1 /* Generic MTRR (Memory Type Range Register) driver.
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
34 #include <linux/module.h>
35 #include <linux/init.h>
36 #include <linux/pci.h>
37 #include <linux/smp.h>
38 #include <linux/cpu.h>
39 #include <linux/mutex.h>
43 #include <asm/uaccess.h>
44 #include <asm/processor.h>
46 #include <asm/kvm_para.h>
49 u32 num_var_ranges
= 0;
51 unsigned int mtrr_usage_table
[MAX_VAR_RANGES
];
52 static DEFINE_MUTEX(mtrr_mutex
);
54 u64 size_or_mask
, size_and_mask
;
56 static struct mtrr_ops
* mtrr_ops
[X86_VENDOR_NUM
] = {};
58 struct mtrr_ops
* mtrr_if
= NULL
;
60 static void set_mtrr(unsigned int reg
, unsigned long base
,
61 unsigned long size
, mtrr_type type
);
63 void set_mtrr_ops(struct mtrr_ops
* ops
)
65 if (ops
->vendor
&& ops
->vendor
< X86_VENDOR_NUM
)
66 mtrr_ops
[ops
->vendor
] = ops
;
69 /* Returns non-zero if we have the write-combining memory type */
70 static int have_wrcomb(void)
75 if ((dev
= pci_get_class(PCI_CLASS_BRIDGE_HOST
<< 8, NULL
)) != NULL
) {
76 /* ServerWorks LE chipsets < rev 6 have problems with write-combining
77 Don't allow it and leave room for other chipsets to be tagged */
78 if (dev
->vendor
== PCI_VENDOR_ID_SERVERWORKS
&&
79 dev
->device
== PCI_DEVICE_ID_SERVERWORKS_LE
) {
80 pci_read_config_byte(dev
, PCI_CLASS_REVISION
, &rev
);
82 printk(KERN_INFO
"mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
87 /* Intel 450NX errata # 23. Non ascending cacheline evictions to
88 write combining memory may resulting in data corruption */
89 if (dev
->vendor
== PCI_VENDOR_ID_INTEL
&&
90 dev
->device
== PCI_DEVICE_ID_INTEL_82451NX
) {
91 printk(KERN_INFO
"mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
97 return (mtrr_if
->have_wrcomb
? mtrr_if
->have_wrcomb() : 0);
100 /* This function returns the number of variable MTRRs */
101 static void __init
set_num_var_ranges(void)
103 unsigned long config
= 0, dummy
;
106 rdmsr(MTRRcap_MSR
, config
, dummy
);
107 } else if (is_cpu(AMD
))
109 else if (is_cpu(CYRIX
) || is_cpu(CENTAUR
))
111 num_var_ranges
= config
& 0xff;
114 static void __init
init_table(void)
118 max
= num_var_ranges
;
119 for (i
= 0; i
< max
; i
++)
120 mtrr_usage_table
[i
] = 1;
123 struct set_mtrr_data
{
126 unsigned long smp_base
;
127 unsigned long smp_size
;
128 unsigned int smp_reg
;
132 static void ipi_handler(void *info
)
133 /* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
138 struct set_mtrr_data
*data
= info
;
141 local_irq_save(flags
);
143 atomic_dec(&data
->count
);
144 while(!atomic_read(&data
->gate
))
147 /* The master has cleared me to execute */
148 if (data
->smp_reg
!= ~0U)
149 mtrr_if
->set(data
->smp_reg
, data
->smp_base
,
150 data
->smp_size
, data
->smp_type
);
154 atomic_dec(&data
->count
);
155 while(atomic_read(&data
->gate
))
158 atomic_dec(&data
->count
);
159 local_irq_restore(flags
);
163 static inline int types_compatible(mtrr_type type1
, mtrr_type type2
) {
164 return type1
== MTRR_TYPE_UNCACHABLE
||
165 type2
== MTRR_TYPE_UNCACHABLE
||
166 (type1
== MTRR_TYPE_WRTHROUGH
&& type2
== MTRR_TYPE_WRBACK
) ||
167 (type1
== MTRR_TYPE_WRBACK
&& type2
== MTRR_TYPE_WRTHROUGH
);
171 * set_mtrr - update mtrrs on all processors
172 * @reg: mtrr in question
177 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
179 * 1. Send IPI to do the following:
180 * 2. Disable Interrupts
181 * 3. Wait for all procs to do so
182 * 4. Enter no-fill cache mode
186 * 8. Disable all range registers
187 * 9. Update the MTRRs
188 * 10. Enable all range registers
189 * 11. Flush all TLBs and caches again
190 * 12. Enter normal cache mode and reenable caching
192 * 14. Wait for buddies to catch up
193 * 15. Enable interrupts.
195 * What does that mean for us? Well, first we set data.count to the number
196 * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
197 * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
198 * Meanwhile, they are waiting for that flag to be set. Once it's set, each
199 * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
200 * differently, so we call mtrr_if->set() callback and let them take care of it.
201 * When they're done, they again decrement data->count and wait for data.gate to
203 * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
204 * Everyone then enables interrupts and we all continue on.
206 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
209 static void set_mtrr(unsigned int reg
, unsigned long base
,
210 unsigned long size
, mtrr_type type
)
212 struct set_mtrr_data data
;
216 data
.smp_base
= base
;
217 data
.smp_size
= size
;
218 data
.smp_type
= type
;
219 atomic_set(&data
.count
, num_booting_cpus() - 1);
220 /* make sure data.count is visible before unleashing other CPUs */
222 atomic_set(&data
.gate
,0);
224 /* Start the ball rolling on other CPUs */
225 if (smp_call_function(ipi_handler
, &data
, 1, 0) != 0)
226 panic("mtrr: timed out waiting for other CPUs\n");
228 local_irq_save(flags
);
230 while(atomic_read(&data
.count
))
233 /* ok, reset count and toggle gate */
234 atomic_set(&data
.count
, num_booting_cpus() - 1);
236 atomic_set(&data
.gate
,1);
238 /* do our MTRR business */
241 * We use this same function to initialize the mtrrs on boot.
242 * The state of the boot cpu's mtrrs has been saved, and we want
243 * to replicate across all the APs.
244 * If we're doing that @reg is set to something special...
247 mtrr_if
->set(reg
,base
,size
,type
);
249 /* wait for the others */
250 while(atomic_read(&data
.count
))
253 atomic_set(&data
.count
, num_booting_cpus() - 1);
255 atomic_set(&data
.gate
,0);
258 * Wait here for everyone to have seen the gate change
259 * So we're the last ones to touch 'data'
261 while(atomic_read(&data
.count
))
264 local_irq_restore(flags
);
268 * mtrr_add_page - Add a memory type region
269 * @base: Physical base address of region in pages (in units of 4 kB!)
270 * @size: Physical size of region in pages (4 kB)
271 * @type: Type of MTRR desired
272 * @increment: If this is true do usage counting on the region
274 * Memory type region registers control the caching on newer Intel and
275 * non Intel processors. This function allows drivers to request an
276 * MTRR is added. The details and hardware specifics of each processor's
277 * implementation are hidden from the caller, but nevertheless the
278 * caller should expect to need to provide a power of two size on an
279 * equivalent power of two boundary.
281 * If the region cannot be added either because all regions are in use
282 * or the CPU cannot support it a negative value is returned. On success
283 * the register number for this entry is returned, but should be treated
286 * On a multiprocessor machine the changes are made to all processors.
287 * This is required on x86 by the Intel processors.
289 * The available types are
291 * %MTRR_TYPE_UNCACHABLE - No caching
293 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
295 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
297 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
299 * BUGS: Needs a quiet flag for the cases where drivers do not mind
300 * failures and do not wish system log messages to be sent.
303 int mtrr_add_page(unsigned long base
, unsigned long size
,
304 unsigned int type
, bool increment
)
306 int i
, replace
, error
;
308 unsigned long lbase
, lsize
;
313 if ((error
= mtrr_if
->validate_add_page(base
,size
,type
)))
316 if (type
>= MTRR_NUM_TYPES
) {
317 printk(KERN_WARNING
"mtrr: type: %u invalid\n", type
);
321 /* If the type is WC, check that this processor supports it */
322 if ((type
== MTRR_TYPE_WRCOMB
) && !have_wrcomb()) {
324 "mtrr: your processor doesn't support write-combining\n");
329 printk(KERN_WARNING
"mtrr: zero sized request\n");
333 if (base
& size_or_mask
|| size
& size_or_mask
) {
334 printk(KERN_WARNING
"mtrr: base or size exceeds the MTRR width\n");
341 /* No CPU hotplug when we change MTRR entries */
343 /* Search for existing MTRR */
344 mutex_lock(&mtrr_mutex
);
345 for (i
= 0; i
< num_var_ranges
; ++i
) {
346 mtrr_if
->get(i
, &lbase
, &lsize
, <ype
);
347 if (!lsize
|| base
> lbase
+ lsize
- 1 || base
+ size
- 1 < lbase
)
349 /* At this point we know there is some kind of overlap/enclosure */
350 if (base
< lbase
|| base
+ size
- 1 > lbase
+ lsize
- 1) {
351 if (base
<= lbase
&& base
+ size
- 1 >= lbase
+ lsize
- 1) {
352 /* New region encloses an existing region */
354 replace
= replace
== -1 ? i
: -2;
357 else if (types_compatible(type
, ltype
))
361 "mtrr: 0x%lx000,0x%lx000 overlaps existing"
362 " 0x%lx000,0x%lx000\n", base
, size
, lbase
,
366 /* New region is enclosed by an existing region */
368 if (types_compatible(type
, ltype
))
370 printk (KERN_WARNING
"mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
371 base
, size
, mtrr_attrib_to_str(ltype
),
372 mtrr_attrib_to_str(type
));
376 ++mtrr_usage_table
[i
];
380 /* Search for an empty MTRR */
381 i
= mtrr_if
->get_free_region(base
, size
, replace
);
383 set_mtrr(i
, base
, size
, type
);
384 if (likely(replace
< 0)) {
385 mtrr_usage_table
[i
] = 1;
387 mtrr_usage_table
[i
] = mtrr_usage_table
[replace
];
389 mtrr_usage_table
[i
]++;
390 if (unlikely(replace
!= i
)) {
391 set_mtrr(replace
, 0, 0, 0);
392 mtrr_usage_table
[replace
] = 0;
396 printk(KERN_INFO
"mtrr: no more MTRRs available\n");
399 mutex_unlock(&mtrr_mutex
);
404 static int mtrr_check(unsigned long base
, unsigned long size
)
406 if ((base
& (PAGE_SIZE
- 1)) || (size
& (PAGE_SIZE
- 1))) {
408 "mtrr: size and base must be multiples of 4 kiB\n");
410 "mtrr: size: 0x%lx base: 0x%lx\n", size
, base
);
418 * mtrr_add - Add a memory type region
419 * @base: Physical base address of region
420 * @size: Physical size of region
421 * @type: Type of MTRR desired
422 * @increment: If this is true do usage counting on the region
424 * Memory type region registers control the caching on newer Intel and
425 * non Intel processors. This function allows drivers to request an
426 * MTRR is added. The details and hardware specifics of each processor's
427 * implementation are hidden from the caller, but nevertheless the
428 * caller should expect to need to provide a power of two size on an
429 * equivalent power of two boundary.
431 * If the region cannot be added either because all regions are in use
432 * or the CPU cannot support it a negative value is returned. On success
433 * the register number for this entry is returned, but should be treated
436 * On a multiprocessor machine the changes are made to all processors.
437 * This is required on x86 by the Intel processors.
439 * The available types are
441 * %MTRR_TYPE_UNCACHABLE - No caching
443 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
445 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
447 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
449 * BUGS: Needs a quiet flag for the cases where drivers do not mind
450 * failures and do not wish system log messages to be sent.
454 mtrr_add(unsigned long base
, unsigned long size
, unsigned int type
,
457 if (mtrr_check(base
, size
))
459 return mtrr_add_page(base
>> PAGE_SHIFT
, size
>> PAGE_SHIFT
, type
,
464 * mtrr_del_page - delete a memory type region
465 * @reg: Register returned by mtrr_add
466 * @base: Physical base address
467 * @size: Size of region
469 * If register is supplied then base and size are ignored. This is
470 * how drivers should call it.
472 * Releases an MTRR region. If the usage count drops to zero the
473 * register is freed and the region returns to default state.
474 * On success the register is returned, on failure a negative error
478 int mtrr_del_page(int reg
, unsigned long base
, unsigned long size
)
482 unsigned long lbase
, lsize
;
488 max
= num_var_ranges
;
489 /* No CPU hotplug when we change MTRR entries */
491 mutex_lock(&mtrr_mutex
);
493 /* Search for existing MTRR */
494 for (i
= 0; i
< max
; ++i
) {
495 mtrr_if
->get(i
, &lbase
, &lsize
, <ype
);
496 if (lbase
== base
&& lsize
== size
) {
502 printk(KERN_DEBUG
"mtrr: no MTRR for %lx000,%lx000 found\n", base
,
508 printk(KERN_WARNING
"mtrr: register: %d too big\n", reg
);
511 mtrr_if
->get(reg
, &lbase
, &lsize
, <ype
);
513 printk(KERN_WARNING
"mtrr: MTRR %d not used\n", reg
);
516 if (mtrr_usage_table
[reg
] < 1) {
517 printk(KERN_WARNING
"mtrr: reg: %d has count=0\n", reg
);
520 if (--mtrr_usage_table
[reg
] < 1)
521 set_mtrr(reg
, 0, 0, 0);
524 mutex_unlock(&mtrr_mutex
);
529 * mtrr_del - delete a memory type region
530 * @reg: Register returned by mtrr_add
531 * @base: Physical base address
532 * @size: Size of region
534 * If register is supplied then base and size are ignored. This is
535 * how drivers should call it.
537 * Releases an MTRR region. If the usage count drops to zero the
538 * register is freed and the region returns to default state.
539 * On success the register is returned, on failure a negative error
544 mtrr_del(int reg
, unsigned long base
, unsigned long size
)
546 if (mtrr_check(base
, size
))
548 return mtrr_del_page(reg
, base
>> PAGE_SHIFT
, size
>> PAGE_SHIFT
);
551 EXPORT_SYMBOL(mtrr_add
);
552 EXPORT_SYMBOL(mtrr_del
);
555 * These should be called implicitly, but we can't yet until all the initcall
558 static void __init
init_ifs(void)
560 #ifndef CONFIG_X86_64
567 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
568 * MTRR driver doesn't require this
576 static struct mtrr_value mtrr_state
[MAX_VAR_RANGES
];
578 static int mtrr_save(struct sys_device
* sysdev
, pm_message_t state
)
582 for (i
= 0; i
< num_var_ranges
; i
++) {
584 &mtrr_state
[i
].lbase
,
585 &mtrr_state
[i
].lsize
,
586 &mtrr_state
[i
].ltype
);
591 static int mtrr_restore(struct sys_device
* sysdev
)
595 for (i
= 0; i
< num_var_ranges
; i
++) {
596 if (mtrr_state
[i
].lsize
)
600 mtrr_state
[i
].ltype
);
607 static struct sysdev_driver mtrr_sysdev_driver
= {
608 .suspend
= mtrr_save
,
609 .resume
= mtrr_restore
,
612 static int disable_mtrr_trim
;
614 static int __init
disable_mtrr_trim_setup(char *str
)
616 disable_mtrr_trim
= 1;
619 early_param("disable_mtrr_trim", disable_mtrr_trim_setup
);
622 * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
623 * for memory >4GB. Check for that here.
624 * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
625 * apply to are wrong, but so far we don't know of any such case in the wild.
627 #define Tom2Enabled (1U << 21)
628 #define Tom2ForceMemTypeWB (1U << 22)
630 int __init
amd_special_default_mtrr(void)
634 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
)
636 if (boot_cpu_data
.x86
< 0xf || boot_cpu_data
.x86
> 0x11)
638 /* In case some hypervisor doesn't pass SYSCFG through */
639 if (rdmsr_safe(MSR_K8_SYSCFG
, &l
, &h
) < 0)
642 * Memory between 4GB and top of mem is forced WB by this magic bit.
643 * Reserved before K8RevF, but should be zero there.
645 if ((l
& (Tom2Enabled
| Tom2ForceMemTypeWB
)) ==
646 (Tom2Enabled
| Tom2ForceMemTypeWB
))
652 * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
653 * @end_pfn: ending page frame number
655 * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
656 * memory configurations. This routine checks that the highest MTRR matches
657 * the end of memory, to make sure the MTRRs having a write back type cover
658 * all of the memory the kernel is intending to use. If not, it'll trim any
659 * memory off the end by adjusting end_pfn, removing it from the kernel's
660 * allocation pools, warning the user with an obnoxious message.
662 int __init
mtrr_trim_uncached_memory(unsigned long end_pfn
)
664 unsigned long i
, base
, size
, highest_pfn
= 0, def
, dummy
;
666 u64 trim_start
, trim_size
;
669 * Make sure we only trim uncachable memory on machines that
670 * support the Intel MTRR architecture:
672 if (!is_cpu(INTEL
) || disable_mtrr_trim
)
674 rdmsr(MTRRdefType_MSR
, def
, dummy
);
676 if (def
!= MTRR_TYPE_UNCACHABLE
)
679 if (amd_special_default_mtrr())
682 /* Find highest cached pfn */
683 for (i
= 0; i
< num_var_ranges
; i
++) {
684 mtrr_if
->get(i
, &base
, &size
, &type
);
685 if (type
!= MTRR_TYPE_WRBACK
)
687 if (highest_pfn
< base
+ size
)
688 highest_pfn
= base
+ size
;
691 /* kvm/qemu doesn't have mtrr set right, don't trim them all */
693 if (!kvm_para_available()) {
695 "WARNING: strange, CPU MTRRs all blank?\n");
701 if (highest_pfn
< end_pfn
) {
702 printk(KERN_WARNING
"WARNING: BIOS bug: CPU MTRRs don't cover"
703 " all of memory, losing %luMB of RAM.\n",
704 (end_pfn
- highest_pfn
) >> (20 - PAGE_SHIFT
));
708 printk(KERN_INFO
"update e820 for mtrr\n");
709 trim_start
= highest_pfn
;
710 trim_start
<<= PAGE_SHIFT
;
712 trim_size
<<= PAGE_SHIFT
;
713 trim_size
-= trim_start
;
714 update_memory_range(trim_start
, trim_size
, E820_RAM
,
724 * mtrr_bp_init - initialize mtrrs on the boot CPU
726 * This needs to be called early; before any of the other CPUs are
727 * initialized (i.e. before smp_init()).
730 void __init
mtrr_bp_init(void)
735 mtrr_if
= &generic_mtrr_ops
;
736 size_or_mask
= 0xff000000; /* 36 bits */
737 size_and_mask
= 0x00f00000;
739 /* This is an AMD specific MSR, but we assume(hope?) that
740 Intel will implement it to when they extend the address
742 if (cpuid_eax(0x80000000) >= 0x80000008) {
744 phys_addr
= cpuid_eax(0x80000008) & 0xff;
745 /* CPUID workaround for Intel 0F33/0F34 CPU */
746 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_INTEL
&&
747 boot_cpu_data
.x86
== 0xF &&
748 boot_cpu_data
.x86_model
== 0x3 &&
749 (boot_cpu_data
.x86_mask
== 0x3 ||
750 boot_cpu_data
.x86_mask
== 0x4))
753 size_or_mask
= ~((1ULL << (phys_addr
- PAGE_SHIFT
)) - 1);
754 size_and_mask
= ~size_or_mask
& 0xfffff00000ULL
;
755 } else if (boot_cpu_data
.x86_vendor
== X86_VENDOR_CENTAUR
&&
756 boot_cpu_data
.x86
== 6) {
757 /* VIA C* family have Intel style MTRRs, but
759 size_or_mask
= 0xfff00000; /* 32 bits */
763 switch (boot_cpu_data
.x86_vendor
) {
765 if (cpu_has_k6_mtrr
) {
766 /* Pre-Athlon (K6) AMD CPU MTRRs */
767 mtrr_if
= mtrr_ops
[X86_VENDOR_AMD
];
768 size_or_mask
= 0xfff00000; /* 32 bits */
772 case X86_VENDOR_CENTAUR
:
773 if (cpu_has_centaur_mcr
) {
774 mtrr_if
= mtrr_ops
[X86_VENDOR_CENTAUR
];
775 size_or_mask
= 0xfff00000; /* 32 bits */
779 case X86_VENDOR_CYRIX
:
780 if (cpu_has_cyrix_arr
) {
781 mtrr_if
= mtrr_ops
[X86_VENDOR_CYRIX
];
782 size_or_mask
= 0xfff00000; /* 32 bits */
792 set_num_var_ranges();
799 void mtrr_ap_init(void)
803 if (!mtrr_if
|| !use_intel())
806 * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
807 * but this routine will be called in cpu boot time, holding the lock
808 * breaks it. This routine is called in two cases: 1.very earily time
809 * of software resume, when there absolutely isn't mtrr entry changes;
810 * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
811 * prevent mtrr entry changes
813 local_irq_save(flags
);
817 local_irq_restore(flags
);
821 * Save current fixed-range MTRR state of the BSP
823 void mtrr_save_state(void)
825 smp_call_function_single(0, mtrr_save_fixed_ranges
, NULL
, 1, 1);
828 static int __init
mtrr_init_finialize(void)
835 /* The CPUs haven't MTRR and seem to not support SMP. They have
836 * specific drivers, we use a tricky method to support
837 * suspend/resume for them.
838 * TBD: is there any system with such CPU which supports
839 * suspend/resume? if no, we should remove the code.
841 sysdev_driver_register(&cpu_sysdev_class
,
842 &mtrr_sysdev_driver
);
846 subsys_initcall(mtrr_init_finialize
);