2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
34 #include <asm/cmpxchg.h>
38 * When setting this variable to true it enables Two-Dimensional-Paging
39 * where the hardware walks 2 page tables:
40 * 1. the guest-virtual to guest-physical
41 * 2. while doing 1. it walks guest-physical to host-physical
42 * If the hardware supports that we don't need to do shadow paging.
44 bool tdp_enabled
= false;
51 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
);
53 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
) {}
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
68 #if defined(MMU_DEBUG) || defined(AUDIT)
73 #define ASSERT(x) do { } while (0)
77 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
78 __FILE__, __LINE__, #x); \
82 #define PT_FIRST_AVAIL_BITS_SHIFT 9
83 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
85 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
87 #define PT64_LEVEL_BITS 9
89 #define PT64_LEVEL_SHIFT(level) \
90 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92 #define PT64_LEVEL_MASK(level) \
93 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
95 #define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
99 #define PT32_LEVEL_BITS 10
101 #define PT32_LEVEL_SHIFT(level) \
102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
104 #define PT32_LEVEL_MASK(level) \
105 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
107 #define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
111 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
112 #define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
122 #define PFERR_PRESENT_MASK (1U << 0)
123 #define PFERR_WRITE_MASK (1U << 1)
124 #define PFERR_USER_MASK (1U << 2)
125 #define PFERR_FETCH_MASK (1U << 4)
127 #define PT_DIRECTORY_LEVEL 2
128 #define PT_PAGE_TABLE_LEVEL 1
132 #define ACC_EXEC_MASK 1
133 #define ACC_WRITE_MASK PT_WRITABLE_MASK
134 #define ACC_USER_MASK PT_USER_MASK
135 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
137 struct kvm_pv_mmu_op_buffer
{
141 char buf
[512] __aligned(sizeof(long));
144 struct kvm_rmap_desc
{
145 u64
*shadow_ptes
[RMAP_EXT
];
146 struct kvm_rmap_desc
*more
;
149 static struct kmem_cache
*pte_chain_cache
;
150 static struct kmem_cache
*rmap_desc_cache
;
151 static struct kmem_cache
*mmu_page_header_cache
;
153 static u64 __read_mostly shadow_trap_nonpresent_pte
;
154 static u64 __read_mostly shadow_notrap_nonpresent_pte
;
155 static u64 __read_mostly shadow_base_present_pte
;
156 static u64 __read_mostly shadow_nx_mask
;
157 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
158 static u64 __read_mostly shadow_user_mask
;
159 static u64 __read_mostly shadow_accessed_mask
;
160 static u64 __read_mostly shadow_dirty_mask
;
162 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte
, u64 notrap_pte
)
164 shadow_trap_nonpresent_pte
= trap_pte
;
165 shadow_notrap_nonpresent_pte
= notrap_pte
;
167 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes
);
169 void kvm_mmu_set_base_ptes(u64 base_pte
)
171 shadow_base_present_pte
= base_pte
;
173 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes
);
175 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
176 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
178 shadow_user_mask
= user_mask
;
179 shadow_accessed_mask
= accessed_mask
;
180 shadow_dirty_mask
= dirty_mask
;
181 shadow_nx_mask
= nx_mask
;
182 shadow_x_mask
= x_mask
;
184 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
186 static int is_write_protection(struct kvm_vcpu
*vcpu
)
188 return vcpu
->arch
.cr0
& X86_CR0_WP
;
191 static int is_cpuid_PSE36(void)
196 static int is_nx(struct kvm_vcpu
*vcpu
)
198 return vcpu
->arch
.shadow_efer
& EFER_NX
;
201 static int is_present_pte(unsigned long pte
)
203 return pte
& PT_PRESENT_MASK
;
206 static int is_shadow_present_pte(u64 pte
)
208 return pte
!= shadow_trap_nonpresent_pte
209 && pte
!= shadow_notrap_nonpresent_pte
;
212 static int is_large_pte(u64 pte
)
214 return pte
& PT_PAGE_SIZE_MASK
;
217 static int is_writeble_pte(unsigned long pte
)
219 return pte
& PT_WRITABLE_MASK
;
222 static int is_dirty_pte(unsigned long pte
)
224 return pte
& shadow_dirty_mask
;
227 static int is_rmap_pte(u64 pte
)
229 return is_shadow_present_pte(pte
);
232 static pfn_t
spte_to_pfn(u64 pte
)
234 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
237 static gfn_t
pse36_gfn_delta(u32 gpte
)
239 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
241 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
244 static void set_shadow_pte(u64
*sptep
, u64 spte
)
247 set_64bit((unsigned long *)sptep
, spte
);
249 set_64bit((unsigned long long *)sptep
, spte
);
253 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
254 struct kmem_cache
*base_cache
, int min
)
258 if (cache
->nobjs
>= min
)
260 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
261 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
264 cache
->objects
[cache
->nobjs
++] = obj
;
269 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
272 kfree(mc
->objects
[--mc
->nobjs
]);
275 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
280 if (cache
->nobjs
>= min
)
282 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
283 page
= alloc_page(GFP_KERNEL
);
286 set_page_private(page
, 0);
287 cache
->objects
[cache
->nobjs
++] = page_address(page
);
292 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
295 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
298 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
302 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
,
306 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
,
310 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
313 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
314 mmu_page_header_cache
, 4);
319 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
321 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
);
322 mmu_free_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
);
323 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
324 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
);
327 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
,
333 p
= mc
->objects
[--mc
->nobjs
];
338 static struct kvm_pte_chain
*mmu_alloc_pte_chain(struct kvm_vcpu
*vcpu
)
340 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_chain_cache
,
341 sizeof(struct kvm_pte_chain
));
344 static void mmu_free_pte_chain(struct kvm_pte_chain
*pc
)
349 static struct kvm_rmap_desc
*mmu_alloc_rmap_desc(struct kvm_vcpu
*vcpu
)
351 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_rmap_desc_cache
,
352 sizeof(struct kvm_rmap_desc
));
355 static void mmu_free_rmap_desc(struct kvm_rmap_desc
*rd
)
361 * Return the pointer to the largepage write count for a given
362 * gfn, handling slots that are not large page aligned.
364 static int *slot_largepage_idx(gfn_t gfn
, struct kvm_memory_slot
*slot
)
368 idx
= (gfn
/ KVM_PAGES_PER_HPAGE
) -
369 (slot
->base_gfn
/ KVM_PAGES_PER_HPAGE
);
370 return &slot
->lpage_info
[idx
].write_count
;
373 static void account_shadowed(struct kvm
*kvm
, gfn_t gfn
)
377 write_count
= slot_largepage_idx(gfn
, gfn_to_memslot(kvm
, gfn
));
381 static void unaccount_shadowed(struct kvm
*kvm
, gfn_t gfn
)
385 write_count
= slot_largepage_idx(gfn
, gfn_to_memslot(kvm
, gfn
));
387 WARN_ON(*write_count
< 0);
390 static int has_wrprotected_page(struct kvm
*kvm
, gfn_t gfn
)
392 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
396 largepage_idx
= slot_largepage_idx(gfn
, slot
);
397 return *largepage_idx
;
403 static int host_largepage_backed(struct kvm
*kvm
, gfn_t gfn
)
405 struct vm_area_struct
*vma
;
408 addr
= gfn_to_hva(kvm
, gfn
);
409 if (kvm_is_error_hva(addr
))
412 vma
= find_vma(current
->mm
, addr
);
413 if (vma
&& is_vm_hugetlb_page(vma
))
419 static int is_largepage_backed(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
421 struct kvm_memory_slot
*slot
;
423 if (has_wrprotected_page(vcpu
->kvm
, large_gfn
))
426 if (!host_largepage_backed(vcpu
->kvm
, large_gfn
))
429 slot
= gfn_to_memslot(vcpu
->kvm
, large_gfn
);
430 if (slot
&& slot
->dirty_bitmap
)
437 * Take gfn and return the reverse mapping to it.
438 * Note: gfn must be unaliased before this function get called
441 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, int lpage
)
443 struct kvm_memory_slot
*slot
;
446 slot
= gfn_to_memslot(kvm
, gfn
);
448 return &slot
->rmap
[gfn
- slot
->base_gfn
];
450 idx
= (gfn
/ KVM_PAGES_PER_HPAGE
) -
451 (slot
->base_gfn
/ KVM_PAGES_PER_HPAGE
);
453 return &slot
->lpage_info
[idx
].rmap_pde
;
457 * Reverse mapping data structures:
459 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
460 * that points to page_address(page).
462 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
463 * containing more mappings.
465 static void rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
, int lpage
)
467 struct kvm_mmu_page
*sp
;
468 struct kvm_rmap_desc
*desc
;
469 unsigned long *rmapp
;
472 if (!is_rmap_pte(*spte
))
474 gfn
= unalias_gfn(vcpu
->kvm
, gfn
);
475 sp
= page_header(__pa(spte
));
476 sp
->gfns
[spte
- sp
->spt
] = gfn
;
477 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, lpage
);
479 rmap_printk("rmap_add: %p %llx 0->1\n", spte
, *spte
);
480 *rmapp
= (unsigned long)spte
;
481 } else if (!(*rmapp
& 1)) {
482 rmap_printk("rmap_add: %p %llx 1->many\n", spte
, *spte
);
483 desc
= mmu_alloc_rmap_desc(vcpu
);
484 desc
->shadow_ptes
[0] = (u64
*)*rmapp
;
485 desc
->shadow_ptes
[1] = spte
;
486 *rmapp
= (unsigned long)desc
| 1;
488 rmap_printk("rmap_add: %p %llx many->many\n", spte
, *spte
);
489 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
490 while (desc
->shadow_ptes
[RMAP_EXT
-1] && desc
->more
)
492 if (desc
->shadow_ptes
[RMAP_EXT
-1]) {
493 desc
->more
= mmu_alloc_rmap_desc(vcpu
);
496 for (i
= 0; desc
->shadow_ptes
[i
]; ++i
)
498 desc
->shadow_ptes
[i
] = spte
;
502 static void rmap_desc_remove_entry(unsigned long *rmapp
,
503 struct kvm_rmap_desc
*desc
,
505 struct kvm_rmap_desc
*prev_desc
)
509 for (j
= RMAP_EXT
- 1; !desc
->shadow_ptes
[j
] && j
> i
; --j
)
511 desc
->shadow_ptes
[i
] = desc
->shadow_ptes
[j
];
512 desc
->shadow_ptes
[j
] = NULL
;
515 if (!prev_desc
&& !desc
->more
)
516 *rmapp
= (unsigned long)desc
->shadow_ptes
[0];
519 prev_desc
->more
= desc
->more
;
521 *rmapp
= (unsigned long)desc
->more
| 1;
522 mmu_free_rmap_desc(desc
);
525 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
527 struct kvm_rmap_desc
*desc
;
528 struct kvm_rmap_desc
*prev_desc
;
529 struct kvm_mmu_page
*sp
;
531 unsigned long *rmapp
;
534 if (!is_rmap_pte(*spte
))
536 sp
= page_header(__pa(spte
));
537 pfn
= spte_to_pfn(*spte
);
538 if (*spte
& shadow_accessed_mask
)
539 kvm_set_pfn_accessed(pfn
);
540 if (is_writeble_pte(*spte
))
541 kvm_release_pfn_dirty(pfn
);
543 kvm_release_pfn_clean(pfn
);
544 rmapp
= gfn_to_rmap(kvm
, sp
->gfns
[spte
- sp
->spt
], is_large_pte(*spte
));
546 printk(KERN_ERR
"rmap_remove: %p %llx 0->BUG\n", spte
, *spte
);
548 } else if (!(*rmapp
& 1)) {
549 rmap_printk("rmap_remove: %p %llx 1->0\n", spte
, *spte
);
550 if ((u64
*)*rmapp
!= spte
) {
551 printk(KERN_ERR
"rmap_remove: %p %llx 1->BUG\n",
557 rmap_printk("rmap_remove: %p %llx many->many\n", spte
, *spte
);
558 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
561 for (i
= 0; i
< RMAP_EXT
&& desc
->shadow_ptes
[i
]; ++i
)
562 if (desc
->shadow_ptes
[i
] == spte
) {
563 rmap_desc_remove_entry(rmapp
,
575 static u64
*rmap_next(struct kvm
*kvm
, unsigned long *rmapp
, u64
*spte
)
577 struct kvm_rmap_desc
*desc
;
578 struct kvm_rmap_desc
*prev_desc
;
584 else if (!(*rmapp
& 1)) {
586 return (u64
*)*rmapp
;
589 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
593 for (i
= 0; i
< RMAP_EXT
&& desc
->shadow_ptes
[i
]; ++i
) {
594 if (prev_spte
== spte
)
595 return desc
->shadow_ptes
[i
];
596 prev_spte
= desc
->shadow_ptes
[i
];
603 static void rmap_write_protect(struct kvm
*kvm
, u64 gfn
)
605 unsigned long *rmapp
;
607 int write_protected
= 0;
609 gfn
= unalias_gfn(kvm
, gfn
);
610 rmapp
= gfn_to_rmap(kvm
, gfn
, 0);
612 spte
= rmap_next(kvm
, rmapp
, NULL
);
615 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
616 rmap_printk("rmap_write_protect: spte %p %llx\n", spte
, *spte
);
617 if (is_writeble_pte(*spte
)) {
618 set_shadow_pte(spte
, *spte
& ~PT_WRITABLE_MASK
);
621 spte
= rmap_next(kvm
, rmapp
, spte
);
623 if (write_protected
) {
626 spte
= rmap_next(kvm
, rmapp
, NULL
);
627 pfn
= spte_to_pfn(*spte
);
628 kvm_set_pfn_dirty(pfn
);
631 /* check for huge page mappings */
632 rmapp
= gfn_to_rmap(kvm
, gfn
, 1);
633 spte
= rmap_next(kvm
, rmapp
, NULL
);
636 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
637 BUG_ON((*spte
& (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
)) != (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
));
638 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte
, *spte
, gfn
);
639 if (is_writeble_pte(*spte
)) {
640 rmap_remove(kvm
, spte
);
642 set_shadow_pte(spte
, shadow_trap_nonpresent_pte
);
645 spte
= rmap_next(kvm
, rmapp
, spte
);
649 kvm_flush_remote_tlbs(kvm
);
651 account_shadowed(kvm
, gfn
);
655 static int is_empty_shadow_page(u64
*spt
)
660 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
661 if (*pos
!= shadow_trap_nonpresent_pte
) {
662 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
670 static void kvm_mmu_free_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
672 ASSERT(is_empty_shadow_page(sp
->spt
));
674 __free_page(virt_to_page(sp
->spt
));
675 __free_page(virt_to_page(sp
->gfns
));
677 ++kvm
->arch
.n_free_mmu_pages
;
680 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
682 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
685 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
688 struct kvm_mmu_page
*sp
;
690 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
, sizeof *sp
);
691 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
692 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
693 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
694 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
695 ASSERT(is_empty_shadow_page(sp
->spt
));
698 sp
->parent_pte
= parent_pte
;
699 --vcpu
->kvm
->arch
.n_free_mmu_pages
;
703 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
704 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
706 struct kvm_pte_chain
*pte_chain
;
707 struct hlist_node
*node
;
712 if (!sp
->multimapped
) {
713 u64
*old
= sp
->parent_pte
;
716 sp
->parent_pte
= parent_pte
;
720 pte_chain
= mmu_alloc_pte_chain(vcpu
);
721 INIT_HLIST_HEAD(&sp
->parent_ptes
);
722 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
723 pte_chain
->parent_ptes
[0] = old
;
725 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
) {
726 if (pte_chain
->parent_ptes
[NR_PTE_CHAIN_ENTRIES
-1])
728 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
)
729 if (!pte_chain
->parent_ptes
[i
]) {
730 pte_chain
->parent_ptes
[i
] = parent_pte
;
734 pte_chain
= mmu_alloc_pte_chain(vcpu
);
736 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
737 pte_chain
->parent_ptes
[0] = parent_pte
;
740 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
743 struct kvm_pte_chain
*pte_chain
;
744 struct hlist_node
*node
;
747 if (!sp
->multimapped
) {
748 BUG_ON(sp
->parent_pte
!= parent_pte
);
749 sp
->parent_pte
= NULL
;
752 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
753 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
754 if (!pte_chain
->parent_ptes
[i
])
756 if (pte_chain
->parent_ptes
[i
] != parent_pte
)
758 while (i
+ 1 < NR_PTE_CHAIN_ENTRIES
759 && pte_chain
->parent_ptes
[i
+ 1]) {
760 pte_chain
->parent_ptes
[i
]
761 = pte_chain
->parent_ptes
[i
+ 1];
764 pte_chain
->parent_ptes
[i
] = NULL
;
766 hlist_del(&pte_chain
->link
);
767 mmu_free_pte_chain(pte_chain
);
768 if (hlist_empty(&sp
->parent_ptes
)) {
770 sp
->parent_pte
= NULL
;
778 static struct kvm_mmu_page
*kvm_mmu_lookup_page(struct kvm
*kvm
, gfn_t gfn
)
781 struct hlist_head
*bucket
;
782 struct kvm_mmu_page
*sp
;
783 struct hlist_node
*node
;
785 pgprintk("%s: looking for gfn %lx\n", __func__
, gfn
);
786 index
= kvm_page_table_hashfn(gfn
);
787 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
788 hlist_for_each_entry(sp
, node
, bucket
, hash_link
)
789 if (sp
->gfn
== gfn
&& !sp
->role
.metaphysical
790 && !sp
->role
.invalid
) {
791 pgprintk("%s: found role %x\n",
792 __func__
, sp
->role
.word
);
798 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
806 union kvm_mmu_page_role role
;
809 struct hlist_head
*bucket
;
810 struct kvm_mmu_page
*sp
;
811 struct hlist_node
*node
;
814 role
.glevels
= vcpu
->arch
.mmu
.root_level
;
816 role
.metaphysical
= metaphysical
;
817 role
.access
= access
;
818 if (vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
819 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
820 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
821 role
.quadrant
= quadrant
;
823 pgprintk("%s: looking gfn %lx role %x\n", __func__
,
825 index
= kvm_page_table_hashfn(gfn
);
826 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
827 hlist_for_each_entry(sp
, node
, bucket
, hash_link
)
828 if (sp
->gfn
== gfn
&& sp
->role
.word
== role
.word
) {
829 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
830 pgprintk("%s: found\n", __func__
);
833 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
834 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
);
837 pgprintk("%s: adding gfn %lx role %x\n", __func__
, gfn
, role
.word
);
840 hlist_add_head(&sp
->hash_link
, bucket
);
842 rmap_write_protect(vcpu
->kvm
, gfn
);
843 vcpu
->arch
.mmu
.prefetch_page(vcpu
, sp
);
847 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
848 struct kvm_mmu_page
*sp
)
856 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
857 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
858 if (is_shadow_present_pte(pt
[i
]))
859 rmap_remove(kvm
, &pt
[i
]);
860 pt
[i
] = shadow_trap_nonpresent_pte
;
862 kvm_flush_remote_tlbs(kvm
);
866 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
869 if (is_shadow_present_pte(ent
)) {
870 if (!is_large_pte(ent
)) {
871 ent
&= PT64_BASE_ADDR_MASK
;
872 mmu_page_remove_parent_pte(page_header(ent
),
876 rmap_remove(kvm
, &pt
[i
]);
879 pt
[i
] = shadow_trap_nonpresent_pte
;
881 kvm_flush_remote_tlbs(kvm
);
884 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
886 mmu_page_remove_parent_pte(sp
, parent_pte
);
889 static void kvm_mmu_reset_last_pte_updated(struct kvm
*kvm
)
893 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
895 kvm
->vcpus
[i
]->arch
.last_pte_updated
= NULL
;
898 static void kvm_mmu_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
902 ++kvm
->stat
.mmu_shadow_zapped
;
903 while (sp
->multimapped
|| sp
->parent_pte
) {
904 if (!sp
->multimapped
)
905 parent_pte
= sp
->parent_pte
;
907 struct kvm_pte_chain
*chain
;
909 chain
= container_of(sp
->parent_ptes
.first
,
910 struct kvm_pte_chain
, link
);
911 parent_pte
= chain
->parent_ptes
[0];
914 kvm_mmu_put_page(sp
, parent_pte
);
915 set_shadow_pte(parent_pte
, shadow_trap_nonpresent_pte
);
917 kvm_mmu_page_unlink_children(kvm
, sp
);
918 if (!sp
->root_count
) {
919 if (!sp
->role
.metaphysical
)
920 unaccount_shadowed(kvm
, sp
->gfn
);
921 hlist_del(&sp
->hash_link
);
922 kvm_mmu_free_page(kvm
, sp
);
924 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
925 sp
->role
.invalid
= 1;
926 kvm_reload_remote_mmus(kvm
);
928 kvm_mmu_reset_last_pte_updated(kvm
);
932 * Changing the number of mmu pages allocated to the vm
933 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
935 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int kvm_nr_mmu_pages
)
938 * If we set the number of mmu pages to be smaller be than the
939 * number of actived pages , we must to free some mmu pages before we
943 if ((kvm
->arch
.n_alloc_mmu_pages
- kvm
->arch
.n_free_mmu_pages
) >
945 int n_used_mmu_pages
= kvm
->arch
.n_alloc_mmu_pages
946 - kvm
->arch
.n_free_mmu_pages
;
948 while (n_used_mmu_pages
> kvm_nr_mmu_pages
) {
949 struct kvm_mmu_page
*page
;
951 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
952 struct kvm_mmu_page
, link
);
953 kvm_mmu_zap_page(kvm
, page
);
956 kvm
->arch
.n_free_mmu_pages
= 0;
959 kvm
->arch
.n_free_mmu_pages
+= kvm_nr_mmu_pages
960 - kvm
->arch
.n_alloc_mmu_pages
;
962 kvm
->arch
.n_alloc_mmu_pages
= kvm_nr_mmu_pages
;
965 static int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
968 struct hlist_head
*bucket
;
969 struct kvm_mmu_page
*sp
;
970 struct hlist_node
*node
, *n
;
973 pgprintk("%s: looking for gfn %lx\n", __func__
, gfn
);
975 index
= kvm_page_table_hashfn(gfn
);
976 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
977 hlist_for_each_entry_safe(sp
, node
, n
, bucket
, hash_link
)
978 if (sp
->gfn
== gfn
&& !sp
->role
.metaphysical
) {
979 pgprintk("%s: gfn %lx role %x\n", __func__
, gfn
,
981 kvm_mmu_zap_page(kvm
, sp
);
987 static void mmu_unshadow(struct kvm
*kvm
, gfn_t gfn
)
989 struct kvm_mmu_page
*sp
;
991 while ((sp
= kvm_mmu_lookup_page(kvm
, gfn
)) != NULL
) {
992 pgprintk("%s: zap %lx %x\n", __func__
, gfn
, sp
->role
.word
);
993 kvm_mmu_zap_page(kvm
, sp
);
997 static void page_header_update_slot(struct kvm
*kvm
, void *pte
, gfn_t gfn
)
999 int slot
= memslot_id(kvm
, gfn_to_memslot(kvm
, gfn
));
1000 struct kvm_mmu_page
*sp
= page_header(__pa(pte
));
1002 __set_bit(slot
, &sp
->slot_bitmap
);
1005 struct page
*gva_to_page(struct kvm_vcpu
*vcpu
, gva_t gva
)
1009 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
);
1011 if (gpa
== UNMAPPED_GVA
)
1014 down_read(¤t
->mm
->mmap_sem
);
1015 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1016 up_read(¤t
->mm
->mmap_sem
);
1021 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*shadow_pte
,
1022 unsigned pt_access
, unsigned pte_access
,
1023 int user_fault
, int write_fault
, int dirty
,
1024 int *ptwrite
, int largepage
, gfn_t gfn
,
1025 pfn_t pfn
, bool speculative
)
1028 int was_rmapped
= 0;
1029 int was_writeble
= is_writeble_pte(*shadow_pte
);
1031 pgprintk("%s: spte %llx access %x write_fault %d"
1032 " user_fault %d gfn %lx\n",
1033 __func__
, *shadow_pte
, pt_access
,
1034 write_fault
, user_fault
, gfn
);
1036 if (is_rmap_pte(*shadow_pte
)) {
1038 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1039 * the parent of the now unreachable PTE.
1041 if (largepage
&& !is_large_pte(*shadow_pte
)) {
1042 struct kvm_mmu_page
*child
;
1043 u64 pte
= *shadow_pte
;
1045 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
1046 mmu_page_remove_parent_pte(child
, shadow_pte
);
1047 } else if (pfn
!= spte_to_pfn(*shadow_pte
)) {
1048 pgprintk("hfn old %lx new %lx\n",
1049 spte_to_pfn(*shadow_pte
), pfn
);
1050 rmap_remove(vcpu
->kvm
, shadow_pte
);
1053 was_rmapped
= is_large_pte(*shadow_pte
);
1060 * We don't set the accessed bit, since we sometimes want to see
1061 * whether the guest actually used the pte (in order to detect
1064 spte
= shadow_base_present_pte
| shadow_dirty_mask
;
1066 pte_access
|= PT_ACCESSED_MASK
;
1068 pte_access
&= ~ACC_WRITE_MASK
;
1069 if (pte_access
& ACC_EXEC_MASK
)
1070 spte
|= shadow_x_mask
;
1072 spte
|= shadow_nx_mask
;
1073 if (pte_access
& ACC_USER_MASK
)
1074 spte
|= shadow_user_mask
;
1076 spte
|= PT_PAGE_SIZE_MASK
;
1078 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
1080 if ((pte_access
& ACC_WRITE_MASK
)
1081 || (write_fault
&& !is_write_protection(vcpu
) && !user_fault
)) {
1082 struct kvm_mmu_page
*shadow
;
1084 spte
|= PT_WRITABLE_MASK
;
1086 mmu_unshadow(vcpu
->kvm
, gfn
);
1090 shadow
= kvm_mmu_lookup_page(vcpu
->kvm
, gfn
);
1092 (largepage
&& has_wrprotected_page(vcpu
->kvm
, gfn
))) {
1093 pgprintk("%s: found shadow page for %lx, marking ro\n",
1095 pte_access
&= ~ACC_WRITE_MASK
;
1096 if (is_writeble_pte(spte
)) {
1097 spte
&= ~PT_WRITABLE_MASK
;
1098 kvm_x86_ops
->tlb_flush(vcpu
);
1107 if (pte_access
& ACC_WRITE_MASK
)
1108 mark_page_dirty(vcpu
->kvm
, gfn
);
1110 pgprintk("%s: setting spte %llx\n", __func__
, spte
);
1111 pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
1112 (spte
&PT_PAGE_SIZE_MASK
)? "2MB" : "4kB",
1113 (spte
&PT_WRITABLE_MASK
)?"RW":"R", gfn
, spte
, shadow_pte
);
1114 set_shadow_pte(shadow_pte
, spte
);
1115 if (!was_rmapped
&& (spte
& PT_PAGE_SIZE_MASK
)
1116 && (spte
& PT_PRESENT_MASK
))
1117 ++vcpu
->kvm
->stat
.lpages
;
1119 page_header_update_slot(vcpu
->kvm
, shadow_pte
, gfn
);
1121 rmap_add(vcpu
, shadow_pte
, gfn
, largepage
);
1122 if (!is_rmap_pte(*shadow_pte
))
1123 kvm_release_pfn_clean(pfn
);
1126 kvm_release_pfn_dirty(pfn
);
1128 kvm_release_pfn_clean(pfn
);
1130 if (!ptwrite
|| !*ptwrite
)
1131 vcpu
->arch
.last_pte_updated
= shadow_pte
;
1134 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
1138 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
1139 int largepage
, gfn_t gfn
, pfn_t pfn
,
1142 hpa_t table_addr
= vcpu
->arch
.mmu
.root_hpa
;
1146 u32 index
= PT64_INDEX(v
, level
);
1149 ASSERT(VALID_PAGE(table_addr
));
1150 table
= __va(table_addr
);
1153 mmu_set_spte(vcpu
, &table
[index
], ACC_ALL
, ACC_ALL
,
1154 0, write
, 1, &pt_write
, 0, gfn
, pfn
, false);
1158 if (largepage
&& level
== 2) {
1159 mmu_set_spte(vcpu
, &table
[index
], ACC_ALL
, ACC_ALL
,
1160 0, write
, 1, &pt_write
, 1, gfn
, pfn
, false);
1164 if (table
[index
] == shadow_trap_nonpresent_pte
) {
1165 struct kvm_mmu_page
*new_table
;
1168 pseudo_gfn
= (v
& PT64_DIR_BASE_ADDR_MASK
)
1170 new_table
= kvm_mmu_get_page(vcpu
, pseudo_gfn
,
1172 1, ACC_ALL
, &table
[index
]);
1174 pgprintk("nonpaging_map: ENOMEM\n");
1175 kvm_release_pfn_clean(pfn
);
1179 table
[index
] = __pa(new_table
->spt
)
1180 | PT_PRESENT_MASK
| PT_WRITABLE_MASK
1181 | shadow_user_mask
| shadow_x_mask
;
1183 table_addr
= table
[index
] & PT64_BASE_ADDR_MASK
;
1187 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, int write
, gfn_t gfn
)
1193 down_read(¤t
->mm
->mmap_sem
);
1194 if (is_largepage_backed(vcpu
, gfn
& ~(KVM_PAGES_PER_HPAGE
-1))) {
1195 gfn
&= ~(KVM_PAGES_PER_HPAGE
-1);
1199 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
1200 up_read(¤t
->mm
->mmap_sem
);
1203 if (is_error_pfn(pfn
)) {
1204 kvm_release_pfn_clean(pfn
);
1208 spin_lock(&vcpu
->kvm
->mmu_lock
);
1209 kvm_mmu_free_some_pages(vcpu
);
1210 r
= __direct_map(vcpu
, v
, write
, largepage
, gfn
, pfn
,
1212 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1219 static void nonpaging_prefetch_page(struct kvm_vcpu
*vcpu
,
1220 struct kvm_mmu_page
*sp
)
1224 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1225 sp
->spt
[i
] = shadow_trap_nonpresent_pte
;
1228 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
1231 struct kvm_mmu_page
*sp
;
1233 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
1235 spin_lock(&vcpu
->kvm
->mmu_lock
);
1236 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
1237 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
1239 sp
= page_header(root
);
1241 if (!sp
->root_count
&& sp
->role
.invalid
)
1242 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1243 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
1244 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1247 for (i
= 0; i
< 4; ++i
) {
1248 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
1251 root
&= PT64_BASE_ADDR_MASK
;
1252 sp
= page_header(root
);
1254 if (!sp
->root_count
&& sp
->role
.invalid
)
1255 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1257 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
1259 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1260 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
1263 static void mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
1267 struct kvm_mmu_page
*sp
;
1268 int metaphysical
= 0;
1270 root_gfn
= vcpu
->arch
.cr3
>> PAGE_SHIFT
;
1272 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
1273 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
1275 ASSERT(!VALID_PAGE(root
));
1278 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0,
1279 PT64_ROOT_LEVEL
, metaphysical
,
1281 root
= __pa(sp
->spt
);
1283 vcpu
->arch
.mmu
.root_hpa
= root
;
1286 metaphysical
= !is_paging(vcpu
);
1289 for (i
= 0; i
< 4; ++i
) {
1290 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
1292 ASSERT(!VALID_PAGE(root
));
1293 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
1294 if (!is_present_pte(vcpu
->arch
.pdptrs
[i
])) {
1295 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
1298 root_gfn
= vcpu
->arch
.pdptrs
[i
] >> PAGE_SHIFT
;
1299 } else if (vcpu
->arch
.mmu
.root_level
== 0)
1301 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
1302 PT32_ROOT_LEVEL
, metaphysical
,
1304 root
= __pa(sp
->spt
);
1306 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
1308 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
1311 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
)
1316 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
1322 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
1323 r
= mmu_topup_memory_caches(vcpu
);
1328 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
1330 gfn
= gva
>> PAGE_SHIFT
;
1332 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
1333 error_code
& PFERR_WRITE_MASK
, gfn
);
1336 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
,
1342 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1345 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
1347 r
= mmu_topup_memory_caches(vcpu
);
1351 down_read(¤t
->mm
->mmap_sem
);
1352 if (is_largepage_backed(vcpu
, gfn
& ~(KVM_PAGES_PER_HPAGE
-1))) {
1353 gfn
&= ~(KVM_PAGES_PER_HPAGE
-1);
1356 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
1357 up_read(¤t
->mm
->mmap_sem
);
1358 if (is_error_pfn(pfn
)) {
1359 kvm_release_pfn_clean(pfn
);
1362 spin_lock(&vcpu
->kvm
->mmu_lock
);
1363 kvm_mmu_free_some_pages(vcpu
);
1364 r
= __direct_map(vcpu
, gpa
, error_code
& PFERR_WRITE_MASK
,
1365 largepage
, gfn
, pfn
, kvm_x86_ops
->get_tdp_level());
1366 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1371 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
1373 mmu_free_roots(vcpu
);
1376 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
)
1378 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
1380 context
->new_cr3
= nonpaging_new_cr3
;
1381 context
->page_fault
= nonpaging_page_fault
;
1382 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
1383 context
->free
= nonpaging_free
;
1384 context
->prefetch_page
= nonpaging_prefetch_page
;
1385 context
->root_level
= 0;
1386 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
1387 context
->root_hpa
= INVALID_PAGE
;
1391 void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
1393 ++vcpu
->stat
.tlb_flush
;
1394 kvm_x86_ops
->tlb_flush(vcpu
);
1397 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
1399 pgprintk("%s: cr3 %lx\n", __func__
, vcpu
->arch
.cr3
);
1400 mmu_free_roots(vcpu
);
1403 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
1407 kvm_inject_page_fault(vcpu
, addr
, err_code
);
1410 static void paging_free(struct kvm_vcpu
*vcpu
)
1412 nonpaging_free(vcpu
);
1416 #include "paging_tmpl.h"
1420 #include "paging_tmpl.h"
1423 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
, int level
)
1425 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
1427 ASSERT(is_pae(vcpu
));
1428 context
->new_cr3
= paging_new_cr3
;
1429 context
->page_fault
= paging64_page_fault
;
1430 context
->gva_to_gpa
= paging64_gva_to_gpa
;
1431 context
->prefetch_page
= paging64_prefetch_page
;
1432 context
->free
= paging_free
;
1433 context
->root_level
= level
;
1434 context
->shadow_root_level
= level
;
1435 context
->root_hpa
= INVALID_PAGE
;
1439 static int paging64_init_context(struct kvm_vcpu
*vcpu
)
1441 return paging64_init_context_common(vcpu
, PT64_ROOT_LEVEL
);
1444 static int paging32_init_context(struct kvm_vcpu
*vcpu
)
1446 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
1448 context
->new_cr3
= paging_new_cr3
;
1449 context
->page_fault
= paging32_page_fault
;
1450 context
->gva_to_gpa
= paging32_gva_to_gpa
;
1451 context
->free
= paging_free
;
1452 context
->prefetch_page
= paging32_prefetch_page
;
1453 context
->root_level
= PT32_ROOT_LEVEL
;
1454 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
1455 context
->root_hpa
= INVALID_PAGE
;
1459 static int paging32E_init_context(struct kvm_vcpu
*vcpu
)
1461 return paging64_init_context_common(vcpu
, PT32E_ROOT_LEVEL
);
1464 static int init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
1466 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
1468 context
->new_cr3
= nonpaging_new_cr3
;
1469 context
->page_fault
= tdp_page_fault
;
1470 context
->free
= nonpaging_free
;
1471 context
->prefetch_page
= nonpaging_prefetch_page
;
1472 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
1473 context
->root_hpa
= INVALID_PAGE
;
1475 if (!is_paging(vcpu
)) {
1476 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
1477 context
->root_level
= 0;
1478 } else if (is_long_mode(vcpu
)) {
1479 context
->gva_to_gpa
= paging64_gva_to_gpa
;
1480 context
->root_level
= PT64_ROOT_LEVEL
;
1481 } else if (is_pae(vcpu
)) {
1482 context
->gva_to_gpa
= paging64_gva_to_gpa
;
1483 context
->root_level
= PT32E_ROOT_LEVEL
;
1485 context
->gva_to_gpa
= paging32_gva_to_gpa
;
1486 context
->root_level
= PT32_ROOT_LEVEL
;
1492 static int init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
1495 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
1497 if (!is_paging(vcpu
))
1498 return nonpaging_init_context(vcpu
);
1499 else if (is_long_mode(vcpu
))
1500 return paging64_init_context(vcpu
);
1501 else if (is_pae(vcpu
))
1502 return paging32E_init_context(vcpu
);
1504 return paging32_init_context(vcpu
);
1507 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
1509 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
1512 return init_kvm_tdp_mmu(vcpu
);
1514 return init_kvm_softmmu(vcpu
);
1517 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
1520 if (VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
)) {
1521 vcpu
->arch
.mmu
.free(vcpu
);
1522 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
1526 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
1528 destroy_kvm_mmu(vcpu
);
1529 return init_kvm_mmu(vcpu
);
1531 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
1533 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
1537 r
= mmu_topup_memory_caches(vcpu
);
1540 spin_lock(&vcpu
->kvm
->mmu_lock
);
1541 kvm_mmu_free_some_pages(vcpu
);
1542 mmu_alloc_roots(vcpu
);
1543 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1544 kvm_x86_ops
->set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
1545 kvm_mmu_flush_tlb(vcpu
);
1549 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
1551 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
1553 mmu_free_roots(vcpu
);
1556 static void mmu_pte_write_zap_pte(struct kvm_vcpu
*vcpu
,
1557 struct kvm_mmu_page
*sp
,
1561 struct kvm_mmu_page
*child
;
1564 if (is_shadow_present_pte(pte
)) {
1565 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
||
1567 rmap_remove(vcpu
->kvm
, spte
);
1569 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
1570 mmu_page_remove_parent_pte(child
, spte
);
1573 set_shadow_pte(spte
, shadow_trap_nonpresent_pte
);
1574 if (is_large_pte(pte
))
1575 --vcpu
->kvm
->stat
.lpages
;
1578 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
1579 struct kvm_mmu_page
*sp
,
1583 if ((sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
1584 && !vcpu
->arch
.update_pte
.largepage
) {
1585 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
1589 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
1590 if (sp
->role
.glevels
== PT32_ROOT_LEVEL
)
1591 paging32_update_pte(vcpu
, sp
, spte
, new);
1593 paging64_update_pte(vcpu
, sp
, spte
, new);
1596 static bool need_remote_flush(u64 old
, u64
new)
1598 if (!is_shadow_present_pte(old
))
1600 if (!is_shadow_present_pte(new))
1602 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
1604 old
^= PT64_NX_MASK
;
1605 new ^= PT64_NX_MASK
;
1606 return (old
& ~new & PT64_PERM_MASK
) != 0;
1609 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, u64 old
, u64
new)
1611 if (need_remote_flush(old
, new))
1612 kvm_flush_remote_tlbs(vcpu
->kvm
);
1614 kvm_mmu_flush_tlb(vcpu
);
1617 static bool last_updated_pte_accessed(struct kvm_vcpu
*vcpu
)
1619 u64
*spte
= vcpu
->arch
.last_pte_updated
;
1621 return !!(spte
&& (*spte
& shadow_accessed_mask
));
1624 static void mmu_guess_page_from_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1625 const u8
*new, int bytes
)
1632 vcpu
->arch
.update_pte
.largepage
= 0;
1634 if (bytes
!= 4 && bytes
!= 8)
1638 * Assume that the pte write on a page table of the same type
1639 * as the current vcpu paging mode. This is nearly always true
1640 * (might be false while changing modes). Note it is verified later
1644 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1645 if ((bytes
== 4) && (gpa
% 4 == 0)) {
1646 r
= kvm_read_guest(vcpu
->kvm
, gpa
& ~(u64
)7, &gpte
, 8);
1649 memcpy((void *)&gpte
+ (gpa
% 8), new, 4);
1650 } else if ((bytes
== 8) && (gpa
% 8 == 0)) {
1651 memcpy((void *)&gpte
, new, 8);
1654 if ((bytes
== 4) && (gpa
% 4 == 0))
1655 memcpy((void *)&gpte
, new, 4);
1657 if (!is_present_pte(gpte
))
1659 gfn
= (gpte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
1661 down_read(¤t
->mm
->mmap_sem
);
1662 if (is_large_pte(gpte
) && is_largepage_backed(vcpu
, gfn
)) {
1663 gfn
&= ~(KVM_PAGES_PER_HPAGE
-1);
1664 vcpu
->arch
.update_pte
.largepage
= 1;
1666 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
1667 up_read(¤t
->mm
->mmap_sem
);
1669 if (is_error_pfn(pfn
)) {
1670 kvm_release_pfn_clean(pfn
);
1673 vcpu
->arch
.update_pte
.gfn
= gfn
;
1674 vcpu
->arch
.update_pte
.pfn
= pfn
;
1677 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1678 const u8
*new, int bytes
)
1680 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1681 struct kvm_mmu_page
*sp
;
1682 struct hlist_node
*node
, *n
;
1683 struct hlist_head
*bucket
;
1687 unsigned offset
= offset_in_page(gpa
);
1689 unsigned page_offset
;
1690 unsigned misaligned
;
1697 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
1698 mmu_guess_page_from_pte_write(vcpu
, gpa
, new, bytes
);
1699 spin_lock(&vcpu
->kvm
->mmu_lock
);
1700 kvm_mmu_free_some_pages(vcpu
);
1701 ++vcpu
->kvm
->stat
.mmu_pte_write
;
1702 kvm_mmu_audit(vcpu
, "pre pte write");
1703 if (gfn
== vcpu
->arch
.last_pt_write_gfn
1704 && !last_updated_pte_accessed(vcpu
)) {
1705 ++vcpu
->arch
.last_pt_write_count
;
1706 if (vcpu
->arch
.last_pt_write_count
>= 3)
1709 vcpu
->arch
.last_pt_write_gfn
= gfn
;
1710 vcpu
->arch
.last_pt_write_count
= 1;
1711 vcpu
->arch
.last_pte_updated
= NULL
;
1713 index
= kvm_page_table_hashfn(gfn
);
1714 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
1715 hlist_for_each_entry_safe(sp
, node
, n
, bucket
, hash_link
) {
1716 if (sp
->gfn
!= gfn
|| sp
->role
.metaphysical
)
1718 pte_size
= sp
->role
.glevels
== PT32_ROOT_LEVEL
? 4 : 8;
1719 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
1720 misaligned
|= bytes
< 4;
1721 if (misaligned
|| flooded
) {
1723 * Misaligned accesses are too much trouble to fix
1724 * up; also, they usually indicate a page is not used
1727 * If we're seeing too many writes to a page,
1728 * it may no longer be a page table, or we may be
1729 * forking, in which case it is better to unmap the
1732 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1733 gpa
, bytes
, sp
->role
.word
);
1734 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1735 ++vcpu
->kvm
->stat
.mmu_flooded
;
1738 page_offset
= offset
;
1739 level
= sp
->role
.level
;
1741 if (sp
->role
.glevels
== PT32_ROOT_LEVEL
) {
1742 page_offset
<<= 1; /* 32->64 */
1744 * A 32-bit pde maps 4MB while the shadow pdes map
1745 * only 2MB. So we need to double the offset again
1746 * and zap two pdes instead of one.
1748 if (level
== PT32_ROOT_LEVEL
) {
1749 page_offset
&= ~7; /* kill rounding error */
1753 quadrant
= page_offset
>> PAGE_SHIFT
;
1754 page_offset
&= ~PAGE_MASK
;
1755 if (quadrant
!= sp
->role
.quadrant
)
1758 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
1759 if ((gpa
& (pte_size
- 1)) || (bytes
< pte_size
)) {
1761 r
= kvm_read_guest_atomic(vcpu
->kvm
,
1762 gpa
& ~(u64
)(pte_size
- 1),
1764 new = (const void *)&gentry
;
1770 mmu_pte_write_zap_pte(vcpu
, sp
, spte
);
1772 mmu_pte_write_new_pte(vcpu
, sp
, spte
, new);
1773 mmu_pte_write_flush_tlb(vcpu
, entry
, *spte
);
1777 kvm_mmu_audit(vcpu
, "post pte write");
1778 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1779 if (!is_error_pfn(vcpu
->arch
.update_pte
.pfn
)) {
1780 kvm_release_pfn_clean(vcpu
->arch
.update_pte
.pfn
);
1781 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
1785 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
1790 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
);
1792 spin_lock(&vcpu
->kvm
->mmu_lock
);
1793 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1794 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1798 void __kvm_mmu_free_some_pages(struct kvm_vcpu
*vcpu
)
1800 while (vcpu
->kvm
->arch
.n_free_mmu_pages
< KVM_REFILL_PAGES
) {
1801 struct kvm_mmu_page
*sp
;
1803 sp
= container_of(vcpu
->kvm
->arch
.active_mmu_pages
.prev
,
1804 struct kvm_mmu_page
, link
);
1805 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1806 ++vcpu
->kvm
->stat
.mmu_recycled
;
1810 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
)
1813 enum emulation_result er
;
1815 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
);
1824 r
= mmu_topup_memory_caches(vcpu
);
1828 er
= emulate_instruction(vcpu
, vcpu
->run
, cr2
, error_code
, 0);
1833 case EMULATE_DO_MMIO
:
1834 ++vcpu
->stat
.mmio_exits
;
1837 kvm_report_emulation_failure(vcpu
, "pagetable");
1845 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
1847 void kvm_enable_tdp(void)
1851 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
1853 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
1855 struct kvm_mmu_page
*sp
;
1857 while (!list_empty(&vcpu
->kvm
->arch
.active_mmu_pages
)) {
1858 sp
= container_of(vcpu
->kvm
->arch
.active_mmu_pages
.next
,
1859 struct kvm_mmu_page
, link
);
1860 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1862 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
1865 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
1872 if (vcpu
->kvm
->arch
.n_requested_mmu_pages
)
1873 vcpu
->kvm
->arch
.n_free_mmu_pages
=
1874 vcpu
->kvm
->arch
.n_requested_mmu_pages
;
1876 vcpu
->kvm
->arch
.n_free_mmu_pages
=
1877 vcpu
->kvm
->arch
.n_alloc_mmu_pages
;
1879 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1880 * Therefore we need to allocate shadow page tables in the first
1881 * 4GB of memory, which happens to fit the DMA32 zone.
1883 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
1886 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
1887 for (i
= 0; i
< 4; ++i
)
1888 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
1893 free_mmu_pages(vcpu
);
1897 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
1900 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
1902 return alloc_mmu_pages(vcpu
);
1905 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
1908 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
1910 return init_kvm_mmu(vcpu
);
1913 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
1917 destroy_kvm_mmu(vcpu
);
1918 free_mmu_pages(vcpu
);
1919 mmu_free_memory_caches(vcpu
);
1922 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
1924 struct kvm_mmu_page
*sp
;
1926 list_for_each_entry(sp
, &kvm
->arch
.active_mmu_pages
, link
) {
1930 if (!test_bit(slot
, &sp
->slot_bitmap
))
1934 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1936 if (pt
[i
] & PT_WRITABLE_MASK
)
1937 pt
[i
] &= ~PT_WRITABLE_MASK
;
1941 void kvm_mmu_zap_all(struct kvm
*kvm
)
1943 struct kvm_mmu_page
*sp
, *node
;
1945 spin_lock(&kvm
->mmu_lock
);
1946 list_for_each_entry_safe(sp
, node
, &kvm
->arch
.active_mmu_pages
, link
)
1947 kvm_mmu_zap_page(kvm
, sp
);
1948 spin_unlock(&kvm
->mmu_lock
);
1950 kvm_flush_remote_tlbs(kvm
);
1953 void kvm_mmu_remove_one_alloc_mmu_page(struct kvm
*kvm
)
1955 struct kvm_mmu_page
*page
;
1957 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
1958 struct kvm_mmu_page
, link
);
1959 kvm_mmu_zap_page(kvm
, page
);
1962 static int mmu_shrink(int nr_to_scan
, gfp_t gfp_mask
)
1965 struct kvm
*kvm_freed
= NULL
;
1966 int cache_count
= 0;
1968 spin_lock(&kvm_lock
);
1970 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
1973 spin_lock(&kvm
->mmu_lock
);
1974 npages
= kvm
->arch
.n_alloc_mmu_pages
-
1975 kvm
->arch
.n_free_mmu_pages
;
1976 cache_count
+= npages
;
1977 if (!kvm_freed
&& nr_to_scan
> 0 && npages
> 0) {
1978 kvm_mmu_remove_one_alloc_mmu_page(kvm
);
1984 spin_unlock(&kvm
->mmu_lock
);
1987 list_move_tail(&kvm_freed
->vm_list
, &vm_list
);
1989 spin_unlock(&kvm_lock
);
1994 static struct shrinker mmu_shrinker
= {
1995 .shrink
= mmu_shrink
,
1996 .seeks
= DEFAULT_SEEKS
* 10,
1999 void mmu_destroy_caches(void)
2001 if (pte_chain_cache
)
2002 kmem_cache_destroy(pte_chain_cache
);
2003 if (rmap_desc_cache
)
2004 kmem_cache_destroy(rmap_desc_cache
);
2005 if (mmu_page_header_cache
)
2006 kmem_cache_destroy(mmu_page_header_cache
);
2009 void kvm_mmu_module_exit(void)
2011 mmu_destroy_caches();
2012 unregister_shrinker(&mmu_shrinker
);
2015 int kvm_mmu_module_init(void)
2017 pte_chain_cache
= kmem_cache_create("kvm_pte_chain",
2018 sizeof(struct kvm_pte_chain
),
2020 if (!pte_chain_cache
)
2022 rmap_desc_cache
= kmem_cache_create("kvm_rmap_desc",
2023 sizeof(struct kvm_rmap_desc
),
2025 if (!rmap_desc_cache
)
2028 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
2029 sizeof(struct kvm_mmu_page
),
2031 if (!mmu_page_header_cache
)
2034 register_shrinker(&mmu_shrinker
);
2039 mmu_destroy_caches();
2044 * Caculate mmu pages needed for kvm.
2046 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
2049 unsigned int nr_mmu_pages
;
2050 unsigned int nr_pages
= 0;
2052 for (i
= 0; i
< kvm
->nmemslots
; i
++)
2053 nr_pages
+= kvm
->memslots
[i
].npages
;
2055 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
2056 nr_mmu_pages
= max(nr_mmu_pages
,
2057 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
2059 return nr_mmu_pages
;
2062 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
2065 if (len
> buffer
->len
)
2070 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
2075 ret
= pv_mmu_peek_buffer(buffer
, len
);
2080 buffer
->processed
+= len
;
2084 static int kvm_pv_mmu_write(struct kvm_vcpu
*vcpu
,
2085 gpa_t addr
, gpa_t value
)
2090 if (!is_long_mode(vcpu
) && !is_pae(vcpu
))
2093 r
= mmu_topup_memory_caches(vcpu
);
2097 if (!emulator_write_phys(vcpu
, addr
, &value
, bytes
))
2103 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
2105 kvm_x86_ops
->tlb_flush(vcpu
);
2109 static int kvm_pv_mmu_release_pt(struct kvm_vcpu
*vcpu
, gpa_t addr
)
2111 spin_lock(&vcpu
->kvm
->mmu_lock
);
2112 mmu_unshadow(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
2113 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2117 static int kvm_pv_mmu_op_one(struct kvm_vcpu
*vcpu
,
2118 struct kvm_pv_mmu_op_buffer
*buffer
)
2120 struct kvm_mmu_op_header
*header
;
2122 header
= pv_mmu_peek_buffer(buffer
, sizeof *header
);
2125 switch (header
->op
) {
2126 case KVM_MMU_OP_WRITE_PTE
: {
2127 struct kvm_mmu_op_write_pte
*wpte
;
2129 wpte
= pv_mmu_read_buffer(buffer
, sizeof *wpte
);
2132 return kvm_pv_mmu_write(vcpu
, wpte
->pte_phys
,
2135 case KVM_MMU_OP_FLUSH_TLB
: {
2136 struct kvm_mmu_op_flush_tlb
*ftlb
;
2138 ftlb
= pv_mmu_read_buffer(buffer
, sizeof *ftlb
);
2141 return kvm_pv_mmu_flush_tlb(vcpu
);
2143 case KVM_MMU_OP_RELEASE_PT
: {
2144 struct kvm_mmu_op_release_pt
*rpt
;
2146 rpt
= pv_mmu_read_buffer(buffer
, sizeof *rpt
);
2149 return kvm_pv_mmu_release_pt(vcpu
, rpt
->pt_phys
);
2155 int kvm_pv_mmu_op(struct kvm_vcpu
*vcpu
, unsigned long bytes
,
2156 gpa_t addr
, unsigned long *ret
)
2159 struct kvm_pv_mmu_op_buffer buffer
;
2161 buffer
.ptr
= buffer
.buf
;
2162 buffer
.len
= min_t(unsigned long, bytes
, sizeof buffer
.buf
);
2163 buffer
.processed
= 0;
2165 r
= kvm_read_guest(vcpu
->kvm
, addr
, buffer
.buf
, buffer
.len
);
2169 while (buffer
.len
) {
2170 r
= kvm_pv_mmu_op_one(vcpu
, &buffer
);
2179 *ret
= buffer
.processed
;
2185 static const char *audit_msg
;
2187 static gva_t
canonicalize(gva_t gva
)
2189 #ifdef CONFIG_X86_64
2190 gva
= (long long)(gva
<< 16) >> 16;
2195 static void audit_mappings_page(struct kvm_vcpu
*vcpu
, u64 page_pte
,
2196 gva_t va
, int level
)
2198 u64
*pt
= __va(page_pte
& PT64_BASE_ADDR_MASK
);
2200 gva_t va_delta
= 1ul << (PAGE_SHIFT
+ 9 * (level
- 1));
2202 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
, va
+= va_delta
) {
2205 if (ent
== shadow_trap_nonpresent_pte
)
2208 va
= canonicalize(va
);
2210 if (ent
== shadow_notrap_nonpresent_pte
)
2211 printk(KERN_ERR
"audit: (%s) nontrapping pte"
2212 " in nonleaf level: levels %d gva %lx"
2213 " level %d pte %llx\n", audit_msg
,
2214 vcpu
->arch
.mmu
.root_level
, va
, level
, ent
);
2216 audit_mappings_page(vcpu
, ent
, va
, level
- 1);
2218 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, va
);
2219 hpa_t hpa
= (hpa_t
)gpa_to_pfn(vcpu
, gpa
) << PAGE_SHIFT
;
2221 if (is_shadow_present_pte(ent
)
2222 && (ent
& PT64_BASE_ADDR_MASK
) != hpa
)
2223 printk(KERN_ERR
"xx audit error: (%s) levels %d"
2224 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2225 audit_msg
, vcpu
->arch
.mmu
.root_level
,
2227 is_shadow_present_pte(ent
));
2228 else if (ent
== shadow_notrap_nonpresent_pte
2229 && !is_error_hpa(hpa
))
2230 printk(KERN_ERR
"audit: (%s) notrap shadow,"
2231 " valid guest gva %lx\n", audit_msg
, va
);
2232 kvm_release_pfn_clean(pfn
);
2238 static void audit_mappings(struct kvm_vcpu
*vcpu
)
2242 if (vcpu
->arch
.mmu
.root_level
== 4)
2243 audit_mappings_page(vcpu
, vcpu
->arch
.mmu
.root_hpa
, 0, 4);
2245 for (i
= 0; i
< 4; ++i
)
2246 if (vcpu
->arch
.mmu
.pae_root
[i
] & PT_PRESENT_MASK
)
2247 audit_mappings_page(vcpu
,
2248 vcpu
->arch
.mmu
.pae_root
[i
],
2253 static int count_rmaps(struct kvm_vcpu
*vcpu
)
2258 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
2259 struct kvm_memory_slot
*m
= &vcpu
->kvm
->memslots
[i
];
2260 struct kvm_rmap_desc
*d
;
2262 for (j
= 0; j
< m
->npages
; ++j
) {
2263 unsigned long *rmapp
= &m
->rmap
[j
];
2267 if (!(*rmapp
& 1)) {
2271 d
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
2273 for (k
= 0; k
< RMAP_EXT
; ++k
)
2274 if (d
->shadow_ptes
[k
])
2285 static int count_writable_mappings(struct kvm_vcpu
*vcpu
)
2288 struct kvm_mmu_page
*sp
;
2291 list_for_each_entry(sp
, &vcpu
->kvm
->arch
.active_mmu_pages
, link
) {
2294 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
2297 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
2300 if (!(ent
& PT_PRESENT_MASK
))
2302 if (!(ent
& PT_WRITABLE_MASK
))
2310 static void audit_rmap(struct kvm_vcpu
*vcpu
)
2312 int n_rmap
= count_rmaps(vcpu
);
2313 int n_actual
= count_writable_mappings(vcpu
);
2315 if (n_rmap
!= n_actual
)
2316 printk(KERN_ERR
"%s: (%s) rmap %d actual %d\n",
2317 __func__
, audit_msg
, n_rmap
, n_actual
);
2320 static void audit_write_protection(struct kvm_vcpu
*vcpu
)
2322 struct kvm_mmu_page
*sp
;
2323 struct kvm_memory_slot
*slot
;
2324 unsigned long *rmapp
;
2327 list_for_each_entry(sp
, &vcpu
->kvm
->arch
.active_mmu_pages
, link
) {
2328 if (sp
->role
.metaphysical
)
2331 slot
= gfn_to_memslot(vcpu
->kvm
, sp
->gfn
);
2332 gfn
= unalias_gfn(vcpu
->kvm
, sp
->gfn
);
2333 rmapp
= &slot
->rmap
[gfn
- slot
->base_gfn
];
2335 printk(KERN_ERR
"%s: (%s) shadow page has writable"
2336 " mappings: gfn %lx role %x\n",
2337 __func__
, audit_msg
, sp
->gfn
,
2342 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
)
2349 audit_write_protection(vcpu
);
2350 audit_mappings(vcpu
);