ia64/kvm: compilation fix. export account_system_vtime.
[pv_ops_mirror.git] / arch / alpha / mm / numa.c
blob10ab7833e83ca660c7292869e501434251e4bdba
1 /*
2 * linux/arch/alpha/mm/numa.c
4 * DISCONTIGMEM NUMA alpha support.
6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7 */
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/mm.h>
12 #include <linux/bootmem.h>
13 #include <linux/swap.h>
14 #include <linux/initrd.h>
15 #include <linux/pfn.h>
16 #include <linux/module.h>
18 #include <asm/hwrpb.h>
19 #include <asm/pgalloc.h>
21 pg_data_t node_data[MAX_NUMNODES];
22 bootmem_data_t node_bdata[MAX_NUMNODES];
23 EXPORT_SYMBOL(node_data);
25 #undef DEBUG_DISCONTIG
26 #ifdef DEBUG_DISCONTIG
27 #define DBGDCONT(args...) printk(args)
28 #else
29 #define DBGDCONT(args...)
30 #endif
32 #define for_each_mem_cluster(memdesc, cluster, i) \
33 for ((cluster) = (memdesc)->cluster, (i) = 0; \
34 (i) < (memdesc)->numclusters; (i)++, (cluster)++)
36 static void __init show_mem_layout(void)
38 struct memclust_struct * cluster;
39 struct memdesc_struct * memdesc;
40 int i;
42 /* Find free clusters, and init and free the bootmem accordingly. */
43 memdesc = (struct memdesc_struct *)
44 (hwrpb->mddt_offset + (unsigned long) hwrpb);
46 printk("Raw memory layout:\n");
47 for_each_mem_cluster(memdesc, cluster, i) {
48 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
49 i, cluster->usage, cluster->start_pfn,
50 cluster->start_pfn + cluster->numpages);
54 static void __init
55 setup_memory_node(int nid, void *kernel_end)
57 extern unsigned long mem_size_limit;
58 struct memclust_struct * cluster;
59 struct memdesc_struct * memdesc;
60 unsigned long start_kernel_pfn, end_kernel_pfn;
61 unsigned long bootmap_size, bootmap_pages, bootmap_start;
62 unsigned long start, end;
63 unsigned long node_pfn_start, node_pfn_end;
64 unsigned long node_min_pfn, node_max_pfn;
65 int i;
66 unsigned long node_datasz = PFN_UP(sizeof(pg_data_t));
67 int show_init = 0;
69 /* Find the bounds of current node */
70 node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
71 node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
73 /* Find free clusters, and init and free the bootmem accordingly. */
74 memdesc = (struct memdesc_struct *)
75 (hwrpb->mddt_offset + (unsigned long) hwrpb);
77 /* find the bounds of this node (node_min_pfn/node_max_pfn) */
78 node_min_pfn = ~0UL;
79 node_max_pfn = 0UL;
80 for_each_mem_cluster(memdesc, cluster, i) {
81 /* Bit 0 is console/PALcode reserved. Bit 1 is
82 non-volatile memory -- we might want to mark
83 this for later. */
84 if (cluster->usage & 3)
85 continue;
87 start = cluster->start_pfn;
88 end = start + cluster->numpages;
90 if (start >= node_pfn_end || end <= node_pfn_start)
91 continue;
93 if (!show_init) {
94 show_init = 1;
95 printk("Initializing bootmem allocator on Node ID %d\n", nid);
97 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
98 i, cluster->usage, cluster->start_pfn,
99 cluster->start_pfn + cluster->numpages);
101 if (start < node_pfn_start)
102 start = node_pfn_start;
103 if (end > node_pfn_end)
104 end = node_pfn_end;
106 if (start < node_min_pfn)
107 node_min_pfn = start;
108 if (end > node_max_pfn)
109 node_max_pfn = end;
112 if (mem_size_limit && node_max_pfn > mem_size_limit) {
113 static int msg_shown = 0;
114 if (!msg_shown) {
115 msg_shown = 1;
116 printk("setup: forcing memory size to %ldK (from %ldK).\n",
117 mem_size_limit << (PAGE_SHIFT - 10),
118 node_max_pfn << (PAGE_SHIFT - 10));
120 node_max_pfn = mem_size_limit;
123 if (node_min_pfn >= node_max_pfn)
124 return;
126 /* Update global {min,max}_low_pfn from node information. */
127 if (node_min_pfn < min_low_pfn)
128 min_low_pfn = node_min_pfn;
129 if (node_max_pfn > max_low_pfn)
130 max_pfn = max_low_pfn = node_max_pfn;
132 num_physpages += node_max_pfn - node_min_pfn;
134 #if 0 /* we'll try this one again in a little while */
135 /* Cute trick to make sure our local node data is on local memory */
136 node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
137 #endif
138 /* Quasi-mark the pg_data_t as in-use */
139 node_min_pfn += node_datasz;
140 if (node_min_pfn >= node_max_pfn) {
141 printk(" not enough mem to reserve NODE_DATA");
142 return;
144 NODE_DATA(nid)->bdata = &node_bdata[nid];
146 printk(" Detected node memory: start %8lu, end %8lu\n",
147 node_min_pfn, node_max_pfn);
149 DBGDCONT(" DISCONTIG: node_data[%d] is at 0x%p\n", nid, NODE_DATA(nid));
150 DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);
152 /* Find the bounds of kernel memory. */
153 start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
154 end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
155 bootmap_start = -1;
157 if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
158 panic("kernel loaded out of ram");
160 /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
161 Note that we round this down, not up - node memory
162 has much larger alignment than 8Mb, so it's safe. */
163 node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
165 /* We need to know how many physically contiguous pages
166 we'll need for the bootmap. */
167 bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);
169 /* Now find a good region where to allocate the bootmap. */
170 for_each_mem_cluster(memdesc, cluster, i) {
171 if (cluster->usage & 3)
172 continue;
174 start = cluster->start_pfn;
175 end = start + cluster->numpages;
177 if (start >= node_max_pfn || end <= node_min_pfn)
178 continue;
180 if (end > node_max_pfn)
181 end = node_max_pfn;
182 if (start < node_min_pfn)
183 start = node_min_pfn;
185 if (start < start_kernel_pfn) {
186 if (end > end_kernel_pfn
187 && end - end_kernel_pfn >= bootmap_pages) {
188 bootmap_start = end_kernel_pfn;
189 break;
190 } else if (end > start_kernel_pfn)
191 end = start_kernel_pfn;
192 } else if (start < end_kernel_pfn)
193 start = end_kernel_pfn;
194 if (end - start >= bootmap_pages) {
195 bootmap_start = start;
196 break;
200 if (bootmap_start == -1)
201 panic("couldn't find a contigous place for the bootmap");
203 /* Allocate the bootmap and mark the whole MM as reserved. */
204 bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
205 node_min_pfn, node_max_pfn);
206 DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
207 bootmap_start, bootmap_size, bootmap_pages);
209 /* Mark the free regions. */
210 for_each_mem_cluster(memdesc, cluster, i) {
211 if (cluster->usage & 3)
212 continue;
214 start = cluster->start_pfn;
215 end = cluster->start_pfn + cluster->numpages;
217 if (start >= node_max_pfn || end <= node_min_pfn)
218 continue;
220 if (end > node_max_pfn)
221 end = node_max_pfn;
222 if (start < node_min_pfn)
223 start = node_min_pfn;
225 if (start < start_kernel_pfn) {
226 if (end > end_kernel_pfn) {
227 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
228 (PFN_PHYS(start_kernel_pfn)
229 - PFN_PHYS(start)));
230 printk(" freeing pages %ld:%ld\n",
231 start, start_kernel_pfn);
232 start = end_kernel_pfn;
233 } else if (end > start_kernel_pfn)
234 end = start_kernel_pfn;
235 } else if (start < end_kernel_pfn)
236 start = end_kernel_pfn;
237 if (start >= end)
238 continue;
240 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
241 printk(" freeing pages %ld:%ld\n", start, end);
244 /* Reserve the bootmap memory. */
245 reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start),
246 bootmap_size, BOOTMEM_DEFAULT);
247 printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
249 node_set_online(nid);
252 void __init
253 setup_memory(void *kernel_end)
255 int nid;
257 show_mem_layout();
259 nodes_clear(node_online_map);
261 min_low_pfn = ~0UL;
262 max_low_pfn = 0UL;
263 for (nid = 0; nid < MAX_NUMNODES; nid++)
264 setup_memory_node(nid, kernel_end);
266 #ifdef CONFIG_BLK_DEV_INITRD
267 initrd_start = INITRD_START;
268 if (initrd_start) {
269 extern void *move_initrd(unsigned long);
271 initrd_end = initrd_start+INITRD_SIZE;
272 printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
273 (void *) initrd_start, INITRD_SIZE);
275 if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
276 if (!move_initrd(PFN_PHYS(max_low_pfn)))
277 printk("initrd extends beyond end of memory "
278 "(0x%08lx > 0x%p)\ndisabling initrd\n",
279 initrd_end,
280 phys_to_virt(PFN_PHYS(max_low_pfn)));
281 } else {
282 nid = kvaddr_to_nid(initrd_start);
283 reserve_bootmem_node(NODE_DATA(nid),
284 virt_to_phys((void *)initrd_start),
285 INITRD_SIZE, BOOTMEM_DEFAULT);
288 #endif /* CONFIG_BLK_DEV_INITRD */
291 void __init paging_init(void)
293 unsigned int nid;
294 unsigned long zones_size[MAX_NR_ZONES] = {0, };
295 unsigned long dma_local_pfn;
298 * The old global MAX_DMA_ADDRESS per-arch API doesn't fit
299 * in the NUMA model, for now we convert it to a pfn and
300 * we interpret this pfn as a local per-node information.
301 * This issue isn't very important since none of these machines
302 * have legacy ISA slots anyways.
304 dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
306 for_each_online_node(nid) {
307 unsigned long start_pfn = node_bdata[nid].node_boot_start >> PAGE_SHIFT;
308 unsigned long end_pfn = node_bdata[nid].node_low_pfn;
310 if (dma_local_pfn >= end_pfn - start_pfn)
311 zones_size[ZONE_DMA] = end_pfn - start_pfn;
312 else {
313 zones_size[ZONE_DMA] = dma_local_pfn;
314 zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
316 free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn, NULL);
319 /* Initialize the kernel's ZERO_PGE. */
320 memset((void *)ZERO_PGE, 0, PAGE_SIZE);
323 void __init mem_init(void)
325 unsigned long codesize, reservedpages, datasize, initsize, pfn;
326 extern int page_is_ram(unsigned long) __init;
327 extern char _text, _etext, _data, _edata;
328 extern char __init_begin, __init_end;
329 unsigned long nid, i;
330 high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
332 reservedpages = 0;
333 for_each_online_node(nid) {
335 * This will free up the bootmem, ie, slot 0 memory
337 totalram_pages += free_all_bootmem_node(NODE_DATA(nid));
339 pfn = NODE_DATA(nid)->node_start_pfn;
340 for (i = 0; i < node_spanned_pages(nid); i++, pfn++)
341 if (page_is_ram(pfn) &&
342 PageReserved(nid_page_nr(nid, i)))
343 reservedpages++;
346 codesize = (unsigned long) &_etext - (unsigned long) &_text;
347 datasize = (unsigned long) &_edata - (unsigned long) &_data;
348 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
350 printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, "
351 "%luk data, %luk init)\n",
352 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
353 num_physpages << (PAGE_SHIFT-10),
354 codesize >> 10,
355 reservedpages << (PAGE_SHIFT-10),
356 datasize >> 10,
357 initsize >> 10);
358 #if 0
359 mem_stress();
360 #endif
363 void
364 show_mem(void)
366 long i,free = 0,total = 0,reserved = 0;
367 long shared = 0, cached = 0;
368 int nid;
370 printk("\nMem-info:\n");
371 show_free_areas();
372 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
373 for_each_online_node(nid) {
374 unsigned long flags;
375 pgdat_resize_lock(NODE_DATA(nid), &flags);
376 i = node_spanned_pages(nid);
377 while (i-- > 0) {
378 struct page *page = nid_page_nr(nid, i);
379 total++;
380 if (PageReserved(page))
381 reserved++;
382 else if (PageSwapCache(page))
383 cached++;
384 else if (!page_count(page))
385 free++;
386 else
387 shared += page_count(page) - 1;
389 pgdat_resize_unlock(NODE_DATA(nid), &flags);
391 printk("%ld pages of RAM\n",total);
392 printk("%ld free pages\n",free);
393 printk("%ld reserved pages\n",reserved);
394 printk("%ld pages shared\n",shared);
395 printk("%ld pages swap cached\n",cached);