3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
8 * Copyright 2004 Embedded Edge, LLC
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/interrupt.h>
37 #include <linux/module.h>
38 #include <asm/mach-au1x00/au1000.h>
39 #include <asm/mach-au1x00/au1xxx_dbdma.h>
41 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
44 * The Descriptor Based DMA supports up to 16 channels.
46 * There are 32 devices defined. We keep an internal structure
47 * of devices using these channels, along with additional
50 * We allocate the descriptors and allow access to them through various
51 * functions. The drivers allocate the data buffers and assign them
54 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock
);
56 /* I couldn't find a macro that did this... */
57 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
59 static dbdma_global_t
*dbdma_gptr
= (dbdma_global_t
*)DDMA_GLOBAL_BASE
;
60 static int dbdma_initialized
;
61 static void au1xxx_dbdma_init(void);
63 static dbdev_tab_t dbdev_tab
[] = {
64 #ifdef CONFIG_SOC_AU1550
66 { DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
67 { DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
68 { DSCR_CMD0_UART3_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11400004, 0, 0 },
69 { DSCR_CMD0_UART3_RX
, DEV_FLAGS_IN
, 0, 8, 0x11400000, 0, 0 },
72 { DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
73 { DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
74 { DSCR_CMD0_DMA_REQ2
, 0, 0, 0, 0x00000000, 0, 0 },
75 { DSCR_CMD0_DMA_REQ3
, 0, 0, 0, 0x00000000, 0, 0 },
78 { DSCR_CMD0_USBDEV_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10200000, 0, 0 },
79 { DSCR_CMD0_USBDEV_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10200004, 0, 0 },
80 { DSCR_CMD0_USBDEV_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10200008, 0, 0 },
81 { DSCR_CMD0_USBDEV_TX2
, DEV_FLAGS_OUT
, 4, 8, 0x1020000c, 0, 0 },
82 { DSCR_CMD0_USBDEV_RX3
, DEV_FLAGS_IN
, 4, 8, 0x10200010, 0, 0 },
83 { DSCR_CMD0_USBDEV_RX4
, DEV_FLAGS_IN
, 4, 8, 0x10200014, 0, 0 },
86 { DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11a0001c, 0, 0 },
87 { DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x11a0001c, 0, 0 },
90 { DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11b0001c, 0, 0 },
91 { DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x11b0001c, 0, 0 },
94 { DSCR_CMD0_PSC2_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10a0001c, 0, 0 },
95 { DSCR_CMD0_PSC2_RX
, DEV_FLAGS_IN
, 0, 0, 0x10a0001c, 0, 0 },
98 { DSCR_CMD0_PSC3_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10b0001c, 0, 0 },
99 { DSCR_CMD0_PSC3_RX
, DEV_FLAGS_IN
, 0, 0, 0x10b0001c, 0, 0 },
101 { DSCR_CMD0_PCI_WRITE
, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
102 { DSCR_CMD0_NAND_FLASH
, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
105 { DSCR_CMD0_MAC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
106 { DSCR_CMD0_MAC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
109 { DSCR_CMD0_MAC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
110 { DSCR_CMD0_MAC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
112 #endif /* CONFIG_SOC_AU1550 */
114 #ifdef CONFIG_SOC_AU1200
115 { DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
116 { DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
117 { DSCR_CMD0_UART1_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11200004, 0, 0 },
118 { DSCR_CMD0_UART1_RX
, DEV_FLAGS_IN
, 0, 8, 0x11200000, 0, 0 },
120 { DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
121 { DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
123 { DSCR_CMD0_MAE_BE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
124 { DSCR_CMD0_MAE_FE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
125 { DSCR_CMD0_MAE_BOTH
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
126 { DSCR_CMD0_LCD
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
128 { DSCR_CMD0_SDMS_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10600000, 0, 0 },
129 { DSCR_CMD0_SDMS_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10600004, 0, 0 },
130 { DSCR_CMD0_SDMS_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10680000, 0, 0 },
131 { DSCR_CMD0_SDMS_RX1
, DEV_FLAGS_IN
, 4, 8, 0x10680004, 0, 0 },
133 { DSCR_CMD0_AES_RX
, DEV_FLAGS_IN
, 4, 32, 0x10300008, 0, 0 },
134 { DSCR_CMD0_AES_TX
, DEV_FLAGS_OUT
, 4, 32, 0x10300004, 0, 0 },
136 { DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11a0001c, 0, 0 },
137 { DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 16, 0x11a0001c, 0, 0 },
138 { DSCR_CMD0_PSC0_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
140 { DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11b0001c, 0, 0 },
141 { DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 16, 0x11b0001c, 0, 0 },
142 { DSCR_CMD0_PSC1_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
144 { DSCR_CMD0_CIM_RXA
, DEV_FLAGS_IN
, 0, 32, 0x14004020, 0, 0 },
145 { DSCR_CMD0_CIM_RXB
, DEV_FLAGS_IN
, 0, 32, 0x14004040, 0, 0 },
146 { DSCR_CMD0_CIM_RXC
, DEV_FLAGS_IN
, 0, 32, 0x14004060, 0, 0 },
147 { DSCR_CMD0_CIM_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
149 { DSCR_CMD0_NAND_FLASH
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
151 #endif /* CONFIG_SOC_AU1200 */
153 { DSCR_CMD0_THROTTLE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
154 { DSCR_CMD0_ALWAYS
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
156 /* Provide 16 user definable device types */
157 { ~0, 0, 0, 0, 0, 0, 0 },
158 { ~0, 0, 0, 0, 0, 0, 0 },
159 { ~0, 0, 0, 0, 0, 0, 0 },
160 { ~0, 0, 0, 0, 0, 0, 0 },
161 { ~0, 0, 0, 0, 0, 0, 0 },
162 { ~0, 0, 0, 0, 0, 0, 0 },
163 { ~0, 0, 0, 0, 0, 0, 0 },
164 { ~0, 0, 0, 0, 0, 0, 0 },
165 { ~0, 0, 0, 0, 0, 0, 0 },
166 { ~0, 0, 0, 0, 0, 0, 0 },
167 { ~0, 0, 0, 0, 0, 0, 0 },
168 { ~0, 0, 0, 0, 0, 0, 0 },
169 { ~0, 0, 0, 0, 0, 0, 0 },
170 { ~0, 0, 0, 0, 0, 0, 0 },
171 { ~0, 0, 0, 0, 0, 0, 0 },
172 { ~0, 0, 0, 0, 0, 0, 0 },
175 #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
177 static chan_tab_t
*chan_tab_ptr
[NUM_DBDMA_CHANS
];
179 static dbdev_tab_t
*find_dbdev_id(u32 id
)
183 for (i
= 0; i
< DBDEV_TAB_SIZE
; ++i
) {
191 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t
*dp
)
193 return phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
195 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt
);
197 u32
au1xxx_ddma_add_device(dbdev_tab_t
*dev
)
201 static u16 new_id
= 0x1000;
203 p
= find_dbdev_id(~0);
205 memcpy(p
, dev
, sizeof(dbdev_tab_t
));
206 p
->dev_id
= DSCR_DEV2CUSTOM_ID(new_id
, dev
->dev_id
);
210 printk(KERN_DEBUG
"add_device: id:%x flags:%x padd:%x\n",
211 p
->dev_id
, p
->dev_flags
, p
->dev_physaddr
);
217 EXPORT_SYMBOL(au1xxx_ddma_add_device
);
219 /* Allocate a channel and return a non-zero descriptor if successful. */
220 u32
au1xxx_dbdma_chan_alloc(u32 srcid
, u32 destid
,
221 void (*callback
)(int, void *), void *callparam
)
227 dbdev_tab_t
*stp
, *dtp
;
232 * We do the intialization on the first channel allocation.
233 * We have to wait because of the interrupt handler initialization
234 * which can't be done successfully during board set up.
236 if (!dbdma_initialized
)
238 dbdma_initialized
= 1;
240 stp
= find_dbdev_id(srcid
);
243 dtp
= find_dbdev_id(destid
);
250 /* Check to see if we can get both channels. */
251 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
252 if (!(stp
->dev_flags
& DEV_FLAGS_INUSE
) ||
253 (stp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
255 stp
->dev_flags
|= DEV_FLAGS_INUSE
;
256 if (!(dtp
->dev_flags
& DEV_FLAGS_INUSE
) ||
257 (dtp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
258 /* Got destination */
259 dtp
->dev_flags
|= DEV_FLAGS_INUSE
;
261 /* Can't get dest. Release src. */
262 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
267 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
270 /* Let's see if we can allocate a channel for it. */
273 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
274 for (i
= 0; i
< NUM_DBDMA_CHANS
; i
++)
275 if (chan_tab_ptr
[i
] == NULL
) {
277 * If kmalloc fails, it is caught below same
278 * as a channel not available.
280 ctp
= kmalloc(sizeof(chan_tab_t
), GFP_ATOMIC
);
281 chan_tab_ptr
[i
] = ctp
;
284 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
287 memset(ctp
, 0, sizeof(chan_tab_t
));
288 ctp
->chan_index
= chan
= i
;
289 dcp
= DDMA_CHANNEL_BASE
;
290 dcp
+= (0x0100 * chan
);
291 ctp
->chan_ptr
= (au1x_dma_chan_t
*)dcp
;
292 cp
= (au1x_dma_chan_t
*)dcp
;
294 ctp
->chan_dest
= dtp
;
295 ctp
->chan_callback
= callback
;
296 ctp
->chan_callparam
= callparam
;
298 /* Initialize channel configuration. */
300 if (stp
->dev_intlevel
)
302 if (stp
->dev_intpolarity
)
304 if (dtp
->dev_intlevel
)
306 if (dtp
->dev_intpolarity
)
308 if ((stp
->dev_flags
& DEV_FLAGS_SYNC
) ||
309 (dtp
->dev_flags
& DEV_FLAGS_SYNC
))
314 /* Return a non-zero value that can be used to
315 * find the channel information in subsequent
318 rv
= (u32
)(&chan_tab_ptr
[chan
]);
320 /* Release devices */
321 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
322 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
327 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc
);
330 * Set the device width if source or destination is a FIFO.
331 * Should be 8, 16, or 32 bits.
333 u32
au1xxx_dbdma_set_devwidth(u32 chanid
, int bits
)
337 dbdev_tab_t
*stp
, *dtp
;
339 ctp
= *((chan_tab_t
**)chanid
);
341 dtp
= ctp
->chan_dest
;
344 if (stp
->dev_flags
& DEV_FLAGS_IN
) { /* Source in fifo */
345 rv
= stp
->dev_devwidth
;
346 stp
->dev_devwidth
= bits
;
348 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) { /* Destination out fifo */
349 rv
= dtp
->dev_devwidth
;
350 dtp
->dev_devwidth
= bits
;
355 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth
);
357 /* Allocate a descriptor ring, initializing as much as possible. */
358 u32
au1xxx_dbdma_ring_alloc(u32 chanid
, int entries
)
361 u32 desc_base
, srcid
, destid
;
362 u32 cmd0
, cmd1
, src1
, dest1
;
365 dbdev_tab_t
*stp
, *dtp
;
366 au1x_ddma_desc_t
*dp
;
369 * I guess we could check this to be within the
370 * range of the table......
372 ctp
= *((chan_tab_t
**)chanid
);
374 dtp
= ctp
->chan_dest
;
377 * The descriptors must be 32-byte aligned. There is a
378 * possibility the allocation will give us such an address,
379 * and if we try that first we are likely to not waste larger
382 desc_base
= (u32
)kmalloc(entries
* sizeof(au1x_ddma_desc_t
),
387 if (desc_base
& 0x1f) {
389 * Lost....do it again, allocate extra, and round
392 kfree((const void *)desc_base
);
393 i
= entries
* sizeof(au1x_ddma_desc_t
);
394 i
+= (sizeof(au1x_ddma_desc_t
) - 1);
395 desc_base
= (u32
)kmalloc(i
, GFP_KERNEL
|GFP_DMA
);
399 desc_base
= ALIGN_ADDR(desc_base
, sizeof(au1x_ddma_desc_t
));
401 dp
= (au1x_ddma_desc_t
*)desc_base
;
403 /* Keep track of the base descriptor. */
404 ctp
->chan_desc_base
= dp
;
406 /* Initialize the rings with as much information as we know. */
408 destid
= dtp
->dev_id
;
410 cmd0
= cmd1
= src1
= dest1
= 0;
413 cmd0
|= DSCR_CMD0_SID(srcid
);
414 cmd0
|= DSCR_CMD0_DID(destid
);
415 cmd0
|= DSCR_CMD0_IE
| DSCR_CMD0_CV
;
416 cmd0
|= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE
);
418 /* Is it mem to mem transfer? */
419 if (((DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_THROTTLE
) ||
420 (DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_ALWAYS
)) &&
421 ((DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_THROTTLE
) ||
422 (DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_ALWAYS
)))
423 cmd0
|= DSCR_CMD0_MEM
;
425 switch (stp
->dev_devwidth
) {
427 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_BYTE
);
430 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD
);
434 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_WORD
);
438 switch (dtp
->dev_devwidth
) {
440 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_BYTE
);
443 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD
);
447 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_WORD
);
452 * If the device is marked as an in/out FIFO, ensure it is
455 if (stp
->dev_flags
& DEV_FLAGS_IN
)
456 cmd0
|= DSCR_CMD0_SN
; /* Source in FIFO */
457 if (dtp
->dev_flags
& DEV_FLAGS_OUT
)
458 cmd0
|= DSCR_CMD0_DN
; /* Destination out FIFO */
461 * Set up source1. For now, assume no stride and increment.
462 * A channel attribute update can change this later.
464 switch (stp
->dev_tsize
) {
466 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE1
);
469 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE2
);
472 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE4
);
476 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE8
);
480 /* If source input is FIFO, set static address. */
481 if (stp
->dev_flags
& DEV_FLAGS_IN
) {
482 if (stp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
483 src1
|= DSCR_SRC1_SAM(DSCR_xAM_BURST
);
485 src1
|= DSCR_SRC1_SAM(DSCR_xAM_STATIC
);
488 if (stp
->dev_physaddr
)
489 src0
= stp
->dev_physaddr
;
492 * Set up dest1. For now, assume no stride and increment.
493 * A channel attribute update can change this later.
495 switch (dtp
->dev_tsize
) {
497 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE1
);
500 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE2
);
503 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE4
);
507 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE8
);
511 /* If destination output is FIFO, set static address. */
512 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) {
513 if (dtp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
514 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_BURST
);
516 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_STATIC
);
519 if (dtp
->dev_physaddr
)
520 dest0
= dtp
->dev_physaddr
;
523 printk(KERN_DEBUG
"did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
524 "source1:%x dest0:%x dest1:%x\n",
525 dtp
->dev_id
, stp
->dev_id
, cmd0
, cmd1
, src0
,
528 for (i
= 0; i
< entries
; i
++) {
529 dp
->dscr_cmd0
= cmd0
;
530 dp
->dscr_cmd1
= cmd1
;
531 dp
->dscr_source0
= src0
;
532 dp
->dscr_source1
= src1
;
533 dp
->dscr_dest0
= dest0
;
534 dp
->dscr_dest1
= dest1
;
538 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(dp
+ 1));
542 /* Make last descrptor point to the first. */
544 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(ctp
->chan_desc_base
));
545 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
547 return (u32
)ctp
->chan_desc_base
;
549 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc
);
552 * Put a source buffer into the DMA ring.
553 * This updates the source pointer and byte count. Normally used
554 * for memory to fifo transfers.
556 u32
_au1xxx_dbdma_put_source(u32 chanid
, void *buf
, int nbytes
, u32 flags
)
559 au1x_ddma_desc_t
*dp
;
562 * I guess we could check this to be within the
563 * range of the table......
565 ctp
= *(chan_tab_t
**)chanid
;
568 * We should have multiple callers for a particular channel,
569 * an interrupt doesn't affect this pointer nor the descriptor,
570 * so no locking should be needed.
575 * If the descriptor is valid, we are way ahead of the DMA
576 * engine, so just return an error condition.
578 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
581 /* Load up buffer address and byte count. */
582 dp
->dscr_source0
= virt_to_phys(buf
);
583 dp
->dscr_cmd1
= nbytes
;
585 if (flags
& DDMA_FLAGS_IE
)
586 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
587 if (flags
& DDMA_FLAGS_NOIE
)
588 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
591 * There is an errata on the Au1200/Au1550 parts that could result
592 * in "stale" data being DMA'ed. It has to do with the snoop logic on
593 * the cache eviction buffer. DMA_NONCOHERENT is on by default for
594 * these parts. If it is fixed in the future, these dma_cache_inv will
595 * just be nothing more than empty macros. See io.h.
597 dma_cache_wback_inv((unsigned long)buf
, nbytes
);
598 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
600 dma_cache_wback_inv((unsigned long)dp
, sizeof(dp
));
601 ctp
->chan_ptr
->ddma_dbell
= 0;
603 /* Get next descriptor pointer. */
604 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
606 /* Return something non-zero. */
609 EXPORT_SYMBOL(_au1xxx_dbdma_put_source
);
611 /* Put a destination buffer into the DMA ring.
612 * This updates the destination pointer and byte count. Normally used
613 * to place an empty buffer into the ring for fifo to memory transfers.
616 _au1xxx_dbdma_put_dest(u32 chanid
, void *buf
, int nbytes
, u32 flags
)
619 au1x_ddma_desc_t
*dp
;
621 /* I guess we could check this to be within the
622 * range of the table......
624 ctp
= *((chan_tab_t
**)chanid
);
626 /* We should have multiple callers for a particular channel,
627 * an interrupt doesn't affect this pointer nor the descriptor,
628 * so no locking should be needed.
632 /* If the descriptor is valid, we are way ahead of the DMA
633 * engine, so just return an error condition.
635 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
638 /* Load up buffer address and byte count */
641 if (flags
& DDMA_FLAGS_IE
)
642 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
643 if (flags
& DDMA_FLAGS_NOIE
)
644 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
646 dp
->dscr_dest0
= virt_to_phys(buf
);
647 dp
->dscr_cmd1
= nbytes
;
649 printk(KERN_DEBUG
"cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
650 dp
->dscr_cmd0
, dp
->dscr_cmd1
, dp
->dscr_source0
,
651 dp
->dscr_source1
, dp
->dscr_dest0
, dp
->dscr_dest1
);
654 * There is an errata on the Au1200/Au1550 parts that could result in
655 * "stale" data being DMA'ed. It has to do with the snoop logic on the
656 * cache eviction buffer. DMA_NONCOHERENT is on by default for these
657 * parts. If it is fixed in the future, these dma_cache_inv will just
658 * be nothing more than empty macros. See io.h.
660 dma_cache_inv((unsigned long)buf
, nbytes
);
661 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
663 dma_cache_wback_inv((unsigned long)dp
, sizeof(dp
));
664 ctp
->chan_ptr
->ddma_dbell
= 0;
666 /* Get next descriptor pointer. */
667 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
669 /* Return something non-zero. */
672 EXPORT_SYMBOL(_au1xxx_dbdma_put_dest
);
675 * Get a destination buffer into the DMA ring.
676 * Normally used to get a full buffer from the ring during fifo
677 * to memory transfers. This does not set the valid bit, you will
678 * have to put another destination buffer to keep the DMA going.
680 u32
au1xxx_dbdma_get_dest(u32 chanid
, void **buf
, int *nbytes
)
683 au1x_ddma_desc_t
*dp
;
687 * I guess we could check this to be within the
688 * range of the table......
690 ctp
= *((chan_tab_t
**)chanid
);
693 * We should have multiple callers for a particular channel,
694 * an interrupt doesn't affect this pointer nor the descriptor,
695 * so no locking should be needed.
700 * If the descriptor is valid, we are way ahead of the DMA
701 * engine, so just return an error condition.
703 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
706 /* Return buffer address and byte count. */
707 *buf
= (void *)(phys_to_virt(dp
->dscr_dest0
));
708 *nbytes
= dp
->dscr_cmd1
;
711 /* Get next descriptor pointer. */
712 ctp
->get_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
714 /* Return something non-zero. */
717 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest
);
719 void au1xxx_dbdma_stop(u32 chanid
)
723 int halt_timeout
= 0;
725 ctp
= *((chan_tab_t
**)chanid
);
728 cp
->ddma_cfg
&= ~DDMA_CFG_EN
; /* Disable channel */
730 while (!(cp
->ddma_stat
& DDMA_STAT_H
)) {
733 if (halt_timeout
> 100) {
734 printk(KERN_WARNING
"warning: DMA channel won't halt\n");
738 /* clear current desc valid and doorbell */
739 cp
->ddma_stat
|= (DDMA_STAT_DB
| DDMA_STAT_V
);
742 EXPORT_SYMBOL(au1xxx_dbdma_stop
);
745 * Start using the current descriptor pointer. If the DBDMA encounters
746 * a non-valid descriptor, it will stop. In this case, we can just
747 * continue by adding a buffer to the list and starting again.
749 void au1xxx_dbdma_start(u32 chanid
)
754 ctp
= *((chan_tab_t
**)chanid
);
756 cp
->ddma_desptr
= virt_to_phys(ctp
->cur_ptr
);
757 cp
->ddma_cfg
|= DDMA_CFG_EN
; /* Enable channel */
762 EXPORT_SYMBOL(au1xxx_dbdma_start
);
764 void au1xxx_dbdma_reset(u32 chanid
)
767 au1x_ddma_desc_t
*dp
;
769 au1xxx_dbdma_stop(chanid
);
771 ctp
= *((chan_tab_t
**)chanid
);
772 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
774 /* Run through the descriptors and reset the valid indicator. */
775 dp
= ctp
->chan_desc_base
;
778 dp
->dscr_cmd0
&= ~DSCR_CMD0_V
;
780 * Reset our software status -- this is used to determine
781 * if a descriptor is in use by upper level software. Since
782 * posting can reset 'V' bit.
785 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
786 } while (dp
!= ctp
->chan_desc_base
);
788 EXPORT_SYMBOL(au1xxx_dbdma_reset
);
790 u32
au1xxx_get_dma_residue(u32 chanid
)
796 ctp
= *((chan_tab_t
**)chanid
);
799 /* This is only valid if the channel is stopped. */
800 rv
= cp
->ddma_bytecnt
;
805 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue
);
807 void au1xxx_dbdma_chan_free(u32 chanid
)
810 dbdev_tab_t
*stp
, *dtp
;
812 ctp
= *((chan_tab_t
**)chanid
);
814 dtp
= ctp
->chan_dest
;
816 au1xxx_dbdma_stop(chanid
);
818 kfree((void *)ctp
->chan_desc_base
);
820 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
821 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
822 chan_tab_ptr
[ctp
->chan_index
] = NULL
;
826 EXPORT_SYMBOL(au1xxx_dbdma_chan_free
);
828 static irqreturn_t
dbdma_interrupt(int irq
, void *dev_id
)
833 au1x_ddma_desc_t
*dp
;
836 intstat
= dbdma_gptr
->ddma_intstat
;
838 chan_index
= __ffs(intstat
);
840 ctp
= chan_tab_ptr
[chan_index
];
844 /* Reset interrupt. */
848 if (ctp
->chan_callback
)
849 ctp
->chan_callback(irq
, ctp
->chan_callparam
);
851 ctp
->cur_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
852 return IRQ_RETVAL(1);
855 static void au1xxx_dbdma_init(void)
859 dbdma_gptr
->ddma_config
= 0;
860 dbdma_gptr
->ddma_throttle
= 0;
861 dbdma_gptr
->ddma_inten
= 0xffff;
864 #if defined(CONFIG_SOC_AU1550)
865 irq_nr
= AU1550_DDMA_INT
;
866 #elif defined(CONFIG_SOC_AU1200)
867 irq_nr
= AU1200_DDMA_INT
;
869 #error Unknown Au1x00 SOC
872 if (request_irq(irq_nr
, dbdma_interrupt
, IRQF_DISABLED
,
873 "Au1xxx dbdma", (void *)dbdma_gptr
))
874 printk(KERN_ERR
"Can't get 1550 dbdma irq");
877 void au1xxx_dbdma_dump(u32 chanid
)
880 au1x_ddma_desc_t
*dp
;
881 dbdev_tab_t
*stp
, *dtp
;
885 ctp
= *((chan_tab_t
**)chanid
);
887 dtp
= ctp
->chan_dest
;
890 printk(KERN_DEBUG
"Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
891 (u32
)ctp
, (u32
)stp
, stp
- dbdev_tab
, (u32
)dtp
,
893 printk(KERN_DEBUG
"desc base %x, get %x, put %x, cur %x\n",
894 (u32
)(ctp
->chan_desc_base
), (u32
)(ctp
->get_ptr
),
895 (u32
)(ctp
->put_ptr
), (u32
)(ctp
->cur_ptr
));
897 printk(KERN_DEBUG
"dbdma chan %x\n", (u32
)cp
);
898 printk(KERN_DEBUG
"cfg %08x, desptr %08x, statptr %08x\n",
899 cp
->ddma_cfg
, cp
->ddma_desptr
, cp
->ddma_statptr
);
900 printk(KERN_DEBUG
"dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
901 cp
->ddma_dbell
, cp
->ddma_irq
, cp
->ddma_stat
,
904 /* Run through the descriptors */
905 dp
= ctp
->chan_desc_base
;
908 printk(KERN_DEBUG
"Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
909 i
++, (u32
)dp
, dp
->dscr_cmd0
, dp
->dscr_cmd1
);
910 printk(KERN_DEBUG
"src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
911 dp
->dscr_source0
, dp
->dscr_source1
,
912 dp
->dscr_dest0
, dp
->dscr_dest1
);
913 printk(KERN_DEBUG
"stat %08x, nxtptr %08x\n",
914 dp
->dscr_stat
, dp
->dscr_nxtptr
);
915 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
916 } while (dp
!= ctp
->chan_desc_base
);
919 /* Put a descriptor into the DMA ring.
920 * This updates the source/destination pointers and byte count.
922 u32
au1xxx_dbdma_put_dscr(u32 chanid
, au1x_ddma_desc_t
*dscr
)
925 au1x_ddma_desc_t
*dp
;
929 * I guess we could check this to be within the
930 * range of the table......
932 ctp
= *((chan_tab_t
**)chanid
);
935 * We should have multiple callers for a particular channel,
936 * an interrupt doesn't affect this pointer nor the descriptor,
937 * so no locking should be needed.
942 * If the descriptor is valid, we are way ahead of the DMA
943 * engine, so just return an error condition.
945 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
948 /* Load up buffer addresses and byte count. */
949 dp
->dscr_dest0
= dscr
->dscr_dest0
;
950 dp
->dscr_source0
= dscr
->dscr_source0
;
951 dp
->dscr_dest1
= dscr
->dscr_dest1
;
952 dp
->dscr_source1
= dscr
->dscr_source1
;
953 dp
->dscr_cmd1
= dscr
->dscr_cmd1
;
954 nbytes
= dscr
->dscr_cmd1
;
955 /* Allow the caller to specifiy if an interrupt is generated */
956 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
957 dp
->dscr_cmd0
|= dscr
->dscr_cmd0
| DSCR_CMD0_V
;
958 ctp
->chan_ptr
->ddma_dbell
= 0;
960 /* Get next descriptor pointer. */
961 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
963 /* Return something non-zero. */
967 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */