1 /* arch/sparc64/kernel/kprobes.c
3 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
6 #include <linux/kernel.h>
7 #include <linux/kprobes.h>
8 #include <linux/module.h>
9 #include <linux/kdebug.h>
10 #include <asm/signal.h>
11 #include <asm/cacheflush.h>
12 #include <asm/uaccess.h>
14 /* We do not have hardware single-stepping on sparc64.
15 * So we implement software single-stepping with breakpoint
16 * traps. The top-level scheme is similar to that used
17 * in the x86 kprobes implementation.
19 * In the kprobe->ainsn.insn[] array we store the original
20 * instruction at index zero and a break instruction at
23 * When we hit a kprobe we:
24 * - Run the pre-handler
25 * - Remember "regs->tnpc" and interrupt level stored in
26 * "regs->tstate" so we can restore them later
27 * - Disable PIL interrupts
28 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
29 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
30 * - Mark that we are actively in a kprobe
32 * At this point we wait for the second breakpoint at
33 * kprobe->ainsn.insn[1] to hit. When it does we:
34 * - Run the post-handler
35 * - Set regs->tpc to "remembered" regs->tnpc stored above,
36 * restore the PIL interrupt level in "regs->tstate" as well
37 * - Make any adjustments necessary to regs->tnpc in order
38 * to handle relative branches correctly. See below.
39 * - Mark that we are no longer actively in a kprobe.
42 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
43 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
45 struct kretprobe_blackpoint kretprobe_blacklist
[] = {{NULL
, NULL
}};
47 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
49 p
->ainsn
.insn
[0] = *p
->addr
;
50 flushi(&p
->ainsn
.insn
[0]);
52 p
->ainsn
.insn
[1] = BREAKPOINT_INSTRUCTION_2
;
53 flushi(&p
->ainsn
.insn
[1]);
59 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
61 *p
->addr
= BREAKPOINT_INSTRUCTION
;
65 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
71 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
73 kcb
->prev_kprobe
.kp
= kprobe_running();
74 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
75 kcb
->prev_kprobe
.orig_tnpc
= kcb
->kprobe_orig_tnpc
;
76 kcb
->prev_kprobe
.orig_tstate_pil
= kcb
->kprobe_orig_tstate_pil
;
79 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
81 __get_cpu_var(current_kprobe
) = kcb
->prev_kprobe
.kp
;
82 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
83 kcb
->kprobe_orig_tnpc
= kcb
->prev_kprobe
.orig_tnpc
;
84 kcb
->kprobe_orig_tstate_pil
= kcb
->prev_kprobe
.orig_tstate_pil
;
87 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
88 struct kprobe_ctlblk
*kcb
)
90 __get_cpu_var(current_kprobe
) = p
;
91 kcb
->kprobe_orig_tnpc
= regs
->tnpc
;
92 kcb
->kprobe_orig_tstate_pil
= (regs
->tstate
& TSTATE_PIL
);
95 static void __kprobes
prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
96 struct kprobe_ctlblk
*kcb
)
98 regs
->tstate
|= TSTATE_PIL
;
100 /*single step inline, if it a breakpoint instruction*/
101 if (p
->opcode
== BREAKPOINT_INSTRUCTION
) {
102 regs
->tpc
= (unsigned long) p
->addr
;
103 regs
->tnpc
= kcb
->kprobe_orig_tnpc
;
105 regs
->tpc
= (unsigned long) &p
->ainsn
.insn
[0];
106 regs
->tnpc
= (unsigned long) &p
->ainsn
.insn
[1];
110 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
113 void *addr
= (void *) regs
->tpc
;
115 struct kprobe_ctlblk
*kcb
;
118 * We don't want to be preempted for the entire
119 * duration of kprobe processing
122 kcb
= get_kprobe_ctlblk();
124 if (kprobe_running()) {
125 p
= get_kprobe(addr
);
127 if (kcb
->kprobe_status
== KPROBE_HIT_SS
) {
128 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
129 kcb
->kprobe_orig_tstate_pil
);
132 /* We have reentered the kprobe_handler(), since
133 * another probe was hit while within the handler.
134 * We here save the original kprobes variables and
135 * just single step on the instruction of the new probe
136 * without calling any user handlers.
138 save_previous_kprobe(kcb
);
139 set_current_kprobe(p
, regs
, kcb
);
140 kprobes_inc_nmissed_count(p
);
141 kcb
->kprobe_status
= KPROBE_REENTER
;
142 prepare_singlestep(p
, regs
, kcb
);
145 if (*(u32
*)addr
!= BREAKPOINT_INSTRUCTION
) {
146 /* The breakpoint instruction was removed by
147 * another cpu right after we hit, no further
148 * handling of this interrupt is appropriate
153 p
= __get_cpu_var(current_kprobe
);
154 if (p
->break_handler
&& p
->break_handler(p
, regs
))
160 p
= get_kprobe(addr
);
162 if (*(u32
*)addr
!= BREAKPOINT_INSTRUCTION
) {
164 * The breakpoint instruction was removed right
165 * after we hit it. Another cpu has removed
166 * either a probepoint or a debugger breakpoint
167 * at this address. In either case, no further
168 * handling of this interrupt is appropriate.
172 /* Not one of ours: let kernel handle it */
176 set_current_kprobe(p
, regs
, kcb
);
177 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
178 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
182 prepare_singlestep(p
, regs
, kcb
);
183 kcb
->kprobe_status
= KPROBE_HIT_SS
;
187 preempt_enable_no_resched();
191 /* If INSN is a relative control transfer instruction,
192 * return the corrected branch destination value.
194 * regs->tpc and regs->tnpc still hold the values of the
195 * program counters at the time of trap due to the execution
196 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
199 static unsigned long __kprobes
relbranch_fixup(u32 insn
, struct kprobe
*p
,
200 struct pt_regs
*regs
)
202 unsigned long real_pc
= (unsigned long) p
->addr
;
204 /* Branch not taken, no mods necessary. */
205 if (regs
->tnpc
== regs
->tpc
+ 0x4UL
)
206 return real_pc
+ 0x8UL
;
208 /* The three cases are call, branch w/prediction,
209 * and traditional branch.
211 if ((insn
& 0xc0000000) == 0x40000000 ||
212 (insn
& 0xc1c00000) == 0x00400000 ||
213 (insn
& 0xc1c00000) == 0x00800000) {
214 unsigned long ainsn_addr
;
216 ainsn_addr
= (unsigned long) &p
->ainsn
.insn
[0];
218 /* The instruction did all the work for us
219 * already, just apply the offset to the correct
220 * instruction location.
222 return (real_pc
+ (regs
->tnpc
- ainsn_addr
));
225 /* It is jmpl or some other absolute PC modification instruction,
231 /* If INSN is an instruction which writes it's PC location
232 * into a destination register, fix that up.
234 static void __kprobes
retpc_fixup(struct pt_regs
*regs
, u32 insn
,
235 unsigned long real_pc
)
237 unsigned long *slot
= NULL
;
239 /* Simplest case is 'call', which always uses %o7 */
240 if ((insn
& 0xc0000000) == 0x40000000) {
241 slot
= ®s
->u_regs
[UREG_I7
];
244 /* 'jmpl' encodes the register inside of the opcode */
245 if ((insn
& 0xc1f80000) == 0x81c00000) {
246 unsigned long rd
= ((insn
>> 25) & 0x1f);
249 slot
= ®s
->u_regs
[rd
];
251 /* Hard case, it goes onto the stack. */
255 slot
= (unsigned long *)
256 (regs
->u_regs
[UREG_FP
] + STACK_BIAS
);
265 * Called after single-stepping. p->addr is the address of the
266 * instruction which has been replaced by the breakpoint
267 * instruction. To avoid the SMP problems that can occur when we
268 * temporarily put back the original opcode to single-step, we
269 * single-stepped a copy of the instruction. The address of this
270 * copy is &p->ainsn.insn[0].
272 * This function prepares to return from the post-single-step
275 static void __kprobes
resume_execution(struct kprobe
*p
,
276 struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
278 u32 insn
= p
->ainsn
.insn
[0];
280 regs
->tnpc
= relbranch_fixup(insn
, p
, regs
);
282 /* This assignment must occur after relbranch_fixup() */
283 regs
->tpc
= kcb
->kprobe_orig_tnpc
;
285 retpc_fixup(regs
, insn
, (unsigned long) p
->addr
);
287 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
288 kcb
->kprobe_orig_tstate_pil
);
291 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
293 struct kprobe
*cur
= kprobe_running();
294 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
299 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
300 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
301 cur
->post_handler(cur
, regs
, 0);
304 resume_execution(cur
, regs
, kcb
);
306 /*Restore back the original saved kprobes variables and continue. */
307 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
308 restore_previous_kprobe(kcb
);
311 reset_current_kprobe();
313 preempt_enable_no_resched();
318 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
320 struct kprobe
*cur
= kprobe_running();
321 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
322 const struct exception_table_entry
*entry
;
324 switch(kcb
->kprobe_status
) {
328 * We are here because the instruction being single
329 * stepped caused a page fault. We reset the current
330 * kprobe and the tpc points back to the probe address
331 * and allow the page fault handler to continue as a
334 regs
->tpc
= (unsigned long)cur
->addr
;
335 regs
->tnpc
= kcb
->kprobe_orig_tnpc
;
336 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
337 kcb
->kprobe_orig_tstate_pil
);
338 if (kcb
->kprobe_status
== KPROBE_REENTER
)
339 restore_previous_kprobe(kcb
);
341 reset_current_kprobe();
342 preempt_enable_no_resched();
344 case KPROBE_HIT_ACTIVE
:
345 case KPROBE_HIT_SSDONE
:
347 * We increment the nmissed count for accounting,
348 * we can also use npre/npostfault count for accouting
349 * these specific fault cases.
351 kprobes_inc_nmissed_count(cur
);
354 * We come here because instructions in the pre/post
355 * handler caused the page_fault, this could happen
356 * if handler tries to access user space by
357 * copy_from_user(), get_user() etc. Let the
358 * user-specified handler try to fix it first.
360 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
364 * In case the user-specified fault handler returned
365 * zero, try to fix up.
368 entry
= search_exception_tables(regs
->tpc
);
370 regs
->tpc
= entry
->fixup
;
371 regs
->tnpc
= regs
->tpc
+ 4;
376 * fixup_exception() could not handle it,
377 * Let do_page_fault() fix it.
388 * Wrapper routine to for handling exceptions.
390 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
391 unsigned long val
, void *data
)
393 struct die_args
*args
= (struct die_args
*)data
;
394 int ret
= NOTIFY_DONE
;
396 if (args
->regs
&& user_mode(args
->regs
))
401 if (kprobe_handler(args
->regs
))
405 if (post_kprobe_handler(args
->regs
))
414 asmlinkage
void __kprobes
kprobe_trap(unsigned long trap_level
,
415 struct pt_regs
*regs
)
417 BUG_ON(trap_level
!= 0x170 && trap_level
!= 0x171);
419 if (user_mode(regs
)) {
421 bad_trap(regs
, trap_level
);
425 /* trap_level == 0x170 --> ta 0x70
426 * trap_level == 0x171 --> ta 0x71
428 if (notify_die((trap_level
== 0x170) ? DIE_DEBUG
: DIE_DEBUG_2
,
429 (trap_level
== 0x170) ? "debug" : "debug_2",
430 regs
, 0, trap_level
, SIGTRAP
) != NOTIFY_STOP
)
431 bad_trap(regs
, trap_level
);
434 /* Jprobes support. */
435 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
437 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
438 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
440 memcpy(&(kcb
->jprobe_saved_regs
), regs
, sizeof(*regs
));
442 regs
->tpc
= (unsigned long) jp
->entry
;
443 regs
->tnpc
= ((unsigned long) jp
->entry
) + 0x4UL
;
444 regs
->tstate
|= TSTATE_PIL
;
449 void __kprobes
jprobe_return(void)
451 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
452 register unsigned long orig_fp
asm("g1");
454 orig_fp
= kcb
->jprobe_saved_regs
.u_regs
[UREG_FP
];
455 __asm__
__volatile__("\n"
456 "1: cmp %%sp, %0\n\t"
457 "blu,a,pt %%xcc, 1b\n\t"
459 ".globl jprobe_return_trap_instruction\n"
460 "jprobe_return_trap_instruction:\n\t"
466 extern void jprobe_return_trap_instruction(void);
468 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
470 u32
*addr
= (u32
*) regs
->tpc
;
471 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
473 if (addr
== (u32
*) jprobe_return_trap_instruction
) {
474 memcpy(regs
, &(kcb
->jprobe_saved_regs
), sizeof(*regs
));
475 preempt_enable_no_resched();
481 /* Called with kretprobe_lock held. The value stored in the return
482 * address register is actually 2 instructions before where the
483 * callee will return to. Sequences usually look something like this
485 * call some_function <--- return register points here
486 * nop <--- call delay slot
487 * whatever <--- where callee returns to
489 * To keep trampoline_probe_handler logic simpler, we normalize the
490 * value kept in ri->ret_addr so we don't need to keep adjusting it
493 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
494 struct pt_regs
*regs
)
496 ri
->ret_addr
= (kprobe_opcode_t
*)(regs
->u_regs
[UREG_RETPC
] + 8);
498 /* Replace the return addr with trampoline addr */
499 regs
->u_regs
[UREG_RETPC
] =
500 ((unsigned long)kretprobe_trampoline
) - 8;
504 * Called when the probe at kretprobe trampoline is hit
506 int __kprobes
trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
508 struct kretprobe_instance
*ri
= NULL
;
509 struct hlist_head
*head
, empty_rp
;
510 struct hlist_node
*node
, *tmp
;
511 unsigned long flags
, orig_ret_address
= 0;
512 unsigned long trampoline_address
=(unsigned long)&kretprobe_trampoline
;
514 INIT_HLIST_HEAD(&empty_rp
);
515 spin_lock_irqsave(&kretprobe_lock
, flags
);
516 head
= kretprobe_inst_table_head(current
);
519 * It is possible to have multiple instances associated with a given
520 * task either because an multiple functions in the call path
521 * have a return probe installed on them, and/or more then one return
522 * return probe was registered for a target function.
524 * We can handle this because:
525 * - instances are always inserted at the head of the list
526 * - when multiple return probes are registered for the same
527 * function, the first instance's ret_addr will point to the
528 * real return address, and all the rest will point to
529 * kretprobe_trampoline
531 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
532 if (ri
->task
!= current
)
533 /* another task is sharing our hash bucket */
536 if (ri
->rp
&& ri
->rp
->handler
)
537 ri
->rp
->handler(ri
, regs
);
539 orig_ret_address
= (unsigned long)ri
->ret_addr
;
540 recycle_rp_inst(ri
, &empty_rp
);
542 if (orig_ret_address
!= trampoline_address
)
544 * This is the real return address. Any other
545 * instances associated with this task are for
546 * other calls deeper on the call stack
551 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
552 regs
->tpc
= orig_ret_address
;
553 regs
->tnpc
= orig_ret_address
+ 4;
555 reset_current_kprobe();
556 spin_unlock_irqrestore(&kretprobe_lock
, flags
);
557 preempt_enable_no_resched();
559 hlist_for_each_entry_safe(ri
, node
, tmp
, &empty_rp
, hlist
) {
560 hlist_del(&ri
->hlist
);
564 * By returning a non-zero value, we are telling
565 * kprobe_handler() that we don't want the post_handler
566 * to run (and have re-enabled preemption)
571 void kretprobe_trampoline_holder(void)
573 asm volatile(".global kretprobe_trampoline\n"
574 "kretprobe_trampoline:\n"
578 static struct kprobe trampoline_p
= {
579 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
580 .pre_handler
= trampoline_probe_handler
583 int __init
arch_init_kprobes(void)
585 return register_kprobe(&trampoline_p
);
588 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
590 if (p
->addr
== (kprobe_opcode_t
*)&kretprobe_trampoline
)