2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
41 #include <asm/processor.h>
44 #include <asm/machdep.h>
46 #include <asm/syscalls.h>
48 #include <asm/firmware.h>
51 extern unsigned long _get_SP(void);
54 struct task_struct
*last_task_used_math
= NULL
;
55 struct task_struct
*last_task_used_altivec
= NULL
;
56 struct task_struct
*last_task_used_spe
= NULL
;
60 * Make sure the floating-point register state in the
61 * the thread_struct is up to date for task tsk.
63 void flush_fp_to_thread(struct task_struct
*tsk
)
65 if (tsk
->thread
.regs
) {
67 * We need to disable preemption here because if we didn't,
68 * another process could get scheduled after the regs->msr
69 * test but before we have finished saving the FP registers
70 * to the thread_struct. That process could take over the
71 * FPU, and then when we get scheduled again we would store
72 * bogus values for the remaining FP registers.
75 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
78 * This should only ever be called for current or
79 * for a stopped child process. Since we save away
80 * the FP register state on context switch on SMP,
81 * there is something wrong if a stopped child appears
82 * to still have its FP state in the CPU registers.
84 BUG_ON(tsk
!= current
);
92 void enable_kernel_fp(void)
94 WARN_ON(preemptible());
97 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
))
100 giveup_fpu(NULL
); /* just enables FP for kernel */
102 giveup_fpu(last_task_used_math
);
103 #endif /* CONFIG_SMP */
105 EXPORT_SYMBOL(enable_kernel_fp
);
107 int dump_task_fpu(struct task_struct
*tsk
, elf_fpregset_t
*fpregs
)
109 if (!tsk
->thread
.regs
)
111 flush_fp_to_thread(current
);
113 memcpy(fpregs
, &tsk
->thread
.fpr
[0], sizeof(*fpregs
));
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
121 WARN_ON(preemptible());
124 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
))
125 giveup_altivec(current
);
127 giveup_altivec(NULL
); /* just enable AltiVec for kernel - force */
129 giveup_altivec(last_task_used_altivec
);
130 #endif /* CONFIG_SMP */
132 EXPORT_SYMBOL(enable_kernel_altivec
);
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
138 void flush_altivec_to_thread(struct task_struct
*tsk
)
140 if (tsk
->thread
.regs
) {
142 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
144 BUG_ON(tsk
!= current
);
152 int dump_task_altivec(struct task_struct
*tsk
, elf_vrregset_t
*vrregs
)
154 /* ELF_NVRREG includes the VSCR and VRSAVE which we need to save
155 * separately, see below */
156 const int nregs
= ELF_NVRREG
- 2;
161 flush_altivec_to_thread(tsk
);
163 reg
= (elf_vrreg_t
*)vrregs
;
165 /* copy the 32 vr registers */
166 memcpy(reg
, &tsk
->thread
.vr
[0], nregs
* sizeof(*reg
));
170 memcpy(reg
, &tsk
->thread
.vscr
, sizeof(*reg
));
173 /* vrsave is stored in the high 32bit slot of the final 128bits */
174 memset(reg
, 0, sizeof(*reg
));
176 *dest
= tsk
->thread
.vrsave
;
180 #endif /* CONFIG_ALTIVEC */
184 void enable_kernel_spe(void)
186 WARN_ON(preemptible());
189 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
))
192 giveup_spe(NULL
); /* just enable SPE for kernel - force */
194 giveup_spe(last_task_used_spe
);
195 #endif /* __SMP __ */
197 EXPORT_SYMBOL(enable_kernel_spe
);
199 void flush_spe_to_thread(struct task_struct
*tsk
)
201 if (tsk
->thread
.regs
) {
203 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
205 BUG_ON(tsk
!= current
);
213 int dump_spe(struct pt_regs
*regs
, elf_vrregset_t
*evrregs
)
215 flush_spe_to_thread(current
);
216 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
217 memcpy(evrregs
, ¤t
->thread
.evr
[0], sizeof(u32
) * 35);
220 #endif /* CONFIG_SPE */
224 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225 * and the current task has some state, discard it.
227 void discard_lazy_cpu_state(void)
230 if (last_task_used_math
== current
)
231 last_task_used_math
= NULL
;
232 #ifdef CONFIG_ALTIVEC
233 if (last_task_used_altivec
== current
)
234 last_task_used_altivec
= NULL
;
235 #endif /* CONFIG_ALTIVEC */
237 if (last_task_used_spe
== current
)
238 last_task_used_spe
= NULL
;
242 #endif /* CONFIG_SMP */
244 static DEFINE_PER_CPU(unsigned long, current_dabr
);
246 int set_dabr(unsigned long dabr
)
248 __get_cpu_var(current_dabr
) = dabr
;
250 #ifdef CONFIG_PPC_MERGE /* XXX for now */
252 return ppc_md
.set_dabr(dabr
);
255 /* XXX should we have a CPU_FTR_HAS_DABR ? */
256 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
257 mtspr(SPRN_DABR
, dabr
);
263 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
266 struct task_struct
*__switch_to(struct task_struct
*prev
,
267 struct task_struct
*new)
269 struct thread_struct
*new_thread
, *old_thread
;
271 struct task_struct
*last
;
274 /* avoid complexity of lazy save/restore of fpu
275 * by just saving it every time we switch out if
276 * this task used the fpu during the last quantum.
278 * If it tries to use the fpu again, it'll trap and
279 * reload its fp regs. So we don't have to do a restore
280 * every switch, just a save.
283 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_FP
))
285 #ifdef CONFIG_ALTIVEC
287 * If the previous thread used altivec in the last quantum
288 * (thus changing altivec regs) then save them.
289 * We used to check the VRSAVE register but not all apps
290 * set it, so we don't rely on it now (and in fact we need
291 * to save & restore VSCR even if VRSAVE == 0). -- paulus
293 * On SMP we always save/restore altivec regs just to avoid the
294 * complexity of changing processors.
297 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VEC
))
298 giveup_altivec(prev
);
299 #endif /* CONFIG_ALTIVEC */
302 * If the previous thread used spe in the last quantum
303 * (thus changing spe regs) then save them.
305 * On SMP we always save/restore spe regs just to avoid the
306 * complexity of changing processors.
308 if ((prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_SPE
)))
310 #endif /* CONFIG_SPE */
312 #else /* CONFIG_SMP */
313 #ifdef CONFIG_ALTIVEC
314 /* Avoid the trap. On smp this this never happens since
315 * we don't set last_task_used_altivec -- Cort
317 if (new->thread
.regs
&& last_task_used_altivec
== new)
318 new->thread
.regs
->msr
|= MSR_VEC
;
319 #endif /* CONFIG_ALTIVEC */
321 /* Avoid the trap. On smp this this never happens since
322 * we don't set last_task_used_spe
324 if (new->thread
.regs
&& last_task_used_spe
== new)
325 new->thread
.regs
->msr
|= MSR_SPE
;
326 #endif /* CONFIG_SPE */
328 #endif /* CONFIG_SMP */
330 if (unlikely(__get_cpu_var(current_dabr
) != new->thread
.dabr
))
331 set_dabr(new->thread
.dabr
);
333 new_thread
= &new->thread
;
334 old_thread
= ¤t
->thread
;
338 * Collect processor utilization data per process
340 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
341 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
342 long unsigned start_tb
, current_tb
;
343 start_tb
= old_thread
->start_tb
;
344 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
345 old_thread
->accum_tb
+= (current_tb
- start_tb
);
346 new_thread
->start_tb
= current_tb
;
350 local_irq_save(flags
);
352 account_system_vtime(current
);
353 account_process_vtime(current
);
354 calculate_steal_time();
357 * We can't take a PMU exception inside _switch() since there is a
358 * window where the kernel stack SLB and the kernel stack are out
359 * of sync. Hard disable here.
362 last
= _switch(old_thread
, new_thread
);
364 local_irq_restore(flags
);
369 static int instructions_to_print
= 16;
371 static void show_instructions(struct pt_regs
*regs
)
374 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
377 printk("Instruction dump:");
379 for (i
= 0; i
< instructions_to_print
; i
++) {
385 #if !defined(CONFIG_BOOKE)
386 /* If executing with the IMMU off, adjust pc rather
387 * than print XXXXXXXX.
389 if (!(regs
->msr
& MSR_IR
))
390 pc
= (unsigned long)phys_to_virt(pc
);
393 /* We use __get_user here *only* to avoid an OOPS on a
394 * bad address because the pc *should* only be a
397 if (!__kernel_text_address(pc
) ||
398 __get_user(instr
, (unsigned int __user
*)pc
)) {
402 printk("<%08x> ", instr
);
404 printk("%08x ", instr
);
413 static struct regbit
{
426 static void printbits(unsigned long val
, struct regbit
*bits
)
428 const char *sep
= "";
431 for (; bits
->bit
; ++bits
)
432 if (val
& bits
->bit
) {
433 printk("%s%s", sep
, bits
->name
);
441 #define REGS_PER_LINE 4
442 #define LAST_VOLATILE 13
445 #define REGS_PER_LINE 8
446 #define LAST_VOLATILE 12
449 void show_regs(struct pt_regs
* regs
)
453 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
454 regs
->nip
, regs
->link
, regs
->ctr
);
455 printk("REGS: %p TRAP: %04lx %s (%s)\n",
456 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
457 printk("MSR: "REG
" ", regs
->msr
);
458 printbits(regs
->msr
, msr_bits
);
459 printk(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
461 if (trap
== 0x300 || trap
== 0x600)
462 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
463 printk("DEAR: "REG
", ESR: "REG
"\n", regs
->dar
, regs
->dsisr
);
465 printk("DAR: "REG
", DSISR: "REG
"\n", regs
->dar
, regs
->dsisr
);
467 printk("TASK = %p[%d] '%s' THREAD: %p",
468 current
, task_pid_nr(current
), current
->comm
, task_thread_info(current
));
471 printk(" CPU: %d", raw_smp_processor_id());
472 #endif /* CONFIG_SMP */
474 for (i
= 0; i
< 32; i
++) {
475 if ((i
% REGS_PER_LINE
) == 0)
476 printk("\n" KERN_INFO
"GPR%02d: ", i
);
477 printk(REG
" ", regs
->gpr
[i
]);
478 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
482 #ifdef CONFIG_KALLSYMS
484 * Lookup NIP late so we have the best change of getting the
485 * above info out without failing
487 printk("NIP ["REG
"] ", regs
->nip
);
488 print_symbol("%s\n", regs
->nip
);
489 printk("LR ["REG
"] ", regs
->link
);
490 print_symbol("%s\n", regs
->link
);
492 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
493 if (!user_mode(regs
))
494 show_instructions(regs
);
497 void exit_thread(void)
499 discard_lazy_cpu_state();
502 void flush_thread(void)
505 struct thread_info
*t
= current_thread_info();
507 if (test_ti_thread_flag(t
, TIF_ABI_PENDING
)) {
508 clear_ti_thread_flag(t
, TIF_ABI_PENDING
);
509 if (test_ti_thread_flag(t
, TIF_32BIT
))
510 clear_ti_thread_flag(t
, TIF_32BIT
);
512 set_ti_thread_flag(t
, TIF_32BIT
);
516 discard_lazy_cpu_state();
518 if (current
->thread
.dabr
) {
519 current
->thread
.dabr
= 0;
525 release_thread(struct task_struct
*t
)
530 * This gets called before we allocate a new thread and copy
531 * the current task into it.
533 void prepare_to_copy(struct task_struct
*tsk
)
535 flush_fp_to_thread(current
);
536 flush_altivec_to_thread(current
);
537 flush_spe_to_thread(current
);
543 int copy_thread(int nr
, unsigned long clone_flags
, unsigned long usp
,
544 unsigned long unused
, struct task_struct
*p
,
545 struct pt_regs
*regs
)
547 struct pt_regs
*childregs
, *kregs
;
548 extern void ret_from_fork(void);
549 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
551 CHECK_FULL_REGS(regs
);
553 sp
-= sizeof(struct pt_regs
);
554 childregs
= (struct pt_regs
*) sp
;
556 if ((childregs
->msr
& MSR_PR
) == 0) {
557 /* for kernel thread, set `current' and stackptr in new task */
558 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
560 childregs
->gpr
[2] = (unsigned long) p
;
562 clear_tsk_thread_flag(p
, TIF_32BIT
);
564 p
->thread
.regs
= NULL
; /* no user register state */
566 childregs
->gpr
[1] = usp
;
567 p
->thread
.regs
= childregs
;
568 if (clone_flags
& CLONE_SETTLS
) {
570 if (!test_thread_flag(TIF_32BIT
))
571 childregs
->gpr
[13] = childregs
->gpr
[6];
574 childregs
->gpr
[2] = childregs
->gpr
[6];
577 childregs
->gpr
[3] = 0; /* Result from fork() */
578 sp
-= STACK_FRAME_OVERHEAD
;
581 * The way this works is that at some point in the future
582 * some task will call _switch to switch to the new task.
583 * That will pop off the stack frame created below and start
584 * the new task running at ret_from_fork. The new task will
585 * do some house keeping and then return from the fork or clone
586 * system call, using the stack frame created above.
588 sp
-= sizeof(struct pt_regs
);
589 kregs
= (struct pt_regs
*) sp
;
590 sp
-= STACK_FRAME_OVERHEAD
;
592 p
->thread
.ksp_limit
= (unsigned long)task_stack_page(p
) +
593 _ALIGN_UP(sizeof(struct thread_info
), 16);
596 if (cpu_has_feature(CPU_FTR_SLB
)) {
597 unsigned long sp_vsid
;
598 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
600 if (cpu_has_feature(CPU_FTR_1T_SEGMENT
))
601 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
602 << SLB_VSID_SHIFT_1T
;
604 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
606 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
607 p
->thread
.ksp_vsid
= sp_vsid
;
611 * The PPC64 ABI makes use of a TOC to contain function
612 * pointers. The function (ret_from_except) is actually a pointer
613 * to the TOC entry. The first entry is a pointer to the actual
616 kregs
->nip
= *((unsigned long *)ret_from_fork
);
618 kregs
->nip
= (unsigned long)ret_from_fork
;
625 * Set up a thread for executing a new program
627 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
630 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
636 * If we exec out of a kernel thread then thread.regs will not be
639 if (!current
->thread
.regs
) {
640 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
641 current
->thread
.regs
= regs
- 1;
644 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
652 * We have just cleared all the nonvolatile GPRs, so make
653 * FULL_REGS(regs) return true. This is necessary to allow
654 * ptrace to examine the thread immediately after exec.
661 regs
->msr
= MSR_USER
;
663 if (!test_thread_flag(TIF_32BIT
)) {
664 unsigned long entry
, toc
;
666 /* start is a relocated pointer to the function descriptor for
667 * the elf _start routine. The first entry in the function
668 * descriptor is the entry address of _start and the second
669 * entry is the TOC value we need to use.
671 __get_user(entry
, (unsigned long __user
*)start
);
672 __get_user(toc
, (unsigned long __user
*)start
+1);
674 /* Check whether the e_entry function descriptor entries
675 * need to be relocated before we can use them.
677 if (load_addr
!= 0) {
683 regs
->msr
= MSR_USER64
;
687 regs
->msr
= MSR_USER32
;
691 discard_lazy_cpu_state();
692 memset(current
->thread
.fpr
, 0, sizeof(current
->thread
.fpr
));
693 current
->thread
.fpscr
.val
= 0;
694 #ifdef CONFIG_ALTIVEC
695 memset(current
->thread
.vr
, 0, sizeof(current
->thread
.vr
));
696 memset(¤t
->thread
.vscr
, 0, sizeof(current
->thread
.vscr
));
697 current
->thread
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
698 current
->thread
.vrsave
= 0;
699 current
->thread
.used_vr
= 0;
700 #endif /* CONFIG_ALTIVEC */
702 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
703 current
->thread
.acc
= 0;
704 current
->thread
.spefscr
= 0;
705 current
->thread
.used_spe
= 0;
706 #endif /* CONFIG_SPE */
709 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
710 | PR_FP_EXC_RES | PR_FP_EXC_INV)
712 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
714 struct pt_regs
*regs
= tsk
->thread
.regs
;
716 /* This is a bit hairy. If we are an SPE enabled processor
717 * (have embedded fp) we store the IEEE exception enable flags in
718 * fpexc_mode. fpexc_mode is also used for setting FP exception
719 * mode (asyn, precise, disabled) for 'Classic' FP. */
720 if (val
& PR_FP_EXC_SW_ENABLE
) {
722 if (cpu_has_feature(CPU_FTR_SPE
)) {
723 tsk
->thread
.fpexc_mode
= val
&
724 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
734 /* on a CONFIG_SPE this does not hurt us. The bits that
735 * __pack_fe01 use do not overlap with bits used for
736 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
737 * on CONFIG_SPE implementations are reserved so writing to
738 * them does not change anything */
739 if (val
> PR_FP_EXC_PRECISE
)
741 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
742 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
743 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
744 | tsk
->thread
.fpexc_mode
;
748 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
752 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
754 if (cpu_has_feature(CPU_FTR_SPE
))
755 val
= tsk
->thread
.fpexc_mode
;
762 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
763 return put_user(val
, (unsigned int __user
*) adr
);
766 int set_endian(struct task_struct
*tsk
, unsigned int val
)
768 struct pt_regs
*regs
= tsk
->thread
.regs
;
770 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
771 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
777 if (val
== PR_ENDIAN_BIG
)
778 regs
->msr
&= ~MSR_LE
;
779 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
787 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
789 struct pt_regs
*regs
= tsk
->thread
.regs
;
792 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
793 !cpu_has_feature(CPU_FTR_REAL_LE
))
799 if (regs
->msr
& MSR_LE
) {
800 if (cpu_has_feature(CPU_FTR_REAL_LE
))
801 val
= PR_ENDIAN_LITTLE
;
803 val
= PR_ENDIAN_PPC_LITTLE
;
807 return put_user(val
, (unsigned int __user
*)adr
);
810 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
812 tsk
->thread
.align_ctl
= val
;
816 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
818 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
821 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
823 int sys_clone(unsigned long clone_flags
, unsigned long usp
,
824 int __user
*parent_tidp
, void __user
*child_threadptr
,
825 int __user
*child_tidp
, int p6
,
826 struct pt_regs
*regs
)
828 CHECK_FULL_REGS(regs
);
830 usp
= regs
->gpr
[1]; /* stack pointer for child */
832 if (test_thread_flag(TIF_32BIT
)) {
833 parent_tidp
= TRUNC_PTR(parent_tidp
);
834 child_tidp
= TRUNC_PTR(child_tidp
);
837 return do_fork(clone_flags
, usp
, regs
, 0, parent_tidp
, child_tidp
);
840 int sys_fork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
841 unsigned long p4
, unsigned long p5
, unsigned long p6
,
842 struct pt_regs
*regs
)
844 CHECK_FULL_REGS(regs
);
845 return do_fork(SIGCHLD
, regs
->gpr
[1], regs
, 0, NULL
, NULL
);
848 int sys_vfork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
849 unsigned long p4
, unsigned long p5
, unsigned long p6
,
850 struct pt_regs
*regs
)
852 CHECK_FULL_REGS(regs
);
853 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, regs
->gpr
[1],
854 regs
, 0, NULL
, NULL
);
857 int sys_execve(unsigned long a0
, unsigned long a1
, unsigned long a2
,
858 unsigned long a3
, unsigned long a4
, unsigned long a5
,
859 struct pt_regs
*regs
)
864 filename
= getname((char __user
*) a0
);
865 error
= PTR_ERR(filename
);
866 if (IS_ERR(filename
))
868 flush_fp_to_thread(current
);
869 flush_altivec_to_thread(current
);
870 flush_spe_to_thread(current
);
871 error
= do_execve(filename
, (char __user
* __user
*) a1
,
872 (char __user
* __user
*) a2
, regs
);
878 #ifdef CONFIG_IRQSTACKS
879 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
880 unsigned long nbytes
)
882 unsigned long stack_page
;
883 unsigned long cpu
= task_cpu(p
);
886 * Avoid crashing if the stack has overflowed and corrupted
887 * task_cpu(p), which is in the thread_info struct.
889 if (cpu
< NR_CPUS
&& cpu_possible(cpu
)) {
890 stack_page
= (unsigned long) hardirq_ctx
[cpu
];
891 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
892 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
895 stack_page
= (unsigned long) softirq_ctx
[cpu
];
896 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
897 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
904 #define valid_irq_stack(sp, p, nb) 0
905 #endif /* CONFIG_IRQSTACKS */
907 int validate_sp(unsigned long sp
, struct task_struct
*p
,
908 unsigned long nbytes
)
910 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
912 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
913 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
916 return valid_irq_stack(sp
, p
, nbytes
);
919 EXPORT_SYMBOL(validate_sp
);
921 unsigned long get_wchan(struct task_struct
*p
)
923 unsigned long ip
, sp
;
926 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
930 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
934 sp
= *(unsigned long *)sp
;
935 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
938 ip
= ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
];
939 if (!in_sched_functions(ip
))
942 } while (count
++ < 16);
946 static int kstack_depth_to_print
= 64;
948 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
950 unsigned long sp
, ip
, lr
, newsp
;
954 sp
= (unsigned long) stack
;
959 asm("mr %0,1" : "=r" (sp
));
961 sp
= tsk
->thread
.ksp
;
965 printk("Call Trace:\n");
967 if (!validate_sp(sp
, tsk
, STACK_FRAME_OVERHEAD
))
970 stack
= (unsigned long *) sp
;
972 ip
= stack
[STACK_FRAME_LR_SAVE
];
973 if (!firstframe
|| ip
!= lr
) {
974 printk("["REG
"] ["REG
"] ", sp
, ip
);
975 print_symbol("%s", ip
);
977 printk(" (unreliable)");
983 * See if this is an exception frame.
984 * We look for the "regshere" marker in the current frame.
986 if (validate_sp(sp
, tsk
, STACK_INT_FRAME_SIZE
)
987 && stack
[STACK_FRAME_MARKER
] == STACK_FRAME_REGS_MARKER
) {
988 struct pt_regs
*regs
= (struct pt_regs
*)
989 (sp
+ STACK_FRAME_OVERHEAD
);
990 printk("--- Exception: %lx", regs
->trap
);
991 print_symbol(" at %s\n", regs
->nip
);
993 print_symbol(" LR = %s\n", lr
);
998 } while (count
++ < kstack_depth_to_print
);
1001 void dump_stack(void)
1003 show_stack(current
, NULL
);
1005 EXPORT_SYMBOL(dump_stack
);
1008 void ppc64_runlatch_on(void)
1012 if (cpu_has_feature(CPU_FTR_CTRL
) && !test_thread_flag(TIF_RUNLATCH
)) {
1015 ctrl
= mfspr(SPRN_CTRLF
);
1016 ctrl
|= CTRL_RUNLATCH
;
1017 mtspr(SPRN_CTRLT
, ctrl
);
1019 set_thread_flag(TIF_RUNLATCH
);
1023 void ppc64_runlatch_off(void)
1027 if (cpu_has_feature(CPU_FTR_CTRL
) && test_thread_flag(TIF_RUNLATCH
)) {
1030 clear_thread_flag(TIF_RUNLATCH
);
1032 ctrl
= mfspr(SPRN_CTRLF
);
1033 ctrl
&= ~CTRL_RUNLATCH
;
1034 mtspr(SPRN_CTRLT
, ctrl
);
1039 #if THREAD_SHIFT < PAGE_SHIFT
1041 static struct kmem_cache
*thread_info_cache
;
1043 struct thread_info
*alloc_thread_info(struct task_struct
*tsk
)
1045 struct thread_info
*ti
;
1047 ti
= kmem_cache_alloc(thread_info_cache
, GFP_KERNEL
);
1048 if (unlikely(ti
== NULL
))
1050 #ifdef CONFIG_DEBUG_STACK_USAGE
1051 memset(ti
, 0, THREAD_SIZE
);
1056 void free_thread_info(struct thread_info
*ti
)
1058 kmem_cache_free(thread_info_cache
, ti
);
1061 void thread_info_cache_init(void)
1063 thread_info_cache
= kmem_cache_create("thread_info", THREAD_SIZE
,
1064 THREAD_SIZE
, 0, NULL
);
1065 BUG_ON(thread_info_cache
== NULL
);
1068 #endif /* THREAD_SHIFT < PAGE_SHIFT */