Fix NULL dereference in umem.c
[pv_ops_mirror.git] / drivers / block / umem.c
blob5f5095afb06b900b3b70a05837b19d866a9cdd8a
1 /*
2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
26 * bh's instead.
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
37 //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/ioctl.h>
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/interrupt.h>
47 #include <linux/timer.h>
48 #include <linux/pci.h>
49 #include <linux/slab.h>
50 #include <linux/dma-mapping.h>
52 #include <linux/fcntl.h> /* O_ACCMODE */
53 #include <linux/hdreg.h> /* HDIO_GETGEO */
55 #include "umem.h"
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2 /* two sectors */
62 #define MM_BLKSIZE 1024 /* 1k blocks */
63 #define MM_HARDSECT 512 /* 512-byte hardware sectors */
64 #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
67 * Version Information
70 #define DRIVER_NAME "umem"
71 #define DRIVER_VERSION "v2.3"
72 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
75 static int debug;
76 /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
79 #define DEBUG_LED_ON_TRANSFER 0x01
80 #define DEBUG_BATTERY_POLLING 0x02
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
85 static int pci_read_cmd = 0x0C; /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
89 static int pci_write_cmd = 0x0F; /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
93 static int pci_cmds;
95 static int major_nr;
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
100 struct cardinfo {
101 struct pci_dev *dev;
103 unsigned char __iomem *csr_remap;
104 unsigned int mm_size; /* size in kbytes */
106 unsigned int init_size; /* initial segment, in sectors,
107 * that we know to
108 * have been written
110 struct bio *bio, *currentbio, **biotail;
111 int current_idx;
112 sector_t current_sector;
114 struct request_queue *queue;
116 struct mm_page {
117 dma_addr_t page_dma;
118 struct mm_dma_desc *desc;
119 int cnt, headcnt;
120 struct bio *bio, **biotail;
121 int idx;
122 } mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
125 int Active, Ready;
127 struct tasklet_struct tasklet;
128 unsigned int dma_status;
130 struct {
131 int good;
132 int warned;
133 unsigned long last_change;
134 } battery[2];
136 spinlock_t lock;
137 int check_batteries;
139 int flags;
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct block_device_operations mm_fops;
144 static struct timer_list battery_timer;
146 static int num_cards = 0;
148 static struct gendisk *mm_gendisk[MM_MAXCARDS];
150 static void check_batteries(struct cardinfo *card);
153 -----------------------------------------------------------------------------------
154 -- get_userbit
155 -----------------------------------------------------------------------------------
157 static int get_userbit(struct cardinfo *card, int bit)
159 unsigned char led;
161 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
162 return led & bit;
165 -----------------------------------------------------------------------------------
166 -- set_userbit
167 -----------------------------------------------------------------------------------
169 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
171 unsigned char led;
173 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
174 if (state)
175 led |= bit;
176 else
177 led &= ~bit;
178 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
180 return 0;
183 -----------------------------------------------------------------------------------
184 -- set_led
185 -----------------------------------------------------------------------------------
188 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
190 static void set_led(struct cardinfo *card, int shift, unsigned char state)
192 unsigned char led;
194 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
195 if (state == LED_FLIP)
196 led ^= (1<<shift);
197 else {
198 led &= ~(0x03 << shift);
199 led |= (state << shift);
201 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
205 #ifdef MM_DIAG
207 -----------------------------------------------------------------------------------
208 -- dump_regs
209 -----------------------------------------------------------------------------------
211 static void dump_regs(struct cardinfo *card)
213 unsigned char *p;
214 int i, i1;
216 p = card->csr_remap;
217 for (i = 0; i < 8; i++) {
218 printk(KERN_DEBUG "%p ", p);
220 for (i1 = 0; i1 < 16; i1++)
221 printk("%02x ", *p++);
223 printk("\n");
226 #endif
228 -----------------------------------------------------------------------------------
229 -- dump_dmastat
230 -----------------------------------------------------------------------------------
232 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
234 dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
235 if (dmastat & DMASCR_ANY_ERR)
236 printk("ANY_ERR ");
237 if (dmastat & DMASCR_MBE_ERR)
238 printk("MBE_ERR ");
239 if (dmastat & DMASCR_PARITY_ERR_REP)
240 printk("PARITY_ERR_REP ");
241 if (dmastat & DMASCR_PARITY_ERR_DET)
242 printk("PARITY_ERR_DET ");
243 if (dmastat & DMASCR_SYSTEM_ERR_SIG)
244 printk("SYSTEM_ERR_SIG ");
245 if (dmastat & DMASCR_TARGET_ABT)
246 printk("TARGET_ABT ");
247 if (dmastat & DMASCR_MASTER_ABT)
248 printk("MASTER_ABT ");
249 if (dmastat & DMASCR_CHAIN_COMPLETE)
250 printk("CHAIN_COMPLETE ");
251 if (dmastat & DMASCR_DMA_COMPLETE)
252 printk("DMA_COMPLETE ");
253 printk("\n");
257 * Theory of request handling
259 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
260 * We have two pages of mm_dma_desc, holding about 64 descriptors
261 * each. These are allocated at init time.
262 * One page is "Ready" and is either full, or can have request added.
263 * The other page might be "Active", which DMA is happening on it.
265 * Whenever IO on the active page completes, the Ready page is activated
266 * and the ex-Active page is clean out and made Ready.
267 * Otherwise the Ready page is only activated when it becomes full, or
268 * when mm_unplug_device is called via the unplug_io_fn.
270 * If a request arrives while both pages a full, it is queued, and b_rdev is
271 * overloaded to record whether it was a read or a write.
273 * The interrupt handler only polls the device to clear the interrupt.
274 * The processing of the result is done in a tasklet.
277 static void mm_start_io(struct cardinfo *card)
279 /* we have the lock, we know there is
280 * no IO active, and we know that card->Active
281 * is set
283 struct mm_dma_desc *desc;
284 struct mm_page *page;
285 int offset;
287 /* make the last descriptor end the chain */
288 page = &card->mm_pages[card->Active];
289 pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
290 desc = &page->desc[page->cnt-1];
292 desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
293 desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
294 desc->sem_control_bits = desc->control_bits;
297 if (debug & DEBUG_LED_ON_TRANSFER)
298 set_led(card, LED_REMOVE, LED_ON);
300 desc = &page->desc[page->headcnt];
301 writel(0, card->csr_remap + DMA_PCI_ADDR);
302 writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
304 writel(0, card->csr_remap + DMA_LOCAL_ADDR);
305 writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
307 writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
308 writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
310 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
311 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
313 offset = ((char*)desc) - ((char*)page->desc);
314 writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
315 card->csr_remap + DMA_DESCRIPTOR_ADDR);
316 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
317 * and on some ports will do nothing ! */
318 writel(cpu_to_le32(((u64)page->page_dma)>>32),
319 card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
321 /* Go, go, go */
322 writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
323 card->csr_remap + DMA_STATUS_CTRL);
326 static int add_bio(struct cardinfo *card);
328 static void activate(struct cardinfo *card)
330 /* if No page is Active, and Ready is
331 * not empty, then switch Ready page
332 * to active and start IO.
333 * Then add any bh's that are available to Ready
336 do {
337 while (add_bio(card))
340 if (card->Active == -1 &&
341 card->mm_pages[card->Ready].cnt > 0) {
342 card->Active = card->Ready;
343 card->Ready = 1-card->Ready;
344 mm_start_io(card);
347 } while (card->Active == -1 && add_bio(card));
350 static inline void reset_page(struct mm_page *page)
352 page->cnt = 0;
353 page->headcnt = 0;
354 page->bio = NULL;
355 page->biotail = & page->bio;
358 static void mm_unplug_device(struct request_queue *q)
360 struct cardinfo *card = q->queuedata;
361 unsigned long flags;
363 spin_lock_irqsave(&card->lock, flags);
364 if (blk_remove_plug(q))
365 activate(card);
366 spin_unlock_irqrestore(&card->lock, flags);
370 * If there is room on Ready page, take
371 * one bh off list and add it.
372 * return 1 if there was room, else 0.
374 static int add_bio(struct cardinfo *card)
376 struct mm_page *p;
377 struct mm_dma_desc *desc;
378 dma_addr_t dma_handle;
379 int offset;
380 struct bio *bio;
381 struct bio_vec *vec;
382 int idx;
383 int rw;
384 int len;
386 bio = card->currentbio;
387 if (!bio && card->bio) {
388 card->currentbio = card->bio;
389 card->current_idx = card->bio->bi_idx;
390 card->current_sector = card->bio->bi_sector;
391 card->bio = card->bio->bi_next;
392 if (card->bio == NULL)
393 card->biotail = &card->bio;
394 card->currentbio->bi_next = NULL;
395 return 1;
397 if (!bio)
398 return 0;
399 idx = card->current_idx;
401 rw = bio_rw(bio);
402 if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
403 return 0;
405 vec = bio_iovec_idx(bio, idx);
406 len = vec->bv_len;
407 dma_handle = pci_map_page(card->dev,
408 vec->bv_page,
409 vec->bv_offset,
410 len,
411 (rw==READ) ?
412 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
414 p = &card->mm_pages[card->Ready];
415 desc = &p->desc[p->cnt];
416 p->cnt++;
417 if (p->bio == NULL)
418 p->idx = idx;
419 if ((p->biotail) != &bio->bi_next) {
420 *(p->biotail) = bio;
421 p->biotail = &(bio->bi_next);
422 bio->bi_next = NULL;
425 desc->data_dma_handle = dma_handle;
427 desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
428 desc->local_addr = cpu_to_le64(card->current_sector << 9);
429 desc->transfer_size = cpu_to_le32(len);
430 offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
431 desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
432 desc->zero1 = desc->zero2 = 0;
433 offset = ( ((char*)(desc+1)) - ((char*)p->desc));
434 desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
435 desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
436 DMASCR_PARITY_INT_EN|
437 DMASCR_CHAIN_EN |
438 DMASCR_SEM_EN |
439 pci_cmds);
440 if (rw == WRITE)
441 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
442 desc->sem_control_bits = desc->control_bits;
444 card->current_sector += (len >> 9);
445 idx++;
446 card->current_idx = idx;
447 if (idx >= bio->bi_vcnt)
448 card->currentbio = NULL;
450 return 1;
453 static void process_page(unsigned long data)
455 /* check if any of the requests in the page are DMA_COMPLETE,
456 * and deal with them appropriately.
457 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
458 * dma must have hit an error on that descriptor, so use dma_status instead
459 * and assume that all following descriptors must be re-tried.
461 struct mm_page *page;
462 struct bio *return_bio=NULL;
463 struct cardinfo *card = (struct cardinfo *)data;
464 unsigned int dma_status = card->dma_status;
466 spin_lock_bh(&card->lock);
467 if (card->Active < 0)
468 goto out_unlock;
469 page = &card->mm_pages[card->Active];
471 while (page->headcnt < page->cnt) {
472 struct bio *bio = page->bio;
473 struct mm_dma_desc *desc = &page->desc[page->headcnt];
474 int control = le32_to_cpu(desc->sem_control_bits);
475 int last=0;
476 int idx;
478 if (!(control & DMASCR_DMA_COMPLETE)) {
479 control = dma_status;
480 last=1;
482 page->headcnt++;
483 idx = page->idx;
484 page->idx++;
485 if (page->idx >= bio->bi_vcnt) {
486 page->bio = bio->bi_next;
487 if (page->bio)
488 page->idx = page->bio->bi_idx;
491 pci_unmap_page(card->dev, desc->data_dma_handle,
492 bio_iovec_idx(bio,idx)->bv_len,
493 (control& DMASCR_TRANSFER_READ) ?
494 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
495 if (control & DMASCR_HARD_ERROR) {
496 /* error */
497 clear_bit(BIO_UPTODATE, &bio->bi_flags);
498 dev_printk(KERN_WARNING, &card->dev->dev,
499 "I/O error on sector %d/%d\n",
500 le32_to_cpu(desc->local_addr)>>9,
501 le32_to_cpu(desc->transfer_size));
502 dump_dmastat(card, control);
503 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
504 le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
505 card->init_size += le32_to_cpu(desc->transfer_size)>>9;
506 if (card->init_size>>1 >= card->mm_size) {
507 dev_printk(KERN_INFO, &card->dev->dev,
508 "memory now initialised\n");
509 set_userbit(card, MEMORY_INITIALIZED, 1);
512 if (bio != page->bio) {
513 bio->bi_next = return_bio;
514 return_bio = bio;
517 if (last) break;
520 if (debug & DEBUG_LED_ON_TRANSFER)
521 set_led(card, LED_REMOVE, LED_OFF);
523 if (card->check_batteries) {
524 card->check_batteries = 0;
525 check_batteries(card);
527 if (page->headcnt >= page->cnt) {
528 reset_page(page);
529 card->Active = -1;
530 activate(card);
531 } else {
532 /* haven't finished with this one yet */
533 pr_debug("do some more\n");
534 mm_start_io(card);
536 out_unlock:
537 spin_unlock_bh(&card->lock);
539 while(return_bio) {
540 struct bio *bio = return_bio;
542 return_bio = bio->bi_next;
543 bio->bi_next = NULL;
544 bio_endio(bio, 0);
549 -----------------------------------------------------------------------------------
550 -- mm_make_request
551 -----------------------------------------------------------------------------------
553 static int mm_make_request(struct request_queue *q, struct bio *bio)
555 struct cardinfo *card = q->queuedata;
556 pr_debug("mm_make_request %llu %u\n",
557 (unsigned long long)bio->bi_sector, bio->bi_size);
559 spin_lock_irq(&card->lock);
560 *card->biotail = bio;
561 bio->bi_next = NULL;
562 card->biotail = &bio->bi_next;
563 blk_plug_device(q);
564 spin_unlock_irq(&card->lock);
566 return 0;
570 -----------------------------------------------------------------------------------
571 -- mm_interrupt
572 -----------------------------------------------------------------------------------
574 static irqreturn_t mm_interrupt(int irq, void *__card)
576 struct cardinfo *card = (struct cardinfo *) __card;
577 unsigned int dma_status;
578 unsigned short cfg_status;
580 HW_TRACE(0x30);
582 dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
584 if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
585 /* interrupt wasn't for me ... */
586 return IRQ_NONE;
589 /* clear COMPLETION interrupts */
590 if (card->flags & UM_FLAG_NO_BYTE_STATUS)
591 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
592 card->csr_remap+ DMA_STATUS_CTRL);
593 else
594 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
595 card->csr_remap+ DMA_STATUS_CTRL + 2);
597 /* log errors and clear interrupt status */
598 if (dma_status & DMASCR_ANY_ERR) {
599 unsigned int data_log1, data_log2;
600 unsigned int addr_log1, addr_log2;
601 unsigned char stat, count, syndrome, check;
603 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
605 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
606 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
607 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
608 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
610 count = readb(card->csr_remap + ERROR_COUNT);
611 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
612 check = readb(card->csr_remap + ERROR_CHECK);
614 dump_dmastat(card, dma_status);
616 if (stat & 0x01)
617 dev_printk(KERN_ERR, &card->dev->dev,
618 "Memory access error detected (err count %d)\n",
619 count);
620 if (stat & 0x02)
621 dev_printk(KERN_ERR, &card->dev->dev,
622 "Multi-bit EDC error\n");
624 dev_printk(KERN_ERR, &card->dev->dev,
625 "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
626 addr_log2, addr_log1, data_log2, data_log1);
627 dev_printk(KERN_ERR, &card->dev->dev,
628 "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
629 check, syndrome);
631 writeb(0, card->csr_remap + ERROR_COUNT);
634 if (dma_status & DMASCR_PARITY_ERR_REP) {
635 dev_printk(KERN_ERR, &card->dev->dev,
636 "PARITY ERROR REPORTED\n");
637 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
638 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
641 if (dma_status & DMASCR_PARITY_ERR_DET) {
642 dev_printk(KERN_ERR, &card->dev->dev,
643 "PARITY ERROR DETECTED\n");
644 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
645 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
648 if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
649 dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
650 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
651 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
654 if (dma_status & DMASCR_TARGET_ABT) {
655 dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
656 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
657 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
660 if (dma_status & DMASCR_MASTER_ABT) {
661 dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
662 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
663 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
666 /* and process the DMA descriptors */
667 card->dma_status = dma_status;
668 tasklet_schedule(&card->tasklet);
670 HW_TRACE(0x36);
672 return IRQ_HANDLED;
675 -----------------------------------------------------------------------------------
676 -- set_fault_to_battery_status
677 -----------------------------------------------------------------------------------
680 * If both batteries are good, no LED
681 * If either battery has been warned, solid LED
682 * If both batteries are bad, flash the LED quickly
683 * If either battery is bad, flash the LED semi quickly
685 static void set_fault_to_battery_status(struct cardinfo *card)
687 if (card->battery[0].good && card->battery[1].good)
688 set_led(card, LED_FAULT, LED_OFF);
689 else if (card->battery[0].warned || card->battery[1].warned)
690 set_led(card, LED_FAULT, LED_ON);
691 else if (!card->battery[0].good && !card->battery[1].good)
692 set_led(card, LED_FAULT, LED_FLASH_7_0);
693 else
694 set_led(card, LED_FAULT, LED_FLASH_3_5);
697 static void init_battery_timer(void);
701 -----------------------------------------------------------------------------------
702 -- check_battery
703 -----------------------------------------------------------------------------------
705 static int check_battery(struct cardinfo *card, int battery, int status)
707 if (status != card->battery[battery].good) {
708 card->battery[battery].good = !card->battery[battery].good;
709 card->battery[battery].last_change = jiffies;
711 if (card->battery[battery].good) {
712 dev_printk(KERN_ERR, &card->dev->dev,
713 "Battery %d now good\n", battery + 1);
714 card->battery[battery].warned = 0;
715 } else
716 dev_printk(KERN_ERR, &card->dev->dev,
717 "Battery %d now FAILED\n", battery + 1);
719 return 1;
720 } else if (!card->battery[battery].good &&
721 !card->battery[battery].warned &&
722 time_after_eq(jiffies, card->battery[battery].last_change +
723 (HZ * 60 * 60 * 5))) {
724 dev_printk(KERN_ERR, &card->dev->dev,
725 "Battery %d still FAILED after 5 hours\n", battery + 1);
726 card->battery[battery].warned = 1;
728 return 1;
731 return 0;
734 -----------------------------------------------------------------------------------
735 -- check_batteries
736 -----------------------------------------------------------------------------------
738 static void check_batteries(struct cardinfo *card)
740 /* NOTE: this must *never* be called while the card
741 * is doing (bus-to-card) DMA, or you will need the
742 * reset switch
744 unsigned char status;
745 int ret1, ret2;
747 status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
748 if (debug & DEBUG_BATTERY_POLLING)
749 dev_printk(KERN_DEBUG, &card->dev->dev,
750 "checking battery status, 1 = %s, 2 = %s\n",
751 (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
752 (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
754 ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
755 ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
757 if (ret1 || ret2)
758 set_fault_to_battery_status(card);
761 static void check_all_batteries(unsigned long ptr)
763 int i;
765 for (i = 0; i < num_cards; i++)
766 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
767 struct cardinfo *card = &cards[i];
768 spin_lock_bh(&card->lock);
769 if (card->Active >= 0)
770 card->check_batteries = 1;
771 else
772 check_batteries(card);
773 spin_unlock_bh(&card->lock);
776 init_battery_timer();
779 -----------------------------------------------------------------------------------
780 -- init_battery_timer
781 -----------------------------------------------------------------------------------
783 static void init_battery_timer(void)
785 init_timer(&battery_timer);
786 battery_timer.function = check_all_batteries;
787 battery_timer.expires = jiffies + (HZ * 60);
788 add_timer(&battery_timer);
791 -----------------------------------------------------------------------------------
792 -- del_battery_timer
793 -----------------------------------------------------------------------------------
795 static void del_battery_timer(void)
797 del_timer(&battery_timer);
800 -----------------------------------------------------------------------------------
801 -- mm_revalidate
802 -----------------------------------------------------------------------------------
805 * Note no locks taken out here. In a worst case scenario, we could drop
806 * a chunk of system memory. But that should never happen, since validation
807 * happens at open or mount time, when locks are held.
809 * That's crap, since doing that while some partitions are opened
810 * or mounted will give you really nasty results.
812 static int mm_revalidate(struct gendisk *disk)
814 struct cardinfo *card = disk->private_data;
815 set_capacity(disk, card->mm_size << 1);
816 return 0;
819 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
821 struct cardinfo *card = bdev->bd_disk->private_data;
822 int size = card->mm_size * (1024 / MM_HARDSECT);
825 * get geometry: we have to fake one... trim the size to a
826 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
827 * whatever cylinders.
829 geo->heads = 64;
830 geo->sectors = 32;
831 geo->cylinders = size / (geo->heads * geo->sectors);
832 return 0;
836 -----------------------------------------------------------------------------------
837 -- mm_check_change
838 -----------------------------------------------------------------------------------
839 Future support for removable devices
841 static int mm_check_change(struct gendisk *disk)
843 /* struct cardinfo *dev = disk->private_data; */
844 return 0;
847 -----------------------------------------------------------------------------------
848 -- mm_fops
849 -----------------------------------------------------------------------------------
851 static struct block_device_operations mm_fops = {
852 .owner = THIS_MODULE,
853 .getgeo = mm_getgeo,
854 .revalidate_disk= mm_revalidate,
855 .media_changed = mm_check_change,
858 -----------------------------------------------------------------------------------
859 -- mm_pci_probe
860 -----------------------------------------------------------------------------------
862 static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
864 int ret = -ENODEV;
865 struct cardinfo *card = &cards[num_cards];
866 unsigned char mem_present;
867 unsigned char batt_status;
868 unsigned int saved_bar, data;
869 unsigned long csr_base;
870 unsigned long csr_len;
871 int magic_number;
872 static int printed_version;
874 if (!printed_version++)
875 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
877 ret = pci_enable_device(dev);
878 if (ret)
879 return ret;
881 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
882 pci_set_master(dev);
884 card->dev = dev;
886 csr_base = pci_resource_start(dev, 0);
887 csr_len = pci_resource_len(dev, 0);
888 if (!csr_base || !csr_len)
889 return -ENODEV;
891 dev_printk(KERN_INFO, &dev->dev,
892 "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
894 if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
895 pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
896 dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
897 return -ENOMEM;
900 ret = pci_request_regions(dev, DRIVER_NAME);
901 if (ret) {
902 dev_printk(KERN_ERR, &card->dev->dev,
903 "Unable to request memory region\n");
904 goto failed_req_csr;
907 card->csr_remap = ioremap_nocache(csr_base, csr_len);
908 if (!card->csr_remap) {
909 dev_printk(KERN_ERR, &card->dev->dev,
910 "Unable to remap memory region\n");
911 ret = -ENOMEM;
913 goto failed_remap_csr;
916 dev_printk(KERN_INFO, &card->dev->dev,
917 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
918 csr_base, card->csr_remap, csr_len);
920 switch(card->dev->device) {
921 case 0x5415:
922 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
923 magic_number = 0x59;
924 break;
926 case 0x5425:
927 card->flags |= UM_FLAG_NO_BYTE_STATUS;
928 magic_number = 0x5C;
929 break;
931 case 0x6155:
932 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
933 magic_number = 0x99;
934 break;
936 default:
937 magic_number = 0x100;
938 break;
941 if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
942 dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
943 ret = -ENOMEM;
944 goto failed_magic;
947 card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
948 PAGE_SIZE*2,
949 &card->mm_pages[0].page_dma);
950 card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
951 PAGE_SIZE*2,
952 &card->mm_pages[1].page_dma);
953 if (card->mm_pages[0].desc == NULL ||
954 card->mm_pages[1].desc == NULL) {
955 dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
956 goto failed_alloc;
958 reset_page(&card->mm_pages[0]);
959 reset_page(&card->mm_pages[1]);
960 card->Ready = 0; /* page 0 is ready */
961 card->Active = -1; /* no page is active */
962 card->bio = NULL;
963 card->biotail = &card->bio;
965 card->queue = blk_alloc_queue(GFP_KERNEL);
966 if (!card->queue)
967 goto failed_alloc;
969 blk_queue_make_request(card->queue, mm_make_request);
970 card->queue->queuedata = card;
971 card->queue->unplug_fn = mm_unplug_device;
973 tasklet_init(&card->tasklet, process_page, (unsigned long)card);
975 card->check_batteries = 0;
977 mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
978 switch (mem_present) {
979 case MEM_128_MB:
980 card->mm_size = 1024 * 128;
981 break;
982 case MEM_256_MB:
983 card->mm_size = 1024 * 256;
984 break;
985 case MEM_512_MB:
986 card->mm_size = 1024 * 512;
987 break;
988 case MEM_1_GB:
989 card->mm_size = 1024 * 1024;
990 break;
991 case MEM_2_GB:
992 card->mm_size = 1024 * 2048;
993 break;
994 default:
995 card->mm_size = 0;
996 break;
999 /* Clear the LED's we control */
1000 set_led(card, LED_REMOVE, LED_OFF);
1001 set_led(card, LED_FAULT, LED_OFF);
1003 batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
1005 card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
1006 card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
1007 card->battery[0].last_change = card->battery[1].last_change = jiffies;
1009 if (card->flags & UM_FLAG_NO_BATT)
1010 dev_printk(KERN_INFO, &card->dev->dev,
1011 "Size %d KB\n", card->mm_size);
1012 else {
1013 dev_printk(KERN_INFO, &card->dev->dev,
1014 "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
1015 card->mm_size,
1016 (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
1017 card->battery[0].good ? "OK" : "FAILURE",
1018 (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
1019 card->battery[1].good ? "OK" : "FAILURE");
1021 set_fault_to_battery_status(card);
1024 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1025 data = 0xffffffff;
1026 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1027 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1028 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1029 data &= 0xfffffff0;
1030 data = ~data;
1031 data += 1;
1033 if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME, card)) {
1034 dev_printk(KERN_ERR, &card->dev->dev,
1035 "Unable to allocate IRQ\n");
1036 ret = -ENODEV;
1038 goto failed_req_irq;
1041 dev_printk(KERN_INFO, &card->dev->dev,
1042 "Window size %d bytes, IRQ %d\n", data, dev->irq);
1044 spin_lock_init(&card->lock);
1046 pci_set_drvdata(dev, card);
1048 if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
1049 pci_write_cmd = 0x07; /* then Memory Write command */
1051 if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1052 unsigned short cfg_command;
1053 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1054 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1055 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1057 pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1059 num_cards++;
1061 if (!get_userbit(card, MEMORY_INITIALIZED)) {
1062 dev_printk(KERN_INFO, &card->dev->dev,
1063 "memory NOT initialized. Consider over-writing whole device.\n");
1064 card->init_size = 0;
1065 } else {
1066 dev_printk(KERN_INFO, &card->dev->dev,
1067 "memory already initialized\n");
1068 card->init_size = card->mm_size;
1071 /* Enable ECC */
1072 writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1074 return 0;
1076 failed_req_irq:
1077 failed_alloc:
1078 if (card->mm_pages[0].desc)
1079 pci_free_consistent(card->dev, PAGE_SIZE*2,
1080 card->mm_pages[0].desc,
1081 card->mm_pages[0].page_dma);
1082 if (card->mm_pages[1].desc)
1083 pci_free_consistent(card->dev, PAGE_SIZE*2,
1084 card->mm_pages[1].desc,
1085 card->mm_pages[1].page_dma);
1086 failed_magic:
1087 iounmap(card->csr_remap);
1088 failed_remap_csr:
1089 pci_release_regions(dev);
1090 failed_req_csr:
1092 return ret;
1095 -----------------------------------------------------------------------------------
1096 -- mm_pci_remove
1097 -----------------------------------------------------------------------------------
1099 static void mm_pci_remove(struct pci_dev *dev)
1101 struct cardinfo *card = pci_get_drvdata(dev);
1103 tasklet_kill(&card->tasklet);
1104 free_irq(dev->irq, card);
1105 iounmap(card->csr_remap);
1107 if (card->mm_pages[0].desc)
1108 pci_free_consistent(card->dev, PAGE_SIZE*2,
1109 card->mm_pages[0].desc,
1110 card->mm_pages[0].page_dma);
1111 if (card->mm_pages[1].desc)
1112 pci_free_consistent(card->dev, PAGE_SIZE*2,
1113 card->mm_pages[1].desc,
1114 card->mm_pages[1].page_dma);
1115 blk_cleanup_queue(card->queue);
1117 pci_release_regions(dev);
1118 pci_disable_device(dev);
1121 static const struct pci_device_id mm_pci_ids[] = {
1122 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1123 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1124 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1126 .vendor = 0x8086,
1127 .device = 0xB555,
1128 .subvendor= 0x1332,
1129 .subdevice= 0x5460,
1130 .class = 0x050000,
1131 .class_mask= 0,
1132 }, { /* end: all zeroes */ }
1135 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1137 static struct pci_driver mm_pci_driver = {
1138 .name = DRIVER_NAME,
1139 .id_table = mm_pci_ids,
1140 .probe = mm_pci_probe,
1141 .remove = mm_pci_remove,
1145 -----------------------------------------------------------------------------------
1146 -- mm_init
1147 -----------------------------------------------------------------------------------
1150 static int __init mm_init(void)
1152 int retval, i;
1153 int err;
1155 retval = pci_register_driver(&mm_pci_driver);
1156 if (retval)
1157 return -ENOMEM;
1159 err = major_nr = register_blkdev(0, DRIVER_NAME);
1160 if (err < 0) {
1161 pci_unregister_driver(&mm_pci_driver);
1162 return -EIO;
1165 for (i = 0; i < num_cards; i++) {
1166 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1167 if (!mm_gendisk[i])
1168 goto out;
1171 for (i = 0; i < num_cards; i++) {
1172 struct gendisk *disk = mm_gendisk[i];
1173 sprintf(disk->disk_name, "umem%c", 'a'+i);
1174 spin_lock_init(&cards[i].lock);
1175 disk->major = major_nr;
1176 disk->first_minor = i << MM_SHIFT;
1177 disk->fops = &mm_fops;
1178 disk->private_data = &cards[i];
1179 disk->queue = cards[i].queue;
1180 set_capacity(disk, cards[i].mm_size << 1);
1181 add_disk(disk);
1184 init_battery_timer();
1185 printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1186 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1187 return 0;
1189 out:
1190 pci_unregister_driver(&mm_pci_driver);
1191 unregister_blkdev(major_nr, DRIVER_NAME);
1192 while (i--)
1193 put_disk(mm_gendisk[i]);
1194 return -ENOMEM;
1197 -----------------------------------------------------------------------------------
1198 -- mm_cleanup
1199 -----------------------------------------------------------------------------------
1201 static void __exit mm_cleanup(void)
1203 int i;
1205 del_battery_timer();
1207 for (i=0; i < num_cards ; i++) {
1208 del_gendisk(mm_gendisk[i]);
1209 put_disk(mm_gendisk[i]);
1212 pci_unregister_driver(&mm_pci_driver);
1214 unregister_blkdev(major_nr, DRIVER_NAME);
1217 module_init(mm_init);
1218 module_exit(mm_cleanup);
1220 MODULE_AUTHOR(DRIVER_AUTHOR);
1221 MODULE_DESCRIPTION(DRIVER_DESC);
1222 MODULE_LICENSE("GPL");