALEN];
4057 u32 chan = 0;
4058 char *out = buf;
4059 int length;
4060 int ret;
4061 DECLARE_MAC_BUF(mac);
4063 if (priv->status & STATUS_RF_KILL_MASK)
4064 return 0;
4066 memset(essid, 0, sizeof(essid));
4067 memset(bssid, 0, sizeof(bssid));
4069 length = IW_ESSID_MAX_SIZE;
4070 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4071 if (ret)
4072 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4073 __LINE__);
4075 length = sizeof(bssid);
4076 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4077 bssid, &length);
4078 if (ret)
4079 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4080 __LINE__);
4082 length = sizeof(u32);
4083 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4084 if (ret)
4085 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4086 __LINE__);
4088 out += sprintf(out, "ESSID: %s\n", essid);
4089 out += sprintf(out, "BSSID: %s\n", print_mac(mac, bssid));
4090 out += sprintf(out, "Channel: %d\n", chan);
4092 return out - buf;
4095 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4097 #ifdef CONFIG_IPW2100_DEBUG
4098 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4100 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4103 static ssize_t store_debug_level(struct device_driver *d,
4104 const char *buf, size_t count)
4106 char *p = (char *)buf;
4107 u32 val;
4109 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4110 p++;
4111 if (p[0] == 'x' || p[0] == 'X')
4112 p++;
4113 val = simple_strtoul(p, &p, 16);
4114 } else
4115 val = simple_strtoul(p, &p, 10);
4116 if (p == buf)
4117 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4118 else
4119 ipw2100_debug_level = val;
4121 return strnlen(buf, count);
4124 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4125 store_debug_level);
4126 #endif /* CONFIG_IPW2100_DEBUG */
4128 static ssize_t show_fatal_error(struct device *d,
4129 struct device_attribute *attr, char *buf)
4131 struct ipw2100_priv *priv = dev_get_drvdata(d);
4132 char *out = buf;
4133 int i;
4135 if (priv->fatal_error)
4136 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4137 else
4138 out += sprintf(out, "0\n");
4140 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4141 if (!priv->fatal_errors[(priv->fatal_index - i) %
4142 IPW2100_ERROR_QUEUE])
4143 continue;
4145 out += sprintf(out, "%d. 0x%08X\n", i,
4146 priv->fatal_errors[(priv->fatal_index - i) %
4147 IPW2100_ERROR_QUEUE]);
4150 return out - buf;
4153 static ssize_t store_fatal_error(struct device *d,
4154 struct device_attribute *attr, const char *buf,
4155 size_t count)
4157 struct ipw2100_priv *priv = dev_get_drvdata(d);
4158 schedule_reset(priv);
4159 return count;
4162 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4163 store_fatal_error);
4165 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4166 char *buf)
4168 struct ipw2100_priv *priv = dev_get_drvdata(d);
4169 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4172 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4173 const char *buf, size_t count)
4175 struct ipw2100_priv *priv = dev_get_drvdata(d);
4176 struct net_device *dev = priv->net_dev;
4177 char buffer[] = "00000000";
4178 unsigned long len =
4179 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4180 unsigned long val;
4181 char *p = buffer;
4183 (void)dev; /* kill unused-var warning for debug-only code */
4185 IPW_DEBUG_INFO("enter\n");
4187 strncpy(buffer, buf, len);
4188 buffer[len] = 0;
4190 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4191 p++;
4192 if (p[0] == 'x' || p[0] == 'X')
4193 p++;
4194 val = simple_strtoul(p, &p, 16);
4195 } else
4196 val = simple_strtoul(p, &p, 10);
4197 if (p == buffer) {
4198 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4199 } else {
4200 priv->ieee->scan_age = val;
4201 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4204 IPW_DEBUG_INFO("exit\n");
4205 return len;
4208 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4210 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4211 char *buf)
4213 /* 0 - RF kill not enabled
4214 1 - SW based RF kill active (sysfs)
4215 2 - HW based RF kill active
4216 3 - Both HW and SW baed RF kill active */
4217 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4218 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4219 (rf_kill_active(priv) ? 0x2 : 0x0);
4220 return sprintf(buf, "%i\n", val);
4223 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4225 if ((disable_radio ? 1 : 0) ==
4226 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4227 return 0;
4229 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4230 disable_radio ? "OFF" : "ON");
4232 mutex_lock(&priv->action_mutex);
4234 if (disable_radio) {
4235 priv->status |= STATUS_RF_KILL_SW;
4236 ipw2100_down(priv);
4237 } else {
4238 priv->status &= ~STATUS_RF_KILL_SW;
4239 if (rf_kill_active(priv)) {
4240 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4241 "disabled by HW switch\n");
4242 /* Make sure the RF_KILL check timer is running */
4243 priv->stop_rf_kill = 0;
4244 cancel_delayed_work(&priv->rf_kill);
4245 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4246 round_jiffies_relative(HZ));
4247 } else
4248 schedule_reset(priv);
4251 mutex_unlock(&priv->action_mutex);
4252 return 1;
4255 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4256 const char *buf, size_t count)
4258 struct ipw2100_priv *priv = dev_get_drvdata(d);
4259 ipw_radio_kill_sw(priv, buf[0] == '1');
4260 return count;
4263 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4265 static struct attribute *ipw2100_sysfs_entries[] = {
4266 &dev_attr_hardware.attr,
4267 &dev_attr_registers.attr,
4268 &dev_attr_ordinals.attr,
4269 &dev_attr_pci.attr,
4270 &dev_attr_stats.attr,
4271 &dev_attr_internals.attr,
4272 &dev_attr_bssinfo.attr,
4273 &dev_attr_memory.attr,
4274 &dev_attr_scan_age.attr,
4275 &dev_attr_fatal_error.attr,
4276 &dev_attr_rf_kill.attr,
4277 &dev_attr_cfg.attr,
4278 &dev_attr_status.attr,
4279 &dev_attr_capability.attr,
4280 NULL,
4283 static struct attribute_group ipw2100_attribute_group = {
4284 .attrs = ipw2100_sysfs_entries,
4287 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4289 struct ipw2100_status_queue *q = &priv->status_queue;
4291 IPW_DEBUG_INFO("enter\n");
4293 q->size = entries * sizeof(struct ipw2100_status);
4294 q->drv =
4295 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4296 q->size, &q->nic);
4297 if (!q->drv) {
4298 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4299 return -ENOMEM;
4302 memset(q->drv, 0, q->size);
4304 IPW_DEBUG_INFO("exit\n");
4306 return 0;
4309 static void status_queue_free(struct ipw2100_priv *priv)
4311 IPW_DEBUG_INFO("enter\n");
4313 if (priv->status_queue.drv) {
4314 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4315 priv->status_queue.drv,
4316 priv->status_queue.nic);
4317 priv->status_queue.drv = NULL;
4320 IPW_DEBUG_INFO("exit\n");
4323 static int bd_queue_allocate(struct ipw2100_priv *priv,
4324 struct ipw2100_bd_queue *q, int entries)
4326 IPW_DEBUG_INFO("enter\n");
4328 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4330 q->entries = entries;
4331 q->size = entries * sizeof(struct ipw2100_bd);
4332 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4333 if (!q->drv) {
4334 IPW_DEBUG_INFO
4335 ("can't allocate shared memory for buffer descriptors\n");
4336 return -ENOMEM;
4338 memset(q->drv, 0, q->size);
4340 IPW_DEBUG_INFO("exit\n");
4342 return 0;
4345 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4347 IPW_DEBUG_INFO("enter\n");
4349 if (!q)
4350 return;
4352 if (q->drv) {
4353 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4354 q->drv = NULL;
4357 IPW_DEBUG_INFO("exit\n");
4360 static void bd_queue_initialize(struct ipw2100_priv *priv,
4361 struct ipw2100_bd_queue *q, u32 base, u32 size,
4362 u32 r, u32 w)
4364 IPW_DEBUG_INFO("enter\n");
4366 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4367 (u32) q->nic);
4369 write_register(priv->net_dev, base, q->nic);
4370 write_register(priv->net_dev, size, q->entries);
4371 write_register(priv->net_dev, r, q->oldest);
4372 write_register(priv->net_dev, w, q->next);
4374 IPW_DEBUG_INFO("exit\n");
4377 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4379 if (priv->workqueue) {
4380 priv->stop_rf_kill = 1;
4381 priv->stop_hang_check = 1;
4382 cancel_delayed_work(&priv->reset_work);
4383 cancel_delayed_work(&priv->security_work);
4384 cancel_delayed_work(&priv->wx_event_work);
4385 cancel_delayed_work(&priv->hang_check);
4386 cancel_delayed_work(&priv->rf_kill);
4387 cancel_delayed_work(&priv->scan_event_later);
4388 destroy_workqueue(priv->workqueue);
4389 priv->workqueue = NULL;
4393 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4395 int i, j, err = -EINVAL;
4396 void *v;
4397 dma_addr_t p;
4399 IPW_DEBUG_INFO("enter\n");
4401 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4402 if (err) {
4403 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4404 priv->net_dev->name);
4405 return err;
4408 priv->tx_buffers =
4409 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4410 sizeof(struct
4411 ipw2100_tx_packet),
4412 GFP_ATOMIC);
4413 if (!priv->tx_buffers) {
4414 printk(KERN_ERR DRV_NAME
4415 ": %s: alloc failed form tx buffers.\n",
4416 priv->net_dev->name);
4417 bd_queue_free(priv, &priv->tx_queue);
4418 return -ENOMEM;
4421 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4422 v = pci_alloc_consistent(priv->pci_dev,
4423 sizeof(struct ipw2100_data_header),
4424 &p);
4425 if (!v) {
4426 printk(KERN_ERR DRV_NAME
4427 ": %s: PCI alloc failed for tx " "buffers.\n",
4428 priv->net_dev->name);
4429 err = -ENOMEM;
4430 break;
4433 priv->tx_buffers[i].type = DATA;
4434 priv->tx_buffers[i].info.d_struct.data =
4435 (struct ipw2100_data_header *)v;
4436 priv->tx_buffers[i].info.d_struct.data_phys = p;
4437 priv->tx_buffers[i].info.d_struct.txb = NULL;
4440 if (i == TX_PENDED_QUEUE_LENGTH)
4441 return 0;
4443 for (j = 0; j < i; j++) {
4444 pci_free_consistent(priv->pci_dev,
4445 sizeof(struct ipw2100_data_header),
4446 priv->tx_buffers[j].info.d_struct.data,
4447 priv->tx_buffers[j].info.d_struct.
4448 data_phys);
4451 kfree(priv->tx_buffers);
4452 priv->tx_buffers = NULL;
4454 return err;
4457 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4459 int i;
4461 IPW_DEBUG_INFO("enter\n");
4464 * reinitialize packet info lists
4466 INIT_LIST_HEAD(&priv->fw_pend_list);
4467 INIT_STAT(&priv->fw_pend_stat);
4470 * reinitialize lists
4472 INIT_LIST_HEAD(&priv->tx_pend_list);
4473 INIT_LIST_HEAD(&priv->tx_free_list);
4474 INIT_STAT(&priv->tx_pend_stat);
4475 INIT_STAT(&priv->tx_free_stat);
4477 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4478 /* We simply drop any SKBs that have been queued for
4479 * transmit */
4480 if (priv->tx_buffers[i].info.d_struct.txb) {
4481 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4482 txb);
4483 priv->tx_buffers[i].info.d_struct.txb = NULL;
4486 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4489 SET_STAT(&priv->tx_free_stat, i);
4491 priv->tx_queue.oldest = 0;
4492 priv->tx_queue.available = priv->tx_queue.entries;
4493 priv->tx_queue.next = 0;
4494 INIT_STAT(&priv->txq_stat);
4495 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4497 bd_queue_initialize(priv, &priv->tx_queue,
4498 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4499 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4500 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4501 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4503 IPW_DEBUG_INFO("exit\n");
4507 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4509 int i;
4511 IPW_DEBUG_INFO("enter\n");
4513 bd_queue_free(priv, &priv->tx_queue);
4515 if (!priv->tx_buffers)
4516 return;
4518 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4519 if (priv->tx_buffers[i].info.d_struct.txb) {
4520 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4521 txb);
4522 priv->tx_buffers[i].info.d_struct.txb = NULL;
4524 if (priv->tx_buffers[i].info.d_struct.data)
4525 pci_free_consistent(priv->pci_dev,
4526 sizeof(struct ipw2100_data_header),
4527 priv->tx_buffers[i].info.d_struct.
4528 data,
4529 priv->tx_buffers[i].info.d_struct.
4530 data_phys);
4533 kfree(priv->tx_buffers);
4534 priv->tx_buffers = NULL;
4536 IPW_DEBUG_INFO("exit\n");
4539 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4541 int i, j, err = -EINVAL;
4543 IPW_DEBUG_INFO("enter\n");
4545 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4546 if (err) {
4547 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4548 return err;
4551 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4552 if (err) {
4553 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4554 bd_queue_free(priv, &priv->rx_queue);
4555 return err;
4559 * allocate packets
4561 priv->rx_buffers = (struct ipw2100_rx_packet *)
4562 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4563 GFP_KERNEL);
4564 if (!priv->rx_buffers) {
4565 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4567 bd_queue_free(priv, &priv->rx_queue);
4569 status_queue_free(priv);
4571 return -ENOMEM;
4574 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4575 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4577 err = ipw2100_alloc_skb(priv, packet);
4578 if (unlikely(err)) {
4579 err = -ENOMEM;
4580 break;
4583 /* The BD holds the cache aligned address */
4584 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4585 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4586 priv->status_queue.drv[i].status_fields = 0;
4589 if (i == RX_QUEUE_LENGTH)
4590 return 0;
4592 for (j = 0; j < i; j++) {
4593 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4594 sizeof(struct ipw2100_rx_packet),
4595 PCI_DMA_FROMDEVICE);
4596 dev_kfree_skb(priv->rx_buffers[j].skb);
4599 kfree(priv->rx_buffers);
4600 priv->rx_buffers = NULL;
4602 bd_queue_free(priv, &priv->rx_queue);
4604 status_queue_free(priv);
4606 return err;
4609 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4611 IPW_DEBUG_INFO("enter\n");
4613 priv->rx_queue.oldest = 0;
4614 priv->rx_queue.available = priv->rx_queue.entries - 1;
4615 priv->rx_queue.next = priv->rx_queue.entries - 1;
4617 INIT_STAT(&priv->rxq_stat);
4618 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4620 bd_queue_initialize(priv, &priv->rx_queue,
4621 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4622 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4623 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4624 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4626 /* set up the status queue */
4627 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4628 priv->status_queue.nic);
4630 IPW_DEBUG_INFO("exit\n");
4633 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4635 int i;
4637 IPW_DEBUG_INFO("enter\n");
4639 bd_queue_free(priv, &priv->rx_queue);
4640 status_queue_free(priv);
4642 if (!priv->rx_buffers)
4643 return;
4645 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4646 if (priv->rx_buffers[i].rxp) {
4647 pci_unmap_single(priv->pci_dev,
4648 priv->rx_buffers[i].dma_addr,
4649 sizeof(struct ipw2100_rx),
4650 PCI_DMA_FROMDEVICE);
4651 dev_kfree_skb(priv->rx_buffers[i].skb);
4655 kfree(priv->rx_buffers);
4656 priv->rx_buffers = NULL;
4658 IPW_DEBUG_INFO("exit\n");
4661 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4663 u32 length = ETH_ALEN;
4664 u8 addr[ETH_ALEN];
4665 DECLARE_MAC_BUF(mac);
4667 int err;
4669 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4670 if (err) {
4671 IPW_DEBUG_INFO("MAC address read failed\n");
4672 return -EIO;
4675 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4676 IPW_DEBUG_INFO("card MAC is %s\n",
4677 print_mac(mac, priv->net_dev->dev_addr));
4679 return 0;
4682 /********************************************************************
4684 * Firmware Commands
4686 ********************************************************************/
4688 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4690 struct host_command cmd = {
4691 .host_command = ADAPTER_ADDRESS,
4692 .host_command_sequence = 0,
4693 .host_command_length = ETH_ALEN
4695 int err;
4697 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4699 IPW_DEBUG_INFO("enter\n");
4701 if (priv->config & CFG_CUSTOM_MAC) {
4702 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4703 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4704 } else
4705 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4706 ETH_ALEN);
4708 err = ipw2100_hw_send_command(priv, &cmd);
4710 IPW_DEBUG_INFO("exit\n");
4711 return err;
4714 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4715 int batch_mode)
4717 struct host_command cmd = {
4718 .host_command = PORT_TYPE,
4719 .host_command_sequence = 0,
4720 .host_command_length = sizeof(u32)
4722 int err;
4724 switch (port_type) {
4725 case IW_MODE_INFRA:
4726 cmd.host_command_parameters[0] = IPW_BSS;
4727 break;
4728 case IW_MODE_ADHOC:
4729 cmd.host_command_parameters[0] = IPW_IBSS;
4730 break;
4733 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4734 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4736 if (!batch_mode) {
4737 err = ipw2100_disable_adapter(priv);
4738 if (err) {
4739 printk(KERN_ERR DRV_NAME
4740 ": %s: Could not disable adapter %d\n",
4741 priv->net_dev->name, err);
4742 return err;
4746 /* send cmd to firmware */
4747 err = ipw2100_hw_send_command(priv, &cmd);
4749 if (!batch_mode)
4750 ipw2100_enable_adapter(priv);
4752 return err;
4755 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4756 int batch_mode)
4758 struct host_command cmd = {
4759 .host_command = CHANNEL,
4760 .host_command_sequence = 0,
4761 .host_command_length = sizeof(u32)
4763 int err;
4765 cmd.host_command_parameters[0] = channel;
4767 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4769 /* If BSS then we don't support channel selection */
4770 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4771 return 0;
4773 if ((channel != 0) &&
4774 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4775 return -EINVAL;
4777 if (!batch_mode) {
4778 err = ipw2100_disable_adapter(priv);
4779 if (err)
4780 return err;
4783 err = ipw2100_hw_send_command(priv, &cmd);
4784 if (err) {
4785 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4786 return err;
4789 if (channel)
4790 priv->config |= CFG_STATIC_CHANNEL;
4791 else
4792 priv->config &= ~CFG_STATIC_CHANNEL;
4794 priv->channel = channel;
4796 if (!batch_mode) {
4797 err = ipw2100_enable_adapter(priv);
4798 if (err)
4799 return err;
4802 return 0;
4805 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4807 struct host_command cmd = {
4808 .host_command = SYSTEM_CONFIG,
4809 .host_command_sequence = 0,
4810 .host_command_length = 12,
4812 u32 ibss_mask, len = sizeof(u32);
4813 int err;
4815 /* Set system configuration */
4817 if (!batch_mode) {
4818 err = ipw2100_disable_adapter(priv);
4819 if (err)
4820 return err;
4823 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4824 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4826 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4827 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4829 if (!(priv->config & CFG_LONG_PREAMBLE))
4830 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4832 err = ipw2100_get_ordinal(priv,
4833 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4834 &ibss_mask, &len);
4835 if (err)
4836 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4838 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4839 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4841 /* 11b only */
4842 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4844 err = ipw2100_hw_send_command(priv, &cmd);
4845 if (err)
4846 return err;
4848 /* If IPv6 is configured in the kernel then we don't want to filter out all
4849 * of the multicast packets as IPv6 needs some. */
4850 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4851 cmd.host_command = ADD_MULTICAST;
4852 cmd.host_command_sequence = 0;
4853 cmd.host_command_length = 0;
4855 ipw2100_hw_send_command(priv, &cmd);
4856 #endif
4857 if (!batch_mode) {
4858 err = ipw2100_enable_adapter(priv);
4859 if (err)
4860 return err;
4863 return 0;
4866 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4867 int batch_mode)
4869 struct host_command cmd = {
4870 .host_command = BASIC_TX_RATES,
4871 .host_command_sequence = 0,
4872 .host_command_length = 4
4874 int err;
4876 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4878 if (!batch_mode) {
4879 err = ipw2100_disable_adapter(priv);
4880 if (err)
4881 return err;
4884 /* Set BASIC TX Rate first */
4885 ipw2100_hw_send_command(priv, &cmd);
4887 /* Set TX Rate */
4888 cmd.host_command = TX_RATES;
4889 ipw2100_hw_send_command(priv, &cmd);
4891 /* Set MSDU TX Rate */
4892 cmd.host_command = MSDU_TX_RATES;
4893 ipw2100_hw_send_command(priv, &cmd);
4895 if (!batch_mode) {
4896 err = ipw2100_enable_adapter(priv);
4897 if (err)
4898 return err;
4901 priv->tx_rates = rate;
4903 return 0;
4906 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4908 struct host_command cmd = {
4909 .host_command = POWER_MODE,
4910 .host_command_sequence = 0,
4911 .host_command_length = 4
4913 int err;
4915 cmd.host_command_parameters[0] = power_level;
4917 err = ipw2100_hw_send_command(priv, &cmd);
4918 if (err)
4919 return err;
4921 if (power_level == IPW_POWER_MODE_CAM)
4922 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4923 else
4924 priv->power_mode = IPW_POWER_ENABLED | power_level;
4926 #ifdef IPW2100_TX_POWER
4927 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4928 /* Set beacon interval */
4929 cmd.host_command = TX_POWER_INDEX;
4930 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4932 err = ipw2100_hw_send_command(priv, &cmd);
4933 if (err)
4934 return err;
4936 #endif
4938 return 0;
4941 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4943 struct host_command cmd = {
4944 .host_command = RTS_THRESHOLD,
4945 .host_command_sequence = 0,
4946 .host_command_length = 4
4948 int err;
4950 if (threshold & RTS_DISABLED)
4951 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4952 else
4953 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4955 err = ipw2100_hw_send_command(priv, &cmd);
4956 if (err)
4957 return err;
4959 priv->rts_threshold = threshold;
4961 return 0;
4964 #if 0
4965 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4966 u32 threshold, int batch_mode)
4968 struct host_command cmd = {
4969 .host_command = FRAG_THRESHOLD,
4970 .host_command_sequence = 0,
4971 .host_command_length = 4,
4972 .host_command_parameters[0] = 0,
4974 int err;
4976 if (!batch_mode) {
4977 err = ipw2100_disable_adapter(priv);
4978 if (err)
4979 return err;
4982 if (threshold == 0)
4983 threshold = DEFAULT_FRAG_THRESHOLD;
4984 else {
4985 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4986 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4989 cmd.host_command_parameters[0] = threshold;
4991 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4993 err = ipw2100_hw_send_command(priv, &cmd);
4995 if (!batch_mode)
4996 ipw2100_enable_adapter(priv);
4998 if (!err)
4999 priv->frag_threshold = threshold;
5001 return err;
5003 #endif
5005 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5007 struct host_command cmd = {
5008 .host_command = SHORT_RETRY_LIMIT,
5009 .host_command_sequence = 0,
5010 .host_command_length = 4
5012 int err;
5014 cmd.host_command_parameters[0] = retry;
5016 err = ipw2100_hw_send_command(priv, &cmd);
5017 if (err)
5018 return err;
5020 priv->short_retry_limit = retry;
5022 return 0;
5025 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5027 struct host_command cmd = {
5028 .host_command = LONG_RETRY_LIMIT,
5029 .host_command_sequence = 0,
5030 .host_command_length = 4
5032 int err;
5034 cmd.host_command_parameters[0] = retry;
5036 err = ipw2100_hw_send_command(priv, &cmd);
5037 if (err)
5038 return err;
5040 priv->long_retry_limit = retry;
5042 return 0;
5045 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5046 int batch_mode)
5048 struct host_command cmd = {
5049 .host_command = MANDATORY_BSSID,
5050 .host_command_sequence = 0,
5051 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5053 int err;
5055 #ifdef CONFIG_IPW2100_DEBUG
5056 DECLARE_MAC_BUF(mac);
5057 if (bssid != NULL)
5058 IPW_DEBUG_HC("MANDATORY_BSSID: %s\n",
5059 print_mac(mac, bssid));
5060 else
5061 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5062 #endif
5063 /* if BSSID is empty then we disable mandatory bssid mode */
5064 if (bssid != NULL)
5065 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5067 if (!batch_mode) {
5068 err = ipw2100_disable_adapter(priv);
5069 if (err)
5070 return err;
5073 err = ipw2100_hw_send_command(priv, &cmd);
5075 if (!batch_mode)
5076 ipw2100_enable_adapter(priv);
5078 return err;
5081 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5083 struct host_command cmd = {
5084 .host_command = DISASSOCIATION_BSSID,
5085 .host_command_sequence = 0,
5086 .host_command_length = ETH_ALEN
5088 int err;
5089 int len;
5091 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5093 len = ETH_ALEN;
5094 /* The Firmware currently ignores the BSSID and just disassociates from
5095 * the currently associated AP -- but in the off chance that a future
5096 * firmware does use the BSSID provided here, we go ahead and try and
5097 * set it to the currently associated AP's BSSID */
5098 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5100 err = ipw2100_hw_send_command(priv, &cmd);
5102 return err;
5105 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5106 struct ipw2100_wpa_assoc_frame *, int)
5107 __attribute__ ((unused));
5109 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5110 struct ipw2100_wpa_assoc_frame *wpa_frame,
5111 int batch_mode)
5113 struct host_command cmd = {
5114 .host_command = SET_WPA_IE,
5115 .host_command_sequence = 0,
5116 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5118 int err;
5120 IPW_DEBUG_HC("SET_WPA_IE\n");
5122 if (!batch_mode) {
5123 err = ipw2100_disable_adapter(priv);
5124 if (err)
5125 return err;
5128 memcpy(cmd.host_command_parameters, wpa_frame,
5129 sizeof(struct ipw2100_wpa_assoc_frame));
5131 err = ipw2100_hw_send_command(priv, &cmd);
5133 if (!batch_mode) {
5134 if (ipw2100_enable_adapter(priv))
5135 err = -EIO;
5138 return err;
5141 struct security_info_params {
5142 u32 allowed_ciphers;
5143 u16 version;
5144 u8 auth_mode;
5145 u8 replay_counters_number;
5146 u8 unicast_using_group;
5147 } __attribute__ ((packed));
5149 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5150 int auth_mode,
5151 int security_level,
5152 int unicast_using_group,
5153 int batch_mode)
5155 struct host_command cmd = {
5156 .host_command = SET_SECURITY_INFORMATION,
5157 .host_command_sequence = 0,
5158 .host_command_length = sizeof(struct security_info_params)
5160 struct security_info_params *security =
5161 (struct security_info_params *)&cmd.host_command_parameters;
5162 int err;
5163 memset(security, 0, sizeof(*security));
5165 /* If shared key AP authentication is turned on, then we need to
5166 * configure the firmware to try and use it.
5168 * Actual data encryption/decryption is handled by the host. */
5169 security->auth_mode = auth_mode;
5170 security->unicast_using_group = unicast_using_group;
5172 switch (security_level) {
5173 default:
5174 case SEC_LEVEL_0:
5175 security->allowed_ciphers = IPW_NONE_CIPHER;
5176 break;
5177 case SEC_LEVEL_1:
5178 security->allowed_ciphers = IPW_WEP40_CIPHER |
5179 IPW_WEP104_CIPHER;
5180 break;
5181 case SEC_LEVEL_2:
5182 security->allowed_ciphers = IPW_WEP40_CIPHER |
5183 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5184 break;
5185 case SEC_LEVEL_2_CKIP:
5186 security->allowed_ciphers = IPW_WEP40_CIPHER |
5187 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5188 break;
5189 case SEC_LEVEL_3:
5190 security->allowed_ciphers = IPW_WEP40_CIPHER |
5191 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5192 break;
5195 IPW_DEBUG_HC
5196 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5197 security->auth_mode, security->allowed_ciphers, security_level);
5199 security->replay_counters_number = 0;
5201 if (!batch_mode) {
5202 err = ipw2100_disable_adapter(priv);
5203 if (err)
5204 return err;
5207 err = ipw2100_hw_send_command(priv, &cmd);
5209 if (!batch_mode)
5210 ipw2100_enable_adapter(priv);
5212 return err;
5215 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5217 struct host_command cmd = {
5218 .host_command = TX_POWER_INDEX,
5219 .host_command_sequence = 0,
5220 .host_command_length = 4
5222 int err = 0;
5223 u32 tmp = tx_power;
5225 if (tx_power != IPW_TX_POWER_DEFAULT)
5226 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5227 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5229 cmd.host_command_parameters[0] = tmp;
5231 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5232 err = ipw2100_hw_send_command(priv, &cmd);
5233 if (!err)
5234 priv->tx_power = tx_power;
5236 return 0;
5239 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5240 u32 interval, int batch_mode)
5242 struct host_command cmd = {
5243 .host_command = BEACON_INTERVAL,
5244 .host_command_sequence = 0,
5245 .host_command_length = 4
5247 int err;
5249 cmd.host_command_parameters[0] = interval;
5251 IPW_DEBUG_INFO("enter\n");
5253 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5254 if (!batch_mode) {
5255 err = ipw2100_disable_adapter(priv);
5256 if (err)
5257 return err;
5260 ipw2100_hw_send_command(priv, &cmd);
5262 if (!batch_mode) {
5263 err = ipw2100_enable_adapter(priv);
5264 if (err)
5265 return err;
5269 IPW_DEBUG_INFO("exit\n");
5271 return 0;
5274 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5276 ipw2100_tx_initialize(priv);
5277 ipw2100_rx_initialize(priv);
5278 ipw2100_msg_initialize(priv);
5281 void ipw2100_queues_free(struct ipw2100_priv *priv)
5283 ipw2100_tx_free(priv);
5284 ipw2100_rx_free(priv);
5285 ipw2100_msg_free(priv);
5288 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5290 if (ipw2100_tx_allocate(priv) ||
5291 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5292 goto fail;
5294 return 0;
5296 fail:
5297 ipw2100_tx_free(priv);
5298 ipw2100_rx_free(priv);
5299 ipw2100_msg_free(priv);
5300 return -ENOMEM;
5303 #define IPW_PRIVACY_CAPABLE 0x0008
5305 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5306 int batch_mode)
5308 struct host_command cmd = {
5309 .host_command = WEP_FLAGS,
5310 .host_command_sequence = 0,
5311 .host_command_length = 4
5313 int err;
5315 cmd.host_command_parameters[0] = flags;
5317 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5319 if (!batch_mode) {
5320 err = ipw2100_disable_adapter(priv);
5321 if (err) {
5322 printk(KERN_ERR DRV_NAME
5323 ": %s: Could not disable adapter %d\n",
5324 priv->net_dev->name, err);
5325 return err;
5329 /* send cmd to firmware */
5330 err = ipw2100_hw_send_command(priv, &cmd);
5332 if (!batch_mode)
5333 ipw2100_enable_adapter(priv);
5335 return err;
5338 struct ipw2100_wep_key {
5339 u8 idx;
5340 u8 len;
5341 u8 key[13];
5344 /* Macros to ease up priting WEP keys */
5345 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5346 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5347 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5348 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5351 * Set a the wep key
5353 * @priv: struct to work on
5354 * @idx: index of the key we want to set
5355 * @key: ptr to the key data to set
5356 * @len: length of the buffer at @key
5357 * @batch_mode: FIXME perform the operation in batch mode, not
5358 * disabling the device.
5360 * @returns 0 if OK, < 0 errno code on error.
5362 * Fill out a command structure with the new wep key, length an
5363 * index and send it down the wire.
5365 static int ipw2100_set_key(struct ipw2100_priv *priv,
5366 int idx, char *key, int len, int batch_mode)
5368 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5369 struct host_command cmd = {
5370 .host_command = WEP_KEY_INFO,
5371 .host_command_sequence = 0,
5372 .host_command_length = sizeof(struct ipw2100_wep_key),
5374 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5375 int err;
5377 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5378 idx, keylen, len);
5380 /* NOTE: We don't check cached values in case the firmware was reset
5381 * or some other problem is occurring. If the user is setting the key,
5382 * then we push the change */
5384 wep_key->idx = idx;
5385 wep_key->len = keylen;
5387 if (keylen) {
5388 memcpy(wep_key->key, key, len);
5389 memset(wep_key->key + len, 0, keylen - len);
5392 /* Will be optimized out on debug not being configured in */
5393 if (keylen == 0)
5394 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5395 priv->net_dev->name, wep_key->idx);
5396 else if (keylen == 5)
5397 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5398 priv->net_dev->name, wep_key->idx, wep_key->len,
5399 WEP_STR_64(wep_key->key));
5400 else
5401 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5402 "\n",
5403 priv->net_dev->name, wep_key->idx, wep_key->len,
5404 WEP_STR_128(wep_key->key));
5406 if (!batch_mode) {
5407 err = ipw2100_disable_adapter(priv);
5408 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5409 if (err) {
5410 printk(KERN_ERR DRV_NAME
5411 ": %s: Could not disable adapter %d\n",
5412 priv->net_dev->name, err);
5413 return err;
5417 /* send cmd to firmware */
5418 err = ipw2100_hw_send_command(priv, &cmd);
5420 if (!batch_mode) {
5421 int err2 = ipw2100_enable_adapter(priv);
5422 if (err == 0)
5423 err = err2;
5425 return err;
5428 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5429 int idx, int batch_mode)
5431 struct host_command cmd = {
5432 .host_command = WEP_KEY_INDEX,
5433 .host_command_sequence = 0,
5434 .host_command_length = 4,
5435 .host_command_parameters = {idx},
5437 int err;
5439 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5441 if (idx < 0 || idx > 3)
5442 return -EINVAL;
5444 if (!batch_mode) {
5445 err = ipw2100_disable_adapter(priv);
5446 if (err) {
5447 printk(KERN_ERR DRV_NAME
5448 ": %s: Could not disable adapter %d\n",
5449 priv->net_dev->name, err);
5450 return err;
5454 /* send cmd to firmware */
5455 err = ipw2100_hw_send_command(priv, &cmd);
5457 if (!batch_mode)
5458 ipw2100_enable_adapter(priv);
5460 return err;
5463 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5465 int i, err, auth_mode, sec_level, use_group;
5467 if (!(priv->status & STATUS_RUNNING))
5468 return 0;
5470 if (!batch_mode) {
5471 err = ipw2100_disable_adapter(priv);
5472 if (err)
5473 return err;
5476 if (!priv->ieee->sec.enabled) {
5477 err =
5478 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5479 SEC_LEVEL_0, 0, 1);
5480 } else {
5481 auth_mode = IPW_AUTH_OPEN;
5482 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5483 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5484 auth_mode = IPW_AUTH_SHARED;
5485 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5486 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5489 sec_level = SEC_LEVEL_0;
5490 if (priv->ieee->sec.flags & SEC_LEVEL)
5491 sec_level = priv->ieee->sec.level;
5493 use_group = 0;
5494 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5495 use_group = priv->ieee->sec.unicast_uses_group;
5497 err =
5498 ipw2100_set_security_information(priv, auth_mode, sec_level,
5499 use_group, 1);
5502 if (err)
5503 goto exit;
5505 if (priv->ieee->sec.enabled) {
5506 for (i = 0; i < 4; i++) {
5507 if (!(priv->ieee->sec.flags & (1 << i))) {
5508 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5509 priv->ieee->sec.key_sizes[i] = 0;
5510 } else {
5511 err = ipw2100_set_key(priv, i,
5512 priv->ieee->sec.keys[i],
5513 priv->ieee->sec.
5514 key_sizes[i], 1);
5515 if (err)
5516 goto exit;
5520 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5523 /* Always enable privacy so the Host can filter WEP packets if
5524 * encrypted data is sent up */
5525 err =
5526 ipw2100_set_wep_flags(priv,
5527 priv->ieee->sec.
5528 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5529 if (err)
5530 goto exit;
5532 priv->status &= ~STATUS_SECURITY_UPDATED;
5534 exit:
5535 if (!batch_mode)
5536 ipw2100_enable_adapter(priv);
5538 return err;
5541 static void ipw2100_security_work(struct work_struct *work)
5543 struct ipw2100_priv *priv =
5544 container_of(work, struct ipw2100_priv, security_work.work);
5546 /* If we happen to have reconnected before we get a chance to
5547 * process this, then update the security settings--which causes
5548 * a disassociation to occur */
5549 if (!(priv->status & STATUS_ASSOCIATED) &&
5550 priv->status & STATUS_SECURITY_UPDATED)
5551 ipw2100_configure_security(priv, 0);
5554 static void shim__set_security(struct net_device *dev,
5555 struct ieee80211_security *sec)
5557 struct ipw2100_priv *priv = ieee80211_priv(dev);
5558 int i, force_update = 0;
5560 mutex_lock(&priv->action_mutex);
5561 if (!(priv->status & STATUS_INITIALIZED))
5562 goto done;
5564 for (i = 0; i < 4; i++) {
5565 if (sec->flags & (1 << i)) {
5566 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5567 if (sec->key_sizes[i] == 0)
5568 priv->ieee->sec.flags &= ~(1 << i);
5569 else
5570 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5571 sec->key_sizes[i]);
5572 if (sec->level == SEC_LEVEL_1) {
5573 priv->ieee->sec.flags |= (1 << i);
5574 priv->status |= STATUS_SECURITY_UPDATED;
5575 } else
5576 priv->ieee->sec.flags &= ~(1 << i);
5580 if ((sec->flags & SEC_ACTIVE_KEY) &&
5581 priv->ieee->sec.active_key != sec->active_key) {
5582 if (sec->active_key <= 3) {
5583 priv->ieee->sec.active_key = sec->active_key;
5584 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5585 } else
5586 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5588 priv->status |= STATUS_SECURITY_UPDATED;
5591 if ((sec->flags & SEC_AUTH_MODE) &&
5592 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5593 priv->ieee->sec.auth_mode = sec->auth_mode;
5594 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5595 priv->status |= STATUS_SECURITY_UPDATED;
5598 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5599 priv->ieee->sec.flags |= SEC_ENABLED;
5600 priv->ieee->sec.enabled = sec->enabled;
5601 priv->status |= STATUS_SECURITY_UPDATED;
5602 force_update = 1;
5605 if (sec->flags & SEC_ENCRYPT)
5606 priv->ieee->sec.encrypt = sec->encrypt;
5608 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5609 priv->ieee->sec.level = sec->level;
5610 priv->ieee->sec.flags |= SEC_LEVEL;
5611 priv->status |= STATUS_SECURITY_UPDATED;
5614 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5615 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5616 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5617 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5618 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5619 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5620 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5621 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5622 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5623 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5625 /* As a temporary work around to enable WPA until we figure out why
5626 * wpa_supplicant toggles the security capability of the driver, which
5627 * forces a disassocation with force_update...
5629 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5630 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5631 ipw2100_configure_security(priv, 0);
5632 done:
5633 mutex_unlock(&priv->action_mutex);
5636 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5638 int err;
5639 int batch_mode = 1;
5640 u8 *bssid;
5642 IPW_DEBUG_INFO("enter\n");
5644 err = ipw2100_disable_adapter(priv);
5645 if (err)
5646 return err;
5647 #ifdef CONFIG_IPW2100_MONITOR
5648 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5649 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5650 if (err)
5651 return err;
5653 IPW_DEBUG_INFO("exit\n");
5655 return 0;
5657 #endif /* CONFIG_IPW2100_MONITOR */
5659 err = ipw2100_read_mac_address(priv);
5660 if (err)
5661 return -EIO;
5663 err = ipw2100_set_mac_address(priv, batch_mode);
5664 if (err)
5665 return err;
5667 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5668 if (err)
5669 return err;
5671 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5672 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5673 if (err)
5674 return err;
5677 err = ipw2100_system_config(priv, batch_mode);
5678 if (err)
5679 return err;
5681 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5682 if (err)
5683 return err;
5685 /* Default to power mode OFF */
5686 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5687 if (err)
5688 return err;
5690 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5691 if (err)
5692 return err;
5694 if (priv->config & CFG_STATIC_BSSID)
5695 bssid = priv->bssid;
5696 else
5697 bssid = NULL;
5698 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5699 if (err)
5700 return err;
5702 if (priv->config & CFG_STATIC_ESSID)
5703 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5704 batch_mode);
5705 else
5706 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5707 if (err)
5708 return err;
5710 err = ipw2100_configure_security(priv, batch_mode);
5711 if (err)
5712 return err;
5714 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5715 err =
5716 ipw2100_set_ibss_beacon_interval(priv,
5717 priv->beacon_interval,
5718 batch_mode);
5719 if (err)
5720 return err;
5722 err = ipw2100_set_tx_power(priv, priv->tx_power);
5723 if (err)
5724 return err;
5728 err = ipw2100_set_fragmentation_threshold(
5729 priv, priv->frag_threshold, batch_mode);
5730 if (err)
5731 return err;
5734 IPW_DEBUG_INFO("exit\n");
5736 return 0;
5739 /*************************************************************************
5741 * EXTERNALLY CALLED METHODS
5743 *************************************************************************/
5745 /* This method is called by the network layer -- not to be confused with
5746 * ipw2100_set_mac_address() declared above called by this driver (and this
5747 * method as well) to talk to the firmware */
5748 static int ipw2100_set_address(struct net_device *dev, void *p)
5750 struct ipw2100_priv *priv = ieee80211_priv(dev);
5751 struct sockaddr *addr = p;
5752 int err = 0;
5754 if (!is_valid_ether_addr(addr->sa_data))
5755 return -EADDRNOTAVAIL;
5757 mutex_lock(&priv->action_mutex);
5759 priv->config |= CFG_CUSTOM_MAC;
5760 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5762 err = ipw2100_set_mac_address(priv, 0);
5763 if (err)
5764 goto done;
5766 priv->reset_backoff = 0;
5767 mutex_unlock(&priv->action_mutex);
5768 ipw2100_reset_adapter(&priv->reset_work.work);
5769 return 0;
5771 done:
5772 mutex_unlock(&priv->action_mutex);
5773 return err;
5776 static int ipw2100_open(struct net_device *dev)
5778 struct ipw2100_priv *priv = ieee80211_priv(dev);
5779 unsigned long flags;
5780 IPW_DEBUG_INFO("dev->open\n");
5782 spin_lock_irqsave(&priv->low_lock, flags);
5783 if (priv->status & STATUS_ASSOCIATED) {
5784 netif_carrier_on(dev);
5785 netif_start_queue(dev);
5787 spin_unlock_irqrestore(&priv->low_lock, flags);
5789 return 0;
5792 static int ipw2100_close(struct net_device *dev)
5794 struct ipw2100_priv *priv = ieee80211_priv(dev);
5795 unsigned long flags;
5796 struct list_head *element;
5797 struct ipw2100_tx_packet *packet;
5799 IPW_DEBUG_INFO("enter\n");
5801 spin_lock_irqsave(&priv->low_lock, flags);
5803 if (priv->status & STATUS_ASSOCIATED)
5804 netif_carrier_off(dev);
5805 netif_stop_queue(dev);
5807 /* Flush the TX queue ... */
5808 while (!list_empty(&priv->tx_pend_list)) {
5809 element = priv->tx_pend_list.next;
5810 packet = list_entry(element, struct ipw2100_tx_packet, list);
5812 list_del(element);
5813 DEC_STAT(&priv->tx_pend_stat);
5815 ieee80211_txb_free(packet->info.d_struct.txb);
5816 packet->info.d_struct.txb = NULL;
5818 list_add_tail(element, &priv->tx_free_list);
5819 INC_STAT(&priv->tx_free_stat);
5821 spin_unlock_irqrestore(&priv->low_lock, flags);
5823 IPW_DEBUG_INFO("exit\n");
5825 return 0;
5829 * TODO: Fix this function... its just wrong
5831 static void ipw2100_tx_timeout(struct net_device *dev)
5833 struct ipw2100_priv *priv = ieee80211_priv(dev);
5835 priv->ieee->stats.tx_errors++;
5837 #ifdef CONFIG_IPW2100_MONITOR
5838 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5839 return;
5840 #endif
5842 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5843 dev->name);
5844 schedule_reset(priv);
5847 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5849 /* This is called when wpa_supplicant loads and closes the driver
5850 * interface. */
5851 priv->ieee->wpa_enabled = value;
5852 return 0;
5855 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5858 struct ieee80211_device *ieee = priv->ieee;
5859 struct ieee80211_security sec = {
5860 .flags = SEC_AUTH_MODE,
5862 int ret = 0;
5864 if (value & IW_AUTH_ALG_SHARED_KEY) {
5865 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5866 ieee->open_wep = 0;
5867 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5868 sec.auth_mode = WLAN_AUTH_OPEN;
5869 ieee->open_wep = 1;
5870 } else if (value & IW_AUTH_ALG_LEAP) {
5871 sec.auth_mode = WLAN_AUTH_LEAP;
5872 ieee->open_wep = 1;
5873 } else
5874 return -EINVAL;
5876 if (ieee->set_security)
5877 ieee->set_security(ieee->dev, &sec);
5878 else
5879 ret = -EOPNOTSUPP;
5881 return ret;
5884 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5885 char *wpa_ie, int wpa_ie_len)
5888 struct ipw2100_wpa_assoc_frame frame;
5890 frame.fixed_ie_mask = 0;
5892 /* copy WPA IE */
5893 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5894 frame.var_ie_len = wpa_ie_len;
5896 /* make sure WPA is enabled */
5897 ipw2100_wpa_enable(priv, 1);
5898 ipw2100_set_wpa_ie(priv, &frame, 0);
5901 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5902 struct ethtool_drvinfo *info)
5904 struct ipw2100_priv *priv = ieee80211_priv(dev);
5905 char fw_ver[64], ucode_ver[64];
5907 strcpy(info->driver, DRV_NAME);
5908 strcpy(info->version, DRV_VERSION);
5910 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5911 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5913 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5914 fw_ver, priv->eeprom_version, ucode_ver);
5916 strcpy(info->bus_info, pci_name(priv->pci_dev));
5919 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5921 struct ipw2100_priv *priv = ieee80211_priv(dev);
5922 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5925 static const struct ethtool_ops ipw2100_ethtool_ops = {
5926 .get_link = ipw2100_ethtool_get_link,
5927 .get_drvinfo = ipw_ethtool_get_drvinfo,
5930 static void ipw2100_hang_check(struct work_struct *work)
5932 struct ipw2100_priv *priv =
5933 container_of(work, struct ipw2100_priv, hang_check.work);
5934 unsigned long flags;
5935 u32 rtc = 0xa5a5a5a5;
5936 u32 len = sizeof(rtc);
5937 int restart = 0;
5939 spin_lock_irqsave(&priv->low_lock, flags);
5941 if (priv->fatal_error != 0) {
5942 /* If fatal_error is set then we need to restart */
5943 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5944 priv->net_dev->name);
5946 restart = 1;
5947 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5948 (rtc == priv->last_rtc)) {
5949 /* Check if firmware is hung */
5950 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5951 priv->net_dev->name);
5953 restart = 1;
5956 if (restart) {
5957 /* Kill timer */
5958 priv->stop_hang_check = 1;
5959 priv->hangs++;
5961 /* Restart the NIC */
5962 schedule_reset(priv);
5965 priv->last_rtc = rtc;
5967 if (!priv->stop_hang_check)
5968 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5970 spin_unlock_irqrestore(&priv->low_lock, flags);
5973 static void ipw2100_rf_kill(struct work_struct *work)
5975 struct ipw2100_priv *priv =
5976 container_of(work, struct ipw2100_priv, rf_kill.work);
5977 unsigned long flags;
5979 spin_lock_irqsave(&priv->low_lock, flags);
5981 if (rf_kill_active(priv)) {
5982 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5983 if (!priv->stop_rf_kill)
5984 queue_delayed_work(priv->workqueue, &priv->rf_kill,
5985 round_jiffies_relative(HZ));
5986 goto exit_unlock;
5989 /* RF Kill is now disabled, so bring the device back up */
5991 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5992 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5993 "device\n");
5994 schedule_reset(priv);
5995 } else
5996 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5997 "enabled\n");
5999 exit_unlock:
6000 spin_unlock_irqrestore(&priv->low_lock, flags);
6003 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6005 /* Look into using netdev destructor to shutdown ieee80211? */
6007 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6008 void __iomem * base_addr,
6009 unsigned long mem_start,
6010 unsigned long mem_len)
6012 struct ipw2100_priv *priv;
6013 struct net_device *dev;
6015 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6016 if (!dev)
6017 return NULL;
6018 priv = ieee80211_priv(dev);
6019 priv->ieee = netdev_priv(dev);
6020 priv->pci_dev = pci_dev;
6021 priv->net_dev = dev;
6023 priv->ieee->hard_start_xmit = ipw2100_tx;
6024 priv->ieee->set_security = shim__set_security;
6026 priv->ieee->perfect_rssi = -20;
6027 priv->ieee->worst_rssi = -85;
6029 dev->open = ipw2100_open;
6030 dev->stop = ipw2100_close;
6031 dev->init = ipw2100_net_init;
6032 dev->ethtool_ops = &ipw2100_ethtool_ops;
6033 dev->tx_timeout = ipw2100_tx_timeout;
6034 dev->wireless_handlers = &ipw2100_wx_handler_def;
6035 priv->wireless_data.ieee80211 = priv->ieee;
6036 dev->wireless_data = &priv->wireless_data;
6037 dev->set_mac_address = ipw2100_set_address;
6038 dev->watchdog_timeo = 3 * HZ;
6039 dev->irq = 0;
6041 dev->base_addr = (unsigned long)base_addr;
6042 dev->mem_start = mem_start;
6043 dev->mem_end = dev->mem_start + mem_len - 1;
6045 /* NOTE: We don't use the wireless_handlers hook
6046 * in dev as the system will start throwing WX requests
6047 * to us before we're actually initialized and it just
6048 * ends up causing problems. So, we just handle
6049 * the WX extensions through the ipw2100_ioctl interface */
6051 /* memset() puts everything to 0, so we only have explicitly set
6052 * those values that need to be something else */
6054 /* If power management is turned on, default to AUTO mode */
6055 priv->power_mode = IPW_POWER_AUTO;
6057 #ifdef CONFIG_IPW2100_MONITOR
6058 priv->config |= CFG_CRC_CHECK;
6059 #endif
6060 priv->ieee->wpa_enabled = 0;
6061 priv->ieee->drop_unencrypted = 0;
6062 priv->ieee->privacy_invoked = 0;
6063 priv->ieee->ieee802_1x = 1;
6065 /* Set module parameters */
6066 switch (mode) {
6067 case 1:
6068 priv->ieee->iw_mode = IW_MODE_ADHOC;
6069 break;
6070 #ifdef CONFIG_IPW2100_MONITOR
6071 case 2:
6072 priv->ieee->iw_mode = IW_MODE_MONITOR;
6073 break;
6074 #endif
6075 default:
6076 case 0:
6077 priv->ieee->iw_mode = IW_MODE_INFRA;
6078 break;
6081 if (disable == 1)
6082 priv->status |= STATUS_RF_KILL_SW;
6084 if (channel != 0 &&
6085 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6086 priv->config |= CFG_STATIC_CHANNEL;
6087 priv->channel = channel;
6090 if (associate)
6091 priv->config |= CFG_ASSOCIATE;
6093 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6094 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6095 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6096 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6097 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6098 priv->tx_power = IPW_TX_POWER_DEFAULT;
6099 priv->tx_rates = DEFAULT_TX_RATES;
6101 strcpy(priv->nick, "ipw2100");
6103 spin_lock_init(&priv->low_lock);
6104 mutex_init(&priv->action_mutex);
6105 mutex_init(&priv->adapter_mutex);
6107 init_waitqueue_head(&priv->wait_command_queue);
6109 netif_carrier_off(dev);
6111 INIT_LIST_HEAD(&priv->msg_free_list);
6112 INIT_LIST_HEAD(&priv->msg_pend_list);
6113 INIT_STAT(&priv->msg_free_stat);
6114 INIT_STAT(&priv->msg_pend_stat);
6116 INIT_LIST_HEAD(&priv->tx_free_list);
6117 INIT_LIST_HEAD(&priv->tx_pend_list);
6118 INIT_STAT(&priv->tx_free_stat);
6119 INIT_STAT(&priv->tx_pend_stat);
6121 INIT_LIST_HEAD(&priv->fw_pend_list);
6122 INIT_STAT(&priv->fw_pend_stat);
6124 priv->workqueue = create_workqueue(DRV_NAME);
6126 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6127 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6128 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6129 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6130 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6131 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6132 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6134 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6135 ipw2100_irq_tasklet, (unsigned long)priv);
6137 /* NOTE: We do not start the deferred work for status checks yet */
6138 priv->stop_rf_kill = 1;
6139 priv->stop_hang_check = 1;
6141 return dev;
6144 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6145 const struct pci_device_id *ent)
6147 unsigned long mem_start, mem_len, mem_flags;
6148 void __iomem *base_addr = NULL;
6149 struct net_device *dev = NULL;
6150 struct ipw2100_priv *priv = NULL;
6151 int err = 0;
6152 int registered = 0;
6153 u32 val;
6155 IPW_DEBUG_INFO("enter\n");
6157 mem_start = pci_resource_start(pci_dev, 0);
6158 mem_len = pci_resource_len(pci_dev, 0);
6159 mem_flags = pci_resource_flags(pci_dev, 0);
6161 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6162 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6163 err = -ENODEV;
6164 goto fail;
6167 base_addr = ioremap_nocache(mem_start, mem_len);
6168 if (!base_addr) {
6169 printk(KERN_WARNING DRV_NAME
6170 "Error calling ioremap_nocache.\n");
6171 err = -EIO;
6172 goto fail;
6175 /* allocate and initialize our net_device */
6176 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6177 if (!dev) {
6178 printk(KERN_WARNING DRV_NAME
6179 "Error calling ipw2100_alloc_device.\n");
6180 err = -ENOMEM;
6181 goto fail;
6184 /* set up PCI mappings for device */
6185 err = pci_enable_device(pci_dev);
6186 if (err) {
6187 printk(KERN_WARNING DRV_NAME
6188 "Error calling pci_enable_device.\n");
6189 return err;
6192 priv = ieee80211_priv(dev);
6194 pci_set_master(pci_dev);
6195 pci_set_drvdata(pci_dev, priv);
6197 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6198 if (err) {
6199 printk(KERN_WARNING DRV_NAME
6200 "Error calling pci_set_dma_mask.\n");
6201 pci_disable_device(pci_dev);
6202 return err;
6205 err = pci_request_regions(pci_dev, DRV_NAME);
6206 if (err) {
6207 printk(KERN_WARNING DRV_NAME
6208 "Error calling pci_request_regions.\n");
6209 pci_disable_device(pci_dev);
6210 return err;
6213 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6214 * PCI Tx retries from interfering with C3 CPU state */
6215 pci_read_config_dword(pci_dev, 0x40, &val);
6216 if ((val & 0x0000ff00) != 0)
6217 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6219 pci_set_power_state(pci_dev, PCI_D0);
6221 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6222 printk(KERN_WARNING DRV_NAME
6223 "Device not found via register read.\n");
6224 err = -ENODEV;
6225 goto fail;
6228 SET_NETDEV_DEV(dev, &pci_dev->dev);
6230 /* Force interrupts to be shut off on the device */
6231 priv->status |= STATUS_INT_ENABLED;
6232 ipw2100_disable_interrupts(priv);
6234 /* Allocate and initialize the Tx/Rx queues and lists */
6235 if (ipw2100_queues_allocate(priv)) {
6236 printk(KERN_WARNING DRV_NAME
6237 "Error calling ipw2100_queues_allocate.\n");
6238 err = -ENOMEM;
6239 goto fail;
6241 ipw2100_queues_initialize(priv);
6243 err = request_irq(pci_dev->irq,
6244 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6245 if (err) {
6246 printk(KERN_WARNING DRV_NAME
6247 "Error calling request_irq: %d.\n", pci_dev->irq);
6248 goto fail;
6250 dev->irq = pci_dev->irq;
6252 IPW_DEBUG_INFO("Attempting to register device...\n");
6254 printk(KERN_INFO DRV_NAME
6255 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6257 /* Bring up the interface. Pre 0.46, after we registered the
6258 * network device we would call ipw2100_up. This introduced a race
6259 * condition with newer hotplug configurations (network was coming
6260 * up and making calls before the device was initialized).
6262 * If we called ipw2100_up before we registered the device, then the
6263 * device name wasn't registered. So, we instead use the net_dev->init
6264 * member to call a function that then just turns and calls ipw2100_up.
6265 * net_dev->init is called after name allocation but before the
6266 * notifier chain is called */
6267 err = register_netdev(dev);
6268 if (err) {
6269 printk(KERN_WARNING DRV_NAME
6270 "Error calling register_netdev.\n");
6271 goto fail;
6274 mutex_lock(&priv->action_mutex);
6275 registered = 1;
6277 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6279 /* perform this after register_netdev so that dev->name is set */
6280 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6281 if (err)
6282 goto fail_unlock;
6284 /* If the RF Kill switch is disabled, go ahead and complete the
6285 * startup sequence */
6286 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6287 /* Enable the adapter - sends HOST_COMPLETE */
6288 if (ipw2100_enable_adapter(priv)) {
6289 printk(KERN_WARNING DRV_NAME
6290 ": %s: failed in call to enable adapter.\n",
6291 priv->net_dev->name);
6292 ipw2100_hw_stop_adapter(priv);
6293 err = -EIO;
6294 goto fail_unlock;
6297 /* Start a scan . . . */
6298 ipw2100_set_scan_options(priv);
6299 ipw2100_start_scan(priv);
6302 IPW_DEBUG_INFO("exit\n");
6304 priv->status |= STATUS_INITIALIZED;
6306 mutex_unlock(&priv->action_mutex);
6308 return 0;
6310 fail_unlock:
6311 mutex_unlock(&priv->action_mutex);
6313 fail:
6314 if (dev) {
6315 if (registered)
6316 unregister_netdev(dev);
6318 ipw2100_hw_stop_adapter(priv);
6320 ipw2100_disable_interrupts(priv);
6322 if (dev->irq)
6323 free_irq(dev->irq, priv);
6325 ipw2100_kill_workqueue(priv);
6327 /* These are safe to call even if they weren't allocated */
6328 ipw2100_queues_free(priv);
6329 sysfs_remove_group(&pci_dev->dev.kobj,
6330 &ipw2100_attribute_group);
6332 free_ieee80211(dev);
6333 pci_set_drvdata(pci_dev, NULL);
6336 if (base_addr)
6337 iounmap(base_addr);
6339 pci_release_regions(pci_dev);
6340 pci_disable_device(pci_dev);
6342 return err;
6345 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6347 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6348 struct net_device *dev;
6350 if (priv) {
6351 mutex_lock(&priv->action_mutex);
6353 priv->status &= ~STATUS_INITIALIZED;
6355 dev = priv->net_dev;
6356 sysfs_remove_group(&pci_dev->dev.kobj,
6357 &ipw2100_attribute_group);
6359 #ifdef CONFIG_PM
6360 if (ipw2100_firmware.version)
6361 ipw2100_release_firmware(priv, &ipw2100_firmware);
6362 #endif
6363 /* Take down the hardware */
6364 ipw2100_down(priv);
6366 /* Release the mutex so that the network subsystem can
6367 * complete any needed calls into the driver... */
6368 mutex_unlock(&priv->action_mutex);
6370 /* Unregister the device first - this results in close()
6371 * being called if the device is open. If we free storage
6372 * first, then close() will crash. */
6373 unregister_netdev(dev);
6375 /* ipw2100_down will ensure that there is no more pending work
6376 * in the workqueue's, so we can safely remove them now. */
6377 ipw2100_kill_workqueue(priv);
6379 ipw2100_queues_free(priv);
6381 /* Free potential debugging firmware snapshot */
6382 ipw2100_snapshot_free(priv);
6384 if (dev->irq)
6385 free_irq(dev->irq, priv);
6387 if (dev->base_addr)
6388 iounmap((void __iomem *)dev->base_addr);
6390 free_ieee80211(dev);
6393 pci_release_regions(pci_dev);
6394 pci_disable_device(pci_dev);
6396 IPW_DEBUG_INFO("exit\n");
6399 #ifdef CONFIG_PM
6400 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6402 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6403 struct net_device *dev = priv->net_dev;
6405 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6407 mutex_lock(&priv->action_mutex);
6408 if (priv->status & STATUS_INITIALIZED) {
6409 /* Take down the device; powers it off, etc. */
6410 ipw2100_down(priv);
6413 /* Remove the PRESENT state of the device */
6414 netif_device_detach(dev);
6416 pci_save_state(pci_dev);
6417 pci_disable_device(pci_dev);
6418 pci_set_power_state(pci_dev, PCI_D3hot);
6420 mutex_unlock(&priv->action_mutex);
6422 return 0;
6425 static int ipw2100_resume(struct pci_dev *pci_dev)
6427 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6428 struct net_device *dev = priv->net_dev;
6429 int err;
6430 u32 val;
6432 if (IPW2100_PM_DISABLED)
6433 return 0;
6435 mutex_lock(&priv->action_mutex);
6437 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6439 pci_set_power_state(pci_dev, PCI_D0);
6440 err = pci_enable_device(pci_dev);
6441 if (err) {
6442 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6443 dev->name);
6444 return err;
6446 pci_restore_state(pci_dev);
6449 * Suspend/Resume resets the PCI configuration space, so we have to
6450 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6451 * from interfering with C3 CPU state. pci_restore_state won't help
6452 * here since it only restores the first 64 bytes pci config header.
6454 pci_read_config_dword(pci_dev, 0x40, &val);
6455 if ((val & 0x0000ff00) != 0)
6456 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6458 /* Set the device back into the PRESENT state; this will also wake
6459 * the queue of needed */
6460 netif_device_attach(dev);
6462 /* Bring the device back up */
6463 if (!(priv->status & STATUS_RF_KILL_SW))
6464 ipw2100_up(priv, 0);
6466 mutex_unlock(&priv->action_mutex);
6468 return 0;
6470 #endif
6472 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6474 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6475 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6476 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6477 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6478 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6479 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6480 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6481 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6482 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6483 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6484 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6485 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6486 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6487 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6489 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6490 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6491 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6492 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6493 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6495 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6496 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6497 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6498 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6499 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6500 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6501 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6503 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6505 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6506 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6507 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6508 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6509 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6510 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6511 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6513 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6514 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6515 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6516 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6517 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6518 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6520 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6521 {0,},
6524 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6526 static struct pci_driver ipw2100_pci_driver = {
6527 .name = DRV_NAME,
6528 .id_table = ipw2100_pci_id_table,
6529 .probe = ipw2100_pci_init_one,
6530 .remove = __devexit_p(ipw2100_pci_remove_one),
6531 #ifdef CONFIG_PM
6532 .suspend = ipw2100_suspend,
6533 .resume = ipw2100_resume,
6534 #endif
6538 * Initialize the ipw2100 driver/module
6540 * @returns 0 if ok, < 0 errno node con error.
6542 * Note: we cannot init the /proc stuff until the PCI driver is there,
6543 * or we risk an unlikely race condition on someone accessing
6544 * uninitialized data in the PCI dev struct through /proc.
6546 static int __init ipw2100_init(void)
6548 int ret;
6550 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6551 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6553 ret = pci_register_driver(&ipw2100_pci_driver);
6554 if (ret)
6555 goto out;
6557 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6558 #ifdef CONFIG_IPW2100_DEBUG
6559 ipw2100_debug_level = debug;
6560 ret = driver_create_file(&ipw2100_pci_driver.driver,
6561 &driver_attr_debug_level);
6562 #endif
6564 out:
6565 return ret;
6569 * Cleanup ipw2100 driver registration
6571 static void __exit ipw2100_exit(void)
6573 /* FIXME: IPG: check that we have no instances of the devices open */
6574 #ifdef CONFIG_IPW2100_DEBUG
6575 driver_remove_file(&ipw2100_pci_driver.driver,
6576 &driver_attr_debug_level);
6577 #endif
6578 pci_unregister_driver(&ipw2100_pci_driver);
6579 remove_acceptable_latency("ipw2100");
6582 module_init(ipw2100_init);
6583 module_exit(ipw2100_exit);
6585 #define WEXT_USECHANNELS 1
6587 static const long ipw2100_frequencies[] = {
6588 2412, 2417, 2422, 2427,
6589 2432, 2437, 2442, 2447,
6590 2452, 2457, 2462, 2467,
6591 2472, 2484
6594 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6595 sizeof(ipw2100_frequencies[0]))
6597 static const long ipw2100_rates_11b[] = {
6598 1000000,
6599 2000000,
6600 5500000,
6601 11000000
6604 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6606 static int ipw2100_wx_get_name(struct net_device *dev,
6607 struct iw_request_info *info,
6608 union iwreq_data *wrqu, char *extra)
6611 * This can be called at any time. No action lock required
6614 struct ipw2100_priv *priv = ieee80211_priv(dev);
6615 if (!(priv->status & STATUS_ASSOCIATED))
6616 strcpy(wrqu->name, "unassociated");
6617 else
6618 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6620 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6621 return 0;
6624 static int ipw2100_wx_set_freq(struct net_device *dev,
6625 struct iw_request_info *info,
6626 union iwreq_data *wrqu, char *extra)
6628 struct ipw2100_priv *priv = ieee80211_priv(dev);
6629 struct iw_freq *fwrq = &wrqu->freq;
6630 int err = 0;
6632 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6633 return -EOPNOTSUPP;
6635 mutex_lock(&priv->action_mutex);
6636 if (!(priv->status & STATUS_INITIALIZED)) {
6637 err = -EIO;
6638 goto done;
6641 /* if setting by freq convert to channel */
6642 if (fwrq->e == 1) {
6643 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6644 int f = fwrq->m / 100000;
6645 int c = 0;
6647 while ((c < REG_MAX_CHANNEL) &&
6648 (f != ipw2100_frequencies[c]))
6649 c++;
6651 /* hack to fall through */
6652 fwrq->e = 0;
6653 fwrq->m = c + 1;
6657 if (fwrq->e > 0 || fwrq->m > 1000) {
6658 err = -EOPNOTSUPP;
6659 goto done;
6660 } else { /* Set the channel */
6661 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6662 err = ipw2100_set_channel(priv, fwrq->m, 0);
6665 done:
6666 mutex_unlock(&priv->action_mutex);
6667 return err;
6670 static int ipw2100_wx_get_freq(struct net_device *dev,
6671 struct iw_request_info *info,
6672 union iwreq_data *wrqu, char *extra)
6675 * This can be called at any time. No action lock required
6678 struct ipw2100_priv *priv = ieee80211_priv(dev);
6680 wrqu->freq.e = 0;
6682 /* If we are associated, trying to associate, or have a statically
6683 * configured CHANNEL then return that; otherwise return ANY */
6684 if (priv->config & CFG_STATIC_CHANNEL ||
6685 priv->status & STATUS_ASSOCIATED)
6686 wrqu->freq.m = priv->channel;
6687 else
6688 wrqu->freq.m = 0;
6690 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6691 return 0;
6695 static int ipw2100_wx_set_mode(struct net_device *dev,
6696 struct iw_request_info *info,
6697 union iwreq_data *wrqu, char *extra)
6699 struct ipw2100_priv *priv = ieee80211_priv(dev);
6700 int err = 0;
6702 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6704 if (wrqu->mode == priv->ieee->iw_mode)
6705 return 0;
6707 mutex_lock(&priv->action_mutex);
6708 if (!(priv->status & STATUS_INITIALIZED)) {
6709 err = -EIO;
6710 goto done;
6713 switch (wrqu->mode) {
6714 #ifdef CONFIG_IPW2100_MONITOR
6715 case IW_MODE_MONITOR:
6716 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6717 break;
6718 #endif /* CONFIG_IPW2100_MONITOR */
6719 case IW_MODE_ADHOC:
6720 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6721 break;
6722 case IW_MODE_INFRA:
6723 case IW_MODE_AUTO:
6724 default:
6725 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6726 break;
6729 done:
6730 mutex_unlock(&priv->action_mutex);
6731 return err;
6734 static int ipw2100_wx_get_mode(struct net_device *dev,
6735 struct iw_request_info *info,
6736 union iwreq_data *wrqu, char *extra)
6739 * This can be called at any time. No action lock required
6742 struct ipw2100_priv *priv = ieee80211_priv(dev);
6744 wrqu->mode = priv->ieee->iw_mode;
6745 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6747 return 0;
6750 #define POWER_MODES 5
6752 /* Values are in microsecond */
6753 static const s32 timeout_duration[POWER_MODES] = {
6754 350000,
6755 250000,
6756 75000,
6757 37000,
6758 25000,
6761 static const s32 period_duration[POWER_MODES] = {
6762 400000,
6763 700000,
6764 1000000,
6765 1000000,
6766 1000000
6769 static int ipw2100_wx_get_range(struct net_device *dev,
6770 struct iw_request_info *info,
6771 union iwreq_data *wrqu, char *extra)
6774 * This can be called at any time. No action lock required
6777 struct ipw2100_priv *priv = ieee80211_priv(dev);
6778 struct iw_range *range = (struct iw_range *)extra;
6779 u16 val;
6780 int i, level;
6782 wrqu->data.length = sizeof(*range);
6783 memset(range, 0, sizeof(*range));
6785 /* Let's try to keep this struct in the same order as in
6786 * linux/include/wireless.h
6789 /* TODO: See what values we can set, and remove the ones we can't
6790 * set, or fill them with some default data.
6793 /* ~5 Mb/s real (802.11b) */
6794 range->throughput = 5 * 1000 * 1000;
6796 // range->sensitivity; /* signal level threshold range */
6798 range->max_qual.qual = 100;
6799 /* TODO: Find real max RSSI and stick here */
6800 range->max_qual.level = 0;
6801 range->max_qual.noise = 0;
6802 range->max_qual.updated = 7; /* Updated all three */
6804 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6805 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6806 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6807 range->avg_qual.noise = 0;
6808 range->avg_qual.updated = 7; /* Updated all three */
6810 range->num_bitrates = RATE_COUNT;
6812 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6813 range->bitrate[i] = ipw2100_rates_11b[i];
6816 range->min_rts = MIN_RTS_THRESHOLD;
6817 range->max_rts = MAX_RTS_THRESHOLD;
6818 range->min_frag = MIN_FRAG_THRESHOLD;
6819 range->max_frag = MAX_FRAG_THRESHOLD;
6821 range->min_pmp = period_duration[0]; /* Minimal PM period */
6822 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6823 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6824 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6826 /* How to decode max/min PM period */
6827 range->pmp_flags = IW_POWER_PERIOD;
6828 /* How to decode max/min PM period */
6829 range->pmt_flags = IW_POWER_TIMEOUT;
6830 /* What PM options are supported */
6831 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6833 range->encoding_size[0] = 5;
6834 range->encoding_size[1] = 13; /* Different token sizes */
6835 range->num_encoding_sizes = 2; /* Number of entry in the list */
6836 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6837 // range->encoding_login_index; /* token index for login token */
6839 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6840 range->txpower_capa = IW_TXPOW_DBM;
6841 range->num_txpower = IW_MAX_TXPOWER;
6842 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6843 i < IW_MAX_TXPOWER;
6844 i++, level -=
6845 ((IPW_TX_POWER_MAX_DBM -
6846 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6847 range->txpower[i] = level / 16;
6848 } else {
6849 range->txpower_capa = 0;
6850 range->num_txpower = 0;
6853 /* Set the Wireless Extension versions */
6854 range->we_version_compiled = WIRELESS_EXT;
6855 range->we_version_source = 18;
6857 // range->retry_capa; /* What retry options are supported */
6858 // range->retry_flags; /* How to decode max/min retry limit */
6859 // range->r_time_flags; /* How to decode max/min retry life */
6860 // range->min_retry; /* Minimal number of retries */
6861 // range->max_retry; /* Maximal number of retries */
6862 // range->min_r_time; /* Minimal retry lifetime */
6863 // range->max_r_time; /* Maximal retry lifetime */
6865 range->num_channels = FREQ_COUNT;
6867 val = 0;
6868 for (i = 0; i < FREQ_COUNT; i++) {
6869 // TODO: Include only legal frequencies for some countries
6870 // if (local->channel_mask & (1 << i)) {
6871 range->freq[val].i = i + 1;
6872 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6873 range->freq[val].e = 1;
6874 val++;
6875 // }
6876 if (val == IW_MAX_FREQUENCIES)
6877 break;
6879 range->num_frequency = val;
6881 /* Event capability (kernel + driver) */
6882 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6883 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6884 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6886 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6887 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6889 IPW_DEBUG_WX("GET Range\n");
6891 return 0;
6894 static int ipw2100_wx_set_wap(struct net_device *dev,
6895 struct iw_request_info *info,
6896 union iwreq_data *wrqu, char *extra)
6898 struct ipw2100_priv *priv = ieee80211_priv(dev);
6899 int err = 0;
6901 static const unsigned char any[] = {
6902 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6904 static const unsigned char off[] = {
6905 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6907 DECLARE_MAC_BUF(mac);
6909 // sanity checks
6910 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6911 return -EINVAL;
6913 mutex_lock(&priv->action_mutex);
6914 if (!(priv->status & STATUS_INITIALIZED)) {
6915 err = -EIO;
6916 goto done;
6919 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6920 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6921 /* we disable mandatory BSSID association */
6922 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6923 priv->config &= ~CFG_STATIC_BSSID;
6924 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6925 goto done;
6928 priv->config |= CFG_STATIC_BSSID;
6929 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6931 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6933 IPW_DEBUG_WX("SET BSSID -> %s\n",
6934 print_mac(mac, wrqu->ap_addr.sa_data));
6936 done:
6937 mutex_unlock(&priv->action_mutex);
6938 return err;
6941 static int ipw2100_wx_get_wap(struct net_device *dev,
6942 struct iw_request_info *info,
6943 union iwreq_data *wrqu, char *extra)
6946 * This can be called at any time. No action lock required
6949 struct ipw2100_priv *priv = ieee80211_priv(dev);
6950 DECLARE_MAC_BUF(mac);
6952 /* If we are associated, trying to associate, or have a statically
6953 * configured BSSID then return that; otherwise return ANY */
6954 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6955 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6956 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6957 } else
6958 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6960 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
6961 print_mac(mac, wrqu->ap_addr.sa_data));
6962 return 0;
6965 static int ipw2100_wx_set_essid(struct net_device *dev,
6966 struct iw_request_info *info,
6967 union iwreq_data *wrqu, char *extra)
6969 struct ipw2100_priv *priv = ieee80211_priv(dev);
6970 char *essid = ""; /* ANY */
6971 int length = 0;
6972 int err = 0;
6974 mutex_lock(&priv->action_mutex);
6975 if (!(priv->status & STATUS_INITIALIZED)) {
6976 err = -EIO;
6977 goto done;
6980 if (wrqu->essid.flags && wrqu->essid.length) {
6981 length = wrqu->essid.length;
6982 essid = extra;
6985 if (length == 0) {
6986 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6987 priv->config &= ~CFG_STATIC_ESSID;
6988 err = ipw2100_set_essid(priv, NULL, 0, 0);
6989 goto done;
6992 length = min(length, IW_ESSID_MAX_SIZE);
6994 priv->config |= CFG_STATIC_ESSID;
6996 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6997 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6998 err = 0;
6999 goto done;
7002 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7003 length);
7005 priv->essid_len = length;
7006 memcpy(priv->essid, essid, priv->essid_len);
7008 err = ipw2100_set_essid(priv, essid, length, 0);
7010 done:
7011 mutex_unlock(&priv->action_mutex);
7012 return err;
7015 static int ipw2100_wx_get_essid(struct net_device *dev,
7016 struct iw_request_info *info,
7017 union iwreq_data *wrqu, char *extra)
7020 * This can be called at any time. No action lock required
7023 struct ipw2100_priv *priv = ieee80211_priv(dev);
7025 /* If we are associated, trying to associate, or have a statically
7026 * configured ESSID then return that; otherwise return ANY */
7027 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7028 IPW_DEBUG_WX("Getting essid: '%s'\n",
7029 escape_essid(priv->essid, priv->essid_len));
7030 memcpy(extra, priv->essid, priv->essid_len);
7031 wrqu->essid.length = priv->essid_len;
7032 wrqu->essid.flags = 1; /* active */
7033 } else {
7034 IPW_DEBUG_WX("Getting essid: ANY\n");
7035 wrqu->essid.length = 0;
7036 wrqu->essid.flags = 0; /* active */
7039 return 0;
7042 static int ipw2100_wx_set_nick(struct net_device *dev,
7043 struct iw_request_info *info,
7044 union iwreq_data *wrqu, char *extra)
7047 * This can be called at any time. No action lock required
7050 struct ipw2100_priv *priv = ieee80211_priv(dev);
7052 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7053 return -E2BIG;
7055 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7056 memset(priv->nick, 0, sizeof(priv->nick));
7057 memcpy(priv->nick, extra, wrqu->data.length);
7059 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7061 return 0;
7064 static int ipw2100_wx_get_nick(struct net_device *dev,
7065 struct iw_request_info *info,
7066 union iwreq_data *wrqu, char *extra)
7069 * This can be called at any time. No action lock required
7072 struct ipw2100_priv *priv = ieee80211_priv(dev);
7074 wrqu->data.length = strlen(priv->nick);
7075 memcpy(extra, priv->nick, wrqu->data.length);
7076 wrqu->data.flags = 1; /* active */
7078 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7080 return 0;
7083 static int ipw2100_wx_set_rate(struct net_device *dev,
7084 struct iw_request_info *info,
7085 union iwreq_data *wrqu, char *extra)
7087 struct ipw2100_priv *priv = ieee80211_priv(dev);
7088 u32 target_rate = wrqu->bitrate.value;
7089 u32 rate;
7090 int err = 0;
7092 mutex_lock(&priv->action_mutex);
7093 if (!(priv->status & STATUS_INITIALIZED)) {
7094 err = -EIO;
7095 goto done;
7098 rate = 0;
7100 if (target_rate == 1000000 ||
7101 (!wrqu->bitrate.fixed && target_rate > 1000000))
7102 rate |= TX_RATE_1_MBIT;
7103 if (target_rate == 2000000 ||
7104 (!wrqu->bitrate.fixed && target_rate > 2000000))
7105 rate |= TX_RATE_2_MBIT;
7106 if (target_rate == 5500000 ||
7107 (!wrqu->bitrate.fixed && target_rate > 5500000))
7108 rate |= TX_RATE_5_5_MBIT;
7109 if (target_rate == 11000000 ||
7110 (!wrqu->bitrate.fixed && target_rate > 11000000))
7111 rate |= TX_RATE_11_MBIT;
7112 if (rate == 0)
7113 rate = DEFAULT_TX_RATES;
7115 err = ipw2100_set_tx_rates(priv, rate, 0);
7117 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7118 done:
7119 mutex_unlock(&priv->action_mutex);
7120 return err;
7123 static int ipw2100_wx_get_rate(struct net_device *dev,
7124 struct iw_request_info *info,
7125 union iwreq_data *wrqu, char *extra)
7127 struct ipw2100_priv *priv = ieee80211_priv(dev);
7128 int val;
7129 int len = sizeof(val);
7130 int err = 0;
7132 if (!(priv->status & STATUS_ENABLED) ||
7133 priv->status & STATUS_RF_KILL_MASK ||
7134 !(priv->status & STATUS_ASSOCIATED)) {
7135 wrqu->bitrate.value = 0;
7136 return 0;
7139 mutex_lock(&priv->action_mutex);
7140 if (!(priv->status & STATUS_INITIALIZED)) {
7141 err = -EIO;
7142 goto done;
7145 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7146 if (err) {
7147 IPW_DEBUG_WX("failed querying ordinals.\n");
7148 return err;
7151 switch (val & TX_RATE_MASK) {
7152 case TX_RATE_1_MBIT:
7153 wrqu->bitrate.value = 1000000;
7154 break;
7155 case TX_RATE_2_MBIT:
7156 wrqu->bitrate.value = 2000000;
7157 break;
7158 case TX_RATE_5_5_MBIT:
7159 wrqu->bitrate.value = 5500000;
7160 break;
7161 case TX_RATE_11_MBIT:
7162 wrqu->bitrate.value = 11000000;
7163 break;
7164 default:
7165 wrqu->bitrate.value = 0;
7168 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7170 done:
7171 mutex_unlock(&priv->action_mutex);
7172 return err;
7175 static int ipw2100_wx_set_rts(struct net_device *dev,
7176 struct iw_request_info *info,
7177 union iwreq_data *wrqu, char *extra)
7179 struct ipw2100_priv *priv = ieee80211_priv(dev);
7180 int value, err;
7182 /* Auto RTS not yet supported */
7183 if (wrqu->rts.fixed == 0)
7184 return -EINVAL;
7186 mutex_lock(&priv->action_mutex);
7187 if (!(priv->status & STATUS_INITIALIZED)) {
7188 err = -EIO;
7189 goto done;
7192 if (wrqu->rts.disabled)
7193 value = priv->rts_threshold | RTS_DISABLED;
7194 else {
7195 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7196 err = -EINVAL;
7197 goto done;
7199 value = wrqu->rts.value;
7202 err = ipw2100_set_rts_threshold(priv, value);
7204 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7205 done:
7206 mutex_unlock(&priv->action_mutex);
7207 return err;
7210 static int ipw2100_wx_get_rts(struct net_device *dev,
7211 struct iw_request_info *info,
7212 union iwreq_data *wrqu, char *extra)
7215 * This can be called at any time. No action lock required
7218 struct ipw2100_priv *priv = ieee80211_priv(dev);
7220 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7221 wrqu->rts.fixed = 1; /* no auto select */
7223 /* If RTS is set to the default value, then it is disabled */
7224 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7226 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7228 return 0;
7231 static int ipw2100_wx_set_txpow(struct net_device *dev,
7232 struct iw_request_info *info,
7233 union iwreq_data *wrqu, char *extra)
7235 struct ipw2100_priv *priv = ieee80211_priv(dev);
7236 int err = 0, value;
7238 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7239 return -EINPROGRESS;
7241 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7242 return 0;
7244 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7245 return -EINVAL;
7247 if (wrqu->txpower.fixed == 0)
7248 value = IPW_TX_POWER_DEFAULT;
7249 else {
7250 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7251 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7252 return -EINVAL;
7254 value = wrqu->txpower.value;
7257 mutex_lock(&priv->action_mutex);
7258 if (!(priv->status & STATUS_INITIALIZED)) {
7259 err = -EIO;
7260 goto done;
7263 err = ipw2100_set_tx_power(priv, value);
7265 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7267 done:
7268 mutex_unlock(&priv->action_mutex);
7269 return err;
7272 static int ipw2100_wx_get_txpow(struct net_device *dev,
7273 struct iw_request_info *info,
7274 union iwreq_data *wrqu, char *extra)
7277 * This can be called at any time. No action lock required
7280 struct ipw2100_priv *priv = ieee80211_priv(dev);
7282 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7284 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7285 wrqu->txpower.fixed = 0;
7286 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7287 } else {
7288 wrqu->txpower.fixed = 1;
7289 wrqu->txpower.value = priv->tx_power;
7292 wrqu->txpower.flags = IW_TXPOW_DBM;
7294 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7296 return 0;
7299 static int ipw2100_wx_set_frag(struct net_device *dev,
7300 struct iw_request_info *info,
7301 union iwreq_data *wrqu, char *extra)
7304 * This can be called at any time. No action lock required
7307 struct ipw2100_priv *priv = ieee80211_priv(dev);
7309 if (!wrqu->frag.fixed)
7310 return -EINVAL;
7312 if (wrqu->frag.disabled) {
7313 priv->frag_threshold |= FRAG_DISABLED;
7314 priv->ieee->fts = DEFAULT_FTS;
7315 } else {
7316 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7317 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7318 return -EINVAL;
7320 priv->ieee->fts = wrqu->frag.value & ~0x1;
7321 priv->frag_threshold = priv->ieee->fts;
7324 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7326 return 0;
7329 static int ipw2100_wx_get_frag(struct net_device *dev,
7330 struct iw_request_info *info,
7331 union iwreq_data *wrqu, char *extra)
7334 * This can be called at any time. No action lock required
7337 struct ipw2100_priv *priv = ieee80211_priv(dev);
7338 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7339 wrqu->frag.fixed = 0; /* no auto select */
7340 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7342 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7344 return 0;
7347 static int ipw2100_wx_set_retry(struct net_device *dev,
7348 struct iw_request_info *info,
7349 union iwreq_data *wrqu, char *extra)
7351 struct ipw2100_priv *priv = ieee80211_priv(dev);
7352 int err = 0;
7354 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7355 return -EINVAL;
7357 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7358 return 0;
7360 mutex_lock(&priv->action_mutex);
7361 if (!(priv->status & STATUS_INITIALIZED)) {
7362 err = -EIO;
7363 goto done;
7366 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7367 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7368 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7369 wrqu->retry.value);
7370 goto done;
7373 if (wrqu->retry.flags & IW_RETRY_LONG) {
7374 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7375 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7376 wrqu->retry.value);
7377 goto done;
7380 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7381 if (!err)
7382 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7384 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7386 done:
7387 mutex_unlock(&priv->action_mutex);
7388 return err;
7391 static int ipw2100_wx_get_retry(struct net_device *dev,
7392 struct iw_request_info *info,
7393 union iwreq_data *wrqu, char *extra)
7396 * This can be called at any time. No action lock required
7399 struct ipw2100_priv *priv = ieee80211_priv(dev);
7401 wrqu->retry.disabled = 0; /* can't be disabled */
7403 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7404 return -EINVAL;
7406 if (wrqu->retry.flags & IW_RETRY_LONG) {
7407 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7408 wrqu->retry.value = priv->long_retry_limit;
7409 } else {
7410 wrqu->retry.flags =
7411 (priv->short_retry_limit !=
7412 priv->long_retry_limit) ?
7413 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7415 wrqu->retry.value = priv->short_retry_limit;
7418 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7420 return 0;
7423 static int ipw2100_wx_set_scan(struct net_device *dev,
7424 struct iw_request_info *info,
7425 union iwreq_data *wrqu, char *extra)
7427 struct ipw2100_priv *priv = ieee80211_priv(dev);
7428 int err = 0;
7430 mutex_lock(&priv->action_mutex);
7431 if (!(priv->status & STATUS_INITIALIZED)) {
7432 err = -EIO;
7433 goto done;
7436 IPW_DEBUG_WX("Initiating scan...\n");
7438 priv->user_requested_scan = 1;
7439 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7440 IPW_DEBUG_WX("Start scan failed.\n");
7442 /* TODO: Mark a scan as pending so when hardware initialized
7443 * a scan starts */
7446 done:
7447 mutex_unlock(&priv->action_mutex);
7448 return err;
7451 static int ipw2100_wx_get_scan(struct net_device *dev,
7452 struct iw_request_info *info,
7453 union iwreq_data *wrqu, char *extra)
7456 * This can be called at any time. No action lock required
7459 struct ipw2100_priv *priv = ieee80211_priv(dev);
7460 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7464 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7466 static int ipw2100_wx_set_encode(struct net_device *dev,
7467 struct iw_request_info *info,
7468 union iwreq_data *wrqu, char *key)
7471 * No check of STATUS_INITIALIZED required
7474 struct ipw2100_priv *priv = ieee80211_priv(dev);
7475 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7478 static int ipw2100_wx_get_encode(struct net_device *dev,
7479 struct iw_request_info *info,
7480 union iwreq_data *wrqu, char *key)
7483 * This can be called at any time. No action lock required
7486 struct ipw2100_priv *priv = ieee80211_priv(dev);
7487 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7490 static int ipw2100_wx_set_power(struct net_device *dev,
7491 struct iw_request_info *info,
7492 union iwreq_data *wrqu, char *extra)
7494 struct ipw2100_priv *priv = ieee80211_priv(dev);
7495 int err = 0;
7497 mutex_lock(&priv->action_mutex);
7498 if (!(priv->status & STATUS_INITIALIZED)) {
7499 err = -EIO;
7500 goto done;
7503 if (wrqu->power.disabled) {
7504 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7505 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7506 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7507 goto done;
7510 switch (wrqu->power.flags & IW_POWER_MODE) {
7511 case IW_POWER_ON: /* If not specified */
7512 case IW_POWER_MODE: /* If set all mask */
7513 case IW_POWER_ALL_R: /* If explicitly state all */
7514 break;
7515 default: /* Otherwise we don't support it */
7516 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7517 wrqu->power.flags);
7518 err = -EOPNOTSUPP;
7519 goto done;
7522 /* If the user hasn't specified a power management mode yet, default
7523 * to BATTERY */
7524 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7525 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7527 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7529 done:
7530 mutex_unlock(&priv->action_mutex);
7531 return err;
7535 static int ipw2100_wx_get_power(struct net_device *dev,
7536 struct iw_request_info *info,
7537 union iwreq_data *wrqu, char *extra)
7540 * This can be called at any time. No action lock required
7543 struct ipw2100_priv *priv = ieee80211_priv(dev);
7545 if (!(priv->power_mode & IPW_POWER_ENABLED))
7546 wrqu->power.disabled = 1;
7547 else {
7548 wrqu->power.disabled = 0;
7549 wrqu->power.flags = 0;
7552 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7554 return 0;
7558 * WE-18 WPA support
7561 /* SIOCSIWGENIE */
7562 static int ipw2100_wx_set_genie(struct net_device *dev,
7563 struct iw_request_info *info,
7564 union iwreq_data *wrqu, char *extra)
7567 struct ipw2100_priv *priv = ieee80211_priv(dev);
7568 struct ieee80211_device *ieee = priv->ieee;
7569 u8 *buf;
7571 if (!ieee->wpa_enabled)
7572 return -EOPNOTSUPP;
7574 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7575 (wrqu->data.length && extra == NULL))
7576 return -EINVAL;
7578 if (wrqu->data.length) {
7579 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7580 if (buf == NULL)
7581 return -ENOMEM;
7583 kfree(ieee->wpa_ie);
7584 ieee->wpa_ie = buf;
7585 ieee->wpa_ie_len = wrqu->data.length;
7586 } else {
7587 kfree(ieee->wpa_ie);
7588 ieee->wpa_ie = NULL;
7589 ieee->wpa_ie_len = 0;
7592 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7594 return 0;
7597 /* SIOCGIWGENIE */
7598 static int ipw2100_wx_get_genie(struct net_device *dev,
7599 struct iw_request_info *info,
7600 union iwreq_data *wrqu, char *extra)
7602 struct ipw2100_priv *priv = ieee80211_priv(dev);
7603 struct ieee80211_device *ieee = priv->ieee;
7605 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7606 wrqu->data.length = 0;
7607 return 0;
7610 if (wrqu->data.length < ieee->wpa_ie_len)
7611 return -E2BIG;
7613 wrqu->data.length = ieee->wpa_ie_len;
7614 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7616 return 0;
7619 /* SIOCSIWAUTH */
7620 static int ipw2100_wx_set_auth(struct net_device *dev,
7621 struct iw_request_info *info,
7622 union iwreq_data *wrqu, char *extra)
7624 struct ipw2100_priv *priv = ieee80211_priv(dev);
7625 struct ieee80211_device *ieee = priv->ieee;
7626 struct iw_param *param = &wrqu->param;
7627 struct ieee80211_crypt_data *crypt;
7628 unsigned long flags;
7629 int ret = 0;
7631 switch (param->flags & IW_AUTH_INDEX) {
7632 case IW_AUTH_WPA_VERSION:
7633 case IW_AUTH_CIPHER_PAIRWISE:
7634 case IW_AUTH_CIPHER_GROUP:
7635 case IW_AUTH_KEY_MGMT:
7637 * ipw2200 does not use these parameters
7639 break;
7641 case IW_AUTH_TKIP_COUNTERMEASURES:
7642 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7643 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7644 break;
7646 flags = crypt->ops->get_flags(crypt->priv);
7648 if (param->value)
7649 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7650 else
7651 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7653 crypt->ops->set_flags(flags, crypt->priv);
7655 break;
7657 case IW_AUTH_DROP_UNENCRYPTED:{
7658 /* HACK:
7660 * wpa_supplicant calls set_wpa_enabled when the driver
7661 * is loaded and unloaded, regardless of if WPA is being
7662 * used. No other calls are made which can be used to
7663 * determine if encryption will be used or not prior to
7664 * association being expected. If encryption is not being
7665 * used, drop_unencrypted is set to false, else true -- we
7666 * can use this to determine if the CAP_PRIVACY_ON bit should
7667 * be set.
7669 struct ieee80211_security sec = {
7670 .flags = SEC_ENABLED,
7671 .enabled = param->value,
7673 priv->ieee->drop_unencrypted = param->value;
7674 /* We only change SEC_LEVEL for open mode. Others
7675 * are set by ipw_wpa_set_encryption.
7677 if (!param->value) {
7678 sec.flags |= SEC_LEVEL;
7679 sec.level = SEC_LEVEL_0;
7680 } else {
7681 sec.flags |= SEC_LEVEL;
7682 sec.level = SEC_LEVEL_1;
7684 if (priv->ieee->set_security)
7685 priv->ieee->set_security(priv->ieee->dev, &sec);
7686 break;
7689 case IW_AUTH_80211_AUTH_ALG:
7690 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7691 break;
7693 case IW_AUTH_WPA_ENABLED:
7694 ret = ipw2100_wpa_enable(priv, param->value);
7695 break;
7697 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7698 ieee->ieee802_1x = param->value;
7699 break;
7701 //case IW_AUTH_ROAMING_CONTROL:
7702 case IW_AUTH_PRIVACY_INVOKED:
7703 ieee->privacy_invoked = param->value;
7704 break;
7706 default:
7707 return -EOPNOTSUPP;
7709 return ret;
7712 /* SIOCGIWAUTH */
7713 static int ipw2100_wx_get_auth(struct net_device *dev,
7714 struct iw_request_info *info,
7715 union iwreq_data *wrqu, char *extra)
7717 struct ipw2100_priv *priv = ieee80211_priv(dev);
7718 struct ieee80211_device *ieee = priv->ieee;
7719 struct ieee80211_crypt_data *crypt;
7720 struct iw_param *param = &wrqu->param;
7721 int ret = 0;
7723 switch (param->flags & IW_AUTH_INDEX) {
7724 case IW_AUTH_WPA_VERSION:
7725 case IW_AUTH_CIPHER_PAIRWISE:
7726 case IW_AUTH_CIPHER_GROUP:
7727 case IW_AUTH_KEY_MGMT:
7729 * wpa_supplicant will control these internally
7731 ret = -EOPNOTSUPP;
7732 break;
7734 case IW_AUTH_TKIP_COUNTERMEASURES:
7735 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7736 if (!crypt || !crypt->ops->get_flags) {
7737 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7738 "crypt not set!\n");
7739 break;
7742 param->value = (crypt->ops->get_flags(crypt->priv) &
7743 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7745 break;
7747 case IW_AUTH_DROP_UNENCRYPTED:
7748 param->value = ieee->drop_unencrypted;
7749 break;
7751 case IW_AUTH_80211_AUTH_ALG:
7752 param->value = priv->ieee->sec.auth_mode;
7753 break;
7755 case IW_AUTH_WPA_ENABLED:
7756 param->value = ieee->wpa_enabled;
7757 break;
7759 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7760 param->value = ieee->ieee802_1x;
7761 break;
7763 case IW_AUTH_ROAMING_CONTROL:
7764 case IW_AUTH_PRIVACY_INVOKED:
7765 param->value = ieee->privacy_invoked;
7766 break;
7768 default:
7769 return -EOPNOTSUPP;
7771 return 0;
7774 /* SIOCSIWENCODEEXT */
7775 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7776 struct iw_request_info *info,
7777 union iwreq_data *wrqu, char *extra)
7779 struct ipw2100_priv *priv = ieee80211_priv(dev);
7780 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7783 /* SIOCGIWENCODEEXT */
7784 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7785 struct iw_request_info *info,
7786 union iwreq_data *wrqu, char *extra)
7788 struct ipw2100_priv *priv = ieee80211_priv(dev);
7789 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7792 /* SIOCSIWMLME */
7793 static int ipw2100_wx_set_mlme(struct net_device *dev,
7794 struct iw_request_info *info,
7795 union iwreq_data *wrqu, char *extra)
7797 struct ipw2100_priv *priv = ieee80211_priv(dev);
7798 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7799 u16 reason;
7801 reason = cpu_to_le16(mlme->reason_code);
7803 switch (mlme->cmd) {
7804 case IW_MLME_DEAUTH:
7805 // silently ignore
7806 break;
7808 case IW_MLME_DISASSOC:
7809 ipw2100_disassociate_bssid(priv);
7810 break;
7812 default:
7813 return -EOPNOTSUPP;
7815 return 0;
7820 * IWPRIV handlers
7823 #ifdef CONFIG_IPW2100_MONITOR
7824 static int ipw2100_wx_set_promisc(struct net_device *dev,
7825 struct iw_request_info *info,
7826 union iwreq_data *wrqu, char *extra)
7828 struct ipw2100_priv *priv = ieee80211_priv(dev);
7829 int *parms = (int *)extra;
7830 int enable = (parms[0] > 0);
7831 int err = 0;
7833 mutex_lock(&priv->action_mutex);
7834 if (!(priv->status & STATUS_INITIALIZED)) {
7835 err = -EIO;
7836 goto done;
7839 if (enable) {
7840 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7841 err = ipw2100_set_channel(priv, parms[1], 0);
7842 goto done;
7844 priv->channel = parms[1];
7845 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7846 } else {
7847 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7848 err = ipw2100_switch_mode(priv, priv->last_mode);
7850 done:
7851 mutex_unlock(&priv->action_mutex);
7852 return err;
7855 static int ipw2100_wx_reset(struct net_device *dev,
7856 struct iw_request_info *info,
7857 union iwreq_data *wrqu, char *extra)
7859 struct ipw2100_priv *priv = ieee80211_priv(dev);
7860 if (priv->status & STATUS_INITIALIZED)
7861 schedule_reset(priv);
7862 return 0;
7865 #endif
7867 static int ipw2100_wx_set_powermode(struct net_device *dev,
7868 struct iw_request_info *info,
7869 union iwreq_data *wrqu, char *extra)
7871 struct ipw2100_priv *priv = ieee80211_priv(dev);
7872 int err = 0, mode = *(int *)extra;
7874 mutex_lock(&priv->action_mutex);
7875 if (!(priv->status & STATUS_INITIALIZED)) {
7876 err = -EIO;
7877 goto done;
7880 if ((mode < 0) || (mode > POWER_MODES))
7881 mode = IPW_POWER_AUTO;
7883 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7884 err = ipw2100_set_power_mode(priv, mode);
7885 done:
7886 mutex_unlock(&priv->action_mutex);
7887 return err;
7890 #define MAX_POWER_STRING 80
7891 static int ipw2100_wx_get_powermode(struct net_device *dev,
7892 struct iw_request_info *info,
7893 union iwreq_data *wrqu, char *extra)
7896 * This can be called at any time. No action lock required
7899 struct ipw2100_priv *priv = ieee80211_priv(dev);
7900 int level = IPW_POWER_LEVEL(priv->power_mode);
7901 s32 timeout, period;
7903 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7904 snprintf(extra, MAX_POWER_STRING,
7905 "Power save level: %d (Off)", level);
7906 } else {
7907 switch (level) {
7908 case IPW_POWER_MODE_CAM:
7909 snprintf(extra, MAX_POWER_STRING,
7910 "Power save level: %d (None)", level);
7911 break;
7912 case IPW_POWER_AUTO:
7913 snprintf(extra, MAX_POWER_STRING,
7914 "Power save level: %d (Auto)", level);
7915 break;
7916 default:
7917 timeout = timeout_duration[level - 1] / 1000;
7918 period = period_duration[level - 1] / 1000;
7919 snprintf(extra, MAX_POWER_STRING,
7920 "Power save level: %d "
7921 "(Timeout %dms, Period %dms)",
7922 level, timeout, period);
7926 wrqu->data.length = strlen(extra) + 1;
7928 return 0;
7931 static int ipw2100_wx_set_preamble(struct net_device *dev,
7932 struct iw_request_info *info,
7933 union iwreq_data *wrqu, char *extra)
7935 struct ipw2100_priv *priv = ieee80211_priv(dev);
7936 int err, mode = *(int *)extra;
7938 mutex_lock(&priv->action_mutex);
7939 if (!(priv->status & STATUS_INITIALIZED)) {
7940 err = -EIO;
7941 goto done;
7944 if (mode == 1)
7945 priv->config |= CFG_LONG_PREAMBLE;
7946 else if (mode == 0)
7947 priv->config &= ~CFG_LONG_PREAMBLE;
7948 else {
7949 err = -EINVAL;
7950 goto done;
7953 err = ipw2100_system_config(priv, 0);
7955 done:
7956 mutex_unlock(&priv->action_mutex);
7957 return err;
7960 static int ipw2100_wx_get_preamble(struct net_device *dev,
7961 struct iw_request_info *info,
7962 union iwreq_data *wrqu, char *extra)
7965 * This can be called at any time. No action lock required
7968 struct ipw2100_priv *priv = ieee80211_priv(dev);
7970 if (priv->config & CFG_LONG_PREAMBLE)
7971 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7972 else
7973 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7975 return 0;
7978 #ifdef CONFIG_IPW2100_MONITOR
7979 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7980 struct iw_request_info *info,
7981 union iwreq_data *wrqu, char *extra)
7983 struct ipw2100_priv *priv = ieee80211_priv(dev);
7984 int err, mode = *(int *)extra;
7986 mutex_lock(&priv->action_mutex);
7987 if (!(priv->status & STATUS_INITIALIZED)) {
7988 err = -EIO;
7989 goto done;
7992 if (mode == 1)
7993 priv->config |= CFG_CRC_CHECK;
7994 else if (mode == 0)
7995 priv->config &= ~CFG_CRC_CHECK;
7996 else {
7997 err = -EINVAL;
7998 goto done;
8000 err = 0;
8002 done:
8003 mutex_unlock(&priv->action_mutex);
8004 return err;
8007 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8008 struct iw_request_info *info,
8009 union iwreq_data *wrqu, char *extra)
8012 * This can be called at any time. No action lock required
8015 struct ipw2100_priv *priv = ieee80211_priv(dev);
8017 if (priv->config & CFG_CRC_CHECK)
8018 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8019 else
8020 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8022 return 0;
8024 #endif /* CONFIG_IPW2100_MONITOR */
8026 static iw_handler ipw2100_wx_handlers[] = {
8027 NULL, /* SIOCSIWCOMMIT */
8028 ipw2100_wx_get_name, /* SIOCGIWNAME */
8029 NULL, /* SIOCSIWNWID */
8030 NULL, /* SIOCGIWNWID */
8031 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8032 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8033 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8034 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8035 NULL, /* SIOCSIWSENS */
8036 NULL, /* SIOCGIWSENS */
8037 NULL, /* SIOCSIWRANGE */
8038 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8039 NULL, /* SIOCSIWPRIV */
8040 NULL, /* SIOCGIWPRIV */
8041 NULL, /* SIOCSIWSTATS */
8042 NULL, /* SIOCGIWSTATS */
8043 NULL, /* SIOCSIWSPY */
8044 NULL, /* SIOCGIWSPY */
8045 NULL, /* SIOCGIWTHRSPY */
8046 NULL, /* SIOCWIWTHRSPY */
8047 ipw2100_wx_set_wap, /* SIOCSIWAP */
8048 ipw2100_wx_get_wap, /* SIOCGIWAP */
8049 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8050 NULL, /* SIOCGIWAPLIST -- deprecated */
8051 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8052 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8053 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8054 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8055 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8056 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8057 NULL, /* -- hole -- */
8058 NULL, /* -- hole -- */
8059 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8060 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8061 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8062 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8063 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8064 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8065 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8066 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8067 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8068 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8069 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8070 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8071 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8072 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8073 NULL, /* -- hole -- */
8074 NULL, /* -- hole -- */
8075 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8076 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8077 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8078 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8079 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8080 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8081 NULL, /* SIOCSIWPMKSA */
8084 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8085 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8086 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8087 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8088 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8089 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8090 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8091 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8093 static const struct iw_priv_args ipw2100_private_args[] = {
8095 #ifdef CONFIG_IPW2100_MONITOR
8097 IPW2100_PRIV_SET_MONITOR,
8098 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8100 IPW2100_PRIV_RESET,
8101 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8102 #endif /* CONFIG_IPW2100_MONITOR */
8105 IPW2100_PRIV_SET_POWER,
8106 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8108 IPW2100_PRIV_GET_POWER,
8109 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8110 "get_power"},
8112 IPW2100_PRIV_SET_LONGPREAMBLE,
8113 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8115 IPW2100_PRIV_GET_LONGPREAMBLE,
8116 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8117 #ifdef CONFIG_IPW2100_MONITOR
8119 IPW2100_PRIV_SET_CRC_CHECK,
8120 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8122 IPW2100_PRIV_GET_CRC_CHECK,
8123 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8124 #endif /* CONFIG_IPW2100_MONITOR */
8127 static iw_handler ipw2100_private_handler[] = {
8128 #ifdef CONFIG_IPW2100_MONITOR
8129 ipw2100_wx_set_promisc,
8130 ipw2100_wx_reset,
8131 #else /* CONFIG_IPW2100_MONITOR */
8132 NULL,
8133 NULL,
8134 #endif /* CONFIG_IPW2100_MONITOR */
8135 ipw2100_wx_set_powermode,
8136 ipw2100_wx_get_powermode,
8137 ipw2100_wx_set_preamble,
8138 ipw2100_wx_get_preamble,
8139 #ifdef CONFIG_IPW2100_MONITOR
8140 ipw2100_wx_set_crc_check,
8141 ipw2100_wx_get_crc_check,
8142 #else /* CONFIG_IPW2100_MONITOR */
8143 NULL,
8144 NULL,
8145 #endif /* CONFIG_IPW2100_MONITOR */
8149 * Get wireless statistics.
8150 * Called by /proc/net/wireless
8151 * Also called by SIOCGIWSTATS
8153 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8155 enum {
8156 POOR = 30,
8157 FAIR = 60,
8158 GOOD = 80,
8159 VERY_GOOD = 90,
8160 EXCELLENT = 95,
8161 PERFECT = 100
8163 int rssi_qual;
8164 int tx_qual;
8165 int beacon_qual;
8167 struct ipw2100_priv *priv = ieee80211_priv(dev);
8168 struct iw_statistics *wstats;
8169 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8170 u32 ord_len = sizeof(u32);
8172 if (!priv)
8173 return (struct iw_statistics *)NULL;
8175 wstats = &priv->wstats;
8177 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8178 * ipw2100_wx_wireless_stats seems to be called before fw is
8179 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8180 * and associated; if not associcated, the values are all meaningless
8181 * anyway, so set them all to NULL and INVALID */
8182 if (!(priv->status & STATUS_ASSOCIATED)) {
8183 wstats->miss.beacon = 0;
8184 wstats->discard.retries = 0;
8185 wstats->qual.qual = 0;
8186 wstats->qual.level = 0;
8187 wstats->qual.noise = 0;
8188 wstats->qual.updated = 7;
8189 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8190 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8191 return wstats;
8194 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8195 &missed_beacons, &ord_len))
8196 goto fail_get_ordinal;
8198 /* If we don't have a connection the quality and level is 0 */
8199 if (!(priv->status & STATUS_ASSOCIATED)) {
8200 wstats->qual.qual = 0;
8201 wstats->qual.level = 0;
8202 } else {
8203 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8204 &rssi, &ord_len))
8205 goto fail_get_ordinal;
8206 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8207 if (rssi < 10)
8208 rssi_qual = rssi * POOR / 10;
8209 else if (rssi < 15)
8210 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8211 else if (rssi < 20)
8212 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8213 else if (rssi < 30)
8214 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8215 10 + GOOD;
8216 else
8217 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8218 10 + VERY_GOOD;
8220 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8221 &tx_retries, &ord_len))
8222 goto fail_get_ordinal;
8224 if (tx_retries > 75)
8225 tx_qual = (90 - tx_retries) * POOR / 15;
8226 else if (tx_retries > 70)
8227 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8228 else if (tx_retries > 65)
8229 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8230 else if (tx_retries > 50)
8231 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8232 15 + GOOD;
8233 else
8234 tx_qual = (50 - tx_retries) *
8235 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8237 if (missed_beacons > 50)
8238 beacon_qual = (60 - missed_beacons) * POOR / 10;
8239 else if (missed_beacons > 40)
8240 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8241 10 + POOR;
8242 else if (missed_beacons > 32)
8243 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8244 18 + FAIR;
8245 else if (missed_beacons > 20)
8246 beacon_qual = (32 - missed_beacons) *
8247 (VERY_GOOD - GOOD) / 20 + GOOD;
8248 else
8249 beacon_qual = (20 - missed_beacons) *
8250 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8252 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8254 #ifdef CONFIG_IPW2100_DEBUG
8255 if (beacon_qual == quality)
8256 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8257 else if (tx_qual == quality)
8258 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8259 else if (quality != 100)
8260 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8261 else
8262 IPW_DEBUG_WX("Quality not clamped.\n");
8263 #endif
8265 wstats->qual.qual = quality;
8266 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8269 wstats->qual.noise = 0;
8270 wstats->qual.updated = 7;
8271 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8273 /* FIXME: this is percent and not a # */
8274 wstats->miss.beacon = missed_beacons;
8276 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8277 &tx_failures, &ord_len))
8278 goto fail_get_ordinal;
8279 wstats->discard.retries = tx_failures;
8281 return wstats;
8283 fail_get_ordinal:
8284 IPW_DEBUG_WX("failed querying ordinals.\n");
8286 return (struct iw_statistics *)NULL;
8289 static struct iw_handler_def ipw2100_wx_handler_def = {
8290 .standard = ipw2100_wx_handlers,
8291 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8292 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8293 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8294 .private = (iw_handler *) ipw2100_private_handler,
8295 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8296 .get_wireless_stats = ipw2100_wx_wireless_stats,
8299 static void ipw2100_wx_event_work(struct work_struct *work)
8301 struct ipw2100_priv *priv =
8302 container_of(work, struct ipw2100_priv, wx_event_work.work);
8303 union iwreq_data wrqu;
8304 int len = ETH_ALEN;
8306 if (priv->status & STATUS_STOPPING)
8307 return;
8309 mutex_lock(&priv->action_mutex);
8311 IPW_DEBUG_WX("enter\n");
8313 mutex_unlock(&priv->action_mutex);
8315 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8317 /* Fetch BSSID from the hardware */
8318 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8319 priv->status & STATUS_RF_KILL_MASK ||
8320 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8321 &priv->bssid, &len)) {
8322 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8323 } else {
8324 /* We now have the BSSID, so can finish setting to the full
8325 * associated state */
8326 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8327 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8328 priv->status &= ~STATUS_ASSOCIATING;
8329 priv->status |= STATUS_ASSOCIATED;
8330 netif_carrier_on(priv->net_dev);
8331 netif_wake_queue(priv->net_dev);
8334 if (!(priv->status & STATUS_ASSOCIATED)) {
8335 IPW_DEBUG_WX("Configuring ESSID\n");
8336 mutex_lock(&priv->action_mutex);
8337 /* This is a disassociation event, so kick the firmware to
8338 * look for another AP */
8339 if (priv->config & CFG_STATIC_ESSID)
8340 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8342 else
8343 ipw2100_set_essid(priv, NULL, 0, 0);
8344 mutex_unlock(&priv->action_mutex);
8347 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8350 #define IPW2100_FW_MAJOR_VERSION 1
8351 #define IPW2100_FW_MINOR_VERSION 3
8353 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8354 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8356 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8357 IPW2100_FW_MAJOR_VERSION)
8359 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8360 "." __stringify(IPW2100_FW_MINOR_VERSION)
8362 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8366 BINARY FIRMWARE HEADER FORMAT
8368 offset length desc
8369 0 2 version
8370 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8371 4 4 fw_len
8372 8 4 uc_len
8373 C fw_len firmware data
8374 12 + fw_len uc_len microcode data
8378 struct ipw2100_fw_header {
8379 short version;
8380 short mode;
8381 unsigned int fw_size;
8382 unsigned int uc_size;
8383 } __attribute__ ((packed));
8385 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8387 struct ipw2100_fw_header *h =
8388 (struct ipw2100_fw_header *)fw->fw_entry->data;
8390 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8391 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8392 "(detected version id of %u). "
8393 "See Documentation/networking/README.ipw2100\n",
8394 h->version);
8395 return 1;
8398 fw->version = h->version;
8399 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8400 fw->fw.size = h->fw_size;
8401 fw->uc.data = fw->fw.data + h->fw_size;
8402 fw->uc.size = h->uc_size;
8404 return 0;
8407 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8408 struct ipw2100_fw *fw)
8410 char *fw_name;
8411 int rc;
8413 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8414 priv->net_dev->name);
8416 switch (priv->ieee->iw_mode) {
8417 case IW_MODE_ADHOC:
8418 fw_name = IPW2100_FW_NAME("-i");
8419 break;
8420 #ifdef CONFIG_IPW2100_MONITOR
8421 case IW_MODE_MONITOR:
8422 fw_name = IPW2100_FW_NAME("-p");
8423 break;
8424 #endif
8425 case IW_MODE_INFRA:
8426 default:
8427 fw_name = IPW2100_FW_NAME("");
8428 break;
8431 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8433 if (rc < 0) {
8434 printk(KERN_ERR DRV_NAME ": "
8435 "%s: Firmware '%s' not available or load failed.\n",
8436 priv->net_dev->name, fw_name);
8437 return rc;
8439 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8440 fw->fw_entry->size);
8442 ipw2100_mod_firmware_load(fw);
8444 return 0;
8447 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8448 struct ipw2100_fw *fw)
8450 fw->version = 0;
8451 if (fw->fw_entry)
8452 release_firmware(fw->fw_entry);
8453 fw->fw_entry = NULL;
8456 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8457 size_t max)
8459 char ver[MAX_FW_VERSION_LEN];
8460 u32 len = MAX_FW_VERSION_LEN;
8461 u32 tmp;
8462 int i;
8463 /* firmware version is an ascii string (max len of 14) */
8464 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8465 return -EIO;
8466 tmp = max;
8467 if (len >= max)
8468 len = max - 1;
8469 for (i = 0; i < len; i++)
8470 buf[i] = ver[i];
8471 buf[i] = '\0';
8472 return tmp;
8475 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8476 size_t max)
8478 u32 ver;
8479 u32 len = sizeof(ver);
8480 /* microcode version is a 32 bit integer */
8481 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8482 return -EIO;
8483 return snprintf(buf, max, "%08X", ver);
8487 * On exit, the firmware will have been freed from the fw list
8489 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8491 /* firmware is constructed of N contiguous entries, each entry is
8492 * structured as:
8494 * offset sie desc
8495 * 0 4 address to write to
8496 * 4 2 length of data run
8497 * 6 length data
8499 unsigned int addr;
8500 unsigned short len;
8502 const unsigned char *firmware_data = fw->fw.data;
8503 unsigned int firmware_data_left = fw->fw.size;
8505 while (firmware_data_left > 0) {
8506 addr = *(u32 *) (firmware_data);
8507 firmware_data += 4;
8508 firmware_data_left -= 4;
8510 len = *(u16 *) (firmware_data);
8511 firmware_data += 2;
8512 firmware_data_left -= 2;
8514 if (len > 32) {
8515 printk(KERN_ERR DRV_NAME ": "
8516 "Invalid firmware run-length of %d bytes\n",
8517 len);
8518 return -EINVAL;
8521 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8522 firmware_data += len;
8523 firmware_data_left -= len;
8526 return 0;
8529 struct symbol_alive_response {
8530 u8 cmd_id;
8531 u8 seq_num;
8532 u8 ucode_rev;
8533 u8 eeprom_valid;
8534 u16 valid_flags;
8535 u8 IEEE_addr[6];
8536 u16 flags;
8537 u16 pcb_rev;
8538 u16 clock_settle_time; // 1us LSB
8539 u16 powerup_settle_time; // 1us LSB
8540 u16 hop_settle_time; // 1us LSB
8541 u8 date[3]; // month, day, year
8542 u8 time[2]; // hours, minutes
8543 u8 ucode_valid;
8546 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8547 struct ipw2100_fw *fw)
8549 struct net_device *dev = priv->net_dev;
8550 const unsigned char *microcode_data = fw->uc.data;
8551 unsigned int microcode_data_left = fw->uc.size;
8552 void __iomem *reg = (void __iomem *)dev->base_addr;
8554 struct symbol_alive_response response;
8555 int i, j;
8556 u8 data;
8558 /* Symbol control */
8559 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8560 readl(reg);
8561 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8562 readl(reg);
8564 /* HW config */
8565 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8566 readl(reg);
8567 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8568 readl(reg);
8570 /* EN_CS_ACCESS bit to reset control store pointer */
8571 write_nic_byte(dev, 0x210000, 0x40);
8572 readl(reg);
8573 write_nic_byte(dev, 0x210000, 0x0);
8574 readl(reg);
8575 write_nic_byte(dev, 0x210000, 0x40);
8576 readl(reg);
8578 /* copy microcode from buffer into Symbol */
8580 while (microcode_data_left > 0) {
8581 write_nic_byte(dev, 0x210010, *microcode_data++);
8582 write_nic_byte(dev, 0x210010, *microcode_data++);
8583 microcode_data_left -= 2;
8586 /* EN_CS_ACCESS bit to reset the control store pointer */
8587 write_nic_byte(dev, 0x210000, 0x0);
8588 readl(reg);
8590 /* Enable System (Reg 0)
8591 * first enable causes garbage in RX FIFO */
8592 write_nic_byte(dev, 0x210000, 0x0);
8593 readl(reg);
8594 write_nic_byte(dev, 0x210000, 0x80);
8595 readl(reg);
8597 /* Reset External Baseband Reg */
8598 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8599 readl(reg);
8600 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8601 readl(reg);
8603 /* HW Config (Reg 5) */
8604 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8605 readl(reg);
8606 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8607 readl(reg);
8609 /* Enable System (Reg 0)
8610 * second enable should be OK */
8611 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8612 readl(reg);
8613 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8615 /* check Symbol is enabled - upped this from 5 as it wasn't always
8616 * catching the update */
8617 for (i = 0; i < 10; i++) {
8618 udelay(10);
8620 /* check Dino is enabled bit */
8621 read_nic_byte(dev, 0x210000, &data);
8622 if (data & 0x1)
8623 break;
8626 if (i == 10) {
8627 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8628 dev->name);
8629 return -EIO;
8632 /* Get Symbol alive response */
8633 for (i = 0; i < 30; i++) {
8634 /* Read alive response structure */
8635 for (j = 0;
8636 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8637 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8639 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8640 break;
8641 udelay(10);
8644 if (i == 30) {
8645 printk(KERN_ERR DRV_NAME
8646 ": %s: No response from Symbol - hw not alive\n",
8647 dev->name);
8648 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8649 return -EIO;
8652 return 0;