ia64/kvm: compilation fix. export account_system_vtime.
[pv_ops_mirror.git] / arch / x86 / mach-voyager / voyager_smp.c
blob8acbf0cdf1a5fb8eb4d75e1d57905104b23cce14
1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* Copyright (C) 1999,2001
5 * Author: J.E.J.Bottomley@HansenPartnership.com
7 * This file provides all the same external entries as smp.c but uses
8 * the voyager hal to provide the functionality
9 */
10 #include <linux/module.h>
11 #include <linux/mm.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/delay.h>
14 #include <linux/mc146818rtc.h>
15 #include <linux/cache.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/bootmem.h>
20 #include <linux/completion.h>
21 #include <asm/desc.h>
22 #include <asm/voyager.h>
23 #include <asm/vic.h>
24 #include <asm/mtrr.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlbflush.h>
27 #include <asm/arch_hooks.h>
28 #include <asm/trampoline.h>
30 /* TLB state -- visible externally, indexed physically */
31 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
33 /* CPU IRQ affinity -- set to all ones initially */
34 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
35 {[0 ... NR_CPUS-1] = ~0UL };
37 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
38 * indexed physically */
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
40 EXPORT_PER_CPU_SYMBOL(cpu_info);
42 /* physical ID of the CPU used to boot the system */
43 unsigned char boot_cpu_id;
45 /* The memory line addresses for the Quad CPIs */
46 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
48 /* The masks for the Extended VIC processors, filled in by cat_init */
49 __u32 voyager_extended_vic_processors = 0;
51 /* Masks for the extended Quad processors which cannot be VIC booted */
52 __u32 voyager_allowed_boot_processors = 0;
54 /* The mask for the Quad Processors (both extended and non-extended) */
55 __u32 voyager_quad_processors = 0;
57 /* Total count of live CPUs, used in process.c to display
58 * the CPU information and in irq.c for the per CPU irq
59 * activity count. Finally exported by i386_ksyms.c */
60 static int voyager_extended_cpus = 1;
62 /* Have we found an SMP box - used by time.c to do the profiling
63 interrupt for timeslicing; do not set to 1 until the per CPU timer
64 interrupt is active */
65 int smp_found_config = 0;
67 /* Used for the invalidate map that's also checked in the spinlock */
68 static volatile unsigned long smp_invalidate_needed;
70 /* Bitmask of currently online CPUs - used by setup.c for
71 /proc/cpuinfo, visible externally but still physical */
72 cpumask_t cpu_online_map = CPU_MASK_NONE;
73 EXPORT_SYMBOL(cpu_online_map);
75 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
76 * by scheduler but indexed physically */
77 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
79 /* The internal functions */
80 static void send_CPI(__u32 cpuset, __u8 cpi);
81 static void ack_CPI(__u8 cpi);
82 static int ack_QIC_CPI(__u8 cpi);
83 static void ack_special_QIC_CPI(__u8 cpi);
84 static void ack_VIC_CPI(__u8 cpi);
85 static void send_CPI_allbutself(__u8 cpi);
86 static void mask_vic_irq(unsigned int irq);
87 static void unmask_vic_irq(unsigned int irq);
88 static unsigned int startup_vic_irq(unsigned int irq);
89 static void enable_local_vic_irq(unsigned int irq);
90 static void disable_local_vic_irq(unsigned int irq);
91 static void before_handle_vic_irq(unsigned int irq);
92 static void after_handle_vic_irq(unsigned int irq);
93 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
94 static void ack_vic_irq(unsigned int irq);
95 static void vic_enable_cpi(void);
96 static void do_boot_cpu(__u8 cpuid);
97 static void do_quad_bootstrap(void);
99 int hard_smp_processor_id(void);
100 int safe_smp_processor_id(void);
102 /* Inline functions */
103 static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
105 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
106 (smp_processor_id() << 16) + cpi;
109 static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
111 int cpu;
113 for_each_online_cpu(cpu) {
114 if (cpuset & (1 << cpu)) {
115 #ifdef VOYAGER_DEBUG
116 if (!cpu_online(cpu))
117 VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
118 "cpu_online_map\n",
119 hard_smp_processor_id(), cpi, cpu));
120 #endif
121 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
126 static inline void wrapper_smp_local_timer_interrupt(void)
128 irq_enter();
129 smp_local_timer_interrupt();
130 irq_exit();
133 static inline void send_one_CPI(__u8 cpu, __u8 cpi)
135 if (voyager_quad_processors & (1 << cpu))
136 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
137 else
138 send_CPI(1 << cpu, cpi);
141 static inline void send_CPI_allbutself(__u8 cpi)
143 __u8 cpu = smp_processor_id();
144 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
145 send_CPI(mask, cpi);
148 static inline int is_cpu_quad(void)
150 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
151 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
154 static inline int is_cpu_extended(void)
156 __u8 cpu = hard_smp_processor_id();
158 return (voyager_extended_vic_processors & (1 << cpu));
161 static inline int is_cpu_vic_boot(void)
163 __u8 cpu = hard_smp_processor_id();
165 return (voyager_extended_vic_processors
166 & voyager_allowed_boot_processors & (1 << cpu));
169 static inline void ack_CPI(__u8 cpi)
171 switch (cpi) {
172 case VIC_CPU_BOOT_CPI:
173 if (is_cpu_quad() && !is_cpu_vic_boot())
174 ack_QIC_CPI(cpi);
175 else
176 ack_VIC_CPI(cpi);
177 break;
178 case VIC_SYS_INT:
179 case VIC_CMN_INT:
180 /* These are slightly strange. Even on the Quad card,
181 * They are vectored as VIC CPIs */
182 if (is_cpu_quad())
183 ack_special_QIC_CPI(cpi);
184 else
185 ack_VIC_CPI(cpi);
186 break;
187 default:
188 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
189 break;
193 /* local variables */
195 /* The VIC IRQ descriptors -- these look almost identical to the
196 * 8259 IRQs except that masks and things must be kept per processor
198 static struct irq_chip vic_chip = {
199 .name = "VIC",
200 .startup = startup_vic_irq,
201 .mask = mask_vic_irq,
202 .unmask = unmask_vic_irq,
203 .set_affinity = set_vic_irq_affinity,
206 /* used to count up as CPUs are brought on line (starts at 0) */
207 static int cpucount = 0;
209 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
210 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
211 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
212 static DEFINE_PER_CPU(int, prof_counter) = 1;
214 /* the map used to check if a CPU has booted */
215 static __u32 cpu_booted_map;
217 /* the synchronize flag used to hold all secondary CPUs spinning in
218 * a tight loop until the boot sequence is ready for them */
219 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
221 /* This is for the new dynamic CPU boot code */
222 cpumask_t cpu_callin_map = CPU_MASK_NONE;
223 cpumask_t cpu_callout_map = CPU_MASK_NONE;
224 cpumask_t cpu_possible_map = CPU_MASK_NONE;
225 EXPORT_SYMBOL(cpu_possible_map);
227 /* The per processor IRQ masks (these are usually kept in sync) */
228 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
230 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
231 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
233 /* Lock for enable/disable of VIC interrupts */
234 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
236 /* The boot processor is correctly set up in PC mode when it
237 * comes up, but the secondaries need their master/slave 8259
238 * pairs initializing correctly */
240 /* Interrupt counters (per cpu) and total - used to try to
241 * even up the interrupt handling routines */
242 static long vic_intr_total = 0;
243 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
244 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
246 /* Since we can only use CPI0, we fake all the other CPIs */
247 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
249 /* debugging routine to read the isr of the cpu's pic */
250 static inline __u16 vic_read_isr(void)
252 __u16 isr;
254 outb(0x0b, 0xa0);
255 isr = inb(0xa0) << 8;
256 outb(0x0b, 0x20);
257 isr |= inb(0x20);
259 return isr;
262 static __init void qic_setup(void)
264 if (!is_cpu_quad()) {
265 /* not a quad, no setup */
266 return;
268 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
269 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
271 if (is_cpu_extended()) {
272 /* the QIC duplicate of the VIC base register */
273 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
274 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
276 /* FIXME: should set up the QIC timer and memory parity
277 * error vectors here */
281 static __init void vic_setup_pic(void)
283 outb(1, VIC_REDIRECT_REGISTER_1);
284 /* clear the claim registers for dynamic routing */
285 outb(0, VIC_CLAIM_REGISTER_0);
286 outb(0, VIC_CLAIM_REGISTER_1);
288 outb(0, VIC_PRIORITY_REGISTER);
289 /* Set the Primary and Secondary Microchannel vector
290 * bases to be the same as the ordinary interrupts
292 * FIXME: This would be more efficient using separate
293 * vectors. */
294 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
295 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
296 /* Now initiallise the master PIC belonging to this CPU by
297 * sending the four ICWs */
299 /* ICW1: level triggered, ICW4 needed */
300 outb(0x19, 0x20);
302 /* ICW2: vector base */
303 outb(FIRST_EXTERNAL_VECTOR, 0x21);
305 /* ICW3: slave at line 2 */
306 outb(0x04, 0x21);
308 /* ICW4: 8086 mode */
309 outb(0x01, 0x21);
311 /* now the same for the slave PIC */
313 /* ICW1: level trigger, ICW4 needed */
314 outb(0x19, 0xA0);
316 /* ICW2: slave vector base */
317 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
319 /* ICW3: slave ID */
320 outb(0x02, 0xA1);
322 /* ICW4: 8086 mode */
323 outb(0x01, 0xA1);
326 static void do_quad_bootstrap(void)
328 if (is_cpu_quad() && is_cpu_vic_boot()) {
329 int i;
330 unsigned long flags;
331 __u8 cpuid = hard_smp_processor_id();
333 local_irq_save(flags);
335 for (i = 0; i < 4; i++) {
336 /* FIXME: this would be >>3 &0x7 on the 32 way */
337 if (((cpuid >> 2) & 0x03) == i)
338 /* don't lower our own mask! */
339 continue;
341 /* masquerade as local Quad CPU */
342 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
343 /* enable the startup CPI */
344 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
345 /* restore cpu id */
346 outb(0, QIC_PROCESSOR_ID);
348 local_irq_restore(flags);
352 /* Set up all the basic stuff: read the SMP config and make all the
353 * SMP information reflect only the boot cpu. All others will be
354 * brought on-line later. */
355 void __init find_smp_config(void)
357 int i;
359 boot_cpu_id = hard_smp_processor_id();
361 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
363 /* initialize the CPU structures (moved from smp_boot_cpus) */
364 for (i = 0; i < NR_CPUS; i++) {
365 cpu_irq_affinity[i] = ~0;
367 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
369 /* The boot CPU must be extended */
370 voyager_extended_vic_processors = 1 << boot_cpu_id;
371 /* initially, all of the first 8 CPUs can boot */
372 voyager_allowed_boot_processors = 0xff;
373 /* set up everything for just this CPU, we can alter
374 * this as we start the other CPUs later */
375 /* now get the CPU disposition from the extended CMOS */
376 cpus_addr(phys_cpu_present_map)[0] =
377 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
378 cpus_addr(phys_cpu_present_map)[0] |=
379 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
380 cpus_addr(phys_cpu_present_map)[0] |=
381 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
382 2) << 16;
383 cpus_addr(phys_cpu_present_map)[0] |=
384 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
385 3) << 24;
386 cpu_possible_map = phys_cpu_present_map;
387 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n",
388 cpus_addr(phys_cpu_present_map)[0]);
389 /* Here we set up the VIC to enable SMP */
390 /* enable the CPIs by writing the base vector to their register */
391 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
392 outb(1, VIC_REDIRECT_REGISTER_1);
393 /* set the claim registers for static routing --- Boot CPU gets
394 * all interrupts untill all other CPUs started */
395 outb(0xff, VIC_CLAIM_REGISTER_0);
396 outb(0xff, VIC_CLAIM_REGISTER_1);
397 /* Set the Primary and Secondary Microchannel vector
398 * bases to be the same as the ordinary interrupts
400 * FIXME: This would be more efficient using separate
401 * vectors. */
402 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
403 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
405 /* Finally tell the firmware that we're driving */
406 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
407 VOYAGER_SUS_IN_CONTROL_PORT);
409 current_thread_info()->cpu = boot_cpu_id;
410 x86_write_percpu(cpu_number, boot_cpu_id);
414 * The bootstrap kernel entry code has set these up. Save them
415 * for a given CPU, id is physical */
416 void __init smp_store_cpu_info(int id)
418 struct cpuinfo_x86 *c = &cpu_data(id);
420 *c = boot_cpu_data;
422 identify_secondary_cpu(c);
425 /* Routine initially called when a non-boot CPU is brought online */
426 static void __init start_secondary(void *unused)
428 __u8 cpuid = hard_smp_processor_id();
430 cpu_init();
432 /* OK, we're in the routine */
433 ack_CPI(VIC_CPU_BOOT_CPI);
435 /* setup the 8259 master slave pair belonging to this CPU ---
436 * we won't actually receive any until the boot CPU
437 * relinquishes it's static routing mask */
438 vic_setup_pic();
440 qic_setup();
442 if (is_cpu_quad() && !is_cpu_vic_boot()) {
443 /* clear the boot CPI */
444 __u8 dummy;
446 dummy =
447 voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
448 printk("read dummy %d\n", dummy);
451 /* lower the mask to receive CPIs */
452 vic_enable_cpi();
454 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
456 /* enable interrupts */
457 local_irq_enable();
459 /* get our bogomips */
460 calibrate_delay();
462 /* save our processor parameters */
463 smp_store_cpu_info(cpuid);
465 /* if we're a quad, we may need to bootstrap other CPUs */
466 do_quad_bootstrap();
468 /* FIXME: this is rather a poor hack to prevent the CPU
469 * activating softirqs while it's supposed to be waiting for
470 * permission to proceed. Without this, the new per CPU stuff
471 * in the softirqs will fail */
472 local_irq_disable();
473 cpu_set(cpuid, cpu_callin_map);
475 /* signal that we're done */
476 cpu_booted_map = 1;
478 while (!cpu_isset(cpuid, smp_commenced_mask))
479 rep_nop();
480 local_irq_enable();
482 local_flush_tlb();
484 cpu_set(cpuid, cpu_online_map);
485 wmb();
486 cpu_idle();
489 /* Routine to kick start the given CPU and wait for it to report ready
490 * (or timeout in startup). When this routine returns, the requested
491 * CPU is either fully running and configured or known to be dead.
493 * We call this routine sequentially 1 CPU at a time, so no need for
494 * locking */
496 static void __init do_boot_cpu(__u8 cpu)
498 struct task_struct *idle;
499 int timeout;
500 unsigned long flags;
501 int quad_boot = (1 << cpu) & voyager_quad_processors
502 & ~(voyager_extended_vic_processors
503 & voyager_allowed_boot_processors);
505 /* This is the format of the CPI IDT gate (in real mode) which
506 * we're hijacking to boot the CPU */
507 union IDTFormat {
508 struct seg {
509 __u16 Offset;
510 __u16 Segment;
511 } idt;
512 __u32 val;
513 } hijack_source;
515 __u32 *hijack_vector;
516 __u32 start_phys_address = setup_trampoline();
518 /* There's a clever trick to this: The linux trampoline is
519 * compiled to begin at absolute location zero, so make the
520 * address zero but have the data segment selector compensate
521 * for the actual address */
522 hijack_source.idt.Offset = start_phys_address & 0x000F;
523 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
525 cpucount++;
526 alternatives_smp_switch(1);
528 idle = fork_idle(cpu);
529 if (IS_ERR(idle))
530 panic("failed fork for CPU%d", cpu);
531 idle->thread.ip = (unsigned long)start_secondary;
532 /* init_tasks (in sched.c) is indexed logically */
533 stack_start.sp = (void *)idle->thread.sp;
535 init_gdt(cpu);
536 per_cpu(current_task, cpu) = idle;
537 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
538 irq_ctx_init(cpu);
540 /* Note: Don't modify initial ss override */
541 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
542 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
543 hijack_source.idt.Offset, stack_start.sp));
545 /* init lowmem identity mapping */
546 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
547 min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
548 flush_tlb_all();
550 if (quad_boot) {
551 printk("CPU %d: non extended Quad boot\n", cpu);
552 hijack_vector =
553 (__u32 *)
554 phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
555 *hijack_vector = hijack_source.val;
556 } else {
557 printk("CPU%d: extended VIC boot\n", cpu);
558 hijack_vector =
559 (__u32 *)
560 phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
561 *hijack_vector = hijack_source.val;
562 /* VIC errata, may also receive interrupt at this address */
563 hijack_vector =
564 (__u32 *)
565 phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
566 VIC_DEFAULT_CPI_BASE) * 4);
567 *hijack_vector = hijack_source.val;
569 /* All non-boot CPUs start with interrupts fully masked. Need
570 * to lower the mask of the CPI we're about to send. We do
571 * this in the VIC by masquerading as the processor we're
572 * about to boot and lowering its interrupt mask */
573 local_irq_save(flags);
574 if (quad_boot) {
575 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
576 } else {
577 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
578 /* here we're altering registers belonging to `cpu' */
580 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
581 /* now go back to our original identity */
582 outb(boot_cpu_id, VIC_PROCESSOR_ID);
584 /* and boot the CPU */
586 send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
588 cpu_booted_map = 0;
589 local_irq_restore(flags);
591 /* now wait for it to become ready (or timeout) */
592 for (timeout = 0; timeout < 50000; timeout++) {
593 if (cpu_booted_map)
594 break;
595 udelay(100);
597 /* reset the page table */
598 zap_low_mappings();
600 if (cpu_booted_map) {
601 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
602 cpu, smp_processor_id()));
604 printk("CPU%d: ", cpu);
605 print_cpu_info(&cpu_data(cpu));
606 wmb();
607 cpu_set(cpu, cpu_callout_map);
608 cpu_set(cpu, cpu_present_map);
609 } else {
610 printk("CPU%d FAILED TO BOOT: ", cpu);
611 if (*
612 ((volatile unsigned char *)phys_to_virt(start_phys_address))
613 == 0xA5)
614 printk("Stuck.\n");
615 else
616 printk("Not responding.\n");
618 cpucount--;
622 void __init smp_boot_cpus(void)
624 int i;
626 /* CAT BUS initialisation must be done after the memory */
627 /* FIXME: The L4 has a catbus too, it just needs to be
628 * accessed in a totally different way */
629 if (voyager_level == 5) {
630 voyager_cat_init();
632 /* now that the cat has probed the Voyager System Bus, sanity
633 * check the cpu map */
634 if (((voyager_quad_processors | voyager_extended_vic_processors)
635 & cpus_addr(phys_cpu_present_map)[0]) !=
636 cpus_addr(phys_cpu_present_map)[0]) {
637 /* should panic */
638 printk("\n\n***WARNING*** "
639 "Sanity check of CPU present map FAILED\n");
641 } else if (voyager_level == 4)
642 voyager_extended_vic_processors =
643 cpus_addr(phys_cpu_present_map)[0];
645 /* this sets up the idle task to run on the current cpu */
646 voyager_extended_cpus = 1;
647 /* Remove the global_irq_holder setting, it triggers a BUG() on
648 * schedule at the moment */
649 //global_irq_holder = boot_cpu_id;
651 /* FIXME: Need to do something about this but currently only works
652 * on CPUs with a tsc which none of mine have.
653 smp_tune_scheduling();
655 smp_store_cpu_info(boot_cpu_id);
656 printk("CPU%d: ", boot_cpu_id);
657 print_cpu_info(&cpu_data(boot_cpu_id));
659 if (is_cpu_quad()) {
660 /* booting on a Quad CPU */
661 printk("VOYAGER SMP: Boot CPU is Quad\n");
662 qic_setup();
663 do_quad_bootstrap();
666 /* enable our own CPIs */
667 vic_enable_cpi();
669 cpu_set(boot_cpu_id, cpu_online_map);
670 cpu_set(boot_cpu_id, cpu_callout_map);
672 /* loop over all the extended VIC CPUs and boot them. The
673 * Quad CPUs must be bootstrapped by their extended VIC cpu */
674 for (i = 0; i < NR_CPUS; i++) {
675 if (i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
676 continue;
677 do_boot_cpu(i);
678 /* This udelay seems to be needed for the Quad boots
679 * don't remove unless you know what you're doing */
680 udelay(1000);
682 /* we could compute the total bogomips here, but why bother?,
683 * Code added from smpboot.c */
685 unsigned long bogosum = 0;
687 for_each_online_cpu(i)
688 bogosum += cpu_data(i).loops_per_jiffy;
689 printk(KERN_INFO "Total of %d processors activated "
690 "(%lu.%02lu BogoMIPS).\n",
691 cpucount + 1, bogosum / (500000 / HZ),
692 (bogosum / (5000 / HZ)) % 100);
694 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
695 printk("VOYAGER: Extended (interrupt handling CPUs): "
696 "%d, non-extended: %d\n", voyager_extended_cpus,
697 num_booting_cpus() - voyager_extended_cpus);
698 /* that's it, switch to symmetric mode */
699 outb(0, VIC_PRIORITY_REGISTER);
700 outb(0, VIC_CLAIM_REGISTER_0);
701 outb(0, VIC_CLAIM_REGISTER_1);
703 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
706 /* Reload the secondary CPUs task structure (this function does not
707 * return ) */
708 void __init initialize_secondary(void)
710 #if 0
711 // AC kernels only
712 set_current(hard_get_current());
713 #endif
716 * We don't actually need to load the full TSS,
717 * basically just the stack pointer and the eip.
720 asm volatile ("movl %0,%%esp\n\t"
721 "jmp *%1"::"r" (current->thread.sp),
722 "r"(current->thread.ip));
725 /* handle a Voyager SYS_INT -- If we don't, the base board will
726 * panic the system.
728 * System interrupts occur because some problem was detected on the
729 * various busses. To find out what you have to probe all the
730 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
731 void smp_vic_sys_interrupt(struct pt_regs *regs)
733 ack_CPI(VIC_SYS_INT);
734 printk("Voyager SYSTEM INTERRUPT\n");
737 /* Handle a voyager CMN_INT; These interrupts occur either because of
738 * a system status change or because a single bit memory error
739 * occurred. FIXME: At the moment, ignore all this. */
740 void smp_vic_cmn_interrupt(struct pt_regs *regs)
742 static __u8 in_cmn_int = 0;
743 static DEFINE_SPINLOCK(cmn_int_lock);
745 /* common ints are broadcast, so make sure we only do this once */
746 _raw_spin_lock(&cmn_int_lock);
747 if (in_cmn_int)
748 goto unlock_end;
750 in_cmn_int++;
751 _raw_spin_unlock(&cmn_int_lock);
753 VDEBUG(("Voyager COMMON INTERRUPT\n"));
755 if (voyager_level == 5)
756 voyager_cat_do_common_interrupt();
758 _raw_spin_lock(&cmn_int_lock);
759 in_cmn_int = 0;
760 unlock_end:
761 _raw_spin_unlock(&cmn_int_lock);
762 ack_CPI(VIC_CMN_INT);
766 * Reschedule call back. Nothing to do, all the work is done
767 * automatically when we return from the interrupt. */
768 static void smp_reschedule_interrupt(void)
770 /* do nothing */
773 static struct mm_struct *flush_mm;
774 static unsigned long flush_va;
775 static DEFINE_SPINLOCK(tlbstate_lock);
778 * We cannot call mmdrop() because we are in interrupt context,
779 * instead update mm->cpu_vm_mask.
781 * We need to reload %cr3 since the page tables may be going
782 * away from under us..
784 static inline void voyager_leave_mm(unsigned long cpu)
786 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
787 BUG();
788 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
789 load_cr3(swapper_pg_dir);
793 * Invalidate call-back
795 static void smp_invalidate_interrupt(void)
797 __u8 cpu = smp_processor_id();
799 if (!test_bit(cpu, &smp_invalidate_needed))
800 return;
801 /* This will flood messages. Don't uncomment unless you see
802 * Problems with cross cpu invalidation
803 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
804 smp_processor_id()));
807 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
808 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
809 if (flush_va == TLB_FLUSH_ALL)
810 local_flush_tlb();
811 else
812 __flush_tlb_one(flush_va);
813 } else
814 voyager_leave_mm(cpu);
816 smp_mb__before_clear_bit();
817 clear_bit(cpu, &smp_invalidate_needed);
818 smp_mb__after_clear_bit();
821 /* All the new flush operations for 2.4 */
823 /* This routine is called with a physical cpu mask */
824 static void
825 voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
826 unsigned long va)
828 int stuck = 50000;
830 if (!cpumask)
831 BUG();
832 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
833 BUG();
834 if (cpumask & (1 << smp_processor_id()))
835 BUG();
836 if (!mm)
837 BUG();
839 spin_lock(&tlbstate_lock);
841 flush_mm = mm;
842 flush_va = va;
843 atomic_set_mask(cpumask, &smp_invalidate_needed);
845 * We have to send the CPI only to
846 * CPUs affected.
848 send_CPI(cpumask, VIC_INVALIDATE_CPI);
850 while (smp_invalidate_needed) {
851 mb();
852 if (--stuck == 0) {
853 printk("***WARNING*** Stuck doing invalidate CPI "
854 "(CPU%d)\n", smp_processor_id());
855 break;
859 /* Uncomment only to debug invalidation problems
860 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
863 flush_mm = NULL;
864 flush_va = 0;
865 spin_unlock(&tlbstate_lock);
868 void flush_tlb_current_task(void)
870 struct mm_struct *mm = current->mm;
871 unsigned long cpu_mask;
873 preempt_disable();
875 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
876 local_flush_tlb();
877 if (cpu_mask)
878 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
880 preempt_enable();
883 void flush_tlb_mm(struct mm_struct *mm)
885 unsigned long cpu_mask;
887 preempt_disable();
889 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
891 if (current->active_mm == mm) {
892 if (current->mm)
893 local_flush_tlb();
894 else
895 voyager_leave_mm(smp_processor_id());
897 if (cpu_mask)
898 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
900 preempt_enable();
903 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
905 struct mm_struct *mm = vma->vm_mm;
906 unsigned long cpu_mask;
908 preempt_disable();
910 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
911 if (current->active_mm == mm) {
912 if (current->mm)
913 __flush_tlb_one(va);
914 else
915 voyager_leave_mm(smp_processor_id());
918 if (cpu_mask)
919 voyager_flush_tlb_others(cpu_mask, mm, va);
921 preempt_enable();
924 EXPORT_SYMBOL(flush_tlb_page);
926 /* enable the requested IRQs */
927 static void smp_enable_irq_interrupt(void)
929 __u8 irq;
930 __u8 cpu = get_cpu();
932 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
933 vic_irq_enable_mask[cpu]));
935 spin_lock(&vic_irq_lock);
936 for (irq = 0; irq < 16; irq++) {
937 if (vic_irq_enable_mask[cpu] & (1 << irq))
938 enable_local_vic_irq(irq);
940 vic_irq_enable_mask[cpu] = 0;
941 spin_unlock(&vic_irq_lock);
943 put_cpu_no_resched();
947 * CPU halt call-back
949 static void smp_stop_cpu_function(void *dummy)
951 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
952 cpu_clear(smp_processor_id(), cpu_online_map);
953 local_irq_disable();
954 for (;;)
955 halt();
958 static DEFINE_SPINLOCK(call_lock);
960 struct call_data_struct {
961 void (*func) (void *info);
962 void *info;
963 volatile unsigned long started;
964 volatile unsigned long finished;
965 int wait;
968 static struct call_data_struct *call_data;
970 /* execute a thread on a new CPU. The function to be called must be
971 * previously set up. This is used to schedule a function for
972 * execution on all CPUs - set up the function then broadcast a
973 * function_interrupt CPI to come here on each CPU */
974 static void smp_call_function_interrupt(void)
976 void (*func) (void *info) = call_data->func;
977 void *info = call_data->info;
978 /* must take copy of wait because call_data may be replaced
979 * unless the function is waiting for us to finish */
980 int wait = call_data->wait;
981 __u8 cpu = smp_processor_id();
984 * Notify initiating CPU that I've grabbed the data and am
985 * about to execute the function
987 mb();
988 if (!test_and_clear_bit(cpu, &call_data->started)) {
989 /* If the bit wasn't set, this could be a replay */
990 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion"
991 " with no call pending\n", cpu);
992 return;
995 * At this point the info structure may be out of scope unless wait==1
997 irq_enter();
998 (*func) (info);
999 __get_cpu_var(irq_stat).irq_call_count++;
1000 irq_exit();
1001 if (wait) {
1002 mb();
1003 clear_bit(cpu, &call_data->finished);
1007 static int
1008 voyager_smp_call_function_mask(cpumask_t cpumask,
1009 void (*func) (void *info), void *info, int wait)
1011 struct call_data_struct data;
1012 u32 mask = cpus_addr(cpumask)[0];
1014 mask &= ~(1 << smp_processor_id());
1016 if (!mask)
1017 return 0;
1019 /* Can deadlock when called with interrupts disabled */
1020 WARN_ON(irqs_disabled());
1022 data.func = func;
1023 data.info = info;
1024 data.started = mask;
1025 data.wait = wait;
1026 if (wait)
1027 data.finished = mask;
1029 spin_lock(&call_lock);
1030 call_data = &data;
1031 wmb();
1032 /* Send a message to all other CPUs and wait for them to respond */
1033 send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1035 /* Wait for response */
1036 while (data.started)
1037 barrier();
1039 if (wait)
1040 while (data.finished)
1041 barrier();
1043 spin_unlock(&call_lock);
1045 return 0;
1048 /* Sorry about the name. In an APIC based system, the APICs
1049 * themselves are programmed to send a timer interrupt. This is used
1050 * by linux to reschedule the processor. Voyager doesn't have this,
1051 * so we use the system clock to interrupt one processor, which in
1052 * turn, broadcasts a timer CPI to all the others --- we receive that
1053 * CPI here. We don't use this actually for counting so losing
1054 * ticks doesn't matter
1056 * FIXME: For those CPUs which actually have a local APIC, we could
1057 * try to use it to trigger this interrupt instead of having to
1058 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1059 * no local APIC, so I can't do this
1061 * This function is currently a placeholder and is unused in the code */
1062 void smp_apic_timer_interrupt(struct pt_regs *regs)
1064 struct pt_regs *old_regs = set_irq_regs(regs);
1065 wrapper_smp_local_timer_interrupt();
1066 set_irq_regs(old_regs);
1069 /* All of the QUAD interrupt GATES */
1070 void smp_qic_timer_interrupt(struct pt_regs *regs)
1072 struct pt_regs *old_regs = set_irq_regs(regs);
1073 ack_QIC_CPI(QIC_TIMER_CPI);
1074 wrapper_smp_local_timer_interrupt();
1075 set_irq_regs(old_regs);
1078 void smp_qic_invalidate_interrupt(struct pt_regs *regs)
1080 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1081 smp_invalidate_interrupt();
1084 void smp_qic_reschedule_interrupt(struct pt_regs *regs)
1086 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1087 smp_reschedule_interrupt();
1090 void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1092 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1093 smp_enable_irq_interrupt();
1096 void smp_qic_call_function_interrupt(struct pt_regs *regs)
1098 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1099 smp_call_function_interrupt();
1102 void smp_vic_cpi_interrupt(struct pt_regs *regs)
1104 struct pt_regs *old_regs = set_irq_regs(regs);
1105 __u8 cpu = smp_processor_id();
1107 if (is_cpu_quad())
1108 ack_QIC_CPI(VIC_CPI_LEVEL0);
1109 else
1110 ack_VIC_CPI(VIC_CPI_LEVEL0);
1112 if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1113 wrapper_smp_local_timer_interrupt();
1114 if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1115 smp_invalidate_interrupt();
1116 if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1117 smp_reschedule_interrupt();
1118 if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1119 smp_enable_irq_interrupt();
1120 if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1121 smp_call_function_interrupt();
1122 set_irq_regs(old_regs);
1125 static void do_flush_tlb_all(void *info)
1127 unsigned long cpu = smp_processor_id();
1129 __flush_tlb_all();
1130 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1131 voyager_leave_mm(cpu);
1134 /* flush the TLB of every active CPU in the system */
1135 void flush_tlb_all(void)
1137 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1140 /* used to set up the trampoline for other CPUs when the memory manager
1141 * is sorted out */
1142 void __init smp_alloc_memory(void)
1144 trampoline_base = alloc_bootmem_low_pages(PAGE_SIZE);
1145 if (__pa(trampoline_base) >= 0x93000)
1146 BUG();
1149 /* send a reschedule CPI to one CPU by physical CPU number*/
1150 static void voyager_smp_send_reschedule(int cpu)
1152 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1155 int hard_smp_processor_id(void)
1157 __u8 i;
1158 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1159 if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1160 return cpumask & 0x1F;
1162 for (i = 0; i < 8; i++) {
1163 if (cpumask & (1 << i))
1164 return i;
1166 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1167 return 0;
1170 int safe_smp_processor_id(void)
1172 return hard_smp_processor_id();
1175 /* broadcast a halt to all other CPUs */
1176 static void voyager_smp_send_stop(void)
1178 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1181 /* this function is triggered in time.c when a clock tick fires
1182 * we need to re-broadcast the tick to all CPUs */
1183 void smp_vic_timer_interrupt(void)
1185 send_CPI_allbutself(VIC_TIMER_CPI);
1186 smp_local_timer_interrupt();
1189 /* local (per CPU) timer interrupt. It does both profiling and
1190 * process statistics/rescheduling.
1192 * We do profiling in every local tick, statistics/rescheduling
1193 * happen only every 'profiling multiplier' ticks. The default
1194 * multiplier is 1 and it can be changed by writing the new multiplier
1195 * value into /proc/profile.
1197 void smp_local_timer_interrupt(void)
1199 int cpu = smp_processor_id();
1200 long weight;
1202 profile_tick(CPU_PROFILING);
1203 if (--per_cpu(prof_counter, cpu) <= 0) {
1205 * The multiplier may have changed since the last time we got
1206 * to this point as a result of the user writing to
1207 * /proc/profile. In this case we need to adjust the APIC
1208 * timer accordingly.
1210 * Interrupts are already masked off at this point.
1212 per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
1213 if (per_cpu(prof_counter, cpu) !=
1214 per_cpu(prof_old_multiplier, cpu)) {
1215 /* FIXME: need to update the vic timer tick here */
1216 per_cpu(prof_old_multiplier, cpu) =
1217 per_cpu(prof_counter, cpu);
1220 update_process_times(user_mode_vm(get_irq_regs()));
1223 if (((1 << cpu) & voyager_extended_vic_processors) == 0)
1224 /* only extended VIC processors participate in
1225 * interrupt distribution */
1226 return;
1229 * We take the 'long' return path, and there every subsystem
1230 * grabs the appropriate locks (kernel lock/ irq lock).
1232 * we might want to decouple profiling from the 'long path',
1233 * and do the profiling totally in assembly.
1235 * Currently this isn't too much of an issue (performance wise),
1236 * we can take more than 100K local irqs per second on a 100 MHz P5.
1239 if ((++vic_tick[cpu] & 0x7) != 0)
1240 return;
1241 /* get here every 16 ticks (about every 1/6 of a second) */
1243 /* Change our priority to give someone else a chance at getting
1244 * the IRQ. The algorithm goes like this:
1246 * In the VIC, the dynamically routed interrupt is always
1247 * handled by the lowest priority eligible (i.e. receiving
1248 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1249 * lowest processor number gets it.
1251 * The priority of a CPU is controlled by a special per-CPU
1252 * VIC priority register which is 3 bits wide 0 being lowest
1253 * and 7 highest priority..
1255 * Therefore we subtract the average number of interrupts from
1256 * the number we've fielded. If this number is negative, we
1257 * lower the activity count and if it is positive, we raise
1258 * it.
1260 * I'm afraid this still leads to odd looking interrupt counts:
1261 * the totals are all roughly equal, but the individual ones
1262 * look rather skewed.
1264 * FIXME: This algorithm is total crap when mixed with SMP
1265 * affinity code since we now try to even up the interrupt
1266 * counts when an affinity binding is keeping them on a
1267 * particular CPU*/
1268 weight = (vic_intr_count[cpu] * voyager_extended_cpus
1269 - vic_intr_total) >> 4;
1270 weight += 4;
1271 if (weight > 7)
1272 weight = 7;
1273 if (weight < 0)
1274 weight = 0;
1276 outb((__u8) weight, VIC_PRIORITY_REGISTER);
1278 #ifdef VOYAGER_DEBUG
1279 if ((vic_tick[cpu] & 0xFFF) == 0) {
1280 /* print this message roughly every 25 secs */
1281 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1282 cpu, vic_tick[cpu], weight);
1284 #endif
1287 /* setup the profiling timer */
1288 int setup_profiling_timer(unsigned int multiplier)
1290 int i;
1292 if ((!multiplier))
1293 return -EINVAL;
1296 * Set the new multiplier for each CPU. CPUs don't start using the
1297 * new values until the next timer interrupt in which they do process
1298 * accounting.
1300 for (i = 0; i < NR_CPUS; ++i)
1301 per_cpu(prof_multiplier, i) = multiplier;
1303 return 0;
1306 /* This is a bit of a mess, but forced on us by the genirq changes
1307 * there's no genirq handler that really does what voyager wants
1308 * so hack it up with the simple IRQ handler */
1309 static void handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1311 before_handle_vic_irq(irq);
1312 handle_simple_irq(irq, desc);
1313 after_handle_vic_irq(irq);
1316 /* The CPIs are handled in the per cpu 8259s, so they must be
1317 * enabled to be received: FIX: enabling the CPIs in the early
1318 * boot sequence interferes with bug checking; enable them later
1319 * on in smp_init */
1320 #define VIC_SET_GATE(cpi, vector) \
1321 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1322 #define QIC_SET_GATE(cpi, vector) \
1323 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1325 void __init smp_intr_init(void)
1327 int i;
1329 /* initialize the per cpu irq mask to all disabled */
1330 for (i = 0; i < NR_CPUS; i++)
1331 vic_irq_mask[i] = 0xFFFF;
1333 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1335 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1336 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1338 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1339 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1340 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1341 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1342 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1344 /* now put the VIC descriptor into the first 48 IRQs
1346 * This is for later: first 16 correspond to PC IRQs; next 16
1347 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1348 for (i = 0; i < 48; i++)
1349 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1352 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1353 * processor to receive CPI */
1354 static void send_CPI(__u32 cpuset, __u8 cpi)
1356 int cpu;
1357 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1359 if (cpi < VIC_START_FAKE_CPI) {
1360 /* fake CPI are only used for booting, so send to the
1361 * extended quads as well---Quads must be VIC booted */
1362 outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
1363 return;
1365 if (quad_cpuset)
1366 send_QIC_CPI(quad_cpuset, cpi);
1367 cpuset &= ~quad_cpuset;
1368 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1369 if (cpuset == 0)
1370 return;
1371 for_each_online_cpu(cpu) {
1372 if (cpuset & (1 << cpu))
1373 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1375 if (cpuset)
1376 outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1379 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1380 * set the cache line to shared by reading it.
1382 * DON'T make this inline otherwise the cache line read will be
1383 * optimised away
1384 * */
1385 static int ack_QIC_CPI(__u8 cpi)
1387 __u8 cpu = hard_smp_processor_id();
1389 cpi &= 7;
1391 outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
1392 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1395 static void ack_special_QIC_CPI(__u8 cpi)
1397 switch (cpi) {
1398 case VIC_CMN_INT:
1399 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1400 break;
1401 case VIC_SYS_INT:
1402 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1403 break;
1405 /* also clear at the VIC, just in case (nop for non-extended proc) */
1406 ack_VIC_CPI(cpi);
1409 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1410 static void ack_VIC_CPI(__u8 cpi)
1412 #ifdef VOYAGER_DEBUG
1413 unsigned long flags;
1414 __u16 isr;
1415 __u8 cpu = smp_processor_id();
1417 local_irq_save(flags);
1418 isr = vic_read_isr();
1419 if ((isr & (1 << (cpi & 7))) == 0) {
1420 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1422 #endif
1423 /* send specific EOI; the two system interrupts have
1424 * bit 4 set for a separate vector but behave as the
1425 * corresponding 3 bit intr */
1426 outb_p(0x60 | (cpi & 7), 0x20);
1428 #ifdef VOYAGER_DEBUG
1429 if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
1430 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1432 local_irq_restore(flags);
1433 #endif
1436 /* cribbed with thanks from irq.c */
1437 #define __byte(x,y) (((unsigned char *)&(y))[x])
1438 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1439 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1441 static unsigned int startup_vic_irq(unsigned int irq)
1443 unmask_vic_irq(irq);
1445 return 0;
1448 /* The enable and disable routines. This is where we run into
1449 * conflicting architectural philosophy. Fundamentally, the voyager
1450 * architecture does not expect to have to disable interrupts globally
1451 * (the IRQ controllers belong to each CPU). The processor masquerade
1452 * which is used to start the system shouldn't be used in a running OS
1453 * since it will cause great confusion if two separate CPUs drive to
1454 * the same IRQ controller (I know, I've tried it).
1456 * The solution is a variant on the NCR lazy SPL design:
1458 * 1) To disable an interrupt, do nothing (other than set the
1459 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1461 * 2) If the interrupt dares to come in, raise the local mask against
1462 * it (this will result in all the CPU masks being raised
1463 * eventually).
1465 * 3) To enable the interrupt, lower the mask on the local CPU and
1466 * broadcast an Interrupt enable CPI which causes all other CPUs to
1467 * adjust their masks accordingly. */
1469 static void unmask_vic_irq(unsigned int irq)
1471 /* linux doesn't to processor-irq affinity, so enable on
1472 * all CPUs we know about */
1473 int cpu = smp_processor_id(), real_cpu;
1474 __u16 mask = (1 << irq);
1475 __u32 processorList = 0;
1476 unsigned long flags;
1478 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1479 irq, cpu, cpu_irq_affinity[cpu]));
1480 spin_lock_irqsave(&vic_irq_lock, flags);
1481 for_each_online_cpu(real_cpu) {
1482 if (!(voyager_extended_vic_processors & (1 << real_cpu)))
1483 continue;
1484 if (!(cpu_irq_affinity[real_cpu] & mask)) {
1485 /* irq has no affinity for this CPU, ignore */
1486 continue;
1488 if (real_cpu == cpu) {
1489 enable_local_vic_irq(irq);
1490 } else if (vic_irq_mask[real_cpu] & mask) {
1491 vic_irq_enable_mask[real_cpu] |= mask;
1492 processorList |= (1 << real_cpu);
1495 spin_unlock_irqrestore(&vic_irq_lock, flags);
1496 if (processorList)
1497 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1500 static void mask_vic_irq(unsigned int irq)
1502 /* lazy disable, do nothing */
1505 static void enable_local_vic_irq(unsigned int irq)
1507 __u8 cpu = smp_processor_id();
1508 __u16 mask = ~(1 << irq);
1509 __u16 old_mask = vic_irq_mask[cpu];
1511 vic_irq_mask[cpu] &= mask;
1512 if (vic_irq_mask[cpu] == old_mask)
1513 return;
1515 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1516 irq, cpu));
1518 if (irq & 8) {
1519 outb_p(cached_A1(cpu), 0xA1);
1520 (void)inb_p(0xA1);
1521 } else {
1522 outb_p(cached_21(cpu), 0x21);
1523 (void)inb_p(0x21);
1527 static void disable_local_vic_irq(unsigned int irq)
1529 __u8 cpu = smp_processor_id();
1530 __u16 mask = (1 << irq);
1531 __u16 old_mask = vic_irq_mask[cpu];
1533 if (irq == 7)
1534 return;
1536 vic_irq_mask[cpu] |= mask;
1537 if (old_mask == vic_irq_mask[cpu])
1538 return;
1540 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1541 irq, cpu));
1543 if (irq & 8) {
1544 outb_p(cached_A1(cpu), 0xA1);
1545 (void)inb_p(0xA1);
1546 } else {
1547 outb_p(cached_21(cpu), 0x21);
1548 (void)inb_p(0x21);
1552 /* The VIC is level triggered, so the ack can only be issued after the
1553 * interrupt completes. However, we do Voyager lazy interrupt
1554 * handling here: It is an extremely expensive operation to mask an
1555 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1556 * this interrupt actually comes in, then we mask and ack here to push
1557 * the interrupt off to another CPU */
1558 static void before_handle_vic_irq(unsigned int irq)
1560 irq_desc_t *desc = irq_desc + irq;
1561 __u8 cpu = smp_processor_id();
1563 _raw_spin_lock(&vic_irq_lock);
1564 vic_intr_total++;
1565 vic_intr_count[cpu]++;
1567 if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
1568 /* The irq is not in our affinity mask, push it off
1569 * onto another CPU */
1570 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
1571 "on cpu %d\n", irq, cpu));
1572 disable_local_vic_irq(irq);
1573 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1574 * actually calling the interrupt routine */
1575 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1576 } else if (desc->status & IRQ_DISABLED) {
1577 /* Damn, the interrupt actually arrived, do the lazy
1578 * disable thing. The interrupt routine in irq.c will
1579 * not handle a IRQ_DISABLED interrupt, so nothing more
1580 * need be done here */
1581 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1582 irq, cpu));
1583 disable_local_vic_irq(irq);
1584 desc->status |= IRQ_REPLAY;
1585 } else {
1586 desc->status &= ~IRQ_REPLAY;
1589 _raw_spin_unlock(&vic_irq_lock);
1592 /* Finish the VIC interrupt: basically mask */
1593 static void after_handle_vic_irq(unsigned int irq)
1595 irq_desc_t *desc = irq_desc + irq;
1597 _raw_spin_lock(&vic_irq_lock);
1599 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1600 #ifdef VOYAGER_DEBUG
1601 __u16 isr;
1602 #endif
1604 desc->status = status;
1605 if ((status & IRQ_DISABLED))
1606 disable_local_vic_irq(irq);
1607 #ifdef VOYAGER_DEBUG
1608 /* DEBUG: before we ack, check what's in progress */
1609 isr = vic_read_isr();
1610 if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
1611 int i;
1612 __u8 cpu = smp_processor_id();
1613 __u8 real_cpu;
1614 int mask; /* Um... initialize me??? --RR */
1616 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1617 cpu, irq);
1618 for_each_possible_cpu(real_cpu, mask) {
1620 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1621 VIC_PROCESSOR_ID);
1622 isr = vic_read_isr();
1623 if (isr & (1 << irq)) {
1624 printk
1625 ("VOYAGER SMP: CPU%d ack irq %d\n",
1626 real_cpu, irq);
1627 ack_vic_irq(irq);
1629 outb(cpu, VIC_PROCESSOR_ID);
1632 #endif /* VOYAGER_DEBUG */
1633 /* as soon as we ack, the interrupt is eligible for
1634 * receipt by another CPU so everything must be in
1635 * order here */
1636 ack_vic_irq(irq);
1637 if (status & IRQ_REPLAY) {
1638 /* replay is set if we disable the interrupt
1639 * in the before_handle_vic_irq() routine, so
1640 * clear the in progress bit here to allow the
1641 * next CPU to handle this correctly */
1642 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1644 #ifdef VOYAGER_DEBUG
1645 isr = vic_read_isr();
1646 if ((isr & (1 << irq)) != 0)
1647 printk("VOYAGER SMP: after_handle_vic_irq() after "
1648 "ack irq=%d, isr=0x%x\n", irq, isr);
1649 #endif /* VOYAGER_DEBUG */
1651 _raw_spin_unlock(&vic_irq_lock);
1653 /* All code after this point is out of the main path - the IRQ
1654 * may be intercepted by another CPU if reasserted */
1657 /* Linux processor - interrupt affinity manipulations.
1659 * For each processor, we maintain a 32 bit irq affinity mask.
1660 * Initially it is set to all 1's so every processor accepts every
1661 * interrupt. In this call, we change the processor's affinity mask:
1663 * Change from enable to disable:
1665 * If the interrupt ever comes in to the processor, we will disable it
1666 * and ack it to push it off to another CPU, so just accept the mask here.
1668 * Change from disable to enable:
1670 * change the mask and then do an interrupt enable CPI to re-enable on
1671 * the selected processors */
1673 void set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1675 /* Only extended processors handle interrupts */
1676 unsigned long real_mask;
1677 unsigned long irq_mask = 1 << irq;
1678 int cpu;
1680 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1682 if (cpus_addr(mask)[0] == 0)
1683 /* can't have no CPUs to accept the interrupt -- extremely
1684 * bad things will happen */
1685 return;
1687 if (irq == 0)
1688 /* can't change the affinity of the timer IRQ. This
1689 * is due to the constraint in the voyager
1690 * architecture that the CPI also comes in on and IRQ
1691 * line and we have chosen IRQ0 for this. If you
1692 * raise the mask on this interrupt, the processor
1693 * will no-longer be able to accept VIC CPIs */
1694 return;
1696 if (irq >= 32)
1697 /* You can only have 32 interrupts in a voyager system
1698 * (and 32 only if you have a secondary microchannel
1699 * bus) */
1700 return;
1702 for_each_online_cpu(cpu) {
1703 unsigned long cpu_mask = 1 << cpu;
1705 if (cpu_mask & real_mask) {
1706 /* enable the interrupt for this cpu */
1707 cpu_irq_affinity[cpu] |= irq_mask;
1708 } else {
1709 /* disable the interrupt for this cpu */
1710 cpu_irq_affinity[cpu] &= ~irq_mask;
1713 /* this is magic, we now have the correct affinity maps, so
1714 * enable the interrupt. This will send an enable CPI to
1715 * those CPUs who need to enable it in their local masks,
1716 * causing them to correct for the new affinity . If the
1717 * interrupt is currently globally disabled, it will simply be
1718 * disabled again as it comes in (voyager lazy disable). If
1719 * the affinity map is tightened to disable the interrupt on a
1720 * cpu, it will be pushed off when it comes in */
1721 unmask_vic_irq(irq);
1724 static void ack_vic_irq(unsigned int irq)
1726 if (irq & 8) {
1727 outb(0x62, 0x20); /* Specific EOI to cascade */
1728 outb(0x60 | (irq & 7), 0xA0);
1729 } else {
1730 outb(0x60 | (irq & 7), 0x20);
1734 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1735 * but are not vectored by it. This means that the 8259 mask must be
1736 * lowered to receive them */
1737 static __init void vic_enable_cpi(void)
1739 __u8 cpu = smp_processor_id();
1741 /* just take a copy of the current mask (nop for boot cpu) */
1742 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1744 enable_local_vic_irq(VIC_CPI_LEVEL0);
1745 enable_local_vic_irq(VIC_CPI_LEVEL1);
1746 /* for sys int and cmn int */
1747 enable_local_vic_irq(7);
1749 if (is_cpu_quad()) {
1750 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1751 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1752 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1753 cpu, QIC_CPI_ENABLE));
1756 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1757 cpu, vic_irq_mask[cpu]));
1760 void voyager_smp_dump()
1762 int old_cpu = smp_processor_id(), cpu;
1764 /* dump the interrupt masks of each processor */
1765 for_each_online_cpu(cpu) {
1766 __u16 imr, isr, irr;
1767 unsigned long flags;
1769 local_irq_save(flags);
1770 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1771 imr = (inb(0xa1) << 8) | inb(0x21);
1772 outb(0x0a, 0xa0);
1773 irr = inb(0xa0) << 8;
1774 outb(0x0a, 0x20);
1775 irr |= inb(0x20);
1776 outb(0x0b, 0xa0);
1777 isr = inb(0xa0) << 8;
1778 outb(0x0b, 0x20);
1779 isr |= inb(0x20);
1780 outb(old_cpu, VIC_PROCESSOR_ID);
1781 local_irq_restore(flags);
1782 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1783 cpu, vic_irq_mask[cpu], imr, irr, isr);
1784 #if 0
1785 /* These lines are put in to try to unstick an un ack'd irq */
1786 if (isr != 0) {
1787 int irq;
1788 for (irq = 0; irq < 16; irq++) {
1789 if (isr & (1 << irq)) {
1790 printk("\tCPU%d: ack irq %d\n",
1791 cpu, irq);
1792 local_irq_save(flags);
1793 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1794 VIC_PROCESSOR_ID);
1795 ack_vic_irq(irq);
1796 outb(old_cpu, VIC_PROCESSOR_ID);
1797 local_irq_restore(flags);
1801 #endif
1805 void smp_voyager_power_off(void *dummy)
1807 if (smp_processor_id() == boot_cpu_id)
1808 voyager_power_off();
1809 else
1810 smp_stop_cpu_function(NULL);
1813 static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
1815 /* FIXME: ignore max_cpus for now */
1816 smp_boot_cpus();
1819 static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1821 init_gdt(smp_processor_id());
1822 switch_to_new_gdt();
1824 cpu_set(smp_processor_id(), cpu_online_map);
1825 cpu_set(smp_processor_id(), cpu_callout_map);
1826 cpu_set(smp_processor_id(), cpu_possible_map);
1827 cpu_set(smp_processor_id(), cpu_present_map);
1830 static int __cpuinit voyager_cpu_up(unsigned int cpu)
1832 /* This only works at boot for x86. See "rewrite" above. */
1833 if (cpu_isset(cpu, smp_commenced_mask))
1834 return -ENOSYS;
1836 /* In case one didn't come up */
1837 if (!cpu_isset(cpu, cpu_callin_map))
1838 return -EIO;
1839 /* Unleash the CPU! */
1840 cpu_set(cpu, smp_commenced_mask);
1841 while (!cpu_online(cpu))
1842 mb();
1843 return 0;
1846 static void __init voyager_smp_cpus_done(unsigned int max_cpus)
1848 zap_low_mappings();
1851 void __init smp_setup_processor_id(void)
1853 current_thread_info()->cpu = hard_smp_processor_id();
1854 x86_write_percpu(cpu_number, hard_smp_processor_id());
1857 struct smp_ops smp_ops = {
1858 .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1859 .smp_prepare_cpus = voyager_smp_prepare_cpus,
1860 .cpu_up = voyager_cpu_up,
1861 .smp_cpus_done = voyager_smp_cpus_done,
1863 .smp_send_stop = voyager_smp_send_stop,
1864 .smp_send_reschedule = voyager_smp_send_reschedule,
1865 .smp_call_function_mask = voyager_smp_call_function_mask,