2 * linux/drivers/char/mem.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
7 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
8 * Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
12 #include <linux/miscdevice.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mman.h>
16 #include <linux/random.h>
17 #include <linux/init.h>
18 #include <linux/raw.h>
19 #include <linux/tty.h>
20 #include <linux/capability.h>
21 #include <linux/smp_lock.h>
22 #include <linux/ptrace.h>
23 #include <linux/device.h>
24 #include <linux/highmem.h>
25 #include <linux/crash_dump.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bootmem.h>
28 #include <linux/pipe_fs_i.h>
30 #include <asm/uaccess.h>
34 # include <linux/efi.h>
38 * Architectures vary in how they handle caching for addresses
39 * outside of main memory.
42 static inline int uncached_access(struct file
*file
, unsigned long addr
)
46 * On the PPro and successors, the MTRRs are used to set
47 * memory types for physical addresses outside main memory,
48 * so blindly setting PCD or PWT on those pages is wrong.
49 * For Pentiums and earlier, the surround logic should disable
50 * caching for the high addresses through the KEN pin, but
51 * we maintain the tradition of paranoia in this code.
53 if (file
->f_flags
& O_SYNC
)
55 return !( test_bit(X86_FEATURE_MTRR
, boot_cpu_data
.x86_capability
) ||
56 test_bit(X86_FEATURE_K6_MTRR
, boot_cpu_data
.x86_capability
) ||
57 test_bit(X86_FEATURE_CYRIX_ARR
, boot_cpu_data
.x86_capability
) ||
58 test_bit(X86_FEATURE_CENTAUR_MCR
, boot_cpu_data
.x86_capability
) )
59 && addr
>= __pa(high_memory
);
60 #elif defined(__x86_64__)
62 * This is broken because it can generate memory type aliases,
63 * which can cause cache corruptions
64 * But it is only available for root and we have to be bug-to-bug
65 * compatible with i386.
67 if (file
->f_flags
& O_SYNC
)
69 /* same behaviour as i386. PAT always set to cached and MTRRs control the
71 Hopefully a full PAT implementation will fix that soon. */
73 #elif defined(CONFIG_IA64)
75 * On ia64, we ignore O_SYNC because we cannot tolerate memory attribute aliases.
77 return !(efi_mem_attributes(addr
) & EFI_MEMORY_WB
);
80 * Accessing memory above the top the kernel knows about or through a file pointer
81 * that was marked O_SYNC will be done non-cached.
83 if (file
->f_flags
& O_SYNC
)
85 return addr
>= __pa(high_memory
);
89 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
90 static inline int valid_phys_addr_range(unsigned long addr
, size_t count
)
92 if (addr
+ count
> __pa(high_memory
))
98 static inline int valid_mmap_phys_addr_range(unsigned long pfn
, size_t size
)
105 * This funcion reads the *physical* memory. The f_pos points directly to the
108 static ssize_t
read_mem(struct file
* file
, char __user
* buf
,
109 size_t count
, loff_t
*ppos
)
111 unsigned long p
= *ppos
;
115 if (!valid_phys_addr_range(p
, count
))
118 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
119 /* we don't have page 0 mapped on sparc and m68k.. */
125 if (clear_user(buf
, sz
))
137 * Handle first page in case it's not aligned
139 if (-p
& (PAGE_SIZE
- 1))
140 sz
= -p
& (PAGE_SIZE
- 1);
144 sz
= min_t(unsigned long, sz
, count
);
147 * On ia64 if a page has been mapped somewhere as
148 * uncached, then it must also be accessed uncached
149 * by the kernel or data corruption may occur
151 ptr
= xlate_dev_mem_ptr(p
);
153 if (copy_to_user(buf
, ptr
, sz
))
165 static ssize_t
write_mem(struct file
* file
, const char __user
* buf
,
166 size_t count
, loff_t
*ppos
)
168 unsigned long p
= *ppos
;
170 unsigned long copied
;
173 if (!valid_phys_addr_range(p
, count
))
178 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
179 /* we don't have page 0 mapped on sparc and m68k.. */
181 unsigned long sz
= PAGE_SIZE
- p
;
184 /* Hmm. Do something? */
194 * Handle first page in case it's not aligned
196 if (-p
& (PAGE_SIZE
- 1))
197 sz
= -p
& (PAGE_SIZE
- 1);
201 sz
= min_t(unsigned long, sz
, count
);
204 * On ia64 if a page has been mapped somewhere as
205 * uncached, then it must also be accessed uncached
206 * by the kernel or data corruption may occur
208 ptr
= xlate_dev_mem_ptr(p
);
210 copied
= copy_from_user(ptr
, buf
, sz
);
212 written
+= sz
- copied
;
227 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
228 static pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
229 unsigned long size
, pgprot_t vma_prot
)
231 #ifdef pgprot_noncached
232 unsigned long offset
= pfn
<< PAGE_SHIFT
;
234 if (uncached_access(file
, offset
))
235 return pgprot_noncached(vma_prot
);
242 static unsigned long get_unmapped_area_mem(struct file
*file
,
248 if (!valid_mmap_phys_addr_range(pgoff
, len
))
249 return (unsigned long) -EINVAL
;
253 /* can't do an in-place private mapping if there's no MMU */
254 static inline int private_mapping_ok(struct vm_area_struct
*vma
)
256 return vma
->vm_flags
& VM_MAYSHARE
;
259 #define get_unmapped_area_mem NULL
261 static inline int private_mapping_ok(struct vm_area_struct
*vma
)
267 static int mmap_mem(struct file
* file
, struct vm_area_struct
* vma
)
269 size_t size
= vma
->vm_end
- vma
->vm_start
;
271 if (!valid_mmap_phys_addr_range(vma
->vm_pgoff
, size
))
274 if (!private_mapping_ok(vma
))
277 vma
->vm_page_prot
= phys_mem_access_prot(file
, vma
->vm_pgoff
,
281 /* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */
282 if (remap_pfn_range(vma
,
291 static int mmap_kmem(struct file
* file
, struct vm_area_struct
* vma
)
295 /* Turn a kernel-virtual address into a physical page frame */
296 pfn
= __pa((u64
)vma
->vm_pgoff
<< PAGE_SHIFT
) >> PAGE_SHIFT
;
299 * RED-PEN: on some architectures there is more mapped memory
300 * than available in mem_map which pfn_valid checks
301 * for. Perhaps should add a new macro here.
303 * RED-PEN: vmalloc is not supported right now.
309 return mmap_mem(file
, vma
);
312 #ifdef CONFIG_CRASH_DUMP
314 * Read memory corresponding to the old kernel.
316 static ssize_t
read_oldmem(struct file
*file
, char __user
*buf
,
317 size_t count
, loff_t
*ppos
)
319 unsigned long pfn
, offset
;
320 size_t read
= 0, csize
;
324 pfn
= *ppos
/ PAGE_SIZE
;
325 if (pfn
> saved_max_pfn
)
328 offset
= (unsigned long)(*ppos
% PAGE_SIZE
);
329 if (count
> PAGE_SIZE
- offset
)
330 csize
= PAGE_SIZE
- offset
;
334 rc
= copy_oldmem_page(pfn
, buf
, csize
, offset
, 1);
346 extern long vread(char *buf
, char *addr
, unsigned long count
);
347 extern long vwrite(char *buf
, char *addr
, unsigned long count
);
350 * This function reads the *virtual* memory as seen by the kernel.
352 static ssize_t
read_kmem(struct file
*file
, char __user
*buf
,
353 size_t count
, loff_t
*ppos
)
355 unsigned long p
= *ppos
;
356 ssize_t low_count
, read
, sz
;
357 char * kbuf
; /* k-addr because vread() takes vmlist_lock rwlock */
360 if (p
< (unsigned long) high_memory
) {
362 if (count
> (unsigned long) high_memory
- p
)
363 low_count
= (unsigned long) high_memory
- p
;
365 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
366 /* we don't have page 0 mapped on sparc and m68k.. */
367 if (p
< PAGE_SIZE
&& low_count
> 0) {
368 size_t tmp
= PAGE_SIZE
- p
;
369 if (tmp
> low_count
) tmp
= low_count
;
370 if (clear_user(buf
, tmp
))
379 while (low_count
> 0) {
381 * Handle first page in case it's not aligned
383 if (-p
& (PAGE_SIZE
- 1))
384 sz
= -p
& (PAGE_SIZE
- 1);
388 sz
= min_t(unsigned long, sz
, low_count
);
391 * On ia64 if a page has been mapped somewhere as
392 * uncached, then it must also be accessed uncached
393 * by the kernel or data corruption may occur
395 kbuf
= xlate_dev_kmem_ptr((char *)p
);
397 if (copy_to_user(buf
, kbuf
, sz
))
408 kbuf
= (char *)__get_free_page(GFP_KERNEL
);
416 len
= vread(kbuf
, (char *)p
, len
);
419 if (copy_to_user(buf
, kbuf
, len
)) {
420 free_page((unsigned long)kbuf
);
428 free_page((unsigned long)kbuf
);
435 static inline ssize_t
436 do_write_kmem(void *p
, unsigned long realp
, const char __user
* buf
,
437 size_t count
, loff_t
*ppos
)
440 unsigned long copied
;
443 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
444 /* we don't have page 0 mapped on sparc and m68k.. */
445 if (realp
< PAGE_SIZE
) {
446 unsigned long sz
= PAGE_SIZE
- realp
;
449 /* Hmm. Do something? */
461 * Handle first page in case it's not aligned
463 if (-realp
& (PAGE_SIZE
- 1))
464 sz
= -realp
& (PAGE_SIZE
- 1);
468 sz
= min_t(unsigned long, sz
, count
);
471 * On ia64 if a page has been mapped somewhere as
472 * uncached, then it must also be accessed uncached
473 * by the kernel or data corruption may occur
475 ptr
= xlate_dev_kmem_ptr(p
);
477 copied
= copy_from_user(ptr
, buf
, sz
);
479 written
+= sz
- copied
;
497 * This function writes to the *virtual* memory as seen by the kernel.
499 static ssize_t
write_kmem(struct file
* file
, const char __user
* buf
,
500 size_t count
, loff_t
*ppos
)
502 unsigned long p
= *ppos
;
506 char * kbuf
; /* k-addr because vwrite() takes vmlist_lock rwlock */
508 if (p
< (unsigned long) high_memory
) {
511 if (count
> (unsigned long) high_memory
- p
)
512 wrote
= (unsigned long) high_memory
- p
;
514 written
= do_write_kmem((void*)p
, p
, buf
, wrote
, ppos
);
515 if (written
!= wrote
)
524 kbuf
= (char *)__get_free_page(GFP_KERNEL
);
526 return wrote
? wrote
: -ENOMEM
;
533 written
= copy_from_user(kbuf
, buf
, len
);
537 free_page((unsigned long)kbuf
);
541 len
= vwrite(kbuf
, (char *)p
, len
);
547 free_page((unsigned long)kbuf
);
551 return virtr
+ wrote
;
554 #if defined(CONFIG_ISA) || !defined(__mc68000__)
555 static ssize_t
read_port(struct file
* file
, char __user
* buf
,
556 size_t count
, loff_t
*ppos
)
558 unsigned long i
= *ppos
;
559 char __user
*tmp
= buf
;
561 if (!access_ok(VERIFY_WRITE
, buf
, count
))
563 while (count
-- > 0 && i
< 65536) {
564 if (__put_user(inb(i
),tmp
) < 0)
573 static ssize_t
write_port(struct file
* file
, const char __user
* buf
,
574 size_t count
, loff_t
*ppos
)
576 unsigned long i
= *ppos
;
577 const char __user
* tmp
= buf
;
579 if (!access_ok(VERIFY_READ
,buf
,count
))
581 while (count
-- > 0 && i
< 65536) {
583 if (__get_user(c
, tmp
)) {
597 static ssize_t
read_null(struct file
* file
, char __user
* buf
,
598 size_t count
, loff_t
*ppos
)
603 static ssize_t
write_null(struct file
* file
, const char __user
* buf
,
604 size_t count
, loff_t
*ppos
)
609 static int pipe_to_null(struct pipe_inode_info
*info
, struct pipe_buffer
*buf
,
610 struct splice_desc
*sd
)
615 static ssize_t
splice_write_null(struct pipe_inode_info
*pipe
,struct file
*out
,
616 loff_t
*ppos
, size_t len
, unsigned int flags
)
618 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_null
);
623 * For fun, we are using the MMU for this.
625 static inline size_t read_zero_pagealigned(char __user
* buf
, size_t size
)
627 struct mm_struct
*mm
;
628 struct vm_area_struct
* vma
;
629 unsigned long addr
=(unsigned long)buf
;
632 /* Oops, this was forgotten before. -ben */
633 down_read(&mm
->mmap_sem
);
635 /* For private mappings, just map in zero pages. */
636 for (vma
= find_vma(mm
, addr
); vma
; vma
= vma
->vm_next
) {
639 if (vma
->vm_start
> addr
|| (vma
->vm_flags
& VM_WRITE
) == 0)
641 if (vma
->vm_flags
& (VM_SHARED
| VM_HUGETLB
))
643 count
= vma
->vm_end
- addr
;
647 zap_page_range(vma
, addr
, count
, NULL
);
648 zeromap_page_range(vma
, addr
, count
, PAGE_COPY
);
657 up_read(&mm
->mmap_sem
);
659 /* The shared case is hard. Let's do the conventional zeroing. */
661 unsigned long unwritten
= clear_user(buf
, PAGE_SIZE
);
663 return size
+ unwritten
- PAGE_SIZE
;
671 up_read(&mm
->mmap_sem
);
675 static ssize_t
read_zero(struct file
* file
, char __user
* buf
,
676 size_t count
, loff_t
*ppos
)
678 unsigned long left
, unwritten
, written
= 0;
683 if (!access_ok(VERIFY_WRITE
, buf
, count
))
688 /* do we want to be clever? Arbitrary cut-off */
689 if (count
>= PAGE_SIZE
*4) {
690 unsigned long partial
;
692 /* How much left of the page? */
693 partial
= (PAGE_SIZE
-1) & -(unsigned long) buf
;
694 unwritten
= clear_user(buf
, partial
);
695 written
= partial
- unwritten
;
700 unwritten
= read_zero_pagealigned(buf
, left
& PAGE_MASK
);
701 written
+= (left
& PAGE_MASK
) - unwritten
;
704 buf
+= left
& PAGE_MASK
;
707 unwritten
= clear_user(buf
, left
);
708 written
+= left
- unwritten
;
710 return written
? written
: -EFAULT
;
713 static int mmap_zero(struct file
* file
, struct vm_area_struct
* vma
)
715 if (vma
->vm_flags
& VM_SHARED
)
716 return shmem_zero_setup(vma
);
717 if (zeromap_page_range(vma
, vma
->vm_start
, vma
->vm_end
- vma
->vm_start
, vma
->vm_page_prot
))
721 #else /* CONFIG_MMU */
722 static ssize_t
read_zero(struct file
* file
, char * buf
,
723 size_t count
, loff_t
*ppos
)
731 chunk
= 4096; /* Just for latency reasons */
732 if (clear_user(buf
, chunk
))
741 static int mmap_zero(struct file
* file
, struct vm_area_struct
* vma
)
745 #endif /* CONFIG_MMU */
747 static ssize_t
write_full(struct file
* file
, const char __user
* buf
,
748 size_t count
, loff_t
*ppos
)
754 * Special lseek() function for /dev/null and /dev/zero. Most notably, you
755 * can fopen() both devices with "a" now. This was previously impossible.
759 static loff_t
null_lseek(struct file
* file
, loff_t offset
, int orig
)
761 return file
->f_pos
= 0;
765 * The memory devices use the full 32/64 bits of the offset, and so we cannot
766 * check against negative addresses: they are ok. The return value is weird,
767 * though, in that case (0).
769 * also note that seeking relative to the "end of file" isn't supported:
770 * it has no meaning, so it returns -EINVAL.
772 static loff_t
memory_lseek(struct file
* file
, loff_t offset
, int orig
)
776 mutex_lock(&file
->f_dentry
->d_inode
->i_mutex
);
779 file
->f_pos
= offset
;
781 force_successful_syscall_return();
784 file
->f_pos
+= offset
;
786 force_successful_syscall_return();
791 mutex_unlock(&file
->f_dentry
->d_inode
->i_mutex
);
795 static int open_port(struct inode
* inode
, struct file
* filp
)
797 return capable(CAP_SYS_RAWIO
) ? 0 : -EPERM
;
800 #define zero_lseek null_lseek
801 #define full_lseek null_lseek
802 #define write_zero write_null
803 #define read_full read_zero
804 #define open_mem open_port
805 #define open_kmem open_mem
806 #define open_oldmem open_mem
808 static const struct file_operations mem_fops
= {
809 .llseek
= memory_lseek
,
814 .get_unmapped_area
= get_unmapped_area_mem
,
817 static const struct file_operations kmem_fops
= {
818 .llseek
= memory_lseek
,
823 .get_unmapped_area
= get_unmapped_area_mem
,
826 static const struct file_operations null_fops
= {
827 .llseek
= null_lseek
,
830 .splice_write
= splice_write_null
,
833 #if defined(CONFIG_ISA) || !defined(__mc68000__)
834 static const struct file_operations port_fops
= {
835 .llseek
= memory_lseek
,
842 static const struct file_operations zero_fops
= {
843 .llseek
= zero_lseek
,
850 * capabilities for /dev/zero
851 * - permits private mappings, "copies" are taken of the source of zeros
853 static struct backing_dev_info zero_bdi
= {
854 .capabilities
= BDI_CAP_MAP_COPY
,
857 static const struct file_operations full_fops
= {
858 .llseek
= full_lseek
,
863 #ifdef CONFIG_CRASH_DUMP
864 static const struct file_operations oldmem_fops
= {
870 static ssize_t
kmsg_write(struct file
* file
, const char __user
* buf
,
871 size_t count
, loff_t
*ppos
)
876 tmp
= kmalloc(count
+ 1, GFP_KERNEL
);
880 if (!copy_from_user(tmp
, buf
, count
)) {
882 ret
= printk("%s", tmp
);
884 /* printk can add a prefix */
891 static const struct file_operations kmsg_fops
= {
895 static int memory_open(struct inode
* inode
, struct file
* filp
)
897 switch (iminor(inode
)) {
899 filp
->f_op
= &mem_fops
;
900 filp
->f_mapping
->backing_dev_info
=
901 &directly_mappable_cdev_bdi
;
904 filp
->f_op
= &kmem_fops
;
905 filp
->f_mapping
->backing_dev_info
=
906 &directly_mappable_cdev_bdi
;
909 filp
->f_op
= &null_fops
;
911 #if defined(CONFIG_ISA) || !defined(__mc68000__)
913 filp
->f_op
= &port_fops
;
917 filp
->f_mapping
->backing_dev_info
= &zero_bdi
;
918 filp
->f_op
= &zero_fops
;
921 filp
->f_op
= &full_fops
;
924 filp
->f_op
= &random_fops
;
927 filp
->f_op
= &urandom_fops
;
930 filp
->f_op
= &kmsg_fops
;
932 #ifdef CONFIG_CRASH_DUMP
934 filp
->f_op
= &oldmem_fops
;
940 if (filp
->f_op
&& filp
->f_op
->open
)
941 return filp
->f_op
->open(inode
,filp
);
945 static const struct file_operations memory_fops
= {
946 .open
= memory_open
, /* just a selector for the real open */
949 static const struct {
953 const struct file_operations
*fops
;
954 } devlist
[] = { /* list of minor devices */
955 {1, "mem", S_IRUSR
| S_IWUSR
| S_IRGRP
, &mem_fops
},
956 {2, "kmem", S_IRUSR
| S_IWUSR
| S_IRGRP
, &kmem_fops
},
957 {3, "null", S_IRUGO
| S_IWUGO
, &null_fops
},
958 #if defined(CONFIG_ISA) || !defined(__mc68000__)
959 {4, "port", S_IRUSR
| S_IWUSR
| S_IRGRP
, &port_fops
},
961 {5, "zero", S_IRUGO
| S_IWUGO
, &zero_fops
},
962 {7, "full", S_IRUGO
| S_IWUGO
, &full_fops
},
963 {8, "random", S_IRUGO
| S_IWUSR
, &random_fops
},
964 {9, "urandom", S_IRUGO
| S_IWUSR
, &urandom_fops
},
965 {11,"kmsg", S_IRUGO
| S_IWUSR
, &kmsg_fops
},
966 #ifdef CONFIG_CRASH_DUMP
967 {12,"oldmem", S_IRUSR
| S_IWUSR
| S_IRGRP
, &oldmem_fops
},
971 static struct class *mem_class
;
973 static int __init
chr_dev_init(void)
977 if (register_chrdev(MEM_MAJOR
,"mem",&memory_fops
))
978 printk("unable to get major %d for memory devs\n", MEM_MAJOR
);
980 mem_class
= class_create(THIS_MODULE
, "mem");
981 for (i
= 0; i
< ARRAY_SIZE(devlist
); i
++)
982 class_device_create(mem_class
, NULL
,
983 MKDEV(MEM_MAJOR
, devlist
[i
].minor
),
984 NULL
, devlist
[i
].name
);
989 fs_initcall(chr_dev_init
);