ia64/kvm: compilation fix. export account_system_vtime.
[pv_ops_mirror.git] / arch / powerpc / kernel / process.c
blob7de41c3948ec2dd4d148800c0dcd6421a3c77a2d
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
51 extern unsigned long _get_SP(void);
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_spe = NULL;
57 #endif
60 * Make sure the floating-point register state in the
61 * the thread_struct is up to date for task tsk.
63 void flush_fp_to_thread(struct task_struct *tsk)
65 if (tsk->thread.regs) {
67 * We need to disable preemption here because if we didn't,
68 * another process could get scheduled after the regs->msr
69 * test but before we have finished saving the FP registers
70 * to the thread_struct. That process could take over the
71 * FPU, and then when we get scheduled again we would store
72 * bogus values for the remaining FP registers.
74 preempt_disable();
75 if (tsk->thread.regs->msr & MSR_FP) {
76 #ifdef CONFIG_SMP
78 * This should only ever be called for current or
79 * for a stopped child process. Since we save away
80 * the FP register state on context switch on SMP,
81 * there is something wrong if a stopped child appears
82 * to still have its FP state in the CPU registers.
84 BUG_ON(tsk != current);
85 #endif
86 giveup_fpu(tsk);
88 preempt_enable();
92 void enable_kernel_fp(void)
94 WARN_ON(preemptible());
96 #ifdef CONFIG_SMP
97 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
98 giveup_fpu(current);
99 else
100 giveup_fpu(NULL); /* just enables FP for kernel */
101 #else
102 giveup_fpu(last_task_used_math);
103 #endif /* CONFIG_SMP */
105 EXPORT_SYMBOL(enable_kernel_fp);
107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
109 if (!tsk->thread.regs)
110 return 0;
111 flush_fp_to_thread(current);
113 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
115 return 1;
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
121 WARN_ON(preemptible());
123 #ifdef CONFIG_SMP
124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 giveup_altivec(current);
126 else
127 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
128 #else
129 giveup_altivec(last_task_used_altivec);
130 #endif /* CONFIG_SMP */
132 EXPORT_SYMBOL(enable_kernel_altivec);
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
138 void flush_altivec_to_thread(struct task_struct *tsk)
140 if (tsk->thread.regs) {
141 preempt_disable();
142 if (tsk->thread.regs->msr & MSR_VEC) {
143 #ifdef CONFIG_SMP
144 BUG_ON(tsk != current);
145 #endif
146 giveup_altivec(tsk);
148 preempt_enable();
152 int dump_task_altivec(struct task_struct *tsk, elf_vrregset_t *vrregs)
154 /* ELF_NVRREG includes the VSCR and VRSAVE which we need to save
155 * separately, see below */
156 const int nregs = ELF_NVRREG - 2;
157 elf_vrreg_t *reg;
158 u32 *dest;
160 if (tsk == current)
161 flush_altivec_to_thread(tsk);
163 reg = (elf_vrreg_t *)vrregs;
165 /* copy the 32 vr registers */
166 memcpy(reg, &tsk->thread.vr[0], nregs * sizeof(*reg));
167 reg += nregs;
169 /* copy the vscr */
170 memcpy(reg, &tsk->thread.vscr, sizeof(*reg));
171 reg++;
173 /* vrsave is stored in the high 32bit slot of the final 128bits */
174 memset(reg, 0, sizeof(*reg));
175 dest = (u32 *)reg;
176 *dest = tsk->thread.vrsave;
178 return 1;
180 #endif /* CONFIG_ALTIVEC */
182 #ifdef CONFIG_SPE
184 void enable_kernel_spe(void)
186 WARN_ON(preemptible());
188 #ifdef CONFIG_SMP
189 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
190 giveup_spe(current);
191 else
192 giveup_spe(NULL); /* just enable SPE for kernel - force */
193 #else
194 giveup_spe(last_task_used_spe);
195 #endif /* __SMP __ */
197 EXPORT_SYMBOL(enable_kernel_spe);
199 void flush_spe_to_thread(struct task_struct *tsk)
201 if (tsk->thread.regs) {
202 preempt_disable();
203 if (tsk->thread.regs->msr & MSR_SPE) {
204 #ifdef CONFIG_SMP
205 BUG_ON(tsk != current);
206 #endif
207 giveup_spe(tsk);
209 preempt_enable();
213 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
215 flush_spe_to_thread(current);
216 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
217 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
218 return 1;
220 #endif /* CONFIG_SPE */
222 #ifndef CONFIG_SMP
224 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225 * and the current task has some state, discard it.
227 void discard_lazy_cpu_state(void)
229 preempt_disable();
230 if (last_task_used_math == current)
231 last_task_used_math = NULL;
232 #ifdef CONFIG_ALTIVEC
233 if (last_task_used_altivec == current)
234 last_task_used_altivec = NULL;
235 #endif /* CONFIG_ALTIVEC */
236 #ifdef CONFIG_SPE
237 if (last_task_used_spe == current)
238 last_task_used_spe = NULL;
239 #endif
240 preempt_enable();
242 #endif /* CONFIG_SMP */
244 static DEFINE_PER_CPU(unsigned long, current_dabr);
246 int set_dabr(unsigned long dabr)
248 __get_cpu_var(current_dabr) = dabr;
250 #ifdef CONFIG_PPC_MERGE /* XXX for now */
251 if (ppc_md.set_dabr)
252 return ppc_md.set_dabr(dabr);
253 #endif
255 /* XXX should we have a CPU_FTR_HAS_DABR ? */
256 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
257 mtspr(SPRN_DABR, dabr);
258 #endif
259 return 0;
262 #ifdef CONFIG_PPC64
263 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
264 #endif
266 struct task_struct *__switch_to(struct task_struct *prev,
267 struct task_struct *new)
269 struct thread_struct *new_thread, *old_thread;
270 unsigned long flags;
271 struct task_struct *last;
273 #ifdef CONFIG_SMP
274 /* avoid complexity of lazy save/restore of fpu
275 * by just saving it every time we switch out if
276 * this task used the fpu during the last quantum.
278 * If it tries to use the fpu again, it'll trap and
279 * reload its fp regs. So we don't have to do a restore
280 * every switch, just a save.
281 * -- Cort
283 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
284 giveup_fpu(prev);
285 #ifdef CONFIG_ALTIVEC
287 * If the previous thread used altivec in the last quantum
288 * (thus changing altivec regs) then save them.
289 * We used to check the VRSAVE register but not all apps
290 * set it, so we don't rely on it now (and in fact we need
291 * to save & restore VSCR even if VRSAVE == 0). -- paulus
293 * On SMP we always save/restore altivec regs just to avoid the
294 * complexity of changing processors.
295 * -- Cort
297 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
298 giveup_altivec(prev);
299 #endif /* CONFIG_ALTIVEC */
300 #ifdef CONFIG_SPE
302 * If the previous thread used spe in the last quantum
303 * (thus changing spe regs) then save them.
305 * On SMP we always save/restore spe regs just to avoid the
306 * complexity of changing processors.
308 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
309 giveup_spe(prev);
310 #endif /* CONFIG_SPE */
312 #else /* CONFIG_SMP */
313 #ifdef CONFIG_ALTIVEC
314 /* Avoid the trap. On smp this this never happens since
315 * we don't set last_task_used_altivec -- Cort
317 if (new->thread.regs && last_task_used_altivec == new)
318 new->thread.regs->msr |= MSR_VEC;
319 #endif /* CONFIG_ALTIVEC */
320 #ifdef CONFIG_SPE
321 /* Avoid the trap. On smp this this never happens since
322 * we don't set last_task_used_spe
324 if (new->thread.regs && last_task_used_spe == new)
325 new->thread.regs->msr |= MSR_SPE;
326 #endif /* CONFIG_SPE */
328 #endif /* CONFIG_SMP */
330 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
331 set_dabr(new->thread.dabr);
333 new_thread = &new->thread;
334 old_thread = &current->thread;
336 #ifdef CONFIG_PPC64
338 * Collect processor utilization data per process
340 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
341 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
342 long unsigned start_tb, current_tb;
343 start_tb = old_thread->start_tb;
344 cu->current_tb = current_tb = mfspr(SPRN_PURR);
345 old_thread->accum_tb += (current_tb - start_tb);
346 new_thread->start_tb = current_tb;
348 #endif
350 local_irq_save(flags);
352 account_system_vtime(current);
353 account_process_vtime(current);
354 calculate_steal_time();
357 * We can't take a PMU exception inside _switch() since there is a
358 * window where the kernel stack SLB and the kernel stack are out
359 * of sync. Hard disable here.
361 hard_irq_disable();
362 last = _switch(old_thread, new_thread);
364 local_irq_restore(flags);
366 return last;
369 static int instructions_to_print = 16;
371 static void show_instructions(struct pt_regs *regs)
373 int i;
374 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
375 sizeof(int));
377 printk("Instruction dump:");
379 for (i = 0; i < instructions_to_print; i++) {
380 int instr;
382 if (!(i % 8))
383 printk("\n");
385 #if !defined(CONFIG_BOOKE)
386 /* If executing with the IMMU off, adjust pc rather
387 * than print XXXXXXXX.
389 if (!(regs->msr & MSR_IR))
390 pc = (unsigned long)phys_to_virt(pc);
391 #endif
393 /* We use __get_user here *only* to avoid an OOPS on a
394 * bad address because the pc *should* only be a
395 * kernel address.
397 if (!__kernel_text_address(pc) ||
398 __get_user(instr, (unsigned int __user *)pc)) {
399 printk("XXXXXXXX ");
400 } else {
401 if (regs->nip == pc)
402 printk("<%08x> ", instr);
403 else
404 printk("%08x ", instr);
407 pc += sizeof(int);
410 printk("\n");
413 static struct regbit {
414 unsigned long bit;
415 const char *name;
416 } msr_bits[] = {
417 {MSR_EE, "EE"},
418 {MSR_PR, "PR"},
419 {MSR_FP, "FP"},
420 {MSR_ME, "ME"},
421 {MSR_IR, "IR"},
422 {MSR_DR, "DR"},
423 {0, NULL}
426 static void printbits(unsigned long val, struct regbit *bits)
428 const char *sep = "";
430 printk("<");
431 for (; bits->bit; ++bits)
432 if (val & bits->bit) {
433 printk("%s%s", sep, bits->name);
434 sep = ",";
436 printk(">");
439 #ifdef CONFIG_PPC64
440 #define REG "%016lx"
441 #define REGS_PER_LINE 4
442 #define LAST_VOLATILE 13
443 #else
444 #define REG "%08lx"
445 #define REGS_PER_LINE 8
446 #define LAST_VOLATILE 12
447 #endif
449 void show_regs(struct pt_regs * regs)
451 int i, trap;
453 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
454 regs->nip, regs->link, regs->ctr);
455 printk("REGS: %p TRAP: %04lx %s (%s)\n",
456 regs, regs->trap, print_tainted(), init_utsname()->release);
457 printk("MSR: "REG" ", regs->msr);
458 printbits(regs->msr, msr_bits);
459 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
460 trap = TRAP(regs);
461 if (trap == 0x300 || trap == 0x600)
462 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
463 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
464 #else
465 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
466 #endif
467 printk("TASK = %p[%d] '%s' THREAD: %p",
468 current, task_pid_nr(current), current->comm, task_thread_info(current));
470 #ifdef CONFIG_SMP
471 printk(" CPU: %d", raw_smp_processor_id());
472 #endif /* CONFIG_SMP */
474 for (i = 0; i < 32; i++) {
475 if ((i % REGS_PER_LINE) == 0)
476 printk("\n" KERN_INFO "GPR%02d: ", i);
477 printk(REG " ", regs->gpr[i]);
478 if (i == LAST_VOLATILE && !FULL_REGS(regs))
479 break;
481 printk("\n");
482 #ifdef CONFIG_KALLSYMS
484 * Lookup NIP late so we have the best change of getting the
485 * above info out without failing
487 printk("NIP ["REG"] ", regs->nip);
488 print_symbol("%s\n", regs->nip);
489 printk("LR ["REG"] ", regs->link);
490 print_symbol("%s\n", regs->link);
491 #endif
492 show_stack(current, (unsigned long *) regs->gpr[1]);
493 if (!user_mode(regs))
494 show_instructions(regs);
497 void exit_thread(void)
499 discard_lazy_cpu_state();
502 void flush_thread(void)
504 #ifdef CONFIG_PPC64
505 struct thread_info *t = current_thread_info();
507 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
508 clear_ti_thread_flag(t, TIF_ABI_PENDING);
509 if (test_ti_thread_flag(t, TIF_32BIT))
510 clear_ti_thread_flag(t, TIF_32BIT);
511 else
512 set_ti_thread_flag(t, TIF_32BIT);
514 #endif
516 discard_lazy_cpu_state();
518 if (current->thread.dabr) {
519 current->thread.dabr = 0;
520 set_dabr(0);
524 void
525 release_thread(struct task_struct *t)
530 * This gets called before we allocate a new thread and copy
531 * the current task into it.
533 void prepare_to_copy(struct task_struct *tsk)
535 flush_fp_to_thread(current);
536 flush_altivec_to_thread(current);
537 flush_spe_to_thread(current);
541 * Copy a thread..
543 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
544 unsigned long unused, struct task_struct *p,
545 struct pt_regs *regs)
547 struct pt_regs *childregs, *kregs;
548 extern void ret_from_fork(void);
549 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
551 CHECK_FULL_REGS(regs);
552 /* Copy registers */
553 sp -= sizeof(struct pt_regs);
554 childregs = (struct pt_regs *) sp;
555 *childregs = *regs;
556 if ((childregs->msr & MSR_PR) == 0) {
557 /* for kernel thread, set `current' and stackptr in new task */
558 childregs->gpr[1] = sp + sizeof(struct pt_regs);
559 #ifdef CONFIG_PPC32
560 childregs->gpr[2] = (unsigned long) p;
561 #else
562 clear_tsk_thread_flag(p, TIF_32BIT);
563 #endif
564 p->thread.regs = NULL; /* no user register state */
565 } else {
566 childregs->gpr[1] = usp;
567 p->thread.regs = childregs;
568 if (clone_flags & CLONE_SETTLS) {
569 #ifdef CONFIG_PPC64
570 if (!test_thread_flag(TIF_32BIT))
571 childregs->gpr[13] = childregs->gpr[6];
572 else
573 #endif
574 childregs->gpr[2] = childregs->gpr[6];
577 childregs->gpr[3] = 0; /* Result from fork() */
578 sp -= STACK_FRAME_OVERHEAD;
581 * The way this works is that at some point in the future
582 * some task will call _switch to switch to the new task.
583 * That will pop off the stack frame created below and start
584 * the new task running at ret_from_fork. The new task will
585 * do some house keeping and then return from the fork or clone
586 * system call, using the stack frame created above.
588 sp -= sizeof(struct pt_regs);
589 kregs = (struct pt_regs *) sp;
590 sp -= STACK_FRAME_OVERHEAD;
591 p->thread.ksp = sp;
592 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
593 _ALIGN_UP(sizeof(struct thread_info), 16);
595 #ifdef CONFIG_PPC64
596 if (cpu_has_feature(CPU_FTR_SLB)) {
597 unsigned long sp_vsid;
598 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
600 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
601 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
602 << SLB_VSID_SHIFT_1T;
603 else
604 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
605 << SLB_VSID_SHIFT;
606 sp_vsid |= SLB_VSID_KERNEL | llp;
607 p->thread.ksp_vsid = sp_vsid;
611 * The PPC64 ABI makes use of a TOC to contain function
612 * pointers. The function (ret_from_except) is actually a pointer
613 * to the TOC entry. The first entry is a pointer to the actual
614 * function.
616 kregs->nip = *((unsigned long *)ret_from_fork);
617 #else
618 kregs->nip = (unsigned long)ret_from_fork;
619 #endif
621 return 0;
625 * Set up a thread for executing a new program
627 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
629 #ifdef CONFIG_PPC64
630 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
631 #endif
633 set_fs(USER_DS);
636 * If we exec out of a kernel thread then thread.regs will not be
637 * set. Do it now.
639 if (!current->thread.regs) {
640 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
641 current->thread.regs = regs - 1;
644 memset(regs->gpr, 0, sizeof(regs->gpr));
645 regs->ctr = 0;
646 regs->link = 0;
647 regs->xer = 0;
648 regs->ccr = 0;
649 regs->gpr[1] = sp;
652 * We have just cleared all the nonvolatile GPRs, so make
653 * FULL_REGS(regs) return true. This is necessary to allow
654 * ptrace to examine the thread immediately after exec.
656 regs->trap &= ~1UL;
658 #ifdef CONFIG_PPC32
659 regs->mq = 0;
660 regs->nip = start;
661 regs->msr = MSR_USER;
662 #else
663 if (!test_thread_flag(TIF_32BIT)) {
664 unsigned long entry, toc;
666 /* start is a relocated pointer to the function descriptor for
667 * the elf _start routine. The first entry in the function
668 * descriptor is the entry address of _start and the second
669 * entry is the TOC value we need to use.
671 __get_user(entry, (unsigned long __user *)start);
672 __get_user(toc, (unsigned long __user *)start+1);
674 /* Check whether the e_entry function descriptor entries
675 * need to be relocated before we can use them.
677 if (load_addr != 0) {
678 entry += load_addr;
679 toc += load_addr;
681 regs->nip = entry;
682 regs->gpr[2] = toc;
683 regs->msr = MSR_USER64;
684 } else {
685 regs->nip = start;
686 regs->gpr[2] = 0;
687 regs->msr = MSR_USER32;
689 #endif
691 discard_lazy_cpu_state();
692 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
693 current->thread.fpscr.val = 0;
694 #ifdef CONFIG_ALTIVEC
695 memset(current->thread.vr, 0, sizeof(current->thread.vr));
696 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
697 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
698 current->thread.vrsave = 0;
699 current->thread.used_vr = 0;
700 #endif /* CONFIG_ALTIVEC */
701 #ifdef CONFIG_SPE
702 memset(current->thread.evr, 0, sizeof(current->thread.evr));
703 current->thread.acc = 0;
704 current->thread.spefscr = 0;
705 current->thread.used_spe = 0;
706 #endif /* CONFIG_SPE */
709 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
710 | PR_FP_EXC_RES | PR_FP_EXC_INV)
712 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
714 struct pt_regs *regs = tsk->thread.regs;
716 /* This is a bit hairy. If we are an SPE enabled processor
717 * (have embedded fp) we store the IEEE exception enable flags in
718 * fpexc_mode. fpexc_mode is also used for setting FP exception
719 * mode (asyn, precise, disabled) for 'Classic' FP. */
720 if (val & PR_FP_EXC_SW_ENABLE) {
721 #ifdef CONFIG_SPE
722 if (cpu_has_feature(CPU_FTR_SPE)) {
723 tsk->thread.fpexc_mode = val &
724 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
725 return 0;
726 } else {
727 return -EINVAL;
729 #else
730 return -EINVAL;
731 #endif
734 /* on a CONFIG_SPE this does not hurt us. The bits that
735 * __pack_fe01 use do not overlap with bits used for
736 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
737 * on CONFIG_SPE implementations are reserved so writing to
738 * them does not change anything */
739 if (val > PR_FP_EXC_PRECISE)
740 return -EINVAL;
741 tsk->thread.fpexc_mode = __pack_fe01(val);
742 if (regs != NULL && (regs->msr & MSR_FP) != 0)
743 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
744 | tsk->thread.fpexc_mode;
745 return 0;
748 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
750 unsigned int val;
752 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
753 #ifdef CONFIG_SPE
754 if (cpu_has_feature(CPU_FTR_SPE))
755 val = tsk->thread.fpexc_mode;
756 else
757 return -EINVAL;
758 #else
759 return -EINVAL;
760 #endif
761 else
762 val = __unpack_fe01(tsk->thread.fpexc_mode);
763 return put_user(val, (unsigned int __user *) adr);
766 int set_endian(struct task_struct *tsk, unsigned int val)
768 struct pt_regs *regs = tsk->thread.regs;
770 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
771 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
772 return -EINVAL;
774 if (regs == NULL)
775 return -EINVAL;
777 if (val == PR_ENDIAN_BIG)
778 regs->msr &= ~MSR_LE;
779 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
780 regs->msr |= MSR_LE;
781 else
782 return -EINVAL;
784 return 0;
787 int get_endian(struct task_struct *tsk, unsigned long adr)
789 struct pt_regs *regs = tsk->thread.regs;
790 unsigned int val;
792 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
793 !cpu_has_feature(CPU_FTR_REAL_LE))
794 return -EINVAL;
796 if (regs == NULL)
797 return -EINVAL;
799 if (regs->msr & MSR_LE) {
800 if (cpu_has_feature(CPU_FTR_REAL_LE))
801 val = PR_ENDIAN_LITTLE;
802 else
803 val = PR_ENDIAN_PPC_LITTLE;
804 } else
805 val = PR_ENDIAN_BIG;
807 return put_user(val, (unsigned int __user *)adr);
810 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
812 tsk->thread.align_ctl = val;
813 return 0;
816 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
818 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
821 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
823 int sys_clone(unsigned long clone_flags, unsigned long usp,
824 int __user *parent_tidp, void __user *child_threadptr,
825 int __user *child_tidp, int p6,
826 struct pt_regs *regs)
828 CHECK_FULL_REGS(regs);
829 if (usp == 0)
830 usp = regs->gpr[1]; /* stack pointer for child */
831 #ifdef CONFIG_PPC64
832 if (test_thread_flag(TIF_32BIT)) {
833 parent_tidp = TRUNC_PTR(parent_tidp);
834 child_tidp = TRUNC_PTR(child_tidp);
836 #endif
837 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
840 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
841 unsigned long p4, unsigned long p5, unsigned long p6,
842 struct pt_regs *regs)
844 CHECK_FULL_REGS(regs);
845 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
848 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
849 unsigned long p4, unsigned long p5, unsigned long p6,
850 struct pt_regs *regs)
852 CHECK_FULL_REGS(regs);
853 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
854 regs, 0, NULL, NULL);
857 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
858 unsigned long a3, unsigned long a4, unsigned long a5,
859 struct pt_regs *regs)
861 int error;
862 char *filename;
864 filename = getname((char __user *) a0);
865 error = PTR_ERR(filename);
866 if (IS_ERR(filename))
867 goto out;
868 flush_fp_to_thread(current);
869 flush_altivec_to_thread(current);
870 flush_spe_to_thread(current);
871 error = do_execve(filename, (char __user * __user *) a1,
872 (char __user * __user *) a2, regs);
873 putname(filename);
874 out:
875 return error;
878 #ifdef CONFIG_IRQSTACKS
879 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
880 unsigned long nbytes)
882 unsigned long stack_page;
883 unsigned long cpu = task_cpu(p);
886 * Avoid crashing if the stack has overflowed and corrupted
887 * task_cpu(p), which is in the thread_info struct.
889 if (cpu < NR_CPUS && cpu_possible(cpu)) {
890 stack_page = (unsigned long) hardirq_ctx[cpu];
891 if (sp >= stack_page + sizeof(struct thread_struct)
892 && sp <= stack_page + THREAD_SIZE - nbytes)
893 return 1;
895 stack_page = (unsigned long) softirq_ctx[cpu];
896 if (sp >= stack_page + sizeof(struct thread_struct)
897 && sp <= stack_page + THREAD_SIZE - nbytes)
898 return 1;
900 return 0;
903 #else
904 #define valid_irq_stack(sp, p, nb) 0
905 #endif /* CONFIG_IRQSTACKS */
907 int validate_sp(unsigned long sp, struct task_struct *p,
908 unsigned long nbytes)
910 unsigned long stack_page = (unsigned long)task_stack_page(p);
912 if (sp >= stack_page + sizeof(struct thread_struct)
913 && sp <= stack_page + THREAD_SIZE - nbytes)
914 return 1;
916 return valid_irq_stack(sp, p, nbytes);
919 EXPORT_SYMBOL(validate_sp);
921 unsigned long get_wchan(struct task_struct *p)
923 unsigned long ip, sp;
924 int count = 0;
926 if (!p || p == current || p->state == TASK_RUNNING)
927 return 0;
929 sp = p->thread.ksp;
930 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
931 return 0;
933 do {
934 sp = *(unsigned long *)sp;
935 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
936 return 0;
937 if (count > 0) {
938 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
939 if (!in_sched_functions(ip))
940 return ip;
942 } while (count++ < 16);
943 return 0;
946 static int kstack_depth_to_print = 64;
948 void show_stack(struct task_struct *tsk, unsigned long *stack)
950 unsigned long sp, ip, lr, newsp;
951 int count = 0;
952 int firstframe = 1;
954 sp = (unsigned long) stack;
955 if (tsk == NULL)
956 tsk = current;
957 if (sp == 0) {
958 if (tsk == current)
959 asm("mr %0,1" : "=r" (sp));
960 else
961 sp = tsk->thread.ksp;
964 lr = 0;
965 printk("Call Trace:\n");
966 do {
967 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
968 return;
970 stack = (unsigned long *) sp;
971 newsp = stack[0];
972 ip = stack[STACK_FRAME_LR_SAVE];
973 if (!firstframe || ip != lr) {
974 printk("["REG"] ["REG"] ", sp, ip);
975 print_symbol("%s", ip);
976 if (firstframe)
977 printk(" (unreliable)");
978 printk("\n");
980 firstframe = 0;
983 * See if this is an exception frame.
984 * We look for the "regshere" marker in the current frame.
986 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
987 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
988 struct pt_regs *regs = (struct pt_regs *)
989 (sp + STACK_FRAME_OVERHEAD);
990 printk("--- Exception: %lx", regs->trap);
991 print_symbol(" at %s\n", regs->nip);
992 lr = regs->link;
993 print_symbol(" LR = %s\n", lr);
994 firstframe = 1;
997 sp = newsp;
998 } while (count++ < kstack_depth_to_print);
1001 void dump_stack(void)
1003 show_stack(current, NULL);
1005 EXPORT_SYMBOL(dump_stack);
1007 #ifdef CONFIG_PPC64
1008 void ppc64_runlatch_on(void)
1010 unsigned long ctrl;
1012 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1013 HMT_medium();
1015 ctrl = mfspr(SPRN_CTRLF);
1016 ctrl |= CTRL_RUNLATCH;
1017 mtspr(SPRN_CTRLT, ctrl);
1019 set_thread_flag(TIF_RUNLATCH);
1023 void ppc64_runlatch_off(void)
1025 unsigned long ctrl;
1027 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1028 HMT_medium();
1030 clear_thread_flag(TIF_RUNLATCH);
1032 ctrl = mfspr(SPRN_CTRLF);
1033 ctrl &= ~CTRL_RUNLATCH;
1034 mtspr(SPRN_CTRLT, ctrl);
1037 #endif
1039 #if THREAD_SHIFT < PAGE_SHIFT
1041 static struct kmem_cache *thread_info_cache;
1043 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1045 struct thread_info *ti;
1047 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1048 if (unlikely(ti == NULL))
1049 return NULL;
1050 #ifdef CONFIG_DEBUG_STACK_USAGE
1051 memset(ti, 0, THREAD_SIZE);
1052 #endif
1053 return ti;
1056 void free_thread_info(struct thread_info *ti)
1058 kmem_cache_free(thread_info_cache, ti);
1061 void thread_info_cache_init(void)
1063 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1064 THREAD_SIZE, 0, NULL);
1065 BUG_ON(thread_info_cache == NULL);
1068 #endif /* THREAD_SHIFT < PAGE_SHIFT */