kconfig: update kconfig-language text
[pv_ops_mirror.git] / fs / ext3 / balloc.c
blob7a87d15523be62f1d33c72c4d8a2eba359d45237
1 /*
2 * linux/fs/ext3/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd.h>
18 #include <linux/ext3_fs.h>
19 #include <linux/ext3_jbd.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
24 * balloc.c contains the blocks allocation and deallocation routines
28 * The free blocks are managed by bitmaps. A file system contains several
29 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
30 * block for inodes, N blocks for the inode table and data blocks.
32 * The file system contains group descriptors which are located after the
33 * super block. Each descriptor contains the number of the bitmap block and
34 * the free blocks count in the block. The descriptors are loaded in memory
35 * when a file system is mounted (see ext3_fill_super).
39 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
41 /**
42 * ext3_get_group_desc() -- load group descriptor from disk
43 * @sb: super block
44 * @block_group: given block group
45 * @bh: pointer to the buffer head to store the block
46 * group descriptor
48 struct ext3_group_desc * ext3_get_group_desc(struct super_block * sb,
49 unsigned int block_group,
50 struct buffer_head ** bh)
52 unsigned long group_desc;
53 unsigned long offset;
54 struct ext3_group_desc * desc;
55 struct ext3_sb_info *sbi = EXT3_SB(sb);
57 if (block_group >= sbi->s_groups_count) {
58 ext3_error (sb, "ext3_get_group_desc",
59 "block_group >= groups_count - "
60 "block_group = %d, groups_count = %lu",
61 block_group, sbi->s_groups_count);
63 return NULL;
65 smp_rmb();
67 group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
68 offset = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
69 if (!sbi->s_group_desc[group_desc]) {
70 ext3_error (sb, "ext3_get_group_desc",
71 "Group descriptor not loaded - "
72 "block_group = %d, group_desc = %lu, desc = %lu",
73 block_group, group_desc, offset);
74 return NULL;
77 desc = (struct ext3_group_desc *) sbi->s_group_desc[group_desc]->b_data;
78 if (bh)
79 *bh = sbi->s_group_desc[group_desc];
80 return desc + offset;
83 static inline int
84 block_in_use(ext3_fsblk_t block, struct super_block *sb, unsigned char *map)
86 return ext3_test_bit ((block -
87 le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block)) %
88 EXT3_BLOCKS_PER_GROUP(sb), map);
91 /**
92 * read_block_bitmap()
93 * @sb: super block
94 * @block_group: given block group
96 * Read the bitmap for a given block_group, reading into the specified
97 * slot in the superblock's bitmap cache.
99 * Return buffer_head on success or NULL in case of failure.
101 static struct buffer_head *
102 read_block_bitmap(struct super_block *sb, unsigned int block_group)
104 int i;
105 struct ext3_group_desc * desc;
106 struct buffer_head * bh = NULL;
107 ext3_fsblk_t bitmap_blk;
109 desc = ext3_get_group_desc (sb, block_group, NULL);
110 if (!desc)
111 return NULL;
112 bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
113 bh = sb_bread(sb, bitmap_blk);
114 if (!bh)
115 ext3_error (sb, __FUNCTION__,
116 "Cannot read block bitmap - "
117 "block_group = %d, block_bitmap = %u",
118 block_group, le32_to_cpu(desc->bg_block_bitmap));
120 /* check whether block bitmap block number is set */
121 if (!block_in_use(bitmap_blk, sb, bh->b_data)) {
122 /* bad block bitmap */
123 goto error_out;
125 /* check whether the inode bitmap block number is set */
126 bitmap_blk = le32_to_cpu(desc->bg_inode_bitmap);
127 if (!block_in_use(bitmap_blk, sb, bh->b_data)) {
128 /* bad block bitmap */
129 goto error_out;
131 /* check whether the inode table block number is set */
132 bitmap_blk = le32_to_cpu(desc->bg_inode_table);
133 for (i = 0; i < EXT3_SB(sb)->s_itb_per_group; i++, bitmap_blk++) {
134 if (!block_in_use(bitmap_blk, sb, bh->b_data)) {
135 /* bad block bitmap */
136 goto error_out;
140 return bh;
142 error_out:
143 brelse(bh);
144 ext3_error(sb, __FUNCTION__,
145 "Invalid block bitmap - "
146 "block_group = %d, block = %lu",
147 block_group, bitmap_blk);
148 return NULL;
151 * The reservation window structure operations
152 * --------------------------------------------
153 * Operations include:
154 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
156 * We use a red-black tree to represent per-filesystem reservation
157 * windows.
162 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
163 * @rb_root: root of per-filesystem reservation rb tree
164 * @verbose: verbose mode
165 * @fn: function which wishes to dump the reservation map
167 * If verbose is turned on, it will print the whole block reservation
168 * windows(start, end). Otherwise, it will only print out the "bad" windows,
169 * those windows that overlap with their immediate neighbors.
171 #if 1
172 static void __rsv_window_dump(struct rb_root *root, int verbose,
173 const char *fn)
175 struct rb_node *n;
176 struct ext3_reserve_window_node *rsv, *prev;
177 int bad;
179 restart:
180 n = rb_first(root);
181 bad = 0;
182 prev = NULL;
184 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
185 while (n) {
186 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
187 if (verbose)
188 printk("reservation window 0x%p "
189 "start: %lu, end: %lu\n",
190 rsv, rsv->rsv_start, rsv->rsv_end);
191 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
192 printk("Bad reservation %p (start >= end)\n",
193 rsv);
194 bad = 1;
196 if (prev && prev->rsv_end >= rsv->rsv_start) {
197 printk("Bad reservation %p (prev->end >= start)\n",
198 rsv);
199 bad = 1;
201 if (bad) {
202 if (!verbose) {
203 printk("Restarting reservation walk in verbose mode\n");
204 verbose = 1;
205 goto restart;
208 n = rb_next(n);
209 prev = rsv;
211 printk("Window map complete.\n");
212 if (bad)
213 BUG();
215 #define rsv_window_dump(root, verbose) \
216 __rsv_window_dump((root), (verbose), __FUNCTION__)
217 #else
218 #define rsv_window_dump(root, verbose) do {} while (0)
219 #endif
222 * goal_in_my_reservation()
223 * @rsv: inode's reservation window
224 * @grp_goal: given goal block relative to the allocation block group
225 * @group: the current allocation block group
226 * @sb: filesystem super block
228 * Test if the given goal block (group relative) is within the file's
229 * own block reservation window range.
231 * If the reservation window is outside the goal allocation group, return 0;
232 * grp_goal (given goal block) could be -1, which means no specific
233 * goal block. In this case, always return 1.
234 * If the goal block is within the reservation window, return 1;
235 * otherwise, return 0;
237 static int
238 goal_in_my_reservation(struct ext3_reserve_window *rsv, ext3_grpblk_t grp_goal,
239 unsigned int group, struct super_block * sb)
241 ext3_fsblk_t group_first_block, group_last_block;
243 group_first_block = ext3_group_first_block_no(sb, group);
244 group_last_block = group_first_block + (EXT3_BLOCKS_PER_GROUP(sb) - 1);
246 if ((rsv->_rsv_start > group_last_block) ||
247 (rsv->_rsv_end < group_first_block))
248 return 0;
249 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
250 || (grp_goal + group_first_block > rsv->_rsv_end)))
251 return 0;
252 return 1;
256 * search_reserve_window()
257 * @rb_root: root of reservation tree
258 * @goal: target allocation block
260 * Find the reserved window which includes the goal, or the previous one
261 * if the goal is not in any window.
262 * Returns NULL if there are no windows or if all windows start after the goal.
264 static struct ext3_reserve_window_node *
265 search_reserve_window(struct rb_root *root, ext3_fsblk_t goal)
267 struct rb_node *n = root->rb_node;
268 struct ext3_reserve_window_node *rsv;
270 if (!n)
271 return NULL;
273 do {
274 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
276 if (goal < rsv->rsv_start)
277 n = n->rb_left;
278 else if (goal > rsv->rsv_end)
279 n = n->rb_right;
280 else
281 return rsv;
282 } while (n);
284 * We've fallen off the end of the tree: the goal wasn't inside
285 * any particular node. OK, the previous node must be to one
286 * side of the interval containing the goal. If it's the RHS,
287 * we need to back up one.
289 if (rsv->rsv_start > goal) {
290 n = rb_prev(&rsv->rsv_node);
291 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
293 return rsv;
297 * ext3_rsv_window_add() -- Insert a window to the block reservation rb tree.
298 * @sb: super block
299 * @rsv: reservation window to add
301 * Must be called with rsv_lock hold.
303 void ext3_rsv_window_add(struct super_block *sb,
304 struct ext3_reserve_window_node *rsv)
306 struct rb_root *root = &EXT3_SB(sb)->s_rsv_window_root;
307 struct rb_node *node = &rsv->rsv_node;
308 ext3_fsblk_t start = rsv->rsv_start;
310 struct rb_node ** p = &root->rb_node;
311 struct rb_node * parent = NULL;
312 struct ext3_reserve_window_node *this;
314 while (*p)
316 parent = *p;
317 this = rb_entry(parent, struct ext3_reserve_window_node, rsv_node);
319 if (start < this->rsv_start)
320 p = &(*p)->rb_left;
321 else if (start > this->rsv_end)
322 p = &(*p)->rb_right;
323 else {
324 rsv_window_dump(root, 1);
325 BUG();
329 rb_link_node(node, parent, p);
330 rb_insert_color(node, root);
334 * ext3_rsv_window_remove() -- unlink a window from the reservation rb tree
335 * @sb: super block
336 * @rsv: reservation window to remove
338 * Mark the block reservation window as not allocated, and unlink it
339 * from the filesystem reservation window rb tree. Must be called with
340 * rsv_lock hold.
342 static void rsv_window_remove(struct super_block *sb,
343 struct ext3_reserve_window_node *rsv)
345 rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
346 rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
347 rsv->rsv_alloc_hit = 0;
348 rb_erase(&rsv->rsv_node, &EXT3_SB(sb)->s_rsv_window_root);
352 * rsv_is_empty() -- Check if the reservation window is allocated.
353 * @rsv: given reservation window to check
355 * returns 1 if the end block is EXT3_RESERVE_WINDOW_NOT_ALLOCATED.
357 static inline int rsv_is_empty(struct ext3_reserve_window *rsv)
359 /* a valid reservation end block could not be 0 */
360 return rsv->_rsv_end == EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
364 * ext3_init_block_alloc_info()
365 * @inode: file inode structure
367 * Allocate and initialize the reservation window structure, and
368 * link the window to the ext3 inode structure at last
370 * The reservation window structure is only dynamically allocated
371 * and linked to ext3 inode the first time the open file
372 * needs a new block. So, before every ext3_new_block(s) call, for
373 * regular files, we should check whether the reservation window
374 * structure exists or not. In the latter case, this function is called.
375 * Fail to do so will result in block reservation being turned off for that
376 * open file.
378 * This function is called from ext3_get_blocks_handle(), also called
379 * when setting the reservation window size through ioctl before the file
380 * is open for write (needs block allocation).
382 * Needs truncate_mutex protection prior to call this function.
384 void ext3_init_block_alloc_info(struct inode *inode)
386 struct ext3_inode_info *ei = EXT3_I(inode);
387 struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
388 struct super_block *sb = inode->i_sb;
390 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
391 if (block_i) {
392 struct ext3_reserve_window_node *rsv = &block_i->rsv_window_node;
394 rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
395 rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
398 * if filesystem is mounted with NORESERVATION, the goal
399 * reservation window size is set to zero to indicate
400 * block reservation is off
402 if (!test_opt(sb, RESERVATION))
403 rsv->rsv_goal_size = 0;
404 else
405 rsv->rsv_goal_size = EXT3_DEFAULT_RESERVE_BLOCKS;
406 rsv->rsv_alloc_hit = 0;
407 block_i->last_alloc_logical_block = 0;
408 block_i->last_alloc_physical_block = 0;
410 ei->i_block_alloc_info = block_i;
414 * ext3_discard_reservation()
415 * @inode: inode
417 * Discard(free) block reservation window on last file close, or truncate
418 * or at last iput().
420 * It is being called in three cases:
421 * ext3_release_file(): last writer close the file
422 * ext3_clear_inode(): last iput(), when nobody link to this file.
423 * ext3_truncate(): when the block indirect map is about to change.
426 void ext3_discard_reservation(struct inode *inode)
428 struct ext3_inode_info *ei = EXT3_I(inode);
429 struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
430 struct ext3_reserve_window_node *rsv;
431 spinlock_t *rsv_lock = &EXT3_SB(inode->i_sb)->s_rsv_window_lock;
433 if (!block_i)
434 return;
436 rsv = &block_i->rsv_window_node;
437 if (!rsv_is_empty(&rsv->rsv_window)) {
438 spin_lock(rsv_lock);
439 if (!rsv_is_empty(&rsv->rsv_window))
440 rsv_window_remove(inode->i_sb, rsv);
441 spin_unlock(rsv_lock);
446 * ext3_free_blocks_sb() -- Free given blocks and update quota
447 * @handle: handle to this transaction
448 * @sb: super block
449 * @block: start physcial block to free
450 * @count: number of blocks to free
451 * @pdquot_freed_blocks: pointer to quota
453 void ext3_free_blocks_sb(handle_t *handle, struct super_block *sb,
454 ext3_fsblk_t block, unsigned long count,
455 unsigned long *pdquot_freed_blocks)
457 struct buffer_head *bitmap_bh = NULL;
458 struct buffer_head *gd_bh;
459 unsigned long block_group;
460 ext3_grpblk_t bit;
461 unsigned long i;
462 unsigned long overflow;
463 struct ext3_group_desc * desc;
464 struct ext3_super_block * es;
465 struct ext3_sb_info *sbi;
466 int err = 0, ret;
467 ext3_grpblk_t group_freed;
469 *pdquot_freed_blocks = 0;
470 sbi = EXT3_SB(sb);
471 es = sbi->s_es;
472 if (block < le32_to_cpu(es->s_first_data_block) ||
473 block + count < block ||
474 block + count > le32_to_cpu(es->s_blocks_count)) {
475 ext3_error (sb, "ext3_free_blocks",
476 "Freeing blocks not in datazone - "
477 "block = "E3FSBLK", count = %lu", block, count);
478 goto error_return;
481 ext3_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
483 do_more:
484 overflow = 0;
485 block_group = (block - le32_to_cpu(es->s_first_data_block)) /
486 EXT3_BLOCKS_PER_GROUP(sb);
487 bit = (block - le32_to_cpu(es->s_first_data_block)) %
488 EXT3_BLOCKS_PER_GROUP(sb);
490 * Check to see if we are freeing blocks across a group
491 * boundary.
493 if (bit + count > EXT3_BLOCKS_PER_GROUP(sb)) {
494 overflow = bit + count - EXT3_BLOCKS_PER_GROUP(sb);
495 count -= overflow;
497 brelse(bitmap_bh);
498 bitmap_bh = read_block_bitmap(sb, block_group);
499 if (!bitmap_bh)
500 goto error_return;
501 desc = ext3_get_group_desc (sb, block_group, &gd_bh);
502 if (!desc)
503 goto error_return;
505 if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
506 in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
507 in_range (block, le32_to_cpu(desc->bg_inode_table),
508 sbi->s_itb_per_group) ||
509 in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
510 sbi->s_itb_per_group))
511 ext3_error (sb, "ext3_free_blocks",
512 "Freeing blocks in system zones - "
513 "Block = "E3FSBLK", count = %lu",
514 block, count);
517 * We are about to start releasing blocks in the bitmap,
518 * so we need undo access.
520 /* @@@ check errors */
521 BUFFER_TRACE(bitmap_bh, "getting undo access");
522 err = ext3_journal_get_undo_access(handle, bitmap_bh);
523 if (err)
524 goto error_return;
527 * We are about to modify some metadata. Call the journal APIs
528 * to unshare ->b_data if a currently-committing transaction is
529 * using it
531 BUFFER_TRACE(gd_bh, "get_write_access");
532 err = ext3_journal_get_write_access(handle, gd_bh);
533 if (err)
534 goto error_return;
536 jbd_lock_bh_state(bitmap_bh);
538 for (i = 0, group_freed = 0; i < count; i++) {
540 * An HJ special. This is expensive...
542 #ifdef CONFIG_JBD_DEBUG
543 jbd_unlock_bh_state(bitmap_bh);
545 struct buffer_head *debug_bh;
546 debug_bh = sb_find_get_block(sb, block + i);
547 if (debug_bh) {
548 BUFFER_TRACE(debug_bh, "Deleted!");
549 if (!bh2jh(bitmap_bh)->b_committed_data)
550 BUFFER_TRACE(debug_bh,
551 "No commited data in bitmap");
552 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
553 __brelse(debug_bh);
556 jbd_lock_bh_state(bitmap_bh);
557 #endif
558 if (need_resched()) {
559 jbd_unlock_bh_state(bitmap_bh);
560 cond_resched();
561 jbd_lock_bh_state(bitmap_bh);
563 /* @@@ This prevents newly-allocated data from being
564 * freed and then reallocated within the same
565 * transaction.
567 * Ideally we would want to allow that to happen, but to
568 * do so requires making journal_forget() capable of
569 * revoking the queued write of a data block, which
570 * implies blocking on the journal lock. *forget()
571 * cannot block due to truncate races.
573 * Eventually we can fix this by making journal_forget()
574 * return a status indicating whether or not it was able
575 * to revoke the buffer. On successful revoke, it is
576 * safe not to set the allocation bit in the committed
577 * bitmap, because we know that there is no outstanding
578 * activity on the buffer any more and so it is safe to
579 * reallocate it.
581 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
582 J_ASSERT_BH(bitmap_bh,
583 bh2jh(bitmap_bh)->b_committed_data != NULL);
584 ext3_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
585 bh2jh(bitmap_bh)->b_committed_data);
588 * We clear the bit in the bitmap after setting the committed
589 * data bit, because this is the reverse order to that which
590 * the allocator uses.
592 BUFFER_TRACE(bitmap_bh, "clear bit");
593 if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
594 bit + i, bitmap_bh->b_data)) {
595 jbd_unlock_bh_state(bitmap_bh);
596 ext3_error(sb, __FUNCTION__,
597 "bit already cleared for block "E3FSBLK,
598 block + i);
599 jbd_lock_bh_state(bitmap_bh);
600 BUFFER_TRACE(bitmap_bh, "bit already cleared");
601 } else {
602 group_freed++;
605 jbd_unlock_bh_state(bitmap_bh);
607 spin_lock(sb_bgl_lock(sbi, block_group));
608 desc->bg_free_blocks_count =
609 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
610 group_freed);
611 spin_unlock(sb_bgl_lock(sbi, block_group));
612 percpu_counter_add(&sbi->s_freeblocks_counter, count);
614 /* We dirtied the bitmap block */
615 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
616 err = ext3_journal_dirty_metadata(handle, bitmap_bh);
618 /* And the group descriptor block */
619 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
620 ret = ext3_journal_dirty_metadata(handle, gd_bh);
621 if (!err) err = ret;
622 *pdquot_freed_blocks += group_freed;
624 if (overflow && !err) {
625 block += count;
626 count = overflow;
627 goto do_more;
629 sb->s_dirt = 1;
630 error_return:
631 brelse(bitmap_bh);
632 ext3_std_error(sb, err);
633 return;
637 * ext3_free_blocks() -- Free given blocks and update quota
638 * @handle: handle for this transaction
639 * @inode: inode
640 * @block: start physical block to free
641 * @count: number of blocks to count
643 void ext3_free_blocks(handle_t *handle, struct inode *inode,
644 ext3_fsblk_t block, unsigned long count)
646 struct super_block * sb;
647 unsigned long dquot_freed_blocks;
649 sb = inode->i_sb;
650 if (!sb) {
651 printk ("ext3_free_blocks: nonexistent device");
652 return;
654 ext3_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
655 if (dquot_freed_blocks)
656 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
657 return;
661 * ext3_test_allocatable()
662 * @nr: given allocation block group
663 * @bh: bufferhead contains the bitmap of the given block group
665 * For ext3 allocations, we must not reuse any blocks which are
666 * allocated in the bitmap buffer's "last committed data" copy. This
667 * prevents deletes from freeing up the page for reuse until we have
668 * committed the delete transaction.
670 * If we didn't do this, then deleting something and reallocating it as
671 * data would allow the old block to be overwritten before the
672 * transaction committed (because we force data to disk before commit).
673 * This would lead to corruption if we crashed between overwriting the
674 * data and committing the delete.
676 * @@@ We may want to make this allocation behaviour conditional on
677 * data-writes at some point, and disable it for metadata allocations or
678 * sync-data inodes.
680 static int ext3_test_allocatable(ext3_grpblk_t nr, struct buffer_head *bh)
682 int ret;
683 struct journal_head *jh = bh2jh(bh);
685 if (ext3_test_bit(nr, bh->b_data))
686 return 0;
688 jbd_lock_bh_state(bh);
689 if (!jh->b_committed_data)
690 ret = 1;
691 else
692 ret = !ext3_test_bit(nr, jh->b_committed_data);
693 jbd_unlock_bh_state(bh);
694 return ret;
698 * bitmap_search_next_usable_block()
699 * @start: the starting block (group relative) of the search
700 * @bh: bufferhead contains the block group bitmap
701 * @maxblocks: the ending block (group relative) of the reservation
703 * The bitmap search --- search forward alternately through the actual
704 * bitmap on disk and the last-committed copy in journal, until we find a
705 * bit free in both bitmaps.
707 static ext3_grpblk_t
708 bitmap_search_next_usable_block(ext3_grpblk_t start, struct buffer_head *bh,
709 ext3_grpblk_t maxblocks)
711 ext3_grpblk_t next;
712 struct journal_head *jh = bh2jh(bh);
714 while (start < maxblocks) {
715 next = ext3_find_next_zero_bit(bh->b_data, maxblocks, start);
716 if (next >= maxblocks)
717 return -1;
718 if (ext3_test_allocatable(next, bh))
719 return next;
720 jbd_lock_bh_state(bh);
721 if (jh->b_committed_data)
722 start = ext3_find_next_zero_bit(jh->b_committed_data,
723 maxblocks, next);
724 jbd_unlock_bh_state(bh);
726 return -1;
730 * find_next_usable_block()
731 * @start: the starting block (group relative) to find next
732 * allocatable block in bitmap.
733 * @bh: bufferhead contains the block group bitmap
734 * @maxblocks: the ending block (group relative) for the search
736 * Find an allocatable block in a bitmap. We honor both the bitmap and
737 * its last-committed copy (if that exists), and perform the "most
738 * appropriate allocation" algorithm of looking for a free block near
739 * the initial goal; then for a free byte somewhere in the bitmap; then
740 * for any free bit in the bitmap.
742 static ext3_grpblk_t
743 find_next_usable_block(ext3_grpblk_t start, struct buffer_head *bh,
744 ext3_grpblk_t maxblocks)
746 ext3_grpblk_t here, next;
747 char *p, *r;
749 if (start > 0) {
751 * The goal was occupied; search forward for a free
752 * block within the next XX blocks.
754 * end_goal is more or less random, but it has to be
755 * less than EXT3_BLOCKS_PER_GROUP. Aligning up to the
756 * next 64-bit boundary is simple..
758 ext3_grpblk_t end_goal = (start + 63) & ~63;
759 if (end_goal > maxblocks)
760 end_goal = maxblocks;
761 here = ext3_find_next_zero_bit(bh->b_data, end_goal, start);
762 if (here < end_goal && ext3_test_allocatable(here, bh))
763 return here;
764 ext3_debug("Bit not found near goal\n");
767 here = start;
768 if (here < 0)
769 here = 0;
771 p = ((char *)bh->b_data) + (here >> 3);
772 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
773 next = (r - ((char *)bh->b_data)) << 3;
775 if (next < maxblocks && next >= start && ext3_test_allocatable(next, bh))
776 return next;
779 * The bitmap search --- search forward alternately through the actual
780 * bitmap and the last-committed copy until we find a bit free in
781 * both
783 here = bitmap_search_next_usable_block(here, bh, maxblocks);
784 return here;
788 * claim_block()
789 * @block: the free block (group relative) to allocate
790 * @bh: the bufferhead containts the block group bitmap
792 * We think we can allocate this block in this bitmap. Try to set the bit.
793 * If that succeeds then check that nobody has allocated and then freed the
794 * block since we saw that is was not marked in b_committed_data. If it _was_
795 * allocated and freed then clear the bit in the bitmap again and return
796 * zero (failure).
798 static inline int
799 claim_block(spinlock_t *lock, ext3_grpblk_t block, struct buffer_head *bh)
801 struct journal_head *jh = bh2jh(bh);
802 int ret;
804 if (ext3_set_bit_atomic(lock, block, bh->b_data))
805 return 0;
806 jbd_lock_bh_state(bh);
807 if (jh->b_committed_data && ext3_test_bit(block,jh->b_committed_data)) {
808 ext3_clear_bit_atomic(lock, block, bh->b_data);
809 ret = 0;
810 } else {
811 ret = 1;
813 jbd_unlock_bh_state(bh);
814 return ret;
818 * ext3_try_to_allocate()
819 * @sb: superblock
820 * @handle: handle to this transaction
821 * @group: given allocation block group
822 * @bitmap_bh: bufferhead holds the block bitmap
823 * @grp_goal: given target block within the group
824 * @count: target number of blocks to allocate
825 * @my_rsv: reservation window
827 * Attempt to allocate blocks within a give range. Set the range of allocation
828 * first, then find the first free bit(s) from the bitmap (within the range),
829 * and at last, allocate the blocks by claiming the found free bit as allocated.
831 * To set the range of this allocation:
832 * if there is a reservation window, only try to allocate block(s) from the
833 * file's own reservation window;
834 * Otherwise, the allocation range starts from the give goal block, ends at
835 * the block group's last block.
837 * If we failed to allocate the desired block then we may end up crossing to a
838 * new bitmap. In that case we must release write access to the old one via
839 * ext3_journal_release_buffer(), else we'll run out of credits.
841 static ext3_grpblk_t
842 ext3_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
843 struct buffer_head *bitmap_bh, ext3_grpblk_t grp_goal,
844 unsigned long *count, struct ext3_reserve_window *my_rsv)
846 ext3_fsblk_t group_first_block;
847 ext3_grpblk_t start, end;
848 unsigned long num = 0;
850 /* we do allocation within the reservation window if we have a window */
851 if (my_rsv) {
852 group_first_block = ext3_group_first_block_no(sb, group);
853 if (my_rsv->_rsv_start >= group_first_block)
854 start = my_rsv->_rsv_start - group_first_block;
855 else
856 /* reservation window cross group boundary */
857 start = 0;
858 end = my_rsv->_rsv_end - group_first_block + 1;
859 if (end > EXT3_BLOCKS_PER_GROUP(sb))
860 /* reservation window crosses group boundary */
861 end = EXT3_BLOCKS_PER_GROUP(sb);
862 if ((start <= grp_goal) && (grp_goal < end))
863 start = grp_goal;
864 else
865 grp_goal = -1;
866 } else {
867 if (grp_goal > 0)
868 start = grp_goal;
869 else
870 start = 0;
871 end = EXT3_BLOCKS_PER_GROUP(sb);
874 BUG_ON(start > EXT3_BLOCKS_PER_GROUP(sb));
876 repeat:
877 if (grp_goal < 0 || !ext3_test_allocatable(grp_goal, bitmap_bh)) {
878 grp_goal = find_next_usable_block(start, bitmap_bh, end);
879 if (grp_goal < 0)
880 goto fail_access;
881 if (!my_rsv) {
882 int i;
884 for (i = 0; i < 7 && grp_goal > start &&
885 ext3_test_allocatable(grp_goal - 1,
886 bitmap_bh);
887 i++, grp_goal--)
891 start = grp_goal;
893 if (!claim_block(sb_bgl_lock(EXT3_SB(sb), group),
894 grp_goal, bitmap_bh)) {
896 * The block was allocated by another thread, or it was
897 * allocated and then freed by another thread
899 start++;
900 grp_goal++;
901 if (start >= end)
902 goto fail_access;
903 goto repeat;
905 num++;
906 grp_goal++;
907 while (num < *count && grp_goal < end
908 && ext3_test_allocatable(grp_goal, bitmap_bh)
909 && claim_block(sb_bgl_lock(EXT3_SB(sb), group),
910 grp_goal, bitmap_bh)) {
911 num++;
912 grp_goal++;
914 *count = num;
915 return grp_goal - num;
916 fail_access:
917 *count = num;
918 return -1;
922 * find_next_reservable_window():
923 * find a reservable space within the given range.
924 * It does not allocate the reservation window for now:
925 * alloc_new_reservation() will do the work later.
927 * @search_head: the head of the searching list;
928 * This is not necessarily the list head of the whole filesystem
930 * We have both head and start_block to assist the search
931 * for the reservable space. The list starts from head,
932 * but we will shift to the place where start_block is,
933 * then start from there, when looking for a reservable space.
935 * @size: the target new reservation window size
937 * @group_first_block: the first block we consider to start
938 * the real search from
940 * @last_block:
941 * the maximum block number that our goal reservable space
942 * could start from. This is normally the last block in this
943 * group. The search will end when we found the start of next
944 * possible reservable space is out of this boundary.
945 * This could handle the cross boundary reservation window
946 * request.
948 * basically we search from the given range, rather than the whole
949 * reservation double linked list, (start_block, last_block)
950 * to find a free region that is of my size and has not
951 * been reserved.
954 static int find_next_reservable_window(
955 struct ext3_reserve_window_node *search_head,
956 struct ext3_reserve_window_node *my_rsv,
957 struct super_block * sb,
958 ext3_fsblk_t start_block,
959 ext3_fsblk_t last_block)
961 struct rb_node *next;
962 struct ext3_reserve_window_node *rsv, *prev;
963 ext3_fsblk_t cur;
964 int size = my_rsv->rsv_goal_size;
966 /* TODO: make the start of the reservation window byte-aligned */
967 /* cur = *start_block & ~7;*/
968 cur = start_block;
969 rsv = search_head;
970 if (!rsv)
971 return -1;
973 while (1) {
974 if (cur <= rsv->rsv_end)
975 cur = rsv->rsv_end + 1;
977 /* TODO?
978 * in the case we could not find a reservable space
979 * that is what is expected, during the re-search, we could
980 * remember what's the largest reservable space we could have
981 * and return that one.
983 * For now it will fail if we could not find the reservable
984 * space with expected-size (or more)...
986 if (cur > last_block)
987 return -1; /* fail */
989 prev = rsv;
990 next = rb_next(&rsv->rsv_node);
991 rsv = rb_entry(next,struct ext3_reserve_window_node,rsv_node);
994 * Reached the last reservation, we can just append to the
995 * previous one.
997 if (!next)
998 break;
1000 if (cur + size <= rsv->rsv_start) {
1002 * Found a reserveable space big enough. We could
1003 * have a reservation across the group boundary here
1005 break;
1009 * we come here either :
1010 * when we reach the end of the whole list,
1011 * and there is empty reservable space after last entry in the list.
1012 * append it to the end of the list.
1014 * or we found one reservable space in the middle of the list,
1015 * return the reservation window that we could append to.
1016 * succeed.
1019 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1020 rsv_window_remove(sb, my_rsv);
1023 * Let's book the whole avaliable window for now. We will check the
1024 * disk bitmap later and then, if there are free blocks then we adjust
1025 * the window size if it's larger than requested.
1026 * Otherwise, we will remove this node from the tree next time
1027 * call find_next_reservable_window.
1029 my_rsv->rsv_start = cur;
1030 my_rsv->rsv_end = cur + size - 1;
1031 my_rsv->rsv_alloc_hit = 0;
1033 if (prev != my_rsv)
1034 ext3_rsv_window_add(sb, my_rsv);
1036 return 0;
1040 * alloc_new_reservation()--allocate a new reservation window
1042 * To make a new reservation, we search part of the filesystem
1043 * reservation list (the list that inside the group). We try to
1044 * allocate a new reservation window near the allocation goal,
1045 * or the beginning of the group, if there is no goal.
1047 * We first find a reservable space after the goal, then from
1048 * there, we check the bitmap for the first free block after
1049 * it. If there is no free block until the end of group, then the
1050 * whole group is full, we failed. Otherwise, check if the free
1051 * block is inside the expected reservable space, if so, we
1052 * succeed.
1053 * If the first free block is outside the reservable space, then
1054 * start from the first free block, we search for next available
1055 * space, and go on.
1057 * on succeed, a new reservation will be found and inserted into the list
1058 * It contains at least one free block, and it does not overlap with other
1059 * reservation windows.
1061 * failed: we failed to find a reservation window in this group
1063 * @rsv: the reservation
1065 * @grp_goal: The goal (group-relative). It is where the search for a
1066 * free reservable space should start from.
1067 * if we have a grp_goal(grp_goal >0 ), then start from there,
1068 * no grp_goal(grp_goal = -1), we start from the first block
1069 * of the group.
1071 * @sb: the super block
1072 * @group: the group we are trying to allocate in
1073 * @bitmap_bh: the block group block bitmap
1076 static int alloc_new_reservation(struct ext3_reserve_window_node *my_rsv,
1077 ext3_grpblk_t grp_goal, struct super_block *sb,
1078 unsigned int group, struct buffer_head *bitmap_bh)
1080 struct ext3_reserve_window_node *search_head;
1081 ext3_fsblk_t group_first_block, group_end_block, start_block;
1082 ext3_grpblk_t first_free_block;
1083 struct rb_root *fs_rsv_root = &EXT3_SB(sb)->s_rsv_window_root;
1084 unsigned long size;
1085 int ret;
1086 spinlock_t *rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
1088 group_first_block = ext3_group_first_block_no(sb, group);
1089 group_end_block = group_first_block + (EXT3_BLOCKS_PER_GROUP(sb) - 1);
1091 if (grp_goal < 0)
1092 start_block = group_first_block;
1093 else
1094 start_block = grp_goal + group_first_block;
1096 size = my_rsv->rsv_goal_size;
1098 if (!rsv_is_empty(&my_rsv->rsv_window)) {
1100 * if the old reservation is cross group boundary
1101 * and if the goal is inside the old reservation window,
1102 * we will come here when we just failed to allocate from
1103 * the first part of the window. We still have another part
1104 * that belongs to the next group. In this case, there is no
1105 * point to discard our window and try to allocate a new one
1106 * in this group(which will fail). we should
1107 * keep the reservation window, just simply move on.
1109 * Maybe we could shift the start block of the reservation
1110 * window to the first block of next group.
1113 if ((my_rsv->rsv_start <= group_end_block) &&
1114 (my_rsv->rsv_end > group_end_block) &&
1115 (start_block >= my_rsv->rsv_start))
1116 return -1;
1118 if ((my_rsv->rsv_alloc_hit >
1119 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1121 * if the previously allocation hit ratio is
1122 * greater than 1/2, then we double the size of
1123 * the reservation window the next time,
1124 * otherwise we keep the same size window
1126 size = size * 2;
1127 if (size > EXT3_MAX_RESERVE_BLOCKS)
1128 size = EXT3_MAX_RESERVE_BLOCKS;
1129 my_rsv->rsv_goal_size= size;
1133 spin_lock(rsv_lock);
1135 * shift the search start to the window near the goal block
1137 search_head = search_reserve_window(fs_rsv_root, start_block);
1140 * find_next_reservable_window() simply finds a reservable window
1141 * inside the given range(start_block, group_end_block).
1143 * To make sure the reservation window has a free bit inside it, we
1144 * need to check the bitmap after we found a reservable window.
1146 retry:
1147 ret = find_next_reservable_window(search_head, my_rsv, sb,
1148 start_block, group_end_block);
1150 if (ret == -1) {
1151 if (!rsv_is_empty(&my_rsv->rsv_window))
1152 rsv_window_remove(sb, my_rsv);
1153 spin_unlock(rsv_lock);
1154 return -1;
1158 * On success, find_next_reservable_window() returns the
1159 * reservation window where there is a reservable space after it.
1160 * Before we reserve this reservable space, we need
1161 * to make sure there is at least a free block inside this region.
1163 * searching the first free bit on the block bitmap and copy of
1164 * last committed bitmap alternatively, until we found a allocatable
1165 * block. Search start from the start block of the reservable space
1166 * we just found.
1168 spin_unlock(rsv_lock);
1169 first_free_block = bitmap_search_next_usable_block(
1170 my_rsv->rsv_start - group_first_block,
1171 bitmap_bh, group_end_block - group_first_block + 1);
1173 if (first_free_block < 0) {
1175 * no free block left on the bitmap, no point
1176 * to reserve the space. return failed.
1178 spin_lock(rsv_lock);
1179 if (!rsv_is_empty(&my_rsv->rsv_window))
1180 rsv_window_remove(sb, my_rsv);
1181 spin_unlock(rsv_lock);
1182 return -1; /* failed */
1185 start_block = first_free_block + group_first_block;
1187 * check if the first free block is within the
1188 * free space we just reserved
1190 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1191 return 0; /* success */
1193 * if the first free bit we found is out of the reservable space
1194 * continue search for next reservable space,
1195 * start from where the free block is,
1196 * we also shift the list head to where we stopped last time
1198 search_head = my_rsv;
1199 spin_lock(rsv_lock);
1200 goto retry;
1204 * try_to_extend_reservation()
1205 * @my_rsv: given reservation window
1206 * @sb: super block
1207 * @size: the delta to extend
1209 * Attempt to expand the reservation window large enough to have
1210 * required number of free blocks
1212 * Since ext3_try_to_allocate() will always allocate blocks within
1213 * the reservation window range, if the window size is too small,
1214 * multiple blocks allocation has to stop at the end of the reservation
1215 * window. To make this more efficient, given the total number of
1216 * blocks needed and the current size of the window, we try to
1217 * expand the reservation window size if necessary on a best-effort
1218 * basis before ext3_new_blocks() tries to allocate blocks,
1220 static void try_to_extend_reservation(struct ext3_reserve_window_node *my_rsv,
1221 struct super_block *sb, int size)
1223 struct ext3_reserve_window_node *next_rsv;
1224 struct rb_node *next;
1225 spinlock_t *rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
1227 if (!spin_trylock(rsv_lock))
1228 return;
1230 next = rb_next(&my_rsv->rsv_node);
1232 if (!next)
1233 my_rsv->rsv_end += size;
1234 else {
1235 next_rsv = rb_entry(next, struct ext3_reserve_window_node, rsv_node);
1237 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1238 my_rsv->rsv_end += size;
1239 else
1240 my_rsv->rsv_end = next_rsv->rsv_start - 1;
1242 spin_unlock(rsv_lock);
1246 * ext3_try_to_allocate_with_rsv()
1247 * @sb: superblock
1248 * @handle: handle to this transaction
1249 * @group: given allocation block group
1250 * @bitmap_bh: bufferhead holds the block bitmap
1251 * @grp_goal: given target block within the group
1252 * @count: target number of blocks to allocate
1253 * @my_rsv: reservation window
1254 * @errp: pointer to store the error code
1256 * This is the main function used to allocate a new block and its reservation
1257 * window.
1259 * Each time when a new block allocation is need, first try to allocate from
1260 * its own reservation. If it does not have a reservation window, instead of
1261 * looking for a free bit on bitmap first, then look up the reservation list to
1262 * see if it is inside somebody else's reservation window, we try to allocate a
1263 * reservation window for it starting from the goal first. Then do the block
1264 * allocation within the reservation window.
1266 * This will avoid keeping on searching the reservation list again and
1267 * again when somebody is looking for a free block (without
1268 * reservation), and there are lots of free blocks, but they are all
1269 * being reserved.
1271 * We use a red-black tree for the per-filesystem reservation list.
1274 static ext3_grpblk_t
1275 ext3_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1276 unsigned int group, struct buffer_head *bitmap_bh,
1277 ext3_grpblk_t grp_goal,
1278 struct ext3_reserve_window_node * my_rsv,
1279 unsigned long *count, int *errp)
1281 ext3_fsblk_t group_first_block, group_last_block;
1282 ext3_grpblk_t ret = 0;
1283 int fatal;
1284 unsigned long num = *count;
1286 *errp = 0;
1289 * Make sure we use undo access for the bitmap, because it is critical
1290 * that we do the frozen_data COW on bitmap buffers in all cases even
1291 * if the buffer is in BJ_Forget state in the committing transaction.
1293 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1294 fatal = ext3_journal_get_undo_access(handle, bitmap_bh);
1295 if (fatal) {
1296 *errp = fatal;
1297 return -1;
1301 * we don't deal with reservation when
1302 * filesystem is mounted without reservation
1303 * or the file is not a regular file
1304 * or last attempt to allocate a block with reservation turned on failed
1306 if (my_rsv == NULL ) {
1307 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh,
1308 grp_goal, count, NULL);
1309 goto out;
1312 * grp_goal is a group relative block number (if there is a goal)
1313 * 0 <= grp_goal < EXT3_BLOCKS_PER_GROUP(sb)
1314 * first block is a filesystem wide block number
1315 * first block is the block number of the first block in this group
1317 group_first_block = ext3_group_first_block_no(sb, group);
1318 group_last_block = group_first_block + (EXT3_BLOCKS_PER_GROUP(sb) - 1);
1321 * Basically we will allocate a new block from inode's reservation
1322 * window.
1324 * We need to allocate a new reservation window, if:
1325 * a) inode does not have a reservation window; or
1326 * b) last attempt to allocate a block from existing reservation
1327 * failed; or
1328 * c) we come here with a goal and with a reservation window
1330 * We do not need to allocate a new reservation window if we come here
1331 * at the beginning with a goal and the goal is inside the window, or
1332 * we don't have a goal but already have a reservation window.
1333 * then we could go to allocate from the reservation window directly.
1335 while (1) {
1336 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1337 !goal_in_my_reservation(&my_rsv->rsv_window,
1338 grp_goal, group, sb)) {
1339 if (my_rsv->rsv_goal_size < *count)
1340 my_rsv->rsv_goal_size = *count;
1341 ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1342 group, bitmap_bh);
1343 if (ret < 0)
1344 break; /* failed */
1346 if (!goal_in_my_reservation(&my_rsv->rsv_window,
1347 grp_goal, group, sb))
1348 grp_goal = -1;
1349 } else if (grp_goal >= 0) {
1350 int curr = my_rsv->rsv_end -
1351 (grp_goal + group_first_block) + 1;
1353 if (curr < *count)
1354 try_to_extend_reservation(my_rsv, sb,
1355 *count - curr);
1358 if ((my_rsv->rsv_start > group_last_block) ||
1359 (my_rsv->rsv_end < group_first_block)) {
1360 rsv_window_dump(&EXT3_SB(sb)->s_rsv_window_root, 1);
1361 BUG();
1363 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh,
1364 grp_goal, &num, &my_rsv->rsv_window);
1365 if (ret >= 0) {
1366 my_rsv->rsv_alloc_hit += num;
1367 *count = num;
1368 break; /* succeed */
1370 num = *count;
1372 out:
1373 if (ret >= 0) {
1374 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1375 "bitmap block");
1376 fatal = ext3_journal_dirty_metadata(handle, bitmap_bh);
1377 if (fatal) {
1378 *errp = fatal;
1379 return -1;
1381 return ret;
1384 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1385 ext3_journal_release_buffer(handle, bitmap_bh);
1386 return ret;
1390 * ext3_has_free_blocks()
1391 * @sbi: in-core super block structure.
1393 * Check if filesystem has at least 1 free block available for allocation.
1395 static int ext3_has_free_blocks(struct ext3_sb_info *sbi)
1397 ext3_fsblk_t free_blocks, root_blocks;
1399 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1400 root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1401 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1402 sbi->s_resuid != current->fsuid &&
1403 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1404 return 0;
1406 return 1;
1410 * ext3_should_retry_alloc()
1411 * @sb: super block
1412 * @retries number of attemps has been made
1414 * ext3_should_retry_alloc() is called when ENOSPC is returned, and if
1415 * it is profitable to retry the operation, this function will wait
1416 * for the current or commiting transaction to complete, and then
1417 * return TRUE.
1419 * if the total number of retries exceed three times, return FALSE.
1421 int ext3_should_retry_alloc(struct super_block *sb, int *retries)
1423 if (!ext3_has_free_blocks(EXT3_SB(sb)) || (*retries)++ > 3)
1424 return 0;
1426 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1428 return journal_force_commit_nested(EXT3_SB(sb)->s_journal);
1432 * ext3_new_blocks() -- core block(s) allocation function
1433 * @handle: handle to this transaction
1434 * @inode: file inode
1435 * @goal: given target block(filesystem wide)
1436 * @count: target number of blocks to allocate
1437 * @errp: error code
1439 * ext3_new_blocks uses a goal block to assist allocation. It tries to
1440 * allocate block(s) from the block group contains the goal block first. If that
1441 * fails, it will try to allocate block(s) from other block groups without
1442 * any specific goal block.
1445 ext3_fsblk_t ext3_new_blocks(handle_t *handle, struct inode *inode,
1446 ext3_fsblk_t goal, unsigned long *count, int *errp)
1448 struct buffer_head *bitmap_bh = NULL;
1449 struct buffer_head *gdp_bh;
1450 int group_no;
1451 int goal_group;
1452 ext3_grpblk_t grp_target_blk; /* blockgroup relative goal block */
1453 ext3_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
1454 ext3_fsblk_t ret_block; /* filesyetem-wide allocated block */
1455 int bgi; /* blockgroup iteration index */
1456 int fatal = 0, err;
1457 int performed_allocation = 0;
1458 ext3_grpblk_t free_blocks; /* number of free blocks in a group */
1459 struct super_block *sb;
1460 struct ext3_group_desc *gdp;
1461 struct ext3_super_block *es;
1462 struct ext3_sb_info *sbi;
1463 struct ext3_reserve_window_node *my_rsv = NULL;
1464 struct ext3_block_alloc_info *block_i;
1465 unsigned short windowsz = 0;
1466 #ifdef EXT3FS_DEBUG
1467 static int goal_hits, goal_attempts;
1468 #endif
1469 unsigned long ngroups;
1470 unsigned long num = *count;
1472 *errp = -ENOSPC;
1473 sb = inode->i_sb;
1474 if (!sb) {
1475 printk("ext3_new_block: nonexistent device");
1476 return 0;
1480 * Check quota for allocation of this block.
1482 if (DQUOT_ALLOC_BLOCK(inode, num)) {
1483 *errp = -EDQUOT;
1484 return 0;
1487 sbi = EXT3_SB(sb);
1488 es = EXT3_SB(sb)->s_es;
1489 ext3_debug("goal=%lu.\n", goal);
1491 * Allocate a block from reservation only when
1492 * filesystem is mounted with reservation(default,-o reservation), and
1493 * it's a regular file, and
1494 * the desired window size is greater than 0 (One could use ioctl
1495 * command EXT3_IOC_SETRSVSZ to set the window size to 0 to turn off
1496 * reservation on that particular file)
1498 block_i = EXT3_I(inode)->i_block_alloc_info;
1499 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1500 my_rsv = &block_i->rsv_window_node;
1502 if (!ext3_has_free_blocks(sbi)) {
1503 *errp = -ENOSPC;
1504 goto out;
1508 * First, test whether the goal block is free.
1510 if (goal < le32_to_cpu(es->s_first_data_block) ||
1511 goal >= le32_to_cpu(es->s_blocks_count))
1512 goal = le32_to_cpu(es->s_first_data_block);
1513 group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1514 EXT3_BLOCKS_PER_GROUP(sb);
1515 goal_group = group_no;
1516 retry_alloc:
1517 gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1518 if (!gdp)
1519 goto io_error;
1521 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1523 * if there is not enough free blocks to make a new resevation
1524 * turn off reservation for this allocation
1526 if (my_rsv && (free_blocks < windowsz)
1527 && (rsv_is_empty(&my_rsv->rsv_window)))
1528 my_rsv = NULL;
1530 if (free_blocks > 0) {
1531 grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) %
1532 EXT3_BLOCKS_PER_GROUP(sb));
1533 bitmap_bh = read_block_bitmap(sb, group_no);
1534 if (!bitmap_bh)
1535 goto io_error;
1536 grp_alloc_blk = ext3_try_to_allocate_with_rsv(sb, handle,
1537 group_no, bitmap_bh, grp_target_blk,
1538 my_rsv, &num, &fatal);
1539 if (fatal)
1540 goto out;
1541 if (grp_alloc_blk >= 0)
1542 goto allocated;
1545 ngroups = EXT3_SB(sb)->s_groups_count;
1546 smp_rmb();
1549 * Now search the rest of the groups. We assume that
1550 * i and gdp correctly point to the last group visited.
1552 for (bgi = 0; bgi < ngroups; bgi++) {
1553 group_no++;
1554 if (group_no >= ngroups)
1555 group_no = 0;
1556 gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1557 if (!gdp)
1558 goto io_error;
1559 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1561 * skip this group if the number of
1562 * free blocks is less than half of the reservation
1563 * window size.
1565 if (free_blocks <= (windowsz/2))
1566 continue;
1568 brelse(bitmap_bh);
1569 bitmap_bh = read_block_bitmap(sb, group_no);
1570 if (!bitmap_bh)
1571 goto io_error;
1573 * try to allocate block(s) from this group, without a goal(-1).
1575 grp_alloc_blk = ext3_try_to_allocate_with_rsv(sb, handle,
1576 group_no, bitmap_bh, -1, my_rsv,
1577 &num, &fatal);
1578 if (fatal)
1579 goto out;
1580 if (grp_alloc_blk >= 0)
1581 goto allocated;
1584 * We may end up a bogus ealier ENOSPC error due to
1585 * filesystem is "full" of reservations, but
1586 * there maybe indeed free blocks avaliable on disk
1587 * In this case, we just forget about the reservations
1588 * just do block allocation as without reservations.
1590 if (my_rsv) {
1591 my_rsv = NULL;
1592 windowsz = 0;
1593 group_no = goal_group;
1594 goto retry_alloc;
1596 /* No space left on the device */
1597 *errp = -ENOSPC;
1598 goto out;
1600 allocated:
1602 ext3_debug("using block group %d(%d)\n",
1603 group_no, gdp->bg_free_blocks_count);
1605 BUFFER_TRACE(gdp_bh, "get_write_access");
1606 fatal = ext3_journal_get_write_access(handle, gdp_bh);
1607 if (fatal)
1608 goto out;
1610 ret_block = grp_alloc_blk + ext3_group_first_block_no(sb, group_no);
1612 if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) ||
1613 in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) ||
1614 in_range(ret_block, le32_to_cpu(gdp->bg_inode_table),
1615 EXT3_SB(sb)->s_itb_per_group) ||
1616 in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table),
1617 EXT3_SB(sb)->s_itb_per_group))
1618 ext3_error(sb, "ext3_new_block",
1619 "Allocating block in system zone - "
1620 "blocks from "E3FSBLK", length %lu",
1621 ret_block, num);
1623 performed_allocation = 1;
1625 #ifdef CONFIG_JBD_DEBUG
1627 struct buffer_head *debug_bh;
1629 /* Record bitmap buffer state in the newly allocated block */
1630 debug_bh = sb_find_get_block(sb, ret_block);
1631 if (debug_bh) {
1632 BUFFER_TRACE(debug_bh, "state when allocated");
1633 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1634 brelse(debug_bh);
1637 jbd_lock_bh_state(bitmap_bh);
1638 spin_lock(sb_bgl_lock(sbi, group_no));
1639 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1640 int i;
1642 for (i = 0; i < num; i++) {
1643 if (ext3_test_bit(grp_alloc_blk+i,
1644 bh2jh(bitmap_bh)->b_committed_data)) {
1645 printk("%s: block was unexpectedly set in "
1646 "b_committed_data\n", __FUNCTION__);
1650 ext3_debug("found bit %d\n", grp_alloc_blk);
1651 spin_unlock(sb_bgl_lock(sbi, group_no));
1652 jbd_unlock_bh_state(bitmap_bh);
1653 #endif
1655 if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) {
1656 ext3_error(sb, "ext3_new_block",
1657 "block("E3FSBLK") >= blocks count(%d) - "
1658 "block_group = %d, es == %p ", ret_block,
1659 le32_to_cpu(es->s_blocks_count), group_no, es);
1660 goto out;
1664 * It is up to the caller to add the new buffer to a journal
1665 * list of some description. We don't know in advance whether
1666 * the caller wants to use it as metadata or data.
1668 ext3_debug("allocating block %lu. Goal hits %d of %d.\n",
1669 ret_block, goal_hits, goal_attempts);
1671 spin_lock(sb_bgl_lock(sbi, group_no));
1672 gdp->bg_free_blocks_count =
1673 cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1674 spin_unlock(sb_bgl_lock(sbi, group_no));
1675 percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1677 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1678 err = ext3_journal_dirty_metadata(handle, gdp_bh);
1679 if (!fatal)
1680 fatal = err;
1682 sb->s_dirt = 1;
1683 if (fatal)
1684 goto out;
1686 *errp = 0;
1687 brelse(bitmap_bh);
1688 DQUOT_FREE_BLOCK(inode, *count-num);
1689 *count = num;
1690 return ret_block;
1692 io_error:
1693 *errp = -EIO;
1694 out:
1695 if (fatal) {
1696 *errp = fatal;
1697 ext3_std_error(sb, fatal);
1700 * Undo the block allocation
1702 if (!performed_allocation)
1703 DQUOT_FREE_BLOCK(inode, *count);
1704 brelse(bitmap_bh);
1705 return 0;
1708 ext3_fsblk_t ext3_new_block(handle_t *handle, struct inode *inode,
1709 ext3_fsblk_t goal, int *errp)
1711 unsigned long count = 1;
1713 return ext3_new_blocks(handle, inode, goal, &count, errp);
1717 * ext3_count_free_blocks() -- count filesystem free blocks
1718 * @sb: superblock
1720 * Adds up the number of free blocks from each block group.
1722 ext3_fsblk_t ext3_count_free_blocks(struct super_block *sb)
1724 ext3_fsblk_t desc_count;
1725 struct ext3_group_desc *gdp;
1726 int i;
1727 unsigned long ngroups = EXT3_SB(sb)->s_groups_count;
1728 #ifdef EXT3FS_DEBUG
1729 struct ext3_super_block *es;
1730 ext3_fsblk_t bitmap_count;
1731 unsigned long x;
1732 struct buffer_head *bitmap_bh = NULL;
1734 es = EXT3_SB(sb)->s_es;
1735 desc_count = 0;
1736 bitmap_count = 0;
1737 gdp = NULL;
1739 smp_rmb();
1740 for (i = 0; i < ngroups; i++) {
1741 gdp = ext3_get_group_desc(sb, i, NULL);
1742 if (!gdp)
1743 continue;
1744 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1745 brelse(bitmap_bh);
1746 bitmap_bh = read_block_bitmap(sb, i);
1747 if (bitmap_bh == NULL)
1748 continue;
1750 x = ext3_count_free(bitmap_bh, sb->s_blocksize);
1751 printk("group %d: stored = %d, counted = %lu\n",
1752 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1753 bitmap_count += x;
1755 brelse(bitmap_bh);
1756 printk("ext3_count_free_blocks: stored = "E3FSBLK
1757 ", computed = "E3FSBLK", "E3FSBLK"\n",
1758 le32_to_cpu(es->s_free_blocks_count),
1759 desc_count, bitmap_count);
1760 return bitmap_count;
1761 #else
1762 desc_count = 0;
1763 smp_rmb();
1764 for (i = 0; i < ngroups; i++) {
1765 gdp = ext3_get_group_desc(sb, i, NULL);
1766 if (!gdp)
1767 continue;
1768 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1771 return desc_count;
1772 #endif
1776 static inline int test_root(int a, int b)
1778 int num = b;
1780 while (a > num)
1781 num *= b;
1782 return num == a;
1785 static int ext3_group_sparse(int group)
1787 if (group <= 1)
1788 return 1;
1789 if (!(group & 1))
1790 return 0;
1791 return (test_root(group, 7) || test_root(group, 5) ||
1792 test_root(group, 3));
1796 * ext3_bg_has_super - number of blocks used by the superblock in group
1797 * @sb: superblock for filesystem
1798 * @group: group number to check
1800 * Return the number of blocks used by the superblock (primary or backup)
1801 * in this group. Currently this will be only 0 or 1.
1803 int ext3_bg_has_super(struct super_block *sb, int group)
1805 if (EXT3_HAS_RO_COMPAT_FEATURE(sb,
1806 EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1807 !ext3_group_sparse(group))
1808 return 0;
1809 return 1;
1812 static unsigned long ext3_bg_num_gdb_meta(struct super_block *sb, int group)
1814 unsigned long metagroup = group / EXT3_DESC_PER_BLOCK(sb);
1815 unsigned long first = metagroup * EXT3_DESC_PER_BLOCK(sb);
1816 unsigned long last = first + EXT3_DESC_PER_BLOCK(sb) - 1;
1818 if (group == first || group == first + 1 || group == last)
1819 return 1;
1820 return 0;
1823 static unsigned long ext3_bg_num_gdb_nometa(struct super_block *sb, int group)
1825 if (EXT3_HAS_RO_COMPAT_FEATURE(sb,
1826 EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1827 !ext3_group_sparse(group))
1828 return 0;
1829 return EXT3_SB(sb)->s_gdb_count;
1833 * ext3_bg_num_gdb - number of blocks used by the group table in group
1834 * @sb: superblock for filesystem
1835 * @group: group number to check
1837 * Return the number of blocks used by the group descriptor table
1838 * (primary or backup) in this group. In the future there may be a
1839 * different number of descriptor blocks in each group.
1841 unsigned long ext3_bg_num_gdb(struct super_block *sb, int group)
1843 unsigned long first_meta_bg =
1844 le32_to_cpu(EXT3_SB(sb)->s_es->s_first_meta_bg);
1845 unsigned long metagroup = group / EXT3_DESC_PER_BLOCK(sb);
1847 if (!EXT3_HAS_INCOMPAT_FEATURE(sb,EXT3_FEATURE_INCOMPAT_META_BG) ||
1848 metagroup < first_meta_bg)
1849 return ext3_bg_num_gdb_nometa(sb,group);
1851 return ext3_bg_num_gdb_meta(sb,group);