ia64/kvm: compilation fix. export account_system_vtime.
[pv_ops_mirror.git] / arch / powerpc / sysdev / cpm1.c
blob58292a086c164059e5d37a7de347003d436c7230
1 /*
2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6 * In addition to the individual control of the communication
7 * channels, there are a few functions that globally affect the
8 * communication processor.
10 * Buffer descriptors must be allocated from the dual ported memory
11 * space. The allocator for that is here. When the communication
12 * process is reset, we reclaim the memory available. There is
13 * currently no deallocator for this memory.
14 * The amount of space available is platform dependent. On the
15 * MBX, the EPPC software loads additional microcode into the
16 * communication processor, and uses some of the DP ram for this
17 * purpose. Current, the first 512 bytes and the last 256 bytes of
18 * memory are used. Right now I am conservative and only use the
19 * memory that can never be used for microcode. If there are
20 * applications that require more DP ram, we can expand the boundaries
21 * but then we have to be careful of any downloaded microcode.
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <asm/page.h>
34 #include <asm/pgtable.h>
35 #include <asm/8xx_immap.h>
36 #include <asm/cpm1.h>
37 #include <asm/io.h>
38 #include <asm/tlbflush.h>
39 #include <asm/rheap.h>
40 #include <asm/prom.h>
41 #include <asm/cpm.h>
43 #include <asm/fs_pd.h>
45 #define CPM_MAP_SIZE (0x4000)
47 cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
48 immap_t __iomem *mpc8xx_immr;
49 static cpic8xx_t __iomem *cpic_reg;
51 static struct irq_host *cpm_pic_host;
53 static void cpm_mask_irq(unsigned int irq)
55 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
57 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
60 static void cpm_unmask_irq(unsigned int irq)
62 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
64 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
67 static void cpm_end_irq(unsigned int irq)
69 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
71 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
74 static struct irq_chip cpm_pic = {
75 .typename = " CPM PIC ",
76 .mask = cpm_mask_irq,
77 .unmask = cpm_unmask_irq,
78 .eoi = cpm_end_irq,
81 int cpm_get_irq(void)
83 int cpm_vec;
85 /* Get the vector by setting the ACK bit and then reading
86 * the register.
88 out_be16(&cpic_reg->cpic_civr, 1);
89 cpm_vec = in_be16(&cpic_reg->cpic_civr);
90 cpm_vec >>= 11;
92 return irq_linear_revmap(cpm_pic_host, cpm_vec);
95 static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
96 irq_hw_number_t hw)
98 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
100 get_irq_desc(virq)->status |= IRQ_LEVEL;
101 set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
102 return 0;
105 /* The CPM can generate the error interrupt when there is a race condition
106 * between generating and masking interrupts. All we have to do is ACK it
107 * and return. This is a no-op function so we don't need any special
108 * tests in the interrupt handler.
110 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
112 return IRQ_HANDLED;
115 static struct irqaction cpm_error_irqaction = {
116 .handler = cpm_error_interrupt,
117 .mask = CPU_MASK_NONE,
118 .name = "error",
121 static struct irq_host_ops cpm_pic_host_ops = {
122 .map = cpm_pic_host_map,
125 unsigned int cpm_pic_init(void)
127 struct device_node *np = NULL;
128 struct resource res;
129 unsigned int sirq = NO_IRQ, hwirq, eirq;
130 int ret;
132 pr_debug("cpm_pic_init\n");
134 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
135 if (np == NULL)
136 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
137 if (np == NULL) {
138 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
139 return sirq;
142 ret = of_address_to_resource(np, 0, &res);
143 if (ret)
144 goto end;
146 cpic_reg = ioremap(res.start, res.end - res.start + 1);
147 if (cpic_reg == NULL)
148 goto end;
150 sirq = irq_of_parse_and_map(np, 0);
151 if (sirq == NO_IRQ)
152 goto end;
154 /* Initialize the CPM interrupt controller. */
155 hwirq = (unsigned int)irq_map[sirq].hwirq;
156 out_be32(&cpic_reg->cpic_cicr,
157 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
158 ((hwirq/2) << 13) | CICR_HP_MASK);
160 out_be32(&cpic_reg->cpic_cimr, 0);
162 cpm_pic_host = irq_alloc_host(of_node_get(np), IRQ_HOST_MAP_LINEAR,
163 64, &cpm_pic_host_ops, 64);
164 if (cpm_pic_host == NULL) {
165 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
166 sirq = NO_IRQ;
167 goto end;
170 /* Install our own error handler. */
171 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
172 if (np == NULL)
173 np = of_find_node_by_type(NULL, "cpm");
174 if (np == NULL) {
175 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
176 goto end;
179 eirq = irq_of_parse_and_map(np, 0);
180 if (eirq == NO_IRQ)
181 goto end;
183 if (setup_irq(eirq, &cpm_error_irqaction))
184 printk(KERN_ERR "Could not allocate CPM error IRQ!");
186 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
188 end:
189 of_node_put(np);
190 return sirq;
193 void __init cpm_reset(void)
195 sysconf8xx_t __iomem *siu_conf;
197 mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
198 if (!mpc8xx_immr) {
199 printk(KERN_CRIT "Could not map IMMR\n");
200 return;
203 cpmp = &mpc8xx_immr->im_cpm;
205 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
206 /* Perform a reset.
208 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
210 /* Wait for it.
212 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
213 #endif
215 #ifdef CONFIG_UCODE_PATCH
216 cpm_load_patch(cpmp);
217 #endif
219 /* Set SDMA Bus Request priority 5.
220 * On 860T, this also enables FEC priority 6. I am not sure
221 * this is what we realy want for some applications, but the
222 * manual recommends it.
223 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
225 siu_conf = immr_map(im_siu_conf);
226 out_be32(&siu_conf->sc_sdcr, 1);
227 immr_unmap(siu_conf);
229 cpm_muram_init();
232 static DEFINE_SPINLOCK(cmd_lock);
234 #define MAX_CR_CMD_LOOPS 10000
236 int cpm_command(u32 command, u8 opcode)
238 int i, ret;
239 unsigned long flags;
241 if (command & 0xffffff0f)
242 return -EINVAL;
244 spin_lock_irqsave(&cmd_lock, flags);
246 ret = 0;
247 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
248 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
249 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
250 goto out;
252 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
253 ret = -EIO;
254 out:
255 spin_unlock_irqrestore(&cmd_lock, flags);
256 return ret;
258 EXPORT_SYMBOL(cpm_command);
260 /* Set a baud rate generator. This needs lots of work. There are
261 * four BRGs, any of which can be wired to any channel.
262 * The internal baud rate clock is the system clock divided by 16.
263 * This assumes the baudrate is 16x oversampled by the uart.
265 #define BRG_INT_CLK (get_brgfreq())
266 #define BRG_UART_CLK (BRG_INT_CLK/16)
267 #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
269 void
270 cpm_setbrg(uint brg, uint rate)
272 u32 __iomem *bp;
274 /* This is good enough to get SMCs running.....
276 bp = &cpmp->cp_brgc1;
277 bp += brg;
278 /* The BRG has a 12-bit counter. For really slow baud rates (or
279 * really fast processors), we may have to further divide by 16.
281 if (((BRG_UART_CLK / rate) - 1) < 4096)
282 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
283 else
284 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
285 CPM_BRG_EN | CPM_BRG_DIV16);
288 struct cpm_ioport16 {
289 __be16 dir, par, odr_sor, dat, intr;
290 __be16 res[3];
293 struct cpm_ioport32 {
294 __be32 dir, par, sor;
297 static void cpm1_set_pin32(int port, int pin, int flags)
299 struct cpm_ioport32 __iomem *iop;
300 pin = 1 << (31 - pin);
302 if (port == CPM_PORTB)
303 iop = (struct cpm_ioport32 __iomem *)
304 &mpc8xx_immr->im_cpm.cp_pbdir;
305 else
306 iop = (struct cpm_ioport32 __iomem *)
307 &mpc8xx_immr->im_cpm.cp_pedir;
309 if (flags & CPM_PIN_OUTPUT)
310 setbits32(&iop->dir, pin);
311 else
312 clrbits32(&iop->dir, pin);
314 if (!(flags & CPM_PIN_GPIO))
315 setbits32(&iop->par, pin);
316 else
317 clrbits32(&iop->par, pin);
319 if (port == CPM_PORTB) {
320 if (flags & CPM_PIN_OPENDRAIN)
321 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
322 else
323 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
326 if (port == CPM_PORTE) {
327 if (flags & CPM_PIN_SECONDARY)
328 setbits32(&iop->sor, pin);
329 else
330 clrbits32(&iop->sor, pin);
332 if (flags & CPM_PIN_OPENDRAIN)
333 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
334 else
335 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
339 static void cpm1_set_pin16(int port, int pin, int flags)
341 struct cpm_ioport16 __iomem *iop =
342 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
344 pin = 1 << (15 - pin);
346 if (port != 0)
347 iop += port - 1;
349 if (flags & CPM_PIN_OUTPUT)
350 setbits16(&iop->dir, pin);
351 else
352 clrbits16(&iop->dir, pin);
354 if (!(flags & CPM_PIN_GPIO))
355 setbits16(&iop->par, pin);
356 else
357 clrbits16(&iop->par, pin);
359 if (port == CPM_PORTA) {
360 if (flags & CPM_PIN_OPENDRAIN)
361 setbits16(&iop->odr_sor, pin);
362 else
363 clrbits16(&iop->odr_sor, pin);
365 if (port == CPM_PORTC) {
366 if (flags & CPM_PIN_SECONDARY)
367 setbits16(&iop->odr_sor, pin);
368 else
369 clrbits16(&iop->odr_sor, pin);
373 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
375 if (port == CPM_PORTB || port == CPM_PORTE)
376 cpm1_set_pin32(port, pin, flags);
377 else
378 cpm1_set_pin16(port, pin, flags);
381 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
383 int shift;
384 int i, bits = 0;
385 u32 __iomem *reg;
386 u32 mask = 7;
388 u8 clk_map[][3] = {
389 {CPM_CLK_SCC1, CPM_BRG1, 0},
390 {CPM_CLK_SCC1, CPM_BRG2, 1},
391 {CPM_CLK_SCC1, CPM_BRG3, 2},
392 {CPM_CLK_SCC1, CPM_BRG4, 3},
393 {CPM_CLK_SCC1, CPM_CLK1, 4},
394 {CPM_CLK_SCC1, CPM_CLK2, 5},
395 {CPM_CLK_SCC1, CPM_CLK3, 6},
396 {CPM_CLK_SCC1, CPM_CLK4, 7},
398 {CPM_CLK_SCC2, CPM_BRG1, 0},
399 {CPM_CLK_SCC2, CPM_BRG2, 1},
400 {CPM_CLK_SCC2, CPM_BRG3, 2},
401 {CPM_CLK_SCC2, CPM_BRG4, 3},
402 {CPM_CLK_SCC2, CPM_CLK1, 4},
403 {CPM_CLK_SCC2, CPM_CLK2, 5},
404 {CPM_CLK_SCC2, CPM_CLK3, 6},
405 {CPM_CLK_SCC2, CPM_CLK4, 7},
407 {CPM_CLK_SCC3, CPM_BRG1, 0},
408 {CPM_CLK_SCC3, CPM_BRG2, 1},
409 {CPM_CLK_SCC3, CPM_BRG3, 2},
410 {CPM_CLK_SCC3, CPM_BRG4, 3},
411 {CPM_CLK_SCC3, CPM_CLK5, 4},
412 {CPM_CLK_SCC3, CPM_CLK6, 5},
413 {CPM_CLK_SCC3, CPM_CLK7, 6},
414 {CPM_CLK_SCC3, CPM_CLK8, 7},
416 {CPM_CLK_SCC4, CPM_BRG1, 0},
417 {CPM_CLK_SCC4, CPM_BRG2, 1},
418 {CPM_CLK_SCC4, CPM_BRG3, 2},
419 {CPM_CLK_SCC4, CPM_BRG4, 3},
420 {CPM_CLK_SCC4, CPM_CLK5, 4},
421 {CPM_CLK_SCC4, CPM_CLK6, 5},
422 {CPM_CLK_SCC4, CPM_CLK7, 6},
423 {CPM_CLK_SCC4, CPM_CLK8, 7},
425 {CPM_CLK_SMC1, CPM_BRG1, 0},
426 {CPM_CLK_SMC1, CPM_BRG2, 1},
427 {CPM_CLK_SMC1, CPM_BRG3, 2},
428 {CPM_CLK_SMC1, CPM_BRG4, 3},
429 {CPM_CLK_SMC1, CPM_CLK1, 4},
430 {CPM_CLK_SMC1, CPM_CLK2, 5},
431 {CPM_CLK_SMC1, CPM_CLK3, 6},
432 {CPM_CLK_SMC1, CPM_CLK4, 7},
434 {CPM_CLK_SMC2, CPM_BRG1, 0},
435 {CPM_CLK_SMC2, CPM_BRG2, 1},
436 {CPM_CLK_SMC2, CPM_BRG3, 2},
437 {CPM_CLK_SMC2, CPM_BRG4, 3},
438 {CPM_CLK_SMC2, CPM_CLK5, 4},
439 {CPM_CLK_SMC2, CPM_CLK6, 5},
440 {CPM_CLK_SMC2, CPM_CLK7, 6},
441 {CPM_CLK_SMC2, CPM_CLK8, 7},
444 switch (target) {
445 case CPM_CLK_SCC1:
446 reg = &mpc8xx_immr->im_cpm.cp_sicr;
447 shift = 0;
448 break;
450 case CPM_CLK_SCC2:
451 reg = &mpc8xx_immr->im_cpm.cp_sicr;
452 shift = 8;
453 break;
455 case CPM_CLK_SCC3:
456 reg = &mpc8xx_immr->im_cpm.cp_sicr;
457 shift = 16;
458 break;
460 case CPM_CLK_SCC4:
461 reg = &mpc8xx_immr->im_cpm.cp_sicr;
462 shift = 24;
463 break;
465 case CPM_CLK_SMC1:
466 reg = &mpc8xx_immr->im_cpm.cp_simode;
467 shift = 12;
468 break;
470 case CPM_CLK_SMC2:
471 reg = &mpc8xx_immr->im_cpm.cp_simode;
472 shift = 28;
473 break;
475 default:
476 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
477 return -EINVAL;
480 if (reg == &mpc8xx_immr->im_cpm.cp_sicr && mode == CPM_CLK_RX)
481 shift += 3;
483 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
484 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
485 bits = clk_map[i][2];
486 break;
490 if (i == ARRAY_SIZE(clk_map)) {
491 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
492 return -EINVAL;
495 bits <<= shift;
496 mask <<= shift;
497 out_be32(reg, (in_be32(reg) & ~mask) | bits);
499 return 0;