libata pata_via: ACPI checks for 80wire cable
[pv_ops_mirror.git] / arch / alpha / kernel / time.c
blob1dd50d07693cb9241ce1d064b589d5d4938c64ff
1 /*
2 * linux/arch/alpha/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/hwrpb.h>
48 #include <asm/8253pit.h>
50 #include <linux/mc146818rtc.h>
51 #include <linux/time.h>
52 #include <linux/timex.h>
54 #include "proto.h"
55 #include "irq_impl.h"
57 static int set_rtc_mmss(unsigned long);
59 DEFINE_SPINLOCK(rtc_lock);
60 EXPORT_SYMBOL(rtc_lock);
62 #define TICK_SIZE (tick_nsec / 1000)
65 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
66 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
67 * for large CPU clock rates.
69 #define FIX_SHIFT 48
71 /* lump static variables together for more efficient access: */
72 static struct {
73 /* cycle counter last time it got invoked */
74 __u32 last_time;
75 /* ticks/cycle * 2^48 */
76 unsigned long scaled_ticks_per_cycle;
77 /* last time the CMOS clock got updated */
78 time_t last_rtc_update;
79 /* partial unused tick */
80 unsigned long partial_tick;
81 } state;
83 unsigned long est_cycle_freq;
86 static inline __u32 rpcc(void)
88 __u32 result;
89 asm volatile ("rpcc %0" : "=r"(result));
90 return result;
94 * timer_interrupt() needs to keep up the real-time clock,
95 * as well as call the "do_timer()" routine every clocktick
97 irqreturn_t timer_interrupt(int irq, void *dev)
99 unsigned long delta;
100 __u32 now;
101 long nticks;
103 #ifndef CONFIG_SMP
104 /* Not SMP, do kernel PC profiling here. */
105 profile_tick(CPU_PROFILING);
106 #endif
108 write_seqlock(&xtime_lock);
111 * Calculate how many ticks have passed since the last update,
112 * including any previous partial leftover. Save any resulting
113 * fraction for the next pass.
115 now = rpcc();
116 delta = now - state.last_time;
117 state.last_time = now;
118 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
119 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
120 nticks = delta >> FIX_SHIFT;
122 while (nticks > 0) {
123 do_timer(1);
124 #ifndef CONFIG_SMP
125 update_process_times(user_mode(get_irq_regs()));
126 #endif
127 nticks--;
131 * If we have an externally synchronized Linux clock, then update
132 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
133 * called as close as possible to 500 ms before the new second starts.
135 if (ntp_synced()
136 && xtime.tv_sec > state.last_rtc_update + 660
137 && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
138 && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
139 int tmp = set_rtc_mmss(xtime.tv_sec);
140 state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
143 write_sequnlock(&xtime_lock);
144 return IRQ_HANDLED;
147 void __init
148 common_init_rtc(void)
150 unsigned char x;
152 /* Reset periodic interrupt frequency. */
153 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
154 /* Test includes known working values on various platforms
155 where 0x26 is wrong; we refuse to change those. */
156 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
157 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
158 CMOS_WRITE(0x26, RTC_FREQ_SELECT);
161 /* Turn on periodic interrupts. */
162 x = CMOS_READ(RTC_CONTROL);
163 if (!(x & RTC_PIE)) {
164 printk("Turning on RTC interrupts.\n");
165 x |= RTC_PIE;
166 x &= ~(RTC_AIE | RTC_UIE);
167 CMOS_WRITE(x, RTC_CONTROL);
169 (void) CMOS_READ(RTC_INTR_FLAGS);
171 outb(0x36, 0x43); /* pit counter 0: system timer */
172 outb(0x00, 0x40);
173 outb(0x00, 0x40);
175 outb(0xb6, 0x43); /* pit counter 2: speaker */
176 outb(0x31, 0x42);
177 outb(0x13, 0x42);
179 init_rtc_irq();
183 /* Validate a computed cycle counter result against the known bounds for
184 the given processor core. There's too much brokenness in the way of
185 timing hardware for any one method to work everywhere. :-(
187 Return 0 if the result cannot be trusted, otherwise return the argument. */
189 static unsigned long __init
190 validate_cc_value(unsigned long cc)
192 static struct bounds {
193 unsigned int min, max;
194 } cpu_hz[] __initdata = {
195 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
196 [EV4_CPU] = { 100000000, 300000000 },
197 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
198 [EV45_CPU] = { 200000000, 300000000 },
199 [EV5_CPU] = { 250000000, 433000000 },
200 [EV56_CPU] = { 333000000, 667000000 },
201 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
202 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
203 [EV6_CPU] = { 466000000, 600000000 },
204 [EV67_CPU] = { 600000000, 750000000 },
205 [EV68AL_CPU] = { 750000000, 940000000 },
206 [EV68CB_CPU] = { 1000000000, 1333333333 },
207 /* None of the following are shipping as of 2001-11-01. */
208 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
209 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
210 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
211 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
214 /* Allow for some drift in the crystal. 10MHz is more than enough. */
215 const unsigned int deviation = 10000000;
217 struct percpu_struct *cpu;
218 unsigned int index;
220 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
221 index = cpu->type & 0xffffffff;
223 /* If index out of bounds, no way to validate. */
224 if (index >= ARRAY_SIZE(cpu_hz))
225 return cc;
227 /* If index contains no data, no way to validate. */
228 if (cpu_hz[index].max == 0)
229 return cc;
231 if (cc < cpu_hz[index].min - deviation
232 || cc > cpu_hz[index].max + deviation)
233 return 0;
235 return cc;
240 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
241 * arch/i386/time.c.
244 #define CALIBRATE_LATCH 0xffff
245 #define TIMEOUT_COUNT 0x100000
247 static unsigned long __init
248 calibrate_cc_with_pit(void)
250 int cc, count = 0;
252 /* Set the Gate high, disable speaker */
253 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
256 * Now let's take care of CTC channel 2
258 * Set the Gate high, program CTC channel 2 for mode 0,
259 * (interrupt on terminal count mode), binary count,
260 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
262 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
263 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
264 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
266 cc = rpcc();
267 do {
268 count++;
269 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
270 cc = rpcc() - cc;
272 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
273 if (count <= 1 || count == TIMEOUT_COUNT)
274 return 0;
276 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
279 /* The Linux interpretation of the CMOS clock register contents:
280 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
281 RTC registers show the second which has precisely just started.
282 Let's hope other operating systems interpret the RTC the same way. */
284 static unsigned long __init
285 rpcc_after_update_in_progress(void)
287 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
288 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
290 return rpcc();
293 void __init
294 time_init(void)
296 unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
297 unsigned long cycle_freq, tolerance;
298 long diff;
300 /* Calibrate CPU clock -- attempt #1. */
301 if (!est_cycle_freq)
302 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
304 cc1 = rpcc();
306 /* Calibrate CPU clock -- attempt #2. */
307 if (!est_cycle_freq) {
308 cc1 = rpcc_after_update_in_progress();
309 cc2 = rpcc_after_update_in_progress();
310 est_cycle_freq = validate_cc_value(cc2 - cc1);
311 cc1 = cc2;
314 cycle_freq = hwrpb->cycle_freq;
315 if (est_cycle_freq) {
316 /* If the given value is within 250 PPM of what we calculated,
317 accept it. Otherwise, use what we found. */
318 tolerance = cycle_freq / 4000;
319 diff = cycle_freq - est_cycle_freq;
320 if (diff < 0)
321 diff = -diff;
322 if ((unsigned long)diff > tolerance) {
323 cycle_freq = est_cycle_freq;
324 printk("HWRPB cycle frequency bogus. "
325 "Estimated %lu Hz\n", cycle_freq);
326 } else {
327 est_cycle_freq = 0;
329 } else if (! validate_cc_value (cycle_freq)) {
330 printk("HWRPB cycle frequency bogus, "
331 "and unable to estimate a proper value!\n");
334 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
335 to settle, as the Update-In-Progress bit going low isn't good
336 enough on some hardware. 2ms is our guess; we haven't found
337 bogomips yet, but this is close on a 500Mhz box. */
338 __delay(1000000);
340 sec = CMOS_READ(RTC_SECONDS);
341 min = CMOS_READ(RTC_MINUTES);
342 hour = CMOS_READ(RTC_HOURS);
343 day = CMOS_READ(RTC_DAY_OF_MONTH);
344 mon = CMOS_READ(RTC_MONTH);
345 year = CMOS_READ(RTC_YEAR);
347 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
348 BCD_TO_BIN(sec);
349 BCD_TO_BIN(min);
350 BCD_TO_BIN(hour);
351 BCD_TO_BIN(day);
352 BCD_TO_BIN(mon);
353 BCD_TO_BIN(year);
356 /* PC-like is standard; used for year >= 70 */
357 epoch = 1900;
358 if (year < 20)
359 epoch = 2000;
360 else if (year >= 20 && year < 48)
361 /* NT epoch */
362 epoch = 1980;
363 else if (year >= 48 && year < 70)
364 /* Digital UNIX epoch */
365 epoch = 1952;
367 printk(KERN_INFO "Using epoch = %d\n", epoch);
369 if ((year += epoch) < 1970)
370 year += 100;
372 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
373 xtime.tv_nsec = 0;
375 wall_to_monotonic.tv_sec -= xtime.tv_sec;
376 wall_to_monotonic.tv_nsec = 0;
378 if (HZ > (1<<16)) {
379 extern void __you_loose (void);
380 __you_loose();
383 state.last_time = cc1;
384 state.scaled_ticks_per_cycle
385 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
386 state.last_rtc_update = 0;
387 state.partial_tick = 0L;
389 /* Startup the timer source. */
390 alpha_mv.init_rtc();
394 * Use the cycle counter to estimate an displacement from the last time
395 * tick. Unfortunately the Alpha designers made only the low 32-bits of
396 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
397 * part. So we can't do the "find absolute time in terms of cycles" thing
398 * that the other ports do.
400 void
401 do_gettimeofday(struct timeval *tv)
403 unsigned long flags;
404 unsigned long sec, usec, seq;
405 unsigned long delta_cycles, delta_usec, partial_tick;
407 do {
408 seq = read_seqbegin_irqsave(&xtime_lock, flags);
410 delta_cycles = rpcc() - state.last_time;
411 sec = xtime.tv_sec;
412 usec = (xtime.tv_nsec / 1000);
413 partial_tick = state.partial_tick;
415 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
417 #ifdef CONFIG_SMP
418 /* Until and unless we figure out how to get cpu cycle counters
419 in sync and keep them there, we can't use the rpcc tricks. */
420 delta_usec = 0;
421 #else
423 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
424 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
425 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
427 * which, given a 600MHz cycle and a 1024Hz tick, has a
428 * dynamic range of about 1.7e17, which is less than the
429 * 1.8e19 in an unsigned long, so we are safe from overflow.
431 * Round, but with .5 up always, since .5 to even is harder
432 * with no clear gain.
435 delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
436 + partial_tick) * 15625;
437 delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
438 #endif
440 usec += delta_usec;
441 if (usec >= 1000000) {
442 sec += 1;
443 usec -= 1000000;
446 tv->tv_sec = sec;
447 tv->tv_usec = usec;
450 EXPORT_SYMBOL(do_gettimeofday);
453 do_settimeofday(struct timespec *tv)
455 time_t wtm_sec, sec = tv->tv_sec;
456 long wtm_nsec, nsec = tv->tv_nsec;
457 unsigned long delta_nsec;
459 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
460 return -EINVAL;
462 write_seqlock_irq(&xtime_lock);
464 /* The offset that is added into time in do_gettimeofday above
465 must be subtracted out here to keep a coherent view of the
466 time. Without this, a full-tick error is possible. */
468 #ifdef CONFIG_SMP
469 delta_nsec = 0;
470 #else
471 delta_nsec = rpcc() - state.last_time;
472 delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
473 + state.partial_tick) * 15625;
474 delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
475 delta_nsec *= 1000;
476 #endif
478 nsec -= delta_nsec;
480 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
481 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
483 set_normalized_timespec(&xtime, sec, nsec);
484 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
486 ntp_clear();
488 write_sequnlock_irq(&xtime_lock);
489 clock_was_set();
490 return 0;
493 EXPORT_SYMBOL(do_settimeofday);
497 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
498 * called 500 ms after the second nowtime has started, because when
499 * nowtime is written into the registers of the CMOS clock, it will
500 * jump to the next second precisely 500 ms later. Check the Motorola
501 * MC146818A or Dallas DS12887 data sheet for details.
503 * BUG: This routine does not handle hour overflow properly; it just
504 * sets the minutes. Usually you won't notice until after reboot!
508 static int
509 set_rtc_mmss(unsigned long nowtime)
511 int retval = 0;
512 int real_seconds, real_minutes, cmos_minutes;
513 unsigned char save_control, save_freq_select;
515 /* irq are locally disabled here */
516 spin_lock(&rtc_lock);
517 /* Tell the clock it's being set */
518 save_control = CMOS_READ(RTC_CONTROL);
519 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
521 /* Stop and reset prescaler */
522 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
523 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
525 cmos_minutes = CMOS_READ(RTC_MINUTES);
526 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
527 BCD_TO_BIN(cmos_minutes);
530 * since we're only adjusting minutes and seconds,
531 * don't interfere with hour overflow. This avoids
532 * messing with unknown time zones but requires your
533 * RTC not to be off by more than 15 minutes
535 real_seconds = nowtime % 60;
536 real_minutes = nowtime / 60;
537 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
538 /* correct for half hour time zone */
539 real_minutes += 30;
541 real_minutes %= 60;
543 if (abs(real_minutes - cmos_minutes) < 30) {
544 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545 BIN_TO_BCD(real_seconds);
546 BIN_TO_BCD(real_minutes);
548 CMOS_WRITE(real_seconds,RTC_SECONDS);
549 CMOS_WRITE(real_minutes,RTC_MINUTES);
550 } else {
551 printk(KERN_WARNING
552 "set_rtc_mmss: can't update from %d to %d\n",
553 cmos_minutes, real_minutes);
554 retval = -1;
557 /* The following flags have to be released exactly in this order,
558 * otherwise the DS12887 (popular MC146818A clone with integrated
559 * battery and quartz) will not reset the oscillator and will not
560 * update precisely 500 ms later. You won't find this mentioned in
561 * the Dallas Semiconductor data sheets, but who believes data
562 * sheets anyway ... -- Markus Kuhn
564 CMOS_WRITE(save_control, RTC_CONTROL);
565 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
566 spin_unlock(&rtc_lock);
568 return retval;