4 * Copyright IBM Corp. 2006
5 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
8 #include <linux/bootmem.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/hugetlb.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
20 static DEFINE_MUTEX(vmem_mutex
);
22 struct memory_segment
{
23 struct list_head list
;
28 static LIST_HEAD(mem_segs
);
30 static pud_t
*vmem_pud_alloc(void)
35 pud
= vmemmap_alloc_block(PAGE_SIZE
* 4, 0);
38 clear_table((unsigned long *) pud
, _REGION3_ENTRY_EMPTY
, PAGE_SIZE
* 4);
43 static pmd_t
*vmem_pmd_alloc(void)
48 pmd
= vmemmap_alloc_block(PAGE_SIZE
* 4, 0);
51 clear_table((unsigned long *) pmd
, _SEGMENT_ENTRY_EMPTY
, PAGE_SIZE
* 4);
56 static pte_t __ref
*vmem_pte_alloc(void)
60 if (slab_is_available())
61 pte
= (pte_t
*) page_table_alloc(&init_mm
);
63 pte
= alloc_bootmem(PTRS_PER_PTE
* sizeof(pte_t
));
66 clear_table((unsigned long *) pte
, _PAGE_TYPE_EMPTY
,
67 PTRS_PER_PTE
* sizeof(pte_t
));
72 * Add a physical memory range to the 1:1 mapping.
74 static int vmem_add_mem(unsigned long start
, unsigned long size
, int ro
)
76 unsigned long address
;
84 for (address
= start
; address
< start
+ size
; address
+= PAGE_SIZE
) {
85 pg_dir
= pgd_offset_k(address
);
86 if (pgd_none(*pg_dir
)) {
87 pu_dir
= vmem_pud_alloc();
90 pgd_populate_kernel(&init_mm
, pg_dir
, pu_dir
);
93 pu_dir
= pud_offset(pg_dir
, address
);
94 if (pud_none(*pu_dir
)) {
95 pm_dir
= vmem_pmd_alloc();
98 pud_populate_kernel(&init_mm
, pu_dir
, pm_dir
);
101 pte
= mk_pte_phys(address
, __pgprot(ro
? _PAGE_RO
: 0));
102 pm_dir
= pmd_offset(pu_dir
, address
);
105 if (MACHINE_HAS_HPAGE
&& !(address
& ~HPAGE_MASK
) &&
106 (address
+ HPAGE_SIZE
<= start
+ size
) &&
107 (address
>= HPAGE_SIZE
)) {
108 pte_val(pte
) |= _SEGMENT_ENTRY_LARGE
;
109 pmd_val(*pm_dir
) = pte_val(pte
);
110 address
+= HPAGE_SIZE
- PAGE_SIZE
;
114 if (pmd_none(*pm_dir
)) {
115 pt_dir
= vmem_pte_alloc();
118 pmd_populate_kernel(&init_mm
, pm_dir
, pt_dir
);
121 pt_dir
= pte_offset_kernel(pm_dir
, address
);
126 flush_tlb_kernel_range(start
, start
+ size
);
131 * Remove a physical memory range from the 1:1 mapping.
132 * Currently only invalidates page table entries.
134 static void vmem_remove_range(unsigned long start
, unsigned long size
)
136 unsigned long address
;
143 pte_val(pte
) = _PAGE_TYPE_EMPTY
;
144 for (address
= start
; address
< start
+ size
; address
+= PAGE_SIZE
) {
145 pg_dir
= pgd_offset_k(address
);
146 pu_dir
= pud_offset(pg_dir
, address
);
147 if (pud_none(*pu_dir
))
149 pm_dir
= pmd_offset(pu_dir
, address
);
150 if (pmd_none(*pm_dir
))
153 if (pmd_huge(*pm_dir
)) {
154 pmd_clear_kernel(pm_dir
);
155 address
+= HPAGE_SIZE
- PAGE_SIZE
;
159 pt_dir
= pte_offset_kernel(pm_dir
, address
);
162 flush_tlb_kernel_range(start
, start
+ size
);
166 * Add a backed mem_map array to the virtual mem_map array.
168 int __meminit
vmemmap_populate(struct page
*start
, unsigned long nr
, int node
)
170 unsigned long address
, start_addr
, end_addr
;
178 start_addr
= (unsigned long) start
;
179 end_addr
= (unsigned long) (start
+ nr
);
181 for (address
= start_addr
; address
< end_addr
; address
+= PAGE_SIZE
) {
182 pg_dir
= pgd_offset_k(address
);
183 if (pgd_none(*pg_dir
)) {
184 pu_dir
= vmem_pud_alloc();
187 pgd_populate_kernel(&init_mm
, pg_dir
, pu_dir
);
190 pu_dir
= pud_offset(pg_dir
, address
);
191 if (pud_none(*pu_dir
)) {
192 pm_dir
= vmem_pmd_alloc();
195 pud_populate_kernel(&init_mm
, pu_dir
, pm_dir
);
198 pm_dir
= pmd_offset(pu_dir
, address
);
199 if (pmd_none(*pm_dir
)) {
200 pt_dir
= vmem_pte_alloc();
203 pmd_populate_kernel(&init_mm
, pm_dir
, pt_dir
);
206 pt_dir
= pte_offset_kernel(pm_dir
, address
);
207 if (pte_none(*pt_dir
)) {
208 unsigned long new_page
;
210 new_page
=__pa(vmemmap_alloc_block(PAGE_SIZE
, 0));
213 pte
= pfn_pte(new_page
>> PAGE_SHIFT
, PAGE_KERNEL
);
219 flush_tlb_kernel_range(start_addr
, end_addr
);
224 * Add memory segment to the segment list if it doesn't overlap with
225 * an already present segment.
227 static int insert_memory_segment(struct memory_segment
*seg
)
229 struct memory_segment
*tmp
;
231 if (seg
->start
+ seg
->size
>= VMEM_MAX_PHYS
||
232 seg
->start
+ seg
->size
< seg
->start
)
235 list_for_each_entry(tmp
, &mem_segs
, list
) {
236 if (seg
->start
>= tmp
->start
+ tmp
->size
)
238 if (seg
->start
+ seg
->size
<= tmp
->start
)
242 list_add(&seg
->list
, &mem_segs
);
247 * Remove memory segment from the segment list.
249 static void remove_memory_segment(struct memory_segment
*seg
)
251 list_del(&seg
->list
);
254 static void __remove_shared_memory(struct memory_segment
*seg
)
256 remove_memory_segment(seg
);
257 vmem_remove_range(seg
->start
, seg
->size
);
260 int vmem_remove_mapping(unsigned long start
, unsigned long size
)
262 struct memory_segment
*seg
;
265 mutex_lock(&vmem_mutex
);
268 list_for_each_entry(seg
, &mem_segs
, list
) {
269 if (seg
->start
== start
&& seg
->size
== size
)
273 if (seg
->start
!= start
|| seg
->size
!= size
)
277 __remove_shared_memory(seg
);
280 mutex_unlock(&vmem_mutex
);
284 int vmem_add_mapping(unsigned long start
, unsigned long size
)
286 struct memory_segment
*seg
;
289 mutex_lock(&vmem_mutex
);
291 seg
= kzalloc(sizeof(*seg
), GFP_KERNEL
);
297 ret
= insert_memory_segment(seg
);
301 ret
= vmem_add_mem(start
, size
, 0);
307 __remove_shared_memory(seg
);
311 mutex_unlock(&vmem_mutex
);
316 * map whole physical memory to virtual memory (identity mapping)
317 * we reserve enough space in the vmalloc area for vmemmap to hotplug
318 * additional memory segments.
320 void __init
vmem_map_init(void)
322 unsigned long ro_start
, ro_end
;
323 unsigned long start
, end
;
326 INIT_LIST_HEAD(&init_mm
.context
.crst_list
);
327 INIT_LIST_HEAD(&init_mm
.context
.pgtable_list
);
328 init_mm
.context
.noexec
= 0;
329 ro_start
= ((unsigned long)&_stext
) & PAGE_MASK
;
330 ro_end
= PFN_ALIGN((unsigned long)&_eshared
);
331 for (i
= 0; i
< MEMORY_CHUNKS
&& memory_chunk
[i
].size
> 0; i
++) {
332 start
= memory_chunk
[i
].addr
;
333 end
= memory_chunk
[i
].addr
+ memory_chunk
[i
].size
;
334 if (start
>= ro_end
|| end
<= ro_start
)
335 vmem_add_mem(start
, end
- start
, 0);
336 else if (start
>= ro_start
&& end
<= ro_end
)
337 vmem_add_mem(start
, end
- start
, 1);
338 else if (start
>= ro_start
) {
339 vmem_add_mem(start
, ro_end
- start
, 1);
340 vmem_add_mem(ro_end
, end
- ro_end
, 0);
341 } else if (end
< ro_end
) {
342 vmem_add_mem(start
, ro_start
- start
, 0);
343 vmem_add_mem(ro_start
, end
- ro_start
, 1);
345 vmem_add_mem(start
, ro_start
- start
, 0);
346 vmem_add_mem(ro_start
, ro_end
- ro_start
, 1);
347 vmem_add_mem(ro_end
, end
- ro_end
, 0);
353 * Convert memory chunk array to a memory segment list so there is a single
354 * list that contains both r/w memory and shared memory segments.
356 static int __init
vmem_convert_memory_chunk(void)
358 struct memory_segment
*seg
;
361 mutex_lock(&vmem_mutex
);
362 for (i
= 0; i
< MEMORY_CHUNKS
; i
++) {
363 if (!memory_chunk
[i
].size
)
365 seg
= kzalloc(sizeof(*seg
), GFP_KERNEL
);
367 panic("Out of memory...\n");
368 seg
->start
= memory_chunk
[i
].addr
;
369 seg
->size
= memory_chunk
[i
].size
;
370 insert_memory_segment(seg
);
372 mutex_unlock(&vmem_mutex
);
376 core_initcall(vmem_convert_memory_chunk
);