ACPI: CONFIG_ACPI_SLEEP=n power off regression in 2.6.23-rc8 (NOT in rc7)
[pv_ops_mirror.git] / kernel / sched_rt.c
blob4b87476a02d0fec53239c896c8f2b210964b8f92
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 /*
7 * Update the current task's runtime statistics. Skip current tasks that
8 * are not in our scheduling class.
9 */
10 static inline void update_curr_rt(struct rq *rq)
12 struct task_struct *curr = rq->curr;
13 u64 delta_exec;
15 if (!task_has_rt_policy(curr))
16 return;
18 delta_exec = rq->clock - curr->se.exec_start;
19 if (unlikely((s64)delta_exec < 0))
20 delta_exec = 0;
22 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
24 curr->se.sum_exec_runtime += delta_exec;
25 curr->se.exec_start = rq->clock;
28 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
30 struct rt_prio_array *array = &rq->rt.active;
32 list_add_tail(&p->run_list, array->queue + p->prio);
33 __set_bit(p->prio, array->bitmap);
37 * Adding/removing a task to/from a priority array:
39 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
41 struct rt_prio_array *array = &rq->rt.active;
43 update_curr_rt(rq);
45 list_del(&p->run_list);
46 if (list_empty(array->queue + p->prio))
47 __clear_bit(p->prio, array->bitmap);
51 * Put task to the end of the run list without the overhead of dequeue
52 * followed by enqueue.
54 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
56 struct rt_prio_array *array = &rq->rt.active;
58 list_move_tail(&p->run_list, array->queue + p->prio);
61 static void
62 yield_task_rt(struct rq *rq, struct task_struct *p)
64 requeue_task_rt(rq, p);
68 * Preempt the current task with a newly woken task if needed:
70 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
72 if (p->prio < rq->curr->prio)
73 resched_task(rq->curr);
76 static struct task_struct *pick_next_task_rt(struct rq *rq)
78 struct rt_prio_array *array = &rq->rt.active;
79 struct task_struct *next;
80 struct list_head *queue;
81 int idx;
83 idx = sched_find_first_bit(array->bitmap);
84 if (idx >= MAX_RT_PRIO)
85 return NULL;
87 queue = array->queue + idx;
88 next = list_entry(queue->next, struct task_struct, run_list);
90 next->se.exec_start = rq->clock;
92 return next;
95 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
97 update_curr_rt(rq);
98 p->se.exec_start = 0;
102 * Load-balancing iterator. Note: while the runqueue stays locked
103 * during the whole iteration, the current task might be
104 * dequeued so the iterator has to be dequeue-safe. Here we
105 * achieve that by always pre-iterating before returning
106 * the current task:
108 static struct task_struct *load_balance_start_rt(void *arg)
110 struct rq *rq = arg;
111 struct rt_prio_array *array = &rq->rt.active;
112 struct list_head *head, *curr;
113 struct task_struct *p;
114 int idx;
116 idx = sched_find_first_bit(array->bitmap);
117 if (idx >= MAX_RT_PRIO)
118 return NULL;
120 head = array->queue + idx;
121 curr = head->prev;
123 p = list_entry(curr, struct task_struct, run_list);
125 curr = curr->prev;
127 rq->rt.rt_load_balance_idx = idx;
128 rq->rt.rt_load_balance_head = head;
129 rq->rt.rt_load_balance_curr = curr;
131 return p;
134 static struct task_struct *load_balance_next_rt(void *arg)
136 struct rq *rq = arg;
137 struct rt_prio_array *array = &rq->rt.active;
138 struct list_head *head, *curr;
139 struct task_struct *p;
140 int idx;
142 idx = rq->rt.rt_load_balance_idx;
143 head = rq->rt.rt_load_balance_head;
144 curr = rq->rt.rt_load_balance_curr;
147 * If we arrived back to the head again then
148 * iterate to the next queue (if any):
150 if (unlikely(head == curr)) {
151 int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
153 if (next_idx >= MAX_RT_PRIO)
154 return NULL;
156 idx = next_idx;
157 head = array->queue + idx;
158 curr = head->prev;
160 rq->rt.rt_load_balance_idx = idx;
161 rq->rt.rt_load_balance_head = head;
164 p = list_entry(curr, struct task_struct, run_list);
166 curr = curr->prev;
168 rq->rt.rt_load_balance_curr = curr;
170 return p;
173 static unsigned long
174 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
175 unsigned long max_nr_move, unsigned long max_load_move,
176 struct sched_domain *sd, enum cpu_idle_type idle,
177 int *all_pinned, int *this_best_prio)
179 int nr_moved;
180 struct rq_iterator rt_rq_iterator;
181 unsigned long load_moved;
183 rt_rq_iterator.start = load_balance_start_rt;
184 rt_rq_iterator.next = load_balance_next_rt;
185 /* pass 'busiest' rq argument into
186 * load_balance_[start|next]_rt iterators
188 rt_rq_iterator.arg = busiest;
190 nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move,
191 max_load_move, sd, idle, all_pinned, &load_moved,
192 this_best_prio, &rt_rq_iterator);
194 return load_moved;
197 static void task_tick_rt(struct rq *rq, struct task_struct *p)
200 * RR tasks need a special form of timeslice management.
201 * FIFO tasks have no timeslices.
203 if (p->policy != SCHED_RR)
204 return;
206 if (--p->time_slice)
207 return;
209 p->time_slice = static_prio_timeslice(p->static_prio);
212 * Requeue to the end of queue if we are not the only element
213 * on the queue:
215 if (p->run_list.prev != p->run_list.next) {
216 requeue_task_rt(rq, p);
217 set_tsk_need_resched(p);
221 static struct sched_class rt_sched_class __read_mostly = {
222 .enqueue_task = enqueue_task_rt,
223 .dequeue_task = dequeue_task_rt,
224 .yield_task = yield_task_rt,
226 .check_preempt_curr = check_preempt_curr_rt,
228 .pick_next_task = pick_next_task_rt,
229 .put_prev_task = put_prev_task_rt,
231 .load_balance = load_balance_rt,
233 .task_tick = task_tick_rt,