Use access mode instead of open flags to determine needed permissions
[pv_ops_mirror.git] / drivers / net / fs_enet / fs_enet-main.c
blob3e1a57a42f110e3ed1ad2a51cb4a90ae8ae1e23c
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
40 #include <linux/vmalloc.h>
41 #include <asm/pgtable.h>
42 #include <asm/irq.h>
43 #include <asm/uaccess.h>
45 #ifdef CONFIG_PPC_CPM_NEW_BINDING
46 #include <asm/of_platform.h>
47 #endif
49 #include "fs_enet.h"
51 /*************************************************/
53 #ifndef CONFIG_PPC_CPM_NEW_BINDING
54 static char version[] __devinitdata =
55 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
56 #endif
58 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
59 MODULE_DESCRIPTION("Freescale Ethernet Driver");
60 MODULE_LICENSE("GPL");
61 MODULE_VERSION(DRV_MODULE_VERSION);
63 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
64 module_param(fs_enet_debug, int, 0);
65 MODULE_PARM_DESC(fs_enet_debug,
66 "Freescale bitmapped debugging message enable value");
68 #ifdef CONFIG_NET_POLL_CONTROLLER
69 static void fs_enet_netpoll(struct net_device *dev);
70 #endif
72 static void fs_set_multicast_list(struct net_device *dev)
74 struct fs_enet_private *fep = netdev_priv(dev);
76 (*fep->ops->set_multicast_list)(dev);
79 static void skb_align(struct sk_buff *skb, int align)
81 int off = ((unsigned long)skb->data) & (align - 1);
83 if (off)
84 skb_reserve(skb, align - off);
87 /* NAPI receive function */
88 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
90 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
91 struct net_device *dev = fep->ndev;
92 const struct fs_platform_info *fpi = fep->fpi;
93 cbd_t __iomem *bdp;
94 struct sk_buff *skb, *skbn, *skbt;
95 int received = 0;
96 u16 pkt_len, sc;
97 int curidx;
100 * First, grab all of the stats for the incoming packet.
101 * These get messed up if we get called due to a busy condition.
103 bdp = fep->cur_rx;
105 /* clear RX status bits for napi*/
106 (*fep->ops->napi_clear_rx_event)(dev);
108 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
109 curidx = bdp - fep->rx_bd_base;
112 * Since we have allocated space to hold a complete frame,
113 * the last indicator should be set.
115 if ((sc & BD_ENET_RX_LAST) == 0)
116 printk(KERN_WARNING DRV_MODULE_NAME
117 ": %s rcv is not +last\n",
118 dev->name);
121 * Check for errors.
123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
124 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
125 fep->stats.rx_errors++;
126 /* Frame too long or too short. */
127 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
128 fep->stats.rx_length_errors++;
129 /* Frame alignment */
130 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
131 fep->stats.rx_frame_errors++;
132 /* CRC Error */
133 if (sc & BD_ENET_RX_CR)
134 fep->stats.rx_crc_errors++;
135 /* FIFO overrun */
136 if (sc & BD_ENET_RX_OV)
137 fep->stats.rx_crc_errors++;
139 skb = fep->rx_skbuff[curidx];
141 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
142 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
143 DMA_FROM_DEVICE);
145 skbn = skb;
147 } else {
148 skb = fep->rx_skbuff[curidx];
150 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
151 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
152 DMA_FROM_DEVICE);
155 * Process the incoming frame.
157 fep->stats.rx_packets++;
158 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
159 fep->stats.rx_bytes += pkt_len + 4;
161 if (pkt_len <= fpi->rx_copybreak) {
162 /* +2 to make IP header L1 cache aligned */
163 skbn = dev_alloc_skb(pkt_len + 2);
164 if (skbn != NULL) {
165 skb_reserve(skbn, 2); /* align IP header */
166 skb_copy_from_linear_data(skb,
167 skbn->data, pkt_len);
168 /* swap */
169 skbt = skb;
170 skb = skbn;
171 skbn = skbt;
173 } else {
174 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
176 if (skbn)
177 skb_align(skbn, ENET_RX_ALIGN);
180 if (skbn != NULL) {
181 skb_put(skb, pkt_len); /* Make room */
182 skb->protocol = eth_type_trans(skb, dev);
183 received++;
184 netif_receive_skb(skb);
185 } else {
186 printk(KERN_WARNING DRV_MODULE_NAME
187 ": %s Memory squeeze, dropping packet.\n",
188 dev->name);
189 fep->stats.rx_dropped++;
190 skbn = skb;
194 fep->rx_skbuff[curidx] = skbn;
195 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
196 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
197 DMA_FROM_DEVICE));
198 CBDW_DATLEN(bdp, 0);
199 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
202 * Update BD pointer to next entry.
204 if ((sc & BD_ENET_RX_WRAP) == 0)
205 bdp++;
206 else
207 bdp = fep->rx_bd_base;
209 (*fep->ops->rx_bd_done)(dev);
211 if (received >= budget)
212 break;
215 fep->cur_rx = bdp;
217 if (received < budget) {
218 /* done */
219 netif_rx_complete(dev, napi);
220 (*fep->ops->napi_enable_rx)(dev);
222 return received;
225 /* non NAPI receive function */
226 static int fs_enet_rx_non_napi(struct net_device *dev)
228 struct fs_enet_private *fep = netdev_priv(dev);
229 const struct fs_platform_info *fpi = fep->fpi;
230 cbd_t __iomem *bdp;
231 struct sk_buff *skb, *skbn, *skbt;
232 int received = 0;
233 u16 pkt_len, sc;
234 int curidx;
236 * First, grab all of the stats for the incoming packet.
237 * These get messed up if we get called due to a busy condition.
239 bdp = fep->cur_rx;
241 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
243 curidx = bdp - fep->rx_bd_base;
246 * Since we have allocated space to hold a complete frame,
247 * the last indicator should be set.
249 if ((sc & BD_ENET_RX_LAST) == 0)
250 printk(KERN_WARNING DRV_MODULE_NAME
251 ": %s rcv is not +last\n",
252 dev->name);
255 * Check for errors.
257 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
258 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
259 fep->stats.rx_errors++;
260 /* Frame too long or too short. */
261 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
262 fep->stats.rx_length_errors++;
263 /* Frame alignment */
264 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
265 fep->stats.rx_frame_errors++;
266 /* CRC Error */
267 if (sc & BD_ENET_RX_CR)
268 fep->stats.rx_crc_errors++;
269 /* FIFO overrun */
270 if (sc & BD_ENET_RX_OV)
271 fep->stats.rx_crc_errors++;
273 skb = fep->rx_skbuff[curidx];
275 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
276 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
277 DMA_FROM_DEVICE);
279 skbn = skb;
281 } else {
283 skb = fep->rx_skbuff[curidx];
285 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
286 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
287 DMA_FROM_DEVICE);
290 * Process the incoming frame.
292 fep->stats.rx_packets++;
293 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
294 fep->stats.rx_bytes += pkt_len + 4;
296 if (pkt_len <= fpi->rx_copybreak) {
297 /* +2 to make IP header L1 cache aligned */
298 skbn = dev_alloc_skb(pkt_len + 2);
299 if (skbn != NULL) {
300 skb_reserve(skbn, 2); /* align IP header */
301 skb_copy_from_linear_data(skb,
302 skbn->data, pkt_len);
303 /* swap */
304 skbt = skb;
305 skb = skbn;
306 skbn = skbt;
308 } else {
309 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
311 if (skbn)
312 skb_align(skbn, ENET_RX_ALIGN);
315 if (skbn != NULL) {
316 skb_put(skb, pkt_len); /* Make room */
317 skb->protocol = eth_type_trans(skb, dev);
318 received++;
319 netif_rx(skb);
320 } else {
321 printk(KERN_WARNING DRV_MODULE_NAME
322 ": %s Memory squeeze, dropping packet.\n",
323 dev->name);
324 fep->stats.rx_dropped++;
325 skbn = skb;
329 fep->rx_skbuff[curidx] = skbn;
330 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
331 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
332 DMA_FROM_DEVICE));
333 CBDW_DATLEN(bdp, 0);
334 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
337 * Update BD pointer to next entry.
339 if ((sc & BD_ENET_RX_WRAP) == 0)
340 bdp++;
341 else
342 bdp = fep->rx_bd_base;
344 (*fep->ops->rx_bd_done)(dev);
347 fep->cur_rx = bdp;
349 return 0;
352 static void fs_enet_tx(struct net_device *dev)
354 struct fs_enet_private *fep = netdev_priv(dev);
355 cbd_t __iomem *bdp;
356 struct sk_buff *skb;
357 int dirtyidx, do_wake, do_restart;
358 u16 sc;
360 spin_lock(&fep->tx_lock);
361 bdp = fep->dirty_tx;
363 do_wake = do_restart = 0;
364 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
365 dirtyidx = bdp - fep->tx_bd_base;
367 if (fep->tx_free == fep->tx_ring)
368 break;
370 skb = fep->tx_skbuff[dirtyidx];
373 * Check for errors.
375 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
376 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
378 if (sc & BD_ENET_TX_HB) /* No heartbeat */
379 fep->stats.tx_heartbeat_errors++;
380 if (sc & BD_ENET_TX_LC) /* Late collision */
381 fep->stats.tx_window_errors++;
382 if (sc & BD_ENET_TX_RL) /* Retrans limit */
383 fep->stats.tx_aborted_errors++;
384 if (sc & BD_ENET_TX_UN) /* Underrun */
385 fep->stats.tx_fifo_errors++;
386 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
387 fep->stats.tx_carrier_errors++;
389 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
390 fep->stats.tx_errors++;
391 do_restart = 1;
393 } else
394 fep->stats.tx_packets++;
396 if (sc & BD_ENET_TX_READY)
397 printk(KERN_WARNING DRV_MODULE_NAME
398 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
399 dev->name);
402 * Deferred means some collisions occurred during transmit,
403 * but we eventually sent the packet OK.
405 if (sc & BD_ENET_TX_DEF)
406 fep->stats.collisions++;
408 /* unmap */
409 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
410 skb->len, DMA_TO_DEVICE);
413 * Free the sk buffer associated with this last transmit.
415 dev_kfree_skb_irq(skb);
416 fep->tx_skbuff[dirtyidx] = NULL;
419 * Update pointer to next buffer descriptor to be transmitted.
421 if ((sc & BD_ENET_TX_WRAP) == 0)
422 bdp++;
423 else
424 bdp = fep->tx_bd_base;
427 * Since we have freed up a buffer, the ring is no longer
428 * full.
430 if (!fep->tx_free++)
431 do_wake = 1;
434 fep->dirty_tx = bdp;
436 if (do_restart)
437 (*fep->ops->tx_restart)(dev);
439 spin_unlock(&fep->tx_lock);
441 if (do_wake)
442 netif_wake_queue(dev);
446 * The interrupt handler.
447 * This is called from the MPC core interrupt.
449 static irqreturn_t
450 fs_enet_interrupt(int irq, void *dev_id)
452 struct net_device *dev = dev_id;
453 struct fs_enet_private *fep;
454 const struct fs_platform_info *fpi;
455 u32 int_events;
456 u32 int_clr_events;
457 int nr, napi_ok;
458 int handled;
460 fep = netdev_priv(dev);
461 fpi = fep->fpi;
463 nr = 0;
464 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
465 nr++;
467 int_clr_events = int_events;
468 if (fpi->use_napi)
469 int_clr_events &= ~fep->ev_napi_rx;
471 (*fep->ops->clear_int_events)(dev, int_clr_events);
473 if (int_events & fep->ev_err)
474 (*fep->ops->ev_error)(dev, int_events);
476 if (int_events & fep->ev_rx) {
477 if (!fpi->use_napi)
478 fs_enet_rx_non_napi(dev);
479 else {
480 napi_ok = napi_schedule_prep(&fep->napi);
482 (*fep->ops->napi_disable_rx)(dev);
483 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
485 /* NOTE: it is possible for FCCs in NAPI mode */
486 /* to submit a spurious interrupt while in poll */
487 if (napi_ok)
488 __netif_rx_schedule(dev, &fep->napi);
492 if (int_events & fep->ev_tx)
493 fs_enet_tx(dev);
496 handled = nr > 0;
497 return IRQ_RETVAL(handled);
500 void fs_init_bds(struct net_device *dev)
502 struct fs_enet_private *fep = netdev_priv(dev);
503 cbd_t __iomem *bdp;
504 struct sk_buff *skb;
505 int i;
507 fs_cleanup_bds(dev);
509 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
510 fep->tx_free = fep->tx_ring;
511 fep->cur_rx = fep->rx_bd_base;
514 * Initialize the receive buffer descriptors.
516 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
517 skb = dev_alloc_skb(ENET_RX_FRSIZE);
518 if (skb == NULL) {
519 printk(KERN_WARNING DRV_MODULE_NAME
520 ": %s Memory squeeze, unable to allocate skb\n",
521 dev->name);
522 break;
524 skb_align(skb, ENET_RX_ALIGN);
525 fep->rx_skbuff[i] = skb;
526 CBDW_BUFADDR(bdp,
527 dma_map_single(fep->dev, skb->data,
528 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
529 DMA_FROM_DEVICE));
530 CBDW_DATLEN(bdp, 0); /* zero */
531 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
532 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
535 * if we failed, fillup remainder
537 for (; i < fep->rx_ring; i++, bdp++) {
538 fep->rx_skbuff[i] = NULL;
539 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
543 * ...and the same for transmit.
545 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
546 fep->tx_skbuff[i] = NULL;
547 CBDW_BUFADDR(bdp, 0);
548 CBDW_DATLEN(bdp, 0);
549 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
553 void fs_cleanup_bds(struct net_device *dev)
555 struct fs_enet_private *fep = netdev_priv(dev);
556 struct sk_buff *skb;
557 cbd_t __iomem *bdp;
558 int i;
561 * Reset SKB transmit buffers.
563 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
564 if ((skb = fep->tx_skbuff[i]) == NULL)
565 continue;
567 /* unmap */
568 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
569 skb->len, DMA_TO_DEVICE);
571 fep->tx_skbuff[i] = NULL;
572 dev_kfree_skb(skb);
576 * Reset SKB receive buffers
578 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
579 if ((skb = fep->rx_skbuff[i]) == NULL)
580 continue;
582 /* unmap */
583 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
584 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
585 DMA_FROM_DEVICE);
587 fep->rx_skbuff[i] = NULL;
589 dev_kfree_skb(skb);
593 /**********************************************************************************/
595 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
597 struct fs_enet_private *fep = netdev_priv(dev);
598 cbd_t __iomem *bdp;
599 int curidx;
600 u16 sc;
601 unsigned long flags;
603 spin_lock_irqsave(&fep->tx_lock, flags);
606 * Fill in a Tx ring entry
608 bdp = fep->cur_tx;
610 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
611 netif_stop_queue(dev);
612 spin_unlock_irqrestore(&fep->tx_lock, flags);
615 * Ooops. All transmit buffers are full. Bail out.
616 * This should not happen, since the tx queue should be stopped.
618 printk(KERN_WARNING DRV_MODULE_NAME
619 ": %s tx queue full!.\n", dev->name);
620 return NETDEV_TX_BUSY;
623 curidx = bdp - fep->tx_bd_base;
625 * Clear all of the status flags.
627 CBDC_SC(bdp, BD_ENET_TX_STATS);
630 * Save skb pointer.
632 fep->tx_skbuff[curidx] = skb;
634 fep->stats.tx_bytes += skb->len;
637 * Push the data cache so the CPM does not get stale memory data.
639 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
640 skb->data, skb->len, DMA_TO_DEVICE));
641 CBDW_DATLEN(bdp, skb->len);
643 dev->trans_start = jiffies;
646 * If this was the last BD in the ring, start at the beginning again.
648 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
649 fep->cur_tx++;
650 else
651 fep->cur_tx = fep->tx_bd_base;
653 if (!--fep->tx_free)
654 netif_stop_queue(dev);
656 /* Trigger transmission start */
657 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
658 BD_ENET_TX_LAST | BD_ENET_TX_TC;
660 /* note that while FEC does not have this bit
661 * it marks it as available for software use
662 * yay for hw reuse :) */
663 if (skb->len <= 60)
664 sc |= BD_ENET_TX_PAD;
665 CBDS_SC(bdp, sc);
667 (*fep->ops->tx_kickstart)(dev);
669 spin_unlock_irqrestore(&fep->tx_lock, flags);
671 return NETDEV_TX_OK;
674 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
675 irq_handler_t irqf)
677 struct fs_enet_private *fep = netdev_priv(dev);
679 (*fep->ops->pre_request_irq)(dev, irq);
680 return request_irq(irq, irqf, IRQF_SHARED, name, dev);
683 static void fs_free_irq(struct net_device *dev, int irq)
685 struct fs_enet_private *fep = netdev_priv(dev);
687 free_irq(irq, dev);
688 (*fep->ops->post_free_irq)(dev, irq);
691 static void fs_timeout(struct net_device *dev)
693 struct fs_enet_private *fep = netdev_priv(dev);
694 unsigned long flags;
695 int wake = 0;
697 fep->stats.tx_errors++;
699 spin_lock_irqsave(&fep->lock, flags);
701 if (dev->flags & IFF_UP) {
702 phy_stop(fep->phydev);
703 (*fep->ops->stop)(dev);
704 (*fep->ops->restart)(dev);
705 phy_start(fep->phydev);
708 phy_start(fep->phydev);
709 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
710 spin_unlock_irqrestore(&fep->lock, flags);
712 if (wake)
713 netif_wake_queue(dev);
716 /*-----------------------------------------------------------------------------
717 * generic link-change handler - should be sufficient for most cases
718 *-----------------------------------------------------------------------------*/
719 static void generic_adjust_link(struct net_device *dev)
721 struct fs_enet_private *fep = netdev_priv(dev);
722 struct phy_device *phydev = fep->phydev;
723 int new_state = 0;
725 if (phydev->link) {
726 /* adjust to duplex mode */
727 if (phydev->duplex != fep->oldduplex) {
728 new_state = 1;
729 fep->oldduplex = phydev->duplex;
732 if (phydev->speed != fep->oldspeed) {
733 new_state = 1;
734 fep->oldspeed = phydev->speed;
737 if (!fep->oldlink) {
738 new_state = 1;
739 fep->oldlink = 1;
740 netif_schedule(dev);
741 netif_carrier_on(dev);
742 netif_start_queue(dev);
745 if (new_state)
746 fep->ops->restart(dev);
747 } else if (fep->oldlink) {
748 new_state = 1;
749 fep->oldlink = 0;
750 fep->oldspeed = 0;
751 fep->oldduplex = -1;
752 netif_carrier_off(dev);
753 netif_stop_queue(dev);
756 if (new_state && netif_msg_link(fep))
757 phy_print_status(phydev);
761 static void fs_adjust_link(struct net_device *dev)
763 struct fs_enet_private *fep = netdev_priv(dev);
764 unsigned long flags;
766 spin_lock_irqsave(&fep->lock, flags);
768 if(fep->ops->adjust_link)
769 fep->ops->adjust_link(dev);
770 else
771 generic_adjust_link(dev);
773 spin_unlock_irqrestore(&fep->lock, flags);
776 static int fs_init_phy(struct net_device *dev)
778 struct fs_enet_private *fep = netdev_priv(dev);
779 struct phy_device *phydev;
781 fep->oldlink = 0;
782 fep->oldspeed = 0;
783 fep->oldduplex = -1;
784 if(fep->fpi->bus_id)
785 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
786 PHY_INTERFACE_MODE_MII);
787 else {
788 printk("No phy bus ID specified in BSP code\n");
789 return -EINVAL;
791 if (IS_ERR(phydev)) {
792 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
793 return PTR_ERR(phydev);
796 fep->phydev = phydev;
798 return 0;
801 static int fs_enet_open(struct net_device *dev)
803 struct fs_enet_private *fep = netdev_priv(dev);
804 int r;
805 int err;
807 if (fep->fpi->use_napi)
808 napi_enable(&fep->napi);
810 /* Install our interrupt handler. */
811 r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
812 if (r != 0) {
813 printk(KERN_ERR DRV_MODULE_NAME
814 ": %s Could not allocate FS_ENET IRQ!", dev->name);
815 if (fep->fpi->use_napi)
816 napi_disable(&fep->napi);
817 return -EINVAL;
820 err = fs_init_phy(dev);
821 if (err) {
822 if (fep->fpi->use_napi)
823 napi_disable(&fep->napi);
824 return err;
826 phy_start(fep->phydev);
828 return 0;
831 static int fs_enet_close(struct net_device *dev)
833 struct fs_enet_private *fep = netdev_priv(dev);
834 unsigned long flags;
836 netif_stop_queue(dev);
837 netif_carrier_off(dev);
838 napi_disable(&fep->napi);
839 phy_stop(fep->phydev);
841 spin_lock_irqsave(&fep->lock, flags);
842 spin_lock(&fep->tx_lock);
843 (*fep->ops->stop)(dev);
844 spin_unlock(&fep->tx_lock);
845 spin_unlock_irqrestore(&fep->lock, flags);
847 /* release any irqs */
848 phy_disconnect(fep->phydev);
849 fep->phydev = NULL;
850 fs_free_irq(dev, fep->interrupt);
852 return 0;
855 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
857 struct fs_enet_private *fep = netdev_priv(dev);
858 return &fep->stats;
861 /*************************************************************************/
863 static void fs_get_drvinfo(struct net_device *dev,
864 struct ethtool_drvinfo *info)
866 strcpy(info->driver, DRV_MODULE_NAME);
867 strcpy(info->version, DRV_MODULE_VERSION);
870 static int fs_get_regs_len(struct net_device *dev)
872 struct fs_enet_private *fep = netdev_priv(dev);
874 return (*fep->ops->get_regs_len)(dev);
877 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
878 void *p)
880 struct fs_enet_private *fep = netdev_priv(dev);
881 unsigned long flags;
882 int r, len;
884 len = regs->len;
886 spin_lock_irqsave(&fep->lock, flags);
887 r = (*fep->ops->get_regs)(dev, p, &len);
888 spin_unlock_irqrestore(&fep->lock, flags);
890 if (r == 0)
891 regs->version = 0;
894 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
896 struct fs_enet_private *fep = netdev_priv(dev);
897 return phy_ethtool_gset(fep->phydev, cmd);
900 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
902 struct fs_enet_private *fep = netdev_priv(dev);
903 phy_ethtool_sset(fep->phydev, cmd);
904 return 0;
907 static int fs_nway_reset(struct net_device *dev)
909 return 0;
912 static u32 fs_get_msglevel(struct net_device *dev)
914 struct fs_enet_private *fep = netdev_priv(dev);
915 return fep->msg_enable;
918 static void fs_set_msglevel(struct net_device *dev, u32 value)
920 struct fs_enet_private *fep = netdev_priv(dev);
921 fep->msg_enable = value;
924 static const struct ethtool_ops fs_ethtool_ops = {
925 .get_drvinfo = fs_get_drvinfo,
926 .get_regs_len = fs_get_regs_len,
927 .get_settings = fs_get_settings,
928 .set_settings = fs_set_settings,
929 .nway_reset = fs_nway_reset,
930 .get_link = ethtool_op_get_link,
931 .get_msglevel = fs_get_msglevel,
932 .set_msglevel = fs_set_msglevel,
933 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
934 .set_sg = ethtool_op_set_sg,
935 .get_regs = fs_get_regs,
938 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
940 struct fs_enet_private *fep = netdev_priv(dev);
941 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
942 unsigned long flags;
943 int rc;
945 if (!netif_running(dev))
946 return -EINVAL;
948 spin_lock_irqsave(&fep->lock, flags);
949 rc = phy_mii_ioctl(fep->phydev, mii, cmd);
950 spin_unlock_irqrestore(&fep->lock, flags);
951 return rc;
954 extern int fs_mii_connect(struct net_device *dev);
955 extern void fs_mii_disconnect(struct net_device *dev);
957 #ifndef CONFIG_PPC_CPM_NEW_BINDING
958 static struct net_device *fs_init_instance(struct device *dev,
959 struct fs_platform_info *fpi)
961 struct net_device *ndev = NULL;
962 struct fs_enet_private *fep = NULL;
963 int privsize, i, r, err = 0, registered = 0;
965 fpi->fs_no = fs_get_id(fpi);
966 /* guard */
967 if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
968 return ERR_PTR(-EINVAL);
970 privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
971 (fpi->rx_ring + fpi->tx_ring));
973 ndev = alloc_etherdev(privsize);
974 if (!ndev) {
975 err = -ENOMEM;
976 goto err;
979 fep = netdev_priv(ndev);
981 fep->dev = dev;
982 dev_set_drvdata(dev, ndev);
983 fep->fpi = fpi;
984 if (fpi->init_ioports)
985 fpi->init_ioports((struct fs_platform_info *)fpi);
987 #ifdef CONFIG_FS_ENET_HAS_FEC
988 if (fs_get_fec_index(fpi->fs_no) >= 0)
989 fep->ops = &fs_fec_ops;
990 #endif
992 #ifdef CONFIG_FS_ENET_HAS_SCC
993 if (fs_get_scc_index(fpi->fs_no) >=0)
994 fep->ops = &fs_scc_ops;
995 #endif
997 #ifdef CONFIG_FS_ENET_HAS_FCC
998 if (fs_get_fcc_index(fpi->fs_no) >= 0)
999 fep->ops = &fs_fcc_ops;
1000 #endif
1002 if (fep->ops == NULL) {
1003 printk(KERN_ERR DRV_MODULE_NAME
1004 ": %s No matching ops found (%d).\n",
1005 ndev->name, fpi->fs_no);
1006 err = -EINVAL;
1007 goto err;
1010 r = (*fep->ops->setup_data)(ndev);
1011 if (r != 0) {
1012 printk(KERN_ERR DRV_MODULE_NAME
1013 ": %s setup_data failed\n",
1014 ndev->name);
1015 err = r;
1016 goto err;
1019 /* point rx_skbuff, tx_skbuff */
1020 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1021 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1023 /* init locks */
1024 spin_lock_init(&fep->lock);
1025 spin_lock_init(&fep->tx_lock);
1028 * Set the Ethernet address.
1030 for (i = 0; i < 6; i++)
1031 ndev->dev_addr[i] = fpi->macaddr[i];
1033 r = (*fep->ops->allocate_bd)(ndev);
1035 if (fep->ring_base == NULL) {
1036 printk(KERN_ERR DRV_MODULE_NAME
1037 ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
1038 err = r;
1039 goto err;
1043 * Set receive and transmit descriptor base.
1045 fep->rx_bd_base = fep->ring_base;
1046 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1048 /* initialize ring size variables */
1049 fep->tx_ring = fpi->tx_ring;
1050 fep->rx_ring = fpi->rx_ring;
1053 * The FEC Ethernet specific entries in the device structure.
1055 ndev->open = fs_enet_open;
1056 ndev->hard_start_xmit = fs_enet_start_xmit;
1057 ndev->tx_timeout = fs_timeout;
1058 ndev->watchdog_timeo = 2 * HZ;
1059 ndev->stop = fs_enet_close;
1060 ndev->get_stats = fs_enet_get_stats;
1061 ndev->set_multicast_list = fs_set_multicast_list;
1063 #ifdef CONFIG_NET_POLL_CONTROLLER
1064 ndev->poll_controller = fs_enet_netpoll;
1065 #endif
1067 netif_napi_add(ndev, &fep->napi,
1068 fs_enet_rx_napi, fpi->napi_weight);
1070 ndev->ethtool_ops = &fs_ethtool_ops;
1071 ndev->do_ioctl = fs_ioctl;
1073 init_timer(&fep->phy_timer_list);
1075 netif_carrier_off(ndev);
1077 err = register_netdev(ndev);
1078 if (err != 0) {
1079 printk(KERN_ERR DRV_MODULE_NAME
1080 ": %s register_netdev failed.\n", ndev->name);
1081 goto err;
1083 registered = 1;
1086 return ndev;
1088 err:
1089 if (ndev != NULL) {
1090 if (registered)
1091 unregister_netdev(ndev);
1093 if (fep != NULL) {
1094 (*fep->ops->free_bd)(ndev);
1095 (*fep->ops->cleanup_data)(ndev);
1098 free_netdev(ndev);
1101 dev_set_drvdata(dev, NULL);
1103 return ERR_PTR(err);
1106 static int fs_cleanup_instance(struct net_device *ndev)
1108 struct fs_enet_private *fep;
1109 const struct fs_platform_info *fpi;
1110 struct device *dev;
1112 if (ndev == NULL)
1113 return -EINVAL;
1115 fep = netdev_priv(ndev);
1116 if (fep == NULL)
1117 return -EINVAL;
1119 fpi = fep->fpi;
1121 unregister_netdev(ndev);
1123 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1124 (void __force *)fep->ring_base, fep->ring_mem_addr);
1126 /* reset it */
1127 (*fep->ops->cleanup_data)(ndev);
1129 dev = fep->dev;
1130 if (dev != NULL) {
1131 dev_set_drvdata(dev, NULL);
1132 fep->dev = NULL;
1135 free_netdev(ndev);
1137 return 0;
1139 #endif
1141 /**************************************************************************************/
1143 /* handy pointer to the immap */
1144 void __iomem *fs_enet_immap = NULL;
1146 static int setup_immap(void)
1148 #ifdef CONFIG_CPM1
1149 fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
1150 WARN_ON(!fs_enet_immap);
1151 #elif defined(CONFIG_CPM2)
1152 fs_enet_immap = cpm2_immr;
1153 #endif
1155 return 0;
1158 static void cleanup_immap(void)
1160 #if defined(CONFIG_CPM1)
1161 iounmap(fs_enet_immap);
1162 #endif
1165 /**************************************************************************************/
1167 #ifdef CONFIG_PPC_CPM_NEW_BINDING
1168 static int __devinit find_phy(struct device_node *np,
1169 struct fs_platform_info *fpi)
1171 struct device_node *phynode, *mdionode;
1172 struct resource res;
1173 int ret = 0, len;
1175 const u32 *data = of_get_property(np, "phy-handle", &len);
1176 if (!data || len != 4)
1177 return -EINVAL;
1179 phynode = of_find_node_by_phandle(*data);
1180 if (!phynode)
1181 return -EINVAL;
1183 mdionode = of_get_parent(phynode);
1184 if (!mdionode)
1185 goto out_put_phy;
1187 ret = of_address_to_resource(mdionode, 0, &res);
1188 if (ret)
1189 goto out_put_mdio;
1191 data = of_get_property(phynode, "reg", &len);
1192 if (!data || len != 4)
1193 goto out_put_mdio;
1195 snprintf(fpi->bus_id, 16, PHY_ID_FMT, res.start, *data);
1197 out_put_mdio:
1198 of_node_put(mdionode);
1199 out_put_phy:
1200 of_node_put(phynode);
1201 return ret;
1204 #ifdef CONFIG_FS_ENET_HAS_FEC
1205 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
1206 #else
1207 #define IS_FEC(match) 0
1208 #endif
1210 static int __devinit fs_enet_probe(struct of_device *ofdev,
1211 const struct of_device_id *match)
1213 struct net_device *ndev;
1214 struct fs_enet_private *fep;
1215 struct fs_platform_info *fpi;
1216 const u32 *data;
1217 const u8 *mac_addr;
1218 int privsize, len, ret = -ENODEV;
1220 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1221 if (!fpi)
1222 return -ENOMEM;
1224 if (!IS_FEC(match)) {
1225 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
1226 if (!data || len != 4)
1227 goto out_free_fpi;
1229 fpi->cp_command = *data;
1232 fpi->rx_ring = 32;
1233 fpi->tx_ring = 32;
1234 fpi->rx_copybreak = 240;
1235 fpi->use_napi = 1;
1236 fpi->napi_weight = 17;
1238 ret = find_phy(ofdev->node, fpi);
1239 if (ret)
1240 goto out_free_fpi;
1242 privsize = sizeof(*fep) +
1243 sizeof(struct sk_buff **) *
1244 (fpi->rx_ring + fpi->tx_ring);
1246 ndev = alloc_etherdev(privsize);
1247 if (!ndev) {
1248 ret = -ENOMEM;
1249 goto out_free_fpi;
1252 dev_set_drvdata(&ofdev->dev, ndev);
1254 fep = netdev_priv(ndev);
1255 fep->dev = &ofdev->dev;
1256 fep->ndev = ndev;
1257 fep->fpi = fpi;
1258 fep->ops = match->data;
1260 ret = fep->ops->setup_data(ndev);
1261 if (ret)
1262 goto out_free_dev;
1264 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1265 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1267 spin_lock_init(&fep->lock);
1268 spin_lock_init(&fep->tx_lock);
1270 mac_addr = of_get_mac_address(ofdev->node);
1271 if (mac_addr)
1272 memcpy(ndev->dev_addr, mac_addr, 6);
1274 ret = fep->ops->allocate_bd(ndev);
1275 if (ret)
1276 goto out_cleanup_data;
1278 fep->rx_bd_base = fep->ring_base;
1279 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1281 fep->tx_ring = fpi->tx_ring;
1282 fep->rx_ring = fpi->rx_ring;
1284 ndev->open = fs_enet_open;
1285 ndev->hard_start_xmit = fs_enet_start_xmit;
1286 ndev->tx_timeout = fs_timeout;
1287 ndev->watchdog_timeo = 2 * HZ;
1288 ndev->stop = fs_enet_close;
1289 ndev->get_stats = fs_enet_get_stats;
1290 ndev->set_multicast_list = fs_set_multicast_list;
1292 if (fpi->use_napi)
1293 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1294 fpi->napi_weight);
1296 ndev->ethtool_ops = &fs_ethtool_ops;
1297 ndev->do_ioctl = fs_ioctl;
1299 init_timer(&fep->phy_timer_list);
1301 netif_carrier_off(ndev);
1303 ret = register_netdev(ndev);
1304 if (ret)
1305 goto out_free_bd;
1307 printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
1308 ndev->name,
1309 ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
1310 ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
1312 return 0;
1314 out_free_bd:
1315 fep->ops->free_bd(ndev);
1316 out_cleanup_data:
1317 fep->ops->cleanup_data(ndev);
1318 out_free_dev:
1319 free_netdev(ndev);
1320 dev_set_drvdata(&ofdev->dev, NULL);
1321 out_free_fpi:
1322 kfree(fpi);
1323 return ret;
1326 static int fs_enet_remove(struct of_device *ofdev)
1328 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1329 struct fs_enet_private *fep = netdev_priv(ndev);
1331 unregister_netdev(ndev);
1333 fep->ops->free_bd(ndev);
1334 fep->ops->cleanup_data(ndev);
1335 dev_set_drvdata(fep->dev, NULL);
1337 free_netdev(ndev);
1338 return 0;
1341 static struct of_device_id fs_enet_match[] = {
1342 #ifdef CONFIG_FS_ENET_HAS_SCC
1344 .compatible = "fsl,cpm1-scc-enet",
1345 .data = (void *)&fs_scc_ops,
1347 #endif
1348 #ifdef CONFIG_FS_ENET_HAS_FCC
1350 .compatible = "fsl,cpm2-fcc-enet",
1351 .data = (void *)&fs_fcc_ops,
1353 #endif
1354 #ifdef CONFIG_FS_ENET_HAS_FEC
1356 .compatible = "fsl,pq1-fec-enet",
1357 .data = (void *)&fs_fec_ops,
1359 #endif
1363 static struct of_platform_driver fs_enet_driver = {
1364 .name = "fs_enet",
1365 .match_table = fs_enet_match,
1366 .probe = fs_enet_probe,
1367 .remove = fs_enet_remove,
1370 static int __init fs_init(void)
1372 int r = setup_immap();
1373 if (r != 0)
1374 return r;
1376 r = of_register_platform_driver(&fs_enet_driver);
1377 if (r != 0)
1378 goto out;
1380 return 0;
1382 out:
1383 cleanup_immap();
1384 return r;
1387 static void __exit fs_cleanup(void)
1389 of_unregister_platform_driver(&fs_enet_driver);
1390 cleanup_immap();
1392 #else
1393 static int __devinit fs_enet_probe(struct device *dev)
1395 struct net_device *ndev;
1397 /* no fixup - no device */
1398 if (dev->platform_data == NULL) {
1399 printk(KERN_INFO "fs_enet: "
1400 "probe called with no platform data; "
1401 "remove unused devices\n");
1402 return -ENODEV;
1405 ndev = fs_init_instance(dev, dev->platform_data);
1406 if (IS_ERR(ndev))
1407 return PTR_ERR(ndev);
1408 return 0;
1411 static int fs_enet_remove(struct device *dev)
1413 return fs_cleanup_instance(dev_get_drvdata(dev));
1416 static struct device_driver fs_enet_fec_driver = {
1417 .name = "fsl-cpm-fec",
1418 .bus = &platform_bus_type,
1419 .probe = fs_enet_probe,
1420 .remove = fs_enet_remove,
1421 #ifdef CONFIG_PM
1422 /* .suspend = fs_enet_suspend, TODO */
1423 /* .resume = fs_enet_resume, TODO */
1424 #endif
1427 static struct device_driver fs_enet_scc_driver = {
1428 .name = "fsl-cpm-scc",
1429 .bus = &platform_bus_type,
1430 .probe = fs_enet_probe,
1431 .remove = fs_enet_remove,
1432 #ifdef CONFIG_PM
1433 /* .suspend = fs_enet_suspend, TODO */
1434 /* .resume = fs_enet_resume, TODO */
1435 #endif
1438 static struct device_driver fs_enet_fcc_driver = {
1439 .name = "fsl-cpm-fcc",
1440 .bus = &platform_bus_type,
1441 .probe = fs_enet_probe,
1442 .remove = fs_enet_remove,
1443 #ifdef CONFIG_PM
1444 /* .suspend = fs_enet_suspend, TODO */
1445 /* .resume = fs_enet_resume, TODO */
1446 #endif
1449 static int __init fs_init(void)
1451 int r;
1453 printk(KERN_INFO
1454 "%s", version);
1456 r = setup_immap();
1457 if (r != 0)
1458 return r;
1460 #ifdef CONFIG_FS_ENET_HAS_FCC
1461 /* let's insert mii stuff */
1462 r = fs_enet_mdio_bb_init();
1464 if (r != 0) {
1465 printk(KERN_ERR DRV_MODULE_NAME
1466 "BB PHY init failed.\n");
1467 return r;
1469 r = driver_register(&fs_enet_fcc_driver);
1470 if (r != 0)
1471 goto err;
1472 #endif
1474 #ifdef CONFIG_FS_ENET_HAS_FEC
1475 r = fs_enet_mdio_fec_init();
1476 if (r != 0) {
1477 printk(KERN_ERR DRV_MODULE_NAME
1478 "FEC PHY init failed.\n");
1479 return r;
1482 r = driver_register(&fs_enet_fec_driver);
1483 if (r != 0)
1484 goto err;
1485 #endif
1487 #ifdef CONFIG_FS_ENET_HAS_SCC
1488 r = driver_register(&fs_enet_scc_driver);
1489 if (r != 0)
1490 goto err;
1491 #endif
1493 return 0;
1494 err:
1495 cleanup_immap();
1496 return r;
1499 static void __exit fs_cleanup(void)
1501 driver_unregister(&fs_enet_fec_driver);
1502 driver_unregister(&fs_enet_fcc_driver);
1503 driver_unregister(&fs_enet_scc_driver);
1504 cleanup_immap();
1506 #endif
1508 #ifdef CONFIG_NET_POLL_CONTROLLER
1509 static void fs_enet_netpoll(struct net_device *dev)
1511 disable_irq(dev->irq);
1512 fs_enet_interrupt(dev->irq, dev, NULL);
1513 enable_irq(dev->irq);
1515 #endif
1517 /**************************************************************************************/
1519 module_init(fs_init);
1520 module_exit(fs_cleanup);