2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/jiffies.h>
58 #include <linux/scatterlist.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/byteorder.h>
65 #include <linux/cdrom.h>
70 /* debounce timing parameters in msecs { interval, duration, timeout } */
71 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
72 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
73 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
75 const struct ata_port_operations ata_base_port_ops
= {
76 .prereset
= ata_std_prereset
,
77 .postreset
= ata_std_postreset
,
78 .error_handler
= ata_std_error_handler
,
81 const struct ata_port_operations sata_port_ops
= {
82 .inherits
= &ata_base_port_ops
,
84 .qc_defer
= ata_std_qc_defer
,
85 .hardreset
= sata_std_hardreset
,
88 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
89 u16 heads
, u16 sectors
);
90 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
91 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
92 u8 enable
, u8 feature
);
93 static void ata_dev_xfermask(struct ata_device
*dev
);
94 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
96 unsigned int ata_print_id
= 1;
97 static struct workqueue_struct
*ata_wq
;
99 struct workqueue_struct
*ata_aux_wq
;
101 struct ata_force_param
{
105 unsigned long xfer_mask
;
106 unsigned int horkage_on
;
107 unsigned int horkage_off
;
110 struct ata_force_ent
{
113 struct ata_force_param param
;
116 static struct ata_force_ent
*ata_force_tbl
;
117 static int ata_force_tbl_size
;
119 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
122 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 int atapi_enabled
= 1;
125 module_param(atapi_enabled
, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 static int atapi_dmadir
= 0;
129 module_param(atapi_dmadir
, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 int atapi_passthru16
= 1;
133 module_param(atapi_passthru16
, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
137 module_param_named(fua
, libata_fua
, int, 0444);
138 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
140 static int ata_ignore_hpa
;
141 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
145 module_param_named(dma
, libata_dma_mask
, int, 0444);
146 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
149 module_param(ata_probe_timeout
, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
152 int libata_noacpi
= 0;
153 module_param_named(noacpi
, libata_noacpi
, int, 0444);
154 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in probe/suspend/resume when set");
156 int libata_allow_tpm
= 0;
157 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
158 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands");
160 MODULE_AUTHOR("Jeff Garzik");
161 MODULE_DESCRIPTION("Library module for ATA devices");
162 MODULE_LICENSE("GPL");
163 MODULE_VERSION(DRV_VERSION
);
167 * ata_force_cbl - force cable type according to libata.force
168 * @ap: ATA port of interest
170 * Force cable type according to libata.force and whine about it.
171 * The last entry which has matching port number is used, so it
172 * can be specified as part of device force parameters. For
173 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
179 void ata_force_cbl(struct ata_port
*ap
)
183 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
184 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
186 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
189 if (fe
->param
.cbl
== ATA_CBL_NONE
)
192 ap
->cbl
= fe
->param
.cbl
;
193 ata_port_printk(ap
, KERN_NOTICE
,
194 "FORCE: cable set to %s\n", fe
->param
.name
);
200 * ata_force_spd_limit - force SATA spd limit according to libata.force
201 * @link: ATA link of interest
203 * Force SATA spd limit according to libata.force and whine about
204 * it. When only the port part is specified (e.g. 1:), the limit
205 * applies to all links connected to both the host link and all
206 * fan-out ports connected via PMP. If the device part is
207 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
208 * link not the host link. Device number 15 always points to the
209 * host link whether PMP is attached or not.
214 static void ata_force_spd_limit(struct ata_link
*link
)
218 if (ata_is_host_link(link
))
223 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
224 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
226 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
229 if (fe
->device
!= -1 && fe
->device
!= linkno
)
232 if (!fe
->param
.spd_limit
)
235 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
236 ata_link_printk(link
, KERN_NOTICE
,
237 "FORCE: PHY spd limit set to %s\n", fe
->param
.name
);
243 * ata_force_xfermask - force xfermask according to libata.force
244 * @dev: ATA device of interest
246 * Force xfer_mask according to libata.force and whine about it.
247 * For consistency with link selection, device number 15 selects
248 * the first device connected to the host link.
253 static void ata_force_xfermask(struct ata_device
*dev
)
255 int devno
= dev
->link
->pmp
+ dev
->devno
;
256 int alt_devno
= devno
;
259 /* allow n.15 for the first device attached to host port */
260 if (ata_is_host_link(dev
->link
) && devno
== 0)
263 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
264 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
265 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
267 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
270 if (fe
->device
!= -1 && fe
->device
!= devno
&&
271 fe
->device
!= alt_devno
)
274 if (!fe
->param
.xfer_mask
)
277 ata_unpack_xfermask(fe
->param
.xfer_mask
,
278 &pio_mask
, &mwdma_mask
, &udma_mask
);
280 dev
->udma_mask
= udma_mask
;
281 else if (mwdma_mask
) {
283 dev
->mwdma_mask
= mwdma_mask
;
287 dev
->pio_mask
= pio_mask
;
290 ata_dev_printk(dev
, KERN_NOTICE
,
291 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
297 * ata_force_horkage - force horkage according to libata.force
298 * @dev: ATA device of interest
300 * Force horkage according to libata.force and whine about it.
301 * For consistency with link selection, device number 15 selects
302 * the first device connected to the host link.
307 static void ata_force_horkage(struct ata_device
*dev
)
309 int devno
= dev
->link
->pmp
+ dev
->devno
;
310 int alt_devno
= devno
;
313 /* allow n.15 for the first device attached to host port */
314 if (ata_is_host_link(dev
->link
) && devno
== 0)
317 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
318 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
320 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
323 if (fe
->device
!= -1 && fe
->device
!= devno
&&
324 fe
->device
!= alt_devno
)
327 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
328 !(dev
->horkage
& fe
->param
.horkage_off
))
331 dev
->horkage
|= fe
->param
.horkage_on
;
332 dev
->horkage
&= ~fe
->param
.horkage_off
;
334 ata_dev_printk(dev
, KERN_NOTICE
,
335 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
340 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
341 * @opcode: SCSI opcode
343 * Determine ATAPI command type from @opcode.
349 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
351 int atapi_cmd_type(u8 opcode
)
360 case GPCMD_WRITE_AND_VERIFY_10
:
364 case GPCMD_READ_CD_MSF
:
365 return ATAPI_READ_CD
;
369 if (atapi_passthru16
)
370 return ATAPI_PASS_THRU
;
378 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
379 * @tf: Taskfile to convert
380 * @pmp: Port multiplier port
381 * @is_cmd: This FIS is for command
382 * @fis: Buffer into which data will output
384 * Converts a standard ATA taskfile to a Serial ATA
385 * FIS structure (Register - Host to Device).
388 * Inherited from caller.
390 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
392 fis
[0] = 0x27; /* Register - Host to Device FIS */
393 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
395 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
397 fis
[2] = tf
->command
;
398 fis
[3] = tf
->feature
;
405 fis
[8] = tf
->hob_lbal
;
406 fis
[9] = tf
->hob_lbam
;
407 fis
[10] = tf
->hob_lbah
;
408 fis
[11] = tf
->hob_feature
;
411 fis
[13] = tf
->hob_nsect
;
422 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
423 * @fis: Buffer from which data will be input
424 * @tf: Taskfile to output
426 * Converts a serial ATA FIS structure to a standard ATA taskfile.
429 * Inherited from caller.
432 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
434 tf
->command
= fis
[2]; /* status */
435 tf
->feature
= fis
[3]; /* error */
442 tf
->hob_lbal
= fis
[8];
443 tf
->hob_lbam
= fis
[9];
444 tf
->hob_lbah
= fis
[10];
447 tf
->hob_nsect
= fis
[13];
450 static const u8 ata_rw_cmds
[] = {
454 ATA_CMD_READ_MULTI_EXT
,
455 ATA_CMD_WRITE_MULTI_EXT
,
459 ATA_CMD_WRITE_MULTI_FUA_EXT
,
463 ATA_CMD_PIO_READ_EXT
,
464 ATA_CMD_PIO_WRITE_EXT
,
477 ATA_CMD_WRITE_FUA_EXT
481 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
482 * @tf: command to examine and configure
483 * @dev: device tf belongs to
485 * Examine the device configuration and tf->flags to calculate
486 * the proper read/write commands and protocol to use.
491 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
495 int index
, fua
, lba48
, write
;
497 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
498 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
499 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
501 if (dev
->flags
& ATA_DFLAG_PIO
) {
502 tf
->protocol
= ATA_PROT_PIO
;
503 index
= dev
->multi_count
? 0 : 8;
504 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
505 /* Unable to use DMA due to host limitation */
506 tf
->protocol
= ATA_PROT_PIO
;
507 index
= dev
->multi_count
? 0 : 8;
509 tf
->protocol
= ATA_PROT_DMA
;
513 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
522 * ata_tf_read_block - Read block address from ATA taskfile
523 * @tf: ATA taskfile of interest
524 * @dev: ATA device @tf belongs to
529 * Read block address from @tf. This function can handle all
530 * three address formats - LBA, LBA48 and CHS. tf->protocol and
531 * flags select the address format to use.
534 * Block address read from @tf.
536 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
540 if (tf
->flags
& ATA_TFLAG_LBA
) {
541 if (tf
->flags
& ATA_TFLAG_LBA48
) {
542 block
|= (u64
)tf
->hob_lbah
<< 40;
543 block
|= (u64
)tf
->hob_lbam
<< 32;
544 block
|= tf
->hob_lbal
<< 24;
546 block
|= (tf
->device
& 0xf) << 24;
548 block
|= tf
->lbah
<< 16;
549 block
|= tf
->lbam
<< 8;
554 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
555 head
= tf
->device
& 0xf;
558 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
565 * ata_build_rw_tf - Build ATA taskfile for given read/write request
566 * @tf: Target ATA taskfile
567 * @dev: ATA device @tf belongs to
568 * @block: Block address
569 * @n_block: Number of blocks
570 * @tf_flags: RW/FUA etc...
576 * Build ATA taskfile @tf for read/write request described by
577 * @block, @n_block, @tf_flags and @tag on @dev.
581 * 0 on success, -ERANGE if the request is too large for @dev,
582 * -EINVAL if the request is invalid.
584 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
585 u64 block
, u32 n_block
, unsigned int tf_flags
,
588 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
589 tf
->flags
|= tf_flags
;
591 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
593 if (!lba_48_ok(block
, n_block
))
596 tf
->protocol
= ATA_PROT_NCQ
;
597 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
599 if (tf
->flags
& ATA_TFLAG_WRITE
)
600 tf
->command
= ATA_CMD_FPDMA_WRITE
;
602 tf
->command
= ATA_CMD_FPDMA_READ
;
604 tf
->nsect
= tag
<< 3;
605 tf
->hob_feature
= (n_block
>> 8) & 0xff;
606 tf
->feature
= n_block
& 0xff;
608 tf
->hob_lbah
= (block
>> 40) & 0xff;
609 tf
->hob_lbam
= (block
>> 32) & 0xff;
610 tf
->hob_lbal
= (block
>> 24) & 0xff;
611 tf
->lbah
= (block
>> 16) & 0xff;
612 tf
->lbam
= (block
>> 8) & 0xff;
613 tf
->lbal
= block
& 0xff;
616 if (tf
->flags
& ATA_TFLAG_FUA
)
617 tf
->device
|= 1 << 7;
618 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
619 tf
->flags
|= ATA_TFLAG_LBA
;
621 if (lba_28_ok(block
, n_block
)) {
623 tf
->device
|= (block
>> 24) & 0xf;
624 } else if (lba_48_ok(block
, n_block
)) {
625 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
629 tf
->flags
|= ATA_TFLAG_LBA48
;
631 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
633 tf
->hob_lbah
= (block
>> 40) & 0xff;
634 tf
->hob_lbam
= (block
>> 32) & 0xff;
635 tf
->hob_lbal
= (block
>> 24) & 0xff;
637 /* request too large even for LBA48 */
640 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
643 tf
->nsect
= n_block
& 0xff;
645 tf
->lbah
= (block
>> 16) & 0xff;
646 tf
->lbam
= (block
>> 8) & 0xff;
647 tf
->lbal
= block
& 0xff;
649 tf
->device
|= ATA_LBA
;
652 u32 sect
, head
, cyl
, track
;
654 /* The request -may- be too large for CHS addressing. */
655 if (!lba_28_ok(block
, n_block
))
658 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
661 /* Convert LBA to CHS */
662 track
= (u32
)block
/ dev
->sectors
;
663 cyl
= track
/ dev
->heads
;
664 head
= track
% dev
->heads
;
665 sect
= (u32
)block
% dev
->sectors
+ 1;
667 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
668 (u32
)block
, track
, cyl
, head
, sect
);
670 /* Check whether the converted CHS can fit.
674 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
677 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
688 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
689 * @pio_mask: pio_mask
690 * @mwdma_mask: mwdma_mask
691 * @udma_mask: udma_mask
693 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
694 * unsigned int xfer_mask.
702 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
703 unsigned long mwdma_mask
,
704 unsigned long udma_mask
)
706 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
707 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
708 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
712 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
713 * @xfer_mask: xfer_mask to unpack
714 * @pio_mask: resulting pio_mask
715 * @mwdma_mask: resulting mwdma_mask
716 * @udma_mask: resulting udma_mask
718 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
719 * Any NULL distination masks will be ignored.
721 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
722 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
725 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
727 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
729 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
732 static const struct ata_xfer_ent
{
736 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
737 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
738 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
743 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
744 * @xfer_mask: xfer_mask of interest
746 * Return matching XFER_* value for @xfer_mask. Only the highest
747 * bit of @xfer_mask is considered.
753 * Matching XFER_* value, 0xff if no match found.
755 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
757 int highbit
= fls(xfer_mask
) - 1;
758 const struct ata_xfer_ent
*ent
;
760 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
761 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
762 return ent
->base
+ highbit
- ent
->shift
;
767 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
768 * @xfer_mode: XFER_* of interest
770 * Return matching xfer_mask for @xfer_mode.
776 * Matching xfer_mask, 0 if no match found.
778 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
780 const struct ata_xfer_ent
*ent
;
782 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
783 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
784 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
785 & ~((1 << ent
->shift
) - 1);
790 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
791 * @xfer_mode: XFER_* of interest
793 * Return matching xfer_shift for @xfer_mode.
799 * Matching xfer_shift, -1 if no match found.
801 int ata_xfer_mode2shift(unsigned long xfer_mode
)
803 const struct ata_xfer_ent
*ent
;
805 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
806 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
812 * ata_mode_string - convert xfer_mask to string
813 * @xfer_mask: mask of bits supported; only highest bit counts.
815 * Determine string which represents the highest speed
816 * (highest bit in @modemask).
822 * Constant C string representing highest speed listed in
823 * @mode_mask, or the constant C string "<n/a>".
825 const char *ata_mode_string(unsigned long xfer_mask
)
827 static const char * const xfer_mode_str
[] = {
851 highbit
= fls(xfer_mask
) - 1;
852 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
853 return xfer_mode_str
[highbit
];
857 static const char *sata_spd_string(unsigned int spd
)
859 static const char * const spd_str
[] = {
864 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
866 return spd_str
[spd
- 1];
869 void ata_dev_disable(struct ata_device
*dev
)
871 if (ata_dev_enabled(dev
)) {
872 if (ata_msg_drv(dev
->link
->ap
))
873 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
874 ata_acpi_on_disable(dev
);
875 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
881 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
883 struct ata_link
*link
= dev
->link
;
884 struct ata_port
*ap
= link
->ap
;
886 unsigned int err_mask
;
890 * disallow DIPM for drivers which haven't set
891 * ATA_FLAG_IPM. This is because when DIPM is enabled,
892 * phy ready will be set in the interrupt status on
893 * state changes, which will cause some drivers to
894 * think there are errors - additionally drivers will
895 * need to disable hot plug.
897 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
898 ap
->pm_policy
= NOT_AVAILABLE
;
903 * For DIPM, we will only enable it for the
906 * Why? Because Disks are too stupid to know that
907 * If the host rejects a request to go to SLUMBER
908 * they should retry at PARTIAL, and instead it
909 * just would give up. So, for medium_power to
910 * work at all, we need to only allow HIPM.
912 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
918 /* no restrictions on IPM transitions */
919 scontrol
&= ~(0x3 << 8);
920 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
925 if (dev
->flags
& ATA_DFLAG_DIPM
)
926 err_mask
= ata_dev_set_feature(dev
,
927 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
930 /* allow IPM to PARTIAL */
931 scontrol
&= ~(0x1 << 8);
932 scontrol
|= (0x2 << 8);
933 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
938 * we don't have to disable DIPM since IPM flags
939 * disallow transitions to SLUMBER, which effectively
940 * disable DIPM if it does not support PARTIAL
944 case MAX_PERFORMANCE
:
945 /* disable all IPM transitions */
946 scontrol
|= (0x3 << 8);
947 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
952 * we don't have to disable DIPM since IPM flags
953 * disallow all transitions which effectively
954 * disable DIPM anyway.
959 /* FIXME: handle SET FEATURES failure */
966 * ata_dev_enable_pm - enable SATA interface power management
967 * @dev: device to enable power management
968 * @policy: the link power management policy
970 * Enable SATA Interface power management. This will enable
971 * Device Interface Power Management (DIPM) for min_power
972 * policy, and then call driver specific callbacks for
973 * enabling Host Initiated Power management.
976 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
978 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
981 struct ata_port
*ap
= dev
->link
->ap
;
983 /* set HIPM first, then DIPM */
984 if (ap
->ops
->enable_pm
)
985 rc
= ap
->ops
->enable_pm(ap
, policy
);
988 rc
= ata_dev_set_dipm(dev
, policy
);
992 ap
->pm_policy
= MAX_PERFORMANCE
;
994 ap
->pm_policy
= policy
;
995 return /* rc */; /* hopefully we can use 'rc' eventually */
1000 * ata_dev_disable_pm - disable SATA interface power management
1001 * @dev: device to disable power management
1003 * Disable SATA Interface power management. This will disable
1004 * Device Interface Power Management (DIPM) without changing
1005 * policy, call driver specific callbacks for disabling Host
1006 * Initiated Power management.
1011 static void ata_dev_disable_pm(struct ata_device
*dev
)
1013 struct ata_port
*ap
= dev
->link
->ap
;
1015 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
1016 if (ap
->ops
->disable_pm
)
1017 ap
->ops
->disable_pm(ap
);
1019 #endif /* CONFIG_PM */
1021 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
1023 ap
->pm_policy
= policy
;
1024 ap
->link
.eh_info
.action
|= ATA_EH_LPM
;
1025 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
1026 ata_port_schedule_eh(ap
);
1030 static void ata_lpm_enable(struct ata_host
*host
)
1032 struct ata_link
*link
;
1033 struct ata_port
*ap
;
1034 struct ata_device
*dev
;
1037 for (i
= 0; i
< host
->n_ports
; i
++) {
1038 ap
= host
->ports
[i
];
1039 ata_port_for_each_link(link
, ap
) {
1040 ata_link_for_each_dev(dev
, link
)
1041 ata_dev_disable_pm(dev
);
1046 static void ata_lpm_disable(struct ata_host
*host
)
1050 for (i
= 0; i
< host
->n_ports
; i
++) {
1051 struct ata_port
*ap
= host
->ports
[i
];
1052 ata_lpm_schedule(ap
, ap
->pm_policy
);
1055 #endif /* CONFIG_PM */
1058 * ata_dev_classify - determine device type based on ATA-spec signature
1059 * @tf: ATA taskfile register set for device to be identified
1061 * Determine from taskfile register contents whether a device is
1062 * ATA or ATAPI, as per "Signature and persistence" section
1063 * of ATA/PI spec (volume 1, sect 5.14).
1069 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1070 * %ATA_DEV_UNKNOWN the event of failure.
1072 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1074 /* Apple's open source Darwin code hints that some devices only
1075 * put a proper signature into the LBA mid/high registers,
1076 * So, we only check those. It's sufficient for uniqueness.
1078 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1079 * signatures for ATA and ATAPI devices attached on SerialATA,
1080 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1081 * spec has never mentioned about using different signatures
1082 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1083 * Multiplier specification began to use 0x69/0x96 to identify
1084 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1085 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1086 * 0x69/0x96 shortly and described them as reserved for
1089 * We follow the current spec and consider that 0x69/0x96
1090 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1092 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1093 DPRINTK("found ATA device by sig\n");
1097 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1098 DPRINTK("found ATAPI device by sig\n");
1099 return ATA_DEV_ATAPI
;
1102 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1103 DPRINTK("found PMP device by sig\n");
1107 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1108 printk(KERN_INFO
"ata: SEMB device ignored\n");
1109 return ATA_DEV_SEMB_UNSUP
; /* not yet */
1112 DPRINTK("unknown device\n");
1113 return ATA_DEV_UNKNOWN
;
1117 * ata_id_string - Convert IDENTIFY DEVICE page into string
1118 * @id: IDENTIFY DEVICE results we will examine
1119 * @s: string into which data is output
1120 * @ofs: offset into identify device page
1121 * @len: length of string to return. must be an even number.
1123 * The strings in the IDENTIFY DEVICE page are broken up into
1124 * 16-bit chunks. Run through the string, and output each
1125 * 8-bit chunk linearly, regardless of platform.
1131 void ata_id_string(const u16
*id
, unsigned char *s
,
1132 unsigned int ofs
, unsigned int len
)
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1164 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1165 unsigned int ofs
, unsigned int len
)
1169 WARN_ON(!(len
& 1));
1171 ata_id_string(id
, s
, ofs
, len
- 1);
1173 p
= s
+ strnlen(s
, len
- 1);
1174 while (p
> s
&& p
[-1] == ' ')
1179 static u64
ata_id_n_sectors(const u16
*id
)
1181 if (ata_id_has_lba(id
)) {
1182 if (ata_id_has_lba48(id
))
1183 return ata_id_u64(id
, 100);
1185 return ata_id_u32(id
, 60);
1187 if (ata_id_current_chs_valid(id
))
1188 return ata_id_u32(id
, 57);
1190 return id
[1] * id
[3] * id
[6];
1194 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1198 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1199 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1200 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
1201 sectors
|= (tf
->lbah
& 0xff) << 16;
1202 sectors
|= (tf
->lbam
& 0xff) << 8;
1203 sectors
|= (tf
->lbal
& 0xff);
1208 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1212 sectors
|= (tf
->device
& 0x0f) << 24;
1213 sectors
|= (tf
->lbah
& 0xff) << 16;
1214 sectors
|= (tf
->lbam
& 0xff) << 8;
1215 sectors
|= (tf
->lbal
& 0xff);
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1232 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1234 unsigned int err_mask
;
1235 struct ata_taskfile tf
;
1236 int lba48
= ata_id_has_lba48(dev
->id
);
1238 ata_tf_init(dev
, &tf
);
1240 /* always clear all address registers */
1241 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1244 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1245 tf
.flags
|= ATA_TFLAG_LBA48
;
1247 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1249 tf
.protocol
|= ATA_PROT_NODATA
;
1250 tf
.device
|= ATA_LBA
;
1252 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1254 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1255 "max address (err_mask=0x%x)\n", err_mask
);
1256 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1262 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1264 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1265 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1271 * ata_set_max_sectors - Set max sectors
1272 * @dev: target device
1273 * @new_sectors: new max sectors value to set for the device
1275 * Set max sectors of @dev to @new_sectors.
1278 * 0 on success, -EACCES if command is aborted or denied (due to
1279 * previous non-volatile SET_MAX) by the drive. -EIO on other
1282 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1284 unsigned int err_mask
;
1285 struct ata_taskfile tf
;
1286 int lba48
= ata_id_has_lba48(dev
->id
);
1290 ata_tf_init(dev
, &tf
);
1292 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1295 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1296 tf
.flags
|= ATA_TFLAG_LBA48
;
1298 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1299 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1300 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1302 tf
.command
= ATA_CMD_SET_MAX
;
1304 tf
.device
|= (new_sectors
>> 24) & 0xf;
1307 tf
.protocol
|= ATA_PROT_NODATA
;
1308 tf
.device
|= ATA_LBA
;
1310 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1311 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1312 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1314 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1316 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1317 "max address (err_mask=0x%x)\n", err_mask
);
1318 if (err_mask
== AC_ERR_DEV
&&
1319 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1328 * ata_hpa_resize - Resize a device with an HPA set
1329 * @dev: Device to resize
1331 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1332 * it if required to the full size of the media. The caller must check
1333 * the drive has the HPA feature set enabled.
1336 * 0 on success, -errno on failure.
1338 static int ata_hpa_resize(struct ata_device
*dev
)
1340 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1341 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1342 u64 sectors
= ata_id_n_sectors(dev
->id
);
1346 /* do we need to do it? */
1347 if (dev
->class != ATA_DEV_ATA
||
1348 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1349 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1352 /* read native max address */
1353 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1355 /* If device aborted the command or HPA isn't going to
1356 * be unlocked, skip HPA resizing.
1358 if (rc
== -EACCES
|| !ata_ignore_hpa
) {
1359 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1360 "broken, skipping HPA handling\n");
1361 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1363 /* we can continue if device aborted the command */
1371 /* nothing to do? */
1372 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1373 if (!print_info
|| native_sectors
== sectors
)
1376 if (native_sectors
> sectors
)
1377 ata_dev_printk(dev
, KERN_INFO
,
1378 "HPA detected: current %llu, native %llu\n",
1379 (unsigned long long)sectors
,
1380 (unsigned long long)native_sectors
);
1381 else if (native_sectors
< sectors
)
1382 ata_dev_printk(dev
, KERN_WARNING
,
1383 "native sectors (%llu) is smaller than "
1385 (unsigned long long)native_sectors
,
1386 (unsigned long long)sectors
);
1390 /* let's unlock HPA */
1391 rc
= ata_set_max_sectors(dev
, native_sectors
);
1392 if (rc
== -EACCES
) {
1393 /* if device aborted the command, skip HPA resizing */
1394 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1395 "(%llu -> %llu), skipping HPA handling\n",
1396 (unsigned long long)sectors
,
1397 (unsigned long long)native_sectors
);
1398 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1403 /* re-read IDENTIFY data */
1404 rc
= ata_dev_reread_id(dev
, 0);
1406 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1407 "data after HPA resizing\n");
1412 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1413 ata_dev_printk(dev
, KERN_INFO
,
1414 "HPA unlocked: %llu -> %llu, native %llu\n",
1415 (unsigned long long)sectors
,
1416 (unsigned long long)new_sectors
,
1417 (unsigned long long)native_sectors
);
1424 * ata_dump_id - IDENTIFY DEVICE info debugging output
1425 * @id: IDENTIFY DEVICE page to dump
1427 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1434 static inline void ata_dump_id(const u16
*id
)
1436 DPRINTK("49==0x%04x "
1446 DPRINTK("80==0x%04x "
1456 DPRINTK("88==0x%04x "
1463 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1464 * @id: IDENTIFY data to compute xfer mask from
1466 * Compute the xfermask for this device. This is not as trivial
1467 * as it seems if we must consider early devices correctly.
1469 * FIXME: pre IDE drive timing (do we care ?).
1477 unsigned long ata_id_xfermask(const u16
*id
)
1479 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1481 /* Usual case. Word 53 indicates word 64 is valid */
1482 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1483 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1487 /* If word 64 isn't valid then Word 51 high byte holds
1488 * the PIO timing number for the maximum. Turn it into
1491 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1492 if (mode
< 5) /* Valid PIO range */
1493 pio_mask
= (2 << mode
) - 1;
1497 /* But wait.. there's more. Design your standards by
1498 * committee and you too can get a free iordy field to
1499 * process. However its the speeds not the modes that
1500 * are supported... Note drivers using the timing API
1501 * will get this right anyway
1505 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1507 if (ata_id_is_cfa(id
)) {
1509 * Process compact flash extended modes
1511 int pio
= id
[163] & 0x7;
1512 int dma
= (id
[163] >> 3) & 7;
1515 pio_mask
|= (1 << 5);
1517 pio_mask
|= (1 << 6);
1519 mwdma_mask
|= (1 << 3);
1521 mwdma_mask
|= (1 << 4);
1525 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1526 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1528 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1532 * ata_pio_queue_task - Queue port_task
1533 * @ap: The ata_port to queue port_task for
1534 * @fn: workqueue function to be scheduled
1535 * @data: data for @fn to use
1536 * @delay: delay time for workqueue function
1538 * Schedule @fn(@data) for execution after @delay jiffies using
1539 * port_task. There is one port_task per port and it's the
1540 * user(low level driver)'s responsibility to make sure that only
1541 * one task is active at any given time.
1543 * libata core layer takes care of synchronization between
1544 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1548 * Inherited from caller.
1550 void ata_pio_queue_task(struct ata_port
*ap
, void *data
, unsigned long delay
)
1552 ap
->port_task_data
= data
;
1554 /* may fail if ata_port_flush_task() in progress */
1555 queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1559 * ata_port_flush_task - Flush port_task
1560 * @ap: The ata_port to flush port_task for
1562 * After this function completes, port_task is guranteed not to
1563 * be running or scheduled.
1566 * Kernel thread context (may sleep)
1568 void ata_port_flush_task(struct ata_port
*ap
)
1572 cancel_rearming_delayed_work(&ap
->port_task
);
1574 if (ata_msg_ctl(ap
))
1575 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1578 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1580 struct completion
*waiting
= qc
->private_data
;
1586 * ata_exec_internal_sg - execute libata internal command
1587 * @dev: Device to which the command is sent
1588 * @tf: Taskfile registers for the command and the result
1589 * @cdb: CDB for packet command
1590 * @dma_dir: Data tranfer direction of the command
1591 * @sgl: sg list for the data buffer of the command
1592 * @n_elem: Number of sg entries
1593 * @timeout: Timeout in msecs (0 for default)
1595 * Executes libata internal command with timeout. @tf contains
1596 * command on entry and result on return. Timeout and error
1597 * conditions are reported via return value. No recovery action
1598 * is taken after a command times out. It's caller's duty to
1599 * clean up after timeout.
1602 * None. Should be called with kernel context, might sleep.
1605 * Zero on success, AC_ERR_* mask on failure
1607 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1608 struct ata_taskfile
*tf
, const u8
*cdb
,
1609 int dma_dir
, struct scatterlist
*sgl
,
1610 unsigned int n_elem
, unsigned long timeout
)
1612 struct ata_link
*link
= dev
->link
;
1613 struct ata_port
*ap
= link
->ap
;
1614 u8 command
= tf
->command
;
1615 struct ata_queued_cmd
*qc
;
1616 unsigned int tag
, preempted_tag
;
1617 u32 preempted_sactive
, preempted_qc_active
;
1618 int preempted_nr_active_links
;
1619 DECLARE_COMPLETION_ONSTACK(wait
);
1620 unsigned long flags
;
1621 unsigned int err_mask
;
1624 spin_lock_irqsave(ap
->lock
, flags
);
1626 /* no internal command while frozen */
1627 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1628 spin_unlock_irqrestore(ap
->lock
, flags
);
1629 return AC_ERR_SYSTEM
;
1632 /* initialize internal qc */
1634 /* XXX: Tag 0 is used for drivers with legacy EH as some
1635 * drivers choke if any other tag is given. This breaks
1636 * ata_tag_internal() test for those drivers. Don't use new
1637 * EH stuff without converting to it.
1639 if (ap
->ops
->error_handler
)
1640 tag
= ATA_TAG_INTERNAL
;
1644 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1646 qc
= __ata_qc_from_tag(ap
, tag
);
1654 preempted_tag
= link
->active_tag
;
1655 preempted_sactive
= link
->sactive
;
1656 preempted_qc_active
= ap
->qc_active
;
1657 preempted_nr_active_links
= ap
->nr_active_links
;
1658 link
->active_tag
= ATA_TAG_POISON
;
1661 ap
->nr_active_links
= 0;
1663 /* prepare & issue qc */
1666 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1667 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1668 qc
->dma_dir
= dma_dir
;
1669 if (dma_dir
!= DMA_NONE
) {
1670 unsigned int i
, buflen
= 0;
1671 struct scatterlist
*sg
;
1673 for_each_sg(sgl
, sg
, n_elem
, i
)
1674 buflen
+= sg
->length
;
1676 ata_sg_init(qc
, sgl
, n_elem
);
1677 qc
->nbytes
= buflen
;
1680 qc
->private_data
= &wait
;
1681 qc
->complete_fn
= ata_qc_complete_internal
;
1685 spin_unlock_irqrestore(ap
->lock
, flags
);
1688 timeout
= ata_probe_timeout
* 1000 / HZ
;
1690 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1692 ata_port_flush_task(ap
);
1695 spin_lock_irqsave(ap
->lock
, flags
);
1697 /* We're racing with irq here. If we lose, the
1698 * following test prevents us from completing the qc
1699 * twice. If we win, the port is frozen and will be
1700 * cleaned up by ->post_internal_cmd().
1702 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1703 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1705 if (ap
->ops
->error_handler
)
1706 ata_port_freeze(ap
);
1708 ata_qc_complete(qc
);
1710 if (ata_msg_warn(ap
))
1711 ata_dev_printk(dev
, KERN_WARNING
,
1712 "qc timeout (cmd 0x%x)\n", command
);
1715 spin_unlock_irqrestore(ap
->lock
, flags
);
1718 /* do post_internal_cmd */
1719 if (ap
->ops
->post_internal_cmd
)
1720 ap
->ops
->post_internal_cmd(qc
);
1722 /* perform minimal error analysis */
1723 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1724 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1725 qc
->err_mask
|= AC_ERR_DEV
;
1728 qc
->err_mask
|= AC_ERR_OTHER
;
1730 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1731 qc
->err_mask
&= ~AC_ERR_OTHER
;
1735 spin_lock_irqsave(ap
->lock
, flags
);
1737 *tf
= qc
->result_tf
;
1738 err_mask
= qc
->err_mask
;
1741 link
->active_tag
= preempted_tag
;
1742 link
->sactive
= preempted_sactive
;
1743 ap
->qc_active
= preempted_qc_active
;
1744 ap
->nr_active_links
= preempted_nr_active_links
;
1746 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1747 * Until those drivers are fixed, we detect the condition
1748 * here, fail the command with AC_ERR_SYSTEM and reenable the
1751 * Note that this doesn't change any behavior as internal
1752 * command failure results in disabling the device in the
1753 * higher layer for LLDDs without new reset/EH callbacks.
1755 * Kill the following code as soon as those drivers are fixed.
1757 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1758 err_mask
|= AC_ERR_SYSTEM
;
1762 spin_unlock_irqrestore(ap
->lock
, flags
);
1768 * ata_exec_internal - execute libata internal command
1769 * @dev: Device to which the command is sent
1770 * @tf: Taskfile registers for the command and the result
1771 * @cdb: CDB for packet command
1772 * @dma_dir: Data tranfer direction of the command
1773 * @buf: Data buffer of the command
1774 * @buflen: Length of data buffer
1775 * @timeout: Timeout in msecs (0 for default)
1777 * Wrapper around ata_exec_internal_sg() which takes simple
1778 * buffer instead of sg list.
1781 * None. Should be called with kernel context, might sleep.
1784 * Zero on success, AC_ERR_* mask on failure
1786 unsigned ata_exec_internal(struct ata_device
*dev
,
1787 struct ata_taskfile
*tf
, const u8
*cdb
,
1788 int dma_dir
, void *buf
, unsigned int buflen
,
1789 unsigned long timeout
)
1791 struct scatterlist
*psg
= NULL
, sg
;
1792 unsigned int n_elem
= 0;
1794 if (dma_dir
!= DMA_NONE
) {
1796 sg_init_one(&sg
, buf
, buflen
);
1801 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1806 * ata_do_simple_cmd - execute simple internal command
1807 * @dev: Device to which the command is sent
1808 * @cmd: Opcode to execute
1810 * Execute a 'simple' command, that only consists of the opcode
1811 * 'cmd' itself, without filling any other registers
1814 * Kernel thread context (may sleep).
1817 * Zero on success, AC_ERR_* mask on failure
1819 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1821 struct ata_taskfile tf
;
1823 ata_tf_init(dev
, &tf
);
1826 tf
.flags
|= ATA_TFLAG_DEVICE
;
1827 tf
.protocol
= ATA_PROT_NODATA
;
1829 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1833 * ata_pio_need_iordy - check if iordy needed
1836 * Check if the current speed of the device requires IORDY. Used
1837 * by various controllers for chip configuration.
1840 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1842 /* Controller doesn't support IORDY. Probably a pointless check
1843 as the caller should know this */
1844 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1846 /* PIO3 and higher it is mandatory */
1847 if (adev
->pio_mode
> XFER_PIO_2
)
1849 /* We turn it on when possible */
1850 if (ata_id_has_iordy(adev
->id
))
1856 * ata_pio_mask_no_iordy - Return the non IORDY mask
1859 * Compute the highest mode possible if we are not using iordy. Return
1860 * -1 if no iordy mode is available.
1863 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1865 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1866 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1867 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1868 /* Is the speed faster than the drive allows non IORDY ? */
1870 /* This is cycle times not frequency - watch the logic! */
1871 if (pio
> 240) /* PIO2 is 240nS per cycle */
1872 return 3 << ATA_SHIFT_PIO
;
1873 return 7 << ATA_SHIFT_PIO
;
1876 return 3 << ATA_SHIFT_PIO
;
1880 * ata_dev_read_id - Read ID data from the specified device
1881 * @dev: target device
1882 * @p_class: pointer to class of the target device (may be changed)
1883 * @flags: ATA_READID_* flags
1884 * @id: buffer to read IDENTIFY data into
1886 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1887 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1888 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1889 * for pre-ATA4 drives.
1891 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1892 * now we abort if we hit that case.
1895 * Kernel thread context (may sleep)
1898 * 0 on success, -errno otherwise.
1900 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1901 unsigned int flags
, u16
*id
)
1903 struct ata_port
*ap
= dev
->link
->ap
;
1904 unsigned int class = *p_class
;
1905 struct ata_taskfile tf
;
1906 unsigned int err_mask
= 0;
1908 int may_fallback
= 1, tried_spinup
= 0;
1911 if (ata_msg_ctl(ap
))
1912 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
1915 ata_tf_init(dev
, &tf
);
1919 tf
.command
= ATA_CMD_ID_ATA
;
1922 tf
.command
= ATA_CMD_ID_ATAPI
;
1926 reason
= "unsupported class";
1930 tf
.protocol
= ATA_PROT_PIO
;
1932 /* Some devices choke if TF registers contain garbage. Make
1933 * sure those are properly initialized.
1935 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1937 /* Device presence detection is unreliable on some
1938 * controllers. Always poll IDENTIFY if available.
1940 tf
.flags
|= ATA_TFLAG_POLLING
;
1942 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1943 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
1945 if (err_mask
& AC_ERR_NODEV_HINT
) {
1946 ata_dev_printk(dev
, KERN_DEBUG
,
1947 "NODEV after polling detection\n");
1951 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1952 /* Device or controller might have reported
1953 * the wrong device class. Give a shot at the
1954 * other IDENTIFY if the current one is
1955 * aborted by the device.
1960 if (class == ATA_DEV_ATA
)
1961 class = ATA_DEV_ATAPI
;
1963 class = ATA_DEV_ATA
;
1967 /* Control reaches here iff the device aborted
1968 * both flavors of IDENTIFYs which happens
1969 * sometimes with phantom devices.
1971 ata_dev_printk(dev
, KERN_DEBUG
,
1972 "both IDENTIFYs aborted, assuming NODEV\n");
1977 reason
= "I/O error";
1981 /* Falling back doesn't make sense if ID data was read
1982 * successfully at least once.
1986 swap_buf_le16(id
, ATA_ID_WORDS
);
1990 reason
= "device reports invalid type";
1992 if (class == ATA_DEV_ATA
) {
1993 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1996 if (ata_id_is_ata(id
))
2000 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2003 * Drive powered-up in standby mode, and requires a specific
2004 * SET_FEATURES spin-up subcommand before it will accept
2005 * anything other than the original IDENTIFY command.
2007 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2008 if (err_mask
&& id
[2] != 0x738c) {
2010 reason
= "SPINUP failed";
2014 * If the drive initially returned incomplete IDENTIFY info,
2015 * we now must reissue the IDENTIFY command.
2017 if (id
[2] == 0x37c8)
2021 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2023 * The exact sequence expected by certain pre-ATA4 drives is:
2025 * IDENTIFY (optional in early ATA)
2026 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2028 * Some drives were very specific about that exact sequence.
2030 * Note that ATA4 says lba is mandatory so the second check
2031 * shoud never trigger.
2033 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2034 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2037 reason
= "INIT_DEV_PARAMS failed";
2041 /* current CHS translation info (id[53-58]) might be
2042 * changed. reread the identify device info.
2044 flags
&= ~ATA_READID_POSTRESET
;
2054 if (ata_msg_warn(ap
))
2055 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2056 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2060 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2062 struct ata_port
*ap
= dev
->link
->ap
;
2063 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2066 static void ata_dev_config_ncq(struct ata_device
*dev
,
2067 char *desc
, size_t desc_sz
)
2069 struct ata_port
*ap
= dev
->link
->ap
;
2070 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2072 if (!ata_id_has_ncq(dev
->id
)) {
2076 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2077 snprintf(desc
, desc_sz
, "NCQ (not used)");
2080 if (ap
->flags
& ATA_FLAG_NCQ
) {
2081 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2082 dev
->flags
|= ATA_DFLAG_NCQ
;
2085 if (hdepth
>= ddepth
)
2086 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2088 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2092 * ata_dev_configure - Configure the specified ATA/ATAPI device
2093 * @dev: Target device to configure
2095 * Configure @dev according to @dev->id. Generic and low-level
2096 * driver specific fixups are also applied.
2099 * Kernel thread context (may sleep)
2102 * 0 on success, -errno otherwise
2104 int ata_dev_configure(struct ata_device
*dev
)
2106 struct ata_port
*ap
= dev
->link
->ap
;
2107 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2108 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2109 const u16
*id
= dev
->id
;
2110 unsigned long xfer_mask
;
2111 char revbuf
[7]; /* XYZ-99\0 */
2112 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2113 char modelbuf
[ATA_ID_PROD_LEN
+1];
2116 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2117 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2122 if (ata_msg_probe(ap
))
2123 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2126 dev
->horkage
|= ata_dev_blacklisted(dev
);
2127 ata_force_horkage(dev
);
2129 /* let ACPI work its magic */
2130 rc
= ata_acpi_on_devcfg(dev
);
2134 /* massage HPA, do it early as it might change IDENTIFY data */
2135 rc
= ata_hpa_resize(dev
);
2139 /* print device capabilities */
2140 if (ata_msg_probe(ap
))
2141 ata_dev_printk(dev
, KERN_DEBUG
,
2142 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2143 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2145 id
[49], id
[82], id
[83], id
[84],
2146 id
[85], id
[86], id
[87], id
[88]);
2148 /* initialize to-be-configured parameters */
2149 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2150 dev
->max_sectors
= 0;
2158 * common ATA, ATAPI feature tests
2161 /* find max transfer mode; for printk only */
2162 xfer_mask
= ata_id_xfermask(id
);
2164 if (ata_msg_probe(ap
))
2167 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2168 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2171 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2174 /* ATA-specific feature tests */
2175 if (dev
->class == ATA_DEV_ATA
) {
2176 if (ata_id_is_cfa(id
)) {
2177 if (id
[162] & 1) /* CPRM may make this media unusable */
2178 ata_dev_printk(dev
, KERN_WARNING
,
2179 "supports DRM functions and may "
2180 "not be fully accessable.\n");
2181 snprintf(revbuf
, 7, "CFA");
2183 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2184 /* Warn the user if the device has TPM extensions */
2185 if (ata_id_has_tpm(id
))
2186 ata_dev_printk(dev
, KERN_WARNING
,
2187 "supports DRM functions and may "
2188 "not be fully accessable.\n");
2191 dev
->n_sectors
= ata_id_n_sectors(id
);
2193 if (dev
->id
[59] & 0x100)
2194 dev
->multi_count
= dev
->id
[59] & 0xff;
2196 if (ata_id_has_lba(id
)) {
2197 const char *lba_desc
;
2201 dev
->flags
|= ATA_DFLAG_LBA
;
2202 if (ata_id_has_lba48(id
)) {
2203 dev
->flags
|= ATA_DFLAG_LBA48
;
2206 if (dev
->n_sectors
>= (1UL << 28) &&
2207 ata_id_has_flush_ext(id
))
2208 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2212 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2214 /* print device info to dmesg */
2215 if (ata_msg_drv(ap
) && print_info
) {
2216 ata_dev_printk(dev
, KERN_INFO
,
2217 "%s: %s, %s, max %s\n",
2218 revbuf
, modelbuf
, fwrevbuf
,
2219 ata_mode_string(xfer_mask
));
2220 ata_dev_printk(dev
, KERN_INFO
,
2221 "%Lu sectors, multi %u: %s %s\n",
2222 (unsigned long long)dev
->n_sectors
,
2223 dev
->multi_count
, lba_desc
, ncq_desc
);
2228 /* Default translation */
2229 dev
->cylinders
= id
[1];
2231 dev
->sectors
= id
[6];
2233 if (ata_id_current_chs_valid(id
)) {
2234 /* Current CHS translation is valid. */
2235 dev
->cylinders
= id
[54];
2236 dev
->heads
= id
[55];
2237 dev
->sectors
= id
[56];
2240 /* print device info to dmesg */
2241 if (ata_msg_drv(ap
) && print_info
) {
2242 ata_dev_printk(dev
, KERN_INFO
,
2243 "%s: %s, %s, max %s\n",
2244 revbuf
, modelbuf
, fwrevbuf
,
2245 ata_mode_string(xfer_mask
));
2246 ata_dev_printk(dev
, KERN_INFO
,
2247 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2248 (unsigned long long)dev
->n_sectors
,
2249 dev
->multi_count
, dev
->cylinders
,
2250 dev
->heads
, dev
->sectors
);
2257 /* ATAPI-specific feature tests */
2258 else if (dev
->class == ATA_DEV_ATAPI
) {
2259 const char *cdb_intr_string
= "";
2260 const char *atapi_an_string
= "";
2261 const char *dma_dir_string
= "";
2264 rc
= atapi_cdb_len(id
);
2265 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2266 if (ata_msg_warn(ap
))
2267 ata_dev_printk(dev
, KERN_WARNING
,
2268 "unsupported CDB len\n");
2272 dev
->cdb_len
= (unsigned int) rc
;
2274 /* Enable ATAPI AN if both the host and device have
2275 * the support. If PMP is attached, SNTF is required
2276 * to enable ATAPI AN to discern between PHY status
2277 * changed notifications and ATAPI ANs.
2279 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2280 (!sata_pmp_attached(ap
) ||
2281 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2282 unsigned int err_mask
;
2284 /* issue SET feature command to turn this on */
2285 err_mask
= ata_dev_set_feature(dev
,
2286 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2288 ata_dev_printk(dev
, KERN_ERR
,
2289 "failed to enable ATAPI AN "
2290 "(err_mask=0x%x)\n", err_mask
);
2292 dev
->flags
|= ATA_DFLAG_AN
;
2293 atapi_an_string
= ", ATAPI AN";
2297 if (ata_id_cdb_intr(dev
->id
)) {
2298 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2299 cdb_intr_string
= ", CDB intr";
2302 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2303 dev
->flags
|= ATA_DFLAG_DMADIR
;
2304 dma_dir_string
= ", DMADIR";
2307 /* print device info to dmesg */
2308 if (ata_msg_drv(ap
) && print_info
)
2309 ata_dev_printk(dev
, KERN_INFO
,
2310 "ATAPI: %s, %s, max %s%s%s%s\n",
2312 ata_mode_string(xfer_mask
),
2313 cdb_intr_string
, atapi_an_string
,
2317 /* determine max_sectors */
2318 dev
->max_sectors
= ATA_MAX_SECTORS
;
2319 if (dev
->flags
& ATA_DFLAG_LBA48
)
2320 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2322 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2323 if (ata_id_has_hipm(dev
->id
))
2324 dev
->flags
|= ATA_DFLAG_HIPM
;
2325 if (ata_id_has_dipm(dev
->id
))
2326 dev
->flags
|= ATA_DFLAG_DIPM
;
2329 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2331 if (ata_dev_knobble(dev
)) {
2332 if (ata_msg_drv(ap
) && print_info
)
2333 ata_dev_printk(dev
, KERN_INFO
,
2334 "applying bridge limits\n");
2335 dev
->udma_mask
&= ATA_UDMA5
;
2336 dev
->max_sectors
= ATA_MAX_SECTORS
;
2339 if ((dev
->class == ATA_DEV_ATAPI
) &&
2340 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2341 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2342 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2345 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2346 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2349 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2350 dev
->horkage
|= ATA_HORKAGE_IPM
;
2352 /* reset link pm_policy for this port to no pm */
2353 ap
->pm_policy
= MAX_PERFORMANCE
;
2356 if (ap
->ops
->dev_config
)
2357 ap
->ops
->dev_config(dev
);
2359 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2360 /* Let the user know. We don't want to disallow opens for
2361 rescue purposes, or in case the vendor is just a blithering
2362 idiot. Do this after the dev_config call as some controllers
2363 with buggy firmware may want to avoid reporting false device
2367 ata_dev_printk(dev
, KERN_WARNING
,
2368 "Drive reports diagnostics failure. This may indicate a drive\n");
2369 ata_dev_printk(dev
, KERN_WARNING
,
2370 "fault or invalid emulation. Contact drive vendor for information.\n");
2377 if (ata_msg_probe(ap
))
2378 ata_dev_printk(dev
, KERN_DEBUG
,
2379 "%s: EXIT, err\n", __func__
);
2384 * ata_cable_40wire - return 40 wire cable type
2387 * Helper method for drivers which want to hardwire 40 wire cable
2391 int ata_cable_40wire(struct ata_port
*ap
)
2393 return ATA_CBL_PATA40
;
2397 * ata_cable_80wire - return 80 wire cable type
2400 * Helper method for drivers which want to hardwire 80 wire cable
2404 int ata_cable_80wire(struct ata_port
*ap
)
2406 return ATA_CBL_PATA80
;
2410 * ata_cable_unknown - return unknown PATA cable.
2413 * Helper method for drivers which have no PATA cable detection.
2416 int ata_cable_unknown(struct ata_port
*ap
)
2418 return ATA_CBL_PATA_UNK
;
2422 * ata_cable_ignore - return ignored PATA cable.
2425 * Helper method for drivers which don't use cable type to limit
2428 int ata_cable_ignore(struct ata_port
*ap
)
2430 return ATA_CBL_PATA_IGN
;
2434 * ata_cable_sata - return SATA cable type
2437 * Helper method for drivers which have SATA cables
2440 int ata_cable_sata(struct ata_port
*ap
)
2442 return ATA_CBL_SATA
;
2446 * ata_bus_probe - Reset and probe ATA bus
2449 * Master ATA bus probing function. Initiates a hardware-dependent
2450 * bus reset, then attempts to identify any devices found on
2454 * PCI/etc. bus probe sem.
2457 * Zero on success, negative errno otherwise.
2460 int ata_bus_probe(struct ata_port
*ap
)
2462 unsigned int classes
[ATA_MAX_DEVICES
];
2463 int tries
[ATA_MAX_DEVICES
];
2465 struct ata_device
*dev
;
2469 ata_link_for_each_dev(dev
, &ap
->link
)
2470 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2473 ata_link_for_each_dev(dev
, &ap
->link
) {
2474 /* If we issue an SRST then an ATA drive (not ATAPI)
2475 * may change configuration and be in PIO0 timing. If
2476 * we do a hard reset (or are coming from power on)
2477 * this is true for ATA or ATAPI. Until we've set a
2478 * suitable controller mode we should not touch the
2479 * bus as we may be talking too fast.
2481 dev
->pio_mode
= XFER_PIO_0
;
2483 /* If the controller has a pio mode setup function
2484 * then use it to set the chipset to rights. Don't
2485 * touch the DMA setup as that will be dealt with when
2486 * configuring devices.
2488 if (ap
->ops
->set_piomode
)
2489 ap
->ops
->set_piomode(ap
, dev
);
2492 /* reset and determine device classes */
2493 ap
->ops
->phy_reset(ap
);
2495 ata_link_for_each_dev(dev
, &ap
->link
) {
2496 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2497 dev
->class != ATA_DEV_UNKNOWN
)
2498 classes
[dev
->devno
] = dev
->class;
2500 classes
[dev
->devno
] = ATA_DEV_NONE
;
2502 dev
->class = ATA_DEV_UNKNOWN
;
2507 /* read IDENTIFY page and configure devices. We have to do the identify
2508 specific sequence bass-ackwards so that PDIAG- is released by
2511 ata_link_for_each_dev_reverse(dev
, &ap
->link
) {
2512 if (tries
[dev
->devno
])
2513 dev
->class = classes
[dev
->devno
];
2515 if (!ata_dev_enabled(dev
))
2518 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2524 /* Now ask for the cable type as PDIAG- should have been released */
2525 if (ap
->ops
->cable_detect
)
2526 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2528 /* We may have SATA bridge glue hiding here irrespective of the
2529 reported cable types and sensed types */
2530 ata_link_for_each_dev(dev
, &ap
->link
) {
2531 if (!ata_dev_enabled(dev
))
2533 /* SATA drives indicate we have a bridge. We don't know which
2534 end of the link the bridge is which is a problem */
2535 if (ata_id_is_sata(dev
->id
))
2536 ap
->cbl
= ATA_CBL_SATA
;
2539 /* After the identify sequence we can now set up the devices. We do
2540 this in the normal order so that the user doesn't get confused */
2542 ata_link_for_each_dev(dev
, &ap
->link
) {
2543 if (!ata_dev_enabled(dev
))
2546 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2547 rc
= ata_dev_configure(dev
);
2548 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2553 /* configure transfer mode */
2554 rc
= ata_set_mode(&ap
->link
, &dev
);
2558 ata_link_for_each_dev(dev
, &ap
->link
)
2559 if (ata_dev_enabled(dev
))
2562 /* no device present, disable port */
2563 ata_port_disable(ap
);
2567 tries
[dev
->devno
]--;
2571 /* eeek, something went very wrong, give up */
2572 tries
[dev
->devno
] = 0;
2576 /* give it just one more chance */
2577 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2579 if (tries
[dev
->devno
] == 1) {
2580 /* This is the last chance, better to slow
2581 * down than lose it.
2583 sata_down_spd_limit(&ap
->link
);
2584 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2588 if (!tries
[dev
->devno
])
2589 ata_dev_disable(dev
);
2595 * ata_port_probe - Mark port as enabled
2596 * @ap: Port for which we indicate enablement
2598 * Modify @ap data structure such that the system
2599 * thinks that the entire port is enabled.
2601 * LOCKING: host lock, or some other form of
2605 void ata_port_probe(struct ata_port
*ap
)
2607 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2611 * sata_print_link_status - Print SATA link status
2612 * @link: SATA link to printk link status about
2614 * This function prints link speed and status of a SATA link.
2619 static void sata_print_link_status(struct ata_link
*link
)
2621 u32 sstatus
, scontrol
, tmp
;
2623 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2625 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2627 if (ata_link_online(link
)) {
2628 tmp
= (sstatus
>> 4) & 0xf;
2629 ata_link_printk(link
, KERN_INFO
,
2630 "SATA link up %s (SStatus %X SControl %X)\n",
2631 sata_spd_string(tmp
), sstatus
, scontrol
);
2633 ata_link_printk(link
, KERN_INFO
,
2634 "SATA link down (SStatus %X SControl %X)\n",
2640 * ata_dev_pair - return other device on cable
2643 * Obtain the other device on the same cable, or if none is
2644 * present NULL is returned
2647 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2649 struct ata_link
*link
= adev
->link
;
2650 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2651 if (!ata_dev_enabled(pair
))
2657 * ata_port_disable - Disable port.
2658 * @ap: Port to be disabled.
2660 * Modify @ap data structure such that the system
2661 * thinks that the entire port is disabled, and should
2662 * never attempt to probe or communicate with devices
2665 * LOCKING: host lock, or some other form of
2669 void ata_port_disable(struct ata_port
*ap
)
2671 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2672 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2673 ap
->flags
|= ATA_FLAG_DISABLED
;
2677 * sata_down_spd_limit - adjust SATA spd limit downward
2678 * @link: Link to adjust SATA spd limit for
2680 * Adjust SATA spd limit of @link downward. Note that this
2681 * function only adjusts the limit. The change must be applied
2682 * using sata_set_spd().
2685 * Inherited from caller.
2688 * 0 on success, negative errno on failure
2690 int sata_down_spd_limit(struct ata_link
*link
)
2692 u32 sstatus
, spd
, mask
;
2695 if (!sata_scr_valid(link
))
2698 /* If SCR can be read, use it to determine the current SPD.
2699 * If not, use cached value in link->sata_spd.
2701 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2703 spd
= (sstatus
>> 4) & 0xf;
2705 spd
= link
->sata_spd
;
2707 mask
= link
->sata_spd_limit
;
2711 /* unconditionally mask off the highest bit */
2712 highbit
= fls(mask
) - 1;
2713 mask
&= ~(1 << highbit
);
2715 /* Mask off all speeds higher than or equal to the current
2716 * one. Force 1.5Gbps if current SPD is not available.
2719 mask
&= (1 << (spd
- 1)) - 1;
2723 /* were we already at the bottom? */
2727 link
->sata_spd_limit
= mask
;
2729 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2730 sata_spd_string(fls(mask
)));
2735 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2737 struct ata_link
*host_link
= &link
->ap
->link
;
2738 u32 limit
, target
, spd
;
2740 limit
= link
->sata_spd_limit
;
2742 /* Don't configure downstream link faster than upstream link.
2743 * It doesn't speed up anything and some PMPs choke on such
2746 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2747 limit
&= (1 << host_link
->sata_spd
) - 1;
2749 if (limit
== UINT_MAX
)
2752 target
= fls(limit
);
2754 spd
= (*scontrol
>> 4) & 0xf;
2755 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2757 return spd
!= target
;
2761 * sata_set_spd_needed - is SATA spd configuration needed
2762 * @link: Link in question
2764 * Test whether the spd limit in SControl matches
2765 * @link->sata_spd_limit. This function is used to determine
2766 * whether hardreset is necessary to apply SATA spd
2770 * Inherited from caller.
2773 * 1 if SATA spd configuration is needed, 0 otherwise.
2775 static int sata_set_spd_needed(struct ata_link
*link
)
2779 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2782 return __sata_set_spd_needed(link
, &scontrol
);
2786 * sata_set_spd - set SATA spd according to spd limit
2787 * @link: Link to set SATA spd for
2789 * Set SATA spd of @link according to sata_spd_limit.
2792 * Inherited from caller.
2795 * 0 if spd doesn't need to be changed, 1 if spd has been
2796 * changed. Negative errno if SCR registers are inaccessible.
2798 int sata_set_spd(struct ata_link
*link
)
2803 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
2806 if (!__sata_set_spd_needed(link
, &scontrol
))
2809 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
2816 * This mode timing computation functionality is ported over from
2817 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2820 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2821 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2822 * for UDMA6, which is currently supported only by Maxtor drives.
2824 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2827 static const struct ata_timing ata_timing
[] = {
2828 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2829 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2830 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2831 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2832 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2833 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2834 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2835 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2837 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2838 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2839 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2841 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2842 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2843 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2844 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2845 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2847 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2848 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2849 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2850 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2851 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2852 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2853 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2854 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2859 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2860 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2862 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2864 q
->setup
= EZ(t
->setup
* 1000, T
);
2865 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2866 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2867 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2868 q
->active
= EZ(t
->active
* 1000, T
);
2869 q
->recover
= EZ(t
->recover
* 1000, T
);
2870 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2871 q
->udma
= EZ(t
->udma
* 1000, UT
);
2874 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2875 struct ata_timing
*m
, unsigned int what
)
2877 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2878 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2879 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2880 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2881 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2882 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2883 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2884 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2887 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
2889 const struct ata_timing
*t
= ata_timing
;
2891 while (xfer_mode
> t
->mode
)
2894 if (xfer_mode
== t
->mode
)
2899 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2900 struct ata_timing
*t
, int T
, int UT
)
2902 const struct ata_timing
*s
;
2903 struct ata_timing p
;
2909 if (!(s
= ata_timing_find_mode(speed
)))
2912 memcpy(t
, s
, sizeof(*s
));
2915 * If the drive is an EIDE drive, it can tell us it needs extended
2916 * PIO/MW_DMA cycle timing.
2919 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2920 memset(&p
, 0, sizeof(p
));
2921 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2922 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2923 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2924 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2925 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2927 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2931 * Convert the timing to bus clock counts.
2934 ata_timing_quantize(t
, t
, T
, UT
);
2937 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2938 * S.M.A.R.T * and some other commands. We have to ensure that the
2939 * DMA cycle timing is slower/equal than the fastest PIO timing.
2942 if (speed
> XFER_PIO_6
) {
2943 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2944 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2948 * Lengthen active & recovery time so that cycle time is correct.
2951 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2952 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2953 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2956 if (t
->active
+ t
->recover
< t
->cycle
) {
2957 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2958 t
->recover
= t
->cycle
- t
->active
;
2961 /* In a few cases quantisation may produce enough errors to
2962 leave t->cycle too low for the sum of active and recovery
2963 if so we must correct this */
2964 if (t
->active
+ t
->recover
> t
->cycle
)
2965 t
->cycle
= t
->active
+ t
->recover
;
2971 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2972 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2973 * @cycle: cycle duration in ns
2975 * Return matching xfer mode for @cycle. The returned mode is of
2976 * the transfer type specified by @xfer_shift. If @cycle is too
2977 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
2978 * than the fastest known mode, the fasted mode is returned.
2984 * Matching xfer_mode, 0xff if no match found.
2986 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
2988 u8 base_mode
= 0xff, last_mode
= 0xff;
2989 const struct ata_xfer_ent
*ent
;
2990 const struct ata_timing
*t
;
2992 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
2993 if (ent
->shift
== xfer_shift
)
2994 base_mode
= ent
->base
;
2996 for (t
= ata_timing_find_mode(base_mode
);
2997 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
2998 unsigned short this_cycle
;
3000 switch (xfer_shift
) {
3002 case ATA_SHIFT_MWDMA
:
3003 this_cycle
= t
->cycle
;
3005 case ATA_SHIFT_UDMA
:
3006 this_cycle
= t
->udma
;
3012 if (cycle
> this_cycle
)
3015 last_mode
= t
->mode
;
3022 * ata_down_xfermask_limit - adjust dev xfer masks downward
3023 * @dev: Device to adjust xfer masks
3024 * @sel: ATA_DNXFER_* selector
3026 * Adjust xfer masks of @dev downward. Note that this function
3027 * does not apply the change. Invoking ata_set_mode() afterwards
3028 * will apply the limit.
3031 * Inherited from caller.
3034 * 0 on success, negative errno on failure
3036 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3039 unsigned long orig_mask
, xfer_mask
;
3040 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3043 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3044 sel
&= ~ATA_DNXFER_QUIET
;
3046 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3049 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3052 case ATA_DNXFER_PIO
:
3053 highbit
= fls(pio_mask
) - 1;
3054 pio_mask
&= ~(1 << highbit
);
3057 case ATA_DNXFER_DMA
:
3059 highbit
= fls(udma_mask
) - 1;
3060 udma_mask
&= ~(1 << highbit
);
3063 } else if (mwdma_mask
) {
3064 highbit
= fls(mwdma_mask
) - 1;
3065 mwdma_mask
&= ~(1 << highbit
);
3071 case ATA_DNXFER_40C
:
3072 udma_mask
&= ATA_UDMA_MASK_40C
;
3075 case ATA_DNXFER_FORCE_PIO0
:
3077 case ATA_DNXFER_FORCE_PIO
:
3086 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3088 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3092 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3093 snprintf(buf
, sizeof(buf
), "%s:%s",
3094 ata_mode_string(xfer_mask
),
3095 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3097 snprintf(buf
, sizeof(buf
), "%s",
3098 ata_mode_string(xfer_mask
));
3100 ata_dev_printk(dev
, KERN_WARNING
,
3101 "limiting speed to %s\n", buf
);
3104 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3110 static int ata_dev_set_mode(struct ata_device
*dev
)
3112 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3113 const char *dev_err_whine
= "";
3114 int ign_dev_err
= 0;
3115 unsigned int err_mask
;
3118 dev
->flags
&= ~ATA_DFLAG_PIO
;
3119 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3120 dev
->flags
|= ATA_DFLAG_PIO
;
3122 err_mask
= ata_dev_set_xfermode(dev
);
3124 if (err_mask
& ~AC_ERR_DEV
)
3128 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3129 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3130 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3134 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3135 /* Old CFA may refuse this command, which is just fine */
3136 if (ata_id_is_cfa(dev
->id
))
3138 /* Catch several broken garbage emulations plus some pre
3140 if (ata_id_major_version(dev
->id
) == 0 &&
3141 dev
->pio_mode
<= XFER_PIO_2
)
3143 /* Some very old devices and some bad newer ones fail
3144 any kind of SET_XFERMODE request but support PIO0-2
3145 timings and no IORDY */
3146 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3149 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3150 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3151 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3152 dev
->dma_mode
== XFER_MW_DMA_0
&&
3153 (dev
->id
[63] >> 8) & 1)
3156 /* if the device is actually configured correctly, ignore dev err */
3157 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3160 if (err_mask
& AC_ERR_DEV
) {
3164 dev_err_whine
= " (device error ignored)";
3167 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3168 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3170 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3171 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3177 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3178 "(err_mask=0x%x)\n", err_mask
);
3183 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3184 * @link: link on which timings will be programmed
3185 * @r_failed_dev: out parameter for failed device
3187 * Standard implementation of the function used to tune and set
3188 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3189 * ata_dev_set_mode() fails, pointer to the failing device is
3190 * returned in @r_failed_dev.
3193 * PCI/etc. bus probe sem.
3196 * 0 on success, negative errno otherwise
3199 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3201 struct ata_port
*ap
= link
->ap
;
3202 struct ata_device
*dev
;
3203 int rc
= 0, used_dma
= 0, found
= 0;
3205 /* step 1: calculate xfer_mask */
3206 ata_link_for_each_dev(dev
, link
) {
3207 unsigned long pio_mask
, dma_mask
;
3208 unsigned int mode_mask
;
3210 if (!ata_dev_enabled(dev
))
3213 mode_mask
= ATA_DMA_MASK_ATA
;
3214 if (dev
->class == ATA_DEV_ATAPI
)
3215 mode_mask
= ATA_DMA_MASK_ATAPI
;
3216 else if (ata_id_is_cfa(dev
->id
))
3217 mode_mask
= ATA_DMA_MASK_CFA
;
3219 ata_dev_xfermask(dev
);
3220 ata_force_xfermask(dev
);
3222 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3223 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3225 if (libata_dma_mask
& mode_mask
)
3226 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3230 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3231 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3234 if (dev
->dma_mode
!= 0xff)
3240 /* step 2: always set host PIO timings */
3241 ata_link_for_each_dev(dev
, link
) {
3242 if (!ata_dev_enabled(dev
))
3245 if (dev
->pio_mode
== 0xff) {
3246 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3251 dev
->xfer_mode
= dev
->pio_mode
;
3252 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3253 if (ap
->ops
->set_piomode
)
3254 ap
->ops
->set_piomode(ap
, dev
);
3257 /* step 3: set host DMA timings */
3258 ata_link_for_each_dev(dev
, link
) {
3259 if (!ata_dev_enabled(dev
) || dev
->dma_mode
== 0xff)
3262 dev
->xfer_mode
= dev
->dma_mode
;
3263 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3264 if (ap
->ops
->set_dmamode
)
3265 ap
->ops
->set_dmamode(ap
, dev
);
3268 /* step 4: update devices' xfer mode */
3269 ata_link_for_each_dev(dev
, link
) {
3270 /* don't update suspended devices' xfer mode */
3271 if (!ata_dev_enabled(dev
))
3274 rc
= ata_dev_set_mode(dev
);
3279 /* Record simplex status. If we selected DMA then the other
3280 * host channels are not permitted to do so.
3282 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3283 ap
->host
->simplex_claimed
= ap
;
3287 *r_failed_dev
= dev
;
3292 * ata_wait_ready - wait for link to become ready
3293 * @link: link to be waited on
3294 * @deadline: deadline jiffies for the operation
3295 * @check_ready: callback to check link readiness
3297 * Wait for @link to become ready. @check_ready should return
3298 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3299 * link doesn't seem to be occupied, other errno for other error
3302 * Transient -ENODEV conditions are allowed for
3303 * ATA_TMOUT_FF_WAIT.
3309 * 0 if @linke is ready before @deadline; otherwise, -errno.
3311 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3312 int (*check_ready
)(struct ata_link
*link
))
3314 unsigned long start
= jiffies
;
3315 unsigned long nodev_deadline
= start
+ ATA_TMOUT_FF_WAIT
;
3318 if (time_after(nodev_deadline
, deadline
))
3319 nodev_deadline
= deadline
;
3322 unsigned long now
= jiffies
;
3325 ready
= tmp
= check_ready(link
);
3329 /* -ENODEV could be transient. Ignore -ENODEV if link
3330 * is online. Also, some SATA devices take a long
3331 * time to clear 0xff after reset. For example,
3332 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3333 * GoVault needs even more than that. Wait for
3334 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3336 * Note that some PATA controllers (pata_ali) explode
3337 * if status register is read more than once when
3338 * there's no device attached.
3340 if (ready
== -ENODEV
) {
3341 if (ata_link_online(link
))
3343 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3344 !ata_link_offline(link
) &&
3345 time_before(now
, nodev_deadline
))
3351 if (time_after(now
, deadline
))
3354 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3355 (deadline
- now
> 3 * HZ
)) {
3356 ata_link_printk(link
, KERN_WARNING
,
3357 "link is slow to respond, please be patient "
3358 "(ready=%d)\n", tmp
);
3367 * ata_wait_after_reset - wait for link to become ready after reset
3368 * @link: link to be waited on
3369 * @deadline: deadline jiffies for the operation
3370 * @check_ready: callback to check link readiness
3372 * Wait for @link to become ready after reset.
3378 * 0 if @linke is ready before @deadline; otherwise, -errno.
3380 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3381 int (*check_ready
)(struct ata_link
*link
))
3383 msleep(ATA_WAIT_AFTER_RESET_MSECS
);
3385 return ata_wait_ready(link
, deadline
, check_ready
);
3389 * sata_link_debounce - debounce SATA phy status
3390 * @link: ATA link to debounce SATA phy status for
3391 * @params: timing parameters { interval, duratinon, timeout } in msec
3392 * @deadline: deadline jiffies for the operation
3394 * Make sure SStatus of @link reaches stable state, determined by
3395 * holding the same value where DET is not 1 for @duration polled
3396 * every @interval, before @timeout. Timeout constraints the
3397 * beginning of the stable state. Because DET gets stuck at 1 on
3398 * some controllers after hot unplugging, this functions waits
3399 * until timeout then returns 0 if DET is stable at 1.
3401 * @timeout is further limited by @deadline. The sooner of the
3405 * Kernel thread context (may sleep)
3408 * 0 on success, -errno on failure.
3410 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3411 unsigned long deadline
)
3413 unsigned long interval_msec
= params
[0];
3414 unsigned long duration
= msecs_to_jiffies(params
[1]);
3415 unsigned long last_jiffies
, t
;
3419 t
= jiffies
+ msecs_to_jiffies(params
[2]);
3420 if (time_before(t
, deadline
))
3423 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3428 last_jiffies
= jiffies
;
3431 msleep(interval_msec
);
3432 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3438 if (cur
== 1 && time_before(jiffies
, deadline
))
3440 if (time_after(jiffies
, last_jiffies
+ duration
))
3445 /* unstable, start over */
3447 last_jiffies
= jiffies
;
3449 /* Check deadline. If debouncing failed, return
3450 * -EPIPE to tell upper layer to lower link speed.
3452 if (time_after(jiffies
, deadline
))
3458 * sata_link_resume - resume SATA link
3459 * @link: ATA link to resume SATA
3460 * @params: timing parameters { interval, duratinon, timeout } in msec
3461 * @deadline: deadline jiffies for the operation
3463 * Resume SATA phy @link and debounce it.
3466 * Kernel thread context (may sleep)
3469 * 0 on success, -errno on failure.
3471 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3472 unsigned long deadline
)
3474 u32 scontrol
, serror
;
3477 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3480 scontrol
= (scontrol
& 0x0f0) | 0x300;
3482 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3485 /* Some PHYs react badly if SStatus is pounded immediately
3486 * after resuming. Delay 200ms before debouncing.
3490 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3493 /* Clear SError. PMP and some host PHYs require this to
3494 * operate and clearing should be done before checking PHY
3495 * online status to avoid race condition (hotplugging between
3496 * link resume and status check).
3498 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3499 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3500 if (rc
== 0 || rc
== -EINVAL
) {
3501 unsigned long flags
;
3503 spin_lock_irqsave(link
->ap
->lock
, flags
);
3504 link
->eh_info
.serror
= 0;
3505 spin_unlock_irqrestore(link
->ap
->lock
, flags
);
3512 * ata_std_prereset - prepare for reset
3513 * @link: ATA link to be reset
3514 * @deadline: deadline jiffies for the operation
3516 * @link is about to be reset. Initialize it. Failure from
3517 * prereset makes libata abort whole reset sequence and give up
3518 * that port, so prereset should be best-effort. It does its
3519 * best to prepare for reset sequence but if things go wrong, it
3520 * should just whine, not fail.
3523 * Kernel thread context (may sleep)
3526 * 0 on success, -errno otherwise.
3528 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3530 struct ata_port
*ap
= link
->ap
;
3531 struct ata_eh_context
*ehc
= &link
->eh_context
;
3532 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3535 /* if we're about to do hardreset, nothing more to do */
3536 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3539 /* if SATA, resume link */
3540 if (ap
->flags
& ATA_FLAG_SATA
) {
3541 rc
= sata_link_resume(link
, timing
, deadline
);
3542 /* whine about phy resume failure but proceed */
3543 if (rc
&& rc
!= -EOPNOTSUPP
)
3544 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3545 "link for reset (errno=%d)\n", rc
);
3548 /* no point in trying softreset on offline link */
3549 if (ata_link_offline(link
))
3550 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3556 * sata_link_hardreset - reset link via SATA phy reset
3557 * @link: link to reset
3558 * @timing: timing parameters { interval, duratinon, timeout } in msec
3559 * @deadline: deadline jiffies for the operation
3560 * @online: optional out parameter indicating link onlineness
3561 * @check_ready: optional callback to check link readiness
3563 * SATA phy-reset @link using DET bits of SControl register.
3564 * After hardreset, link readiness is waited upon using
3565 * ata_wait_ready() if @check_ready is specified. LLDs are
3566 * allowed to not specify @check_ready and wait itself after this
3567 * function returns. Device classification is LLD's
3570 * *@online is set to one iff reset succeeded and @link is online
3574 * Kernel thread context (may sleep)
3577 * 0 on success, -errno otherwise.
3579 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3580 unsigned long deadline
,
3581 bool *online
, int (*check_ready
)(struct ata_link
*))
3591 if (sata_set_spd_needed(link
)) {
3592 /* SATA spec says nothing about how to reconfigure
3593 * spd. To be on the safe side, turn off phy during
3594 * reconfiguration. This works for at least ICH7 AHCI
3597 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3600 scontrol
= (scontrol
& 0x0f0) | 0x304;
3602 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3608 /* issue phy wake/reset */
3609 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3612 scontrol
= (scontrol
& 0x0f0) | 0x301;
3614 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3617 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3618 * 10.4.2 says at least 1 ms.
3622 /* bring link back */
3623 rc
= sata_link_resume(link
, timing
, deadline
);
3626 /* if link is offline nothing more to do */
3627 if (ata_link_offline(link
))
3630 /* Link is online. From this point, -ENODEV too is an error. */
3634 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3635 /* If PMP is supported, we have to do follow-up SRST.
3636 * Some PMPs don't send D2H Reg FIS after hardreset if
3637 * the first port is empty. Wait only for
3638 * ATA_TMOUT_PMP_SRST_WAIT.
3641 unsigned long pmp_deadline
;
3643 pmp_deadline
= jiffies
+ ATA_TMOUT_PMP_SRST_WAIT
;
3644 if (time_after(pmp_deadline
, deadline
))
3645 pmp_deadline
= deadline
;
3646 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3654 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3656 if (rc
&& rc
!= -EAGAIN
)
3657 ata_link_printk(link
, KERN_ERR
,
3658 "COMRESET failed (errno=%d)\n", rc
);
3659 DPRINTK("EXIT, rc=%d\n", rc
);
3664 * sata_std_hardreset - COMRESET w/o waiting or classification
3665 * @link: link to reset
3666 * @class: resulting class of attached device
3667 * @deadline: deadline jiffies for the operation
3669 * Standard SATA COMRESET w/o waiting or classification.
3672 * Kernel thread context (may sleep)
3675 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3677 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3678 unsigned long deadline
)
3680 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3685 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3686 return online
? -EAGAIN
: rc
;
3690 * ata_std_postreset - standard postreset callback
3691 * @link: the target ata_link
3692 * @classes: classes of attached devices
3694 * This function is invoked after a successful reset. Note that
3695 * the device might have been reset more than once using
3696 * different reset methods before postreset is invoked.
3699 * Kernel thread context (may sleep)
3701 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3705 /* print link status */
3706 sata_print_link_status(link
);
3712 * ata_dev_same_device - Determine whether new ID matches configured device
3713 * @dev: device to compare against
3714 * @new_class: class of the new device
3715 * @new_id: IDENTIFY page of the new device
3717 * Compare @new_class and @new_id against @dev and determine
3718 * whether @dev is the device indicated by @new_class and
3725 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3727 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3730 const u16
*old_id
= dev
->id
;
3731 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3732 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3734 if (dev
->class != new_class
) {
3735 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3736 dev
->class, new_class
);
3740 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3741 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3742 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3743 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3745 if (strcmp(model
[0], model
[1])) {
3746 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3747 "'%s' != '%s'\n", model
[0], model
[1]);
3751 if (strcmp(serial
[0], serial
[1])) {
3752 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3753 "'%s' != '%s'\n", serial
[0], serial
[1]);
3761 * ata_dev_reread_id - Re-read IDENTIFY data
3762 * @dev: target ATA device
3763 * @readid_flags: read ID flags
3765 * Re-read IDENTIFY page and make sure @dev is still attached to
3769 * Kernel thread context (may sleep)
3772 * 0 on success, negative errno otherwise
3774 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3776 unsigned int class = dev
->class;
3777 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
3781 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3785 /* is the device still there? */
3786 if (!ata_dev_same_device(dev
, class, id
))
3789 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3794 * ata_dev_revalidate - Revalidate ATA device
3795 * @dev: device to revalidate
3796 * @new_class: new class code
3797 * @readid_flags: read ID flags
3799 * Re-read IDENTIFY page, make sure @dev is still attached to the
3800 * port and reconfigure it according to the new IDENTIFY page.
3803 * Kernel thread context (may sleep)
3806 * 0 on success, negative errno otherwise
3808 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
3809 unsigned int readid_flags
)
3811 u64 n_sectors
= dev
->n_sectors
;
3814 if (!ata_dev_enabled(dev
))
3817 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3818 if (ata_class_enabled(new_class
) &&
3819 new_class
!= ATA_DEV_ATA
&& new_class
!= ATA_DEV_ATAPI
) {
3820 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
3821 dev
->class, new_class
);
3827 rc
= ata_dev_reread_id(dev
, readid_flags
);
3831 /* configure device according to the new ID */
3832 rc
= ata_dev_configure(dev
);
3836 /* verify n_sectors hasn't changed */
3837 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
3838 dev
->n_sectors
!= n_sectors
) {
3839 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
3841 (unsigned long long)n_sectors
,
3842 (unsigned long long)dev
->n_sectors
);
3844 /* restore original n_sectors */
3845 dev
->n_sectors
= n_sectors
;
3854 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3858 struct ata_blacklist_entry
{
3859 const char *model_num
;
3860 const char *model_rev
;
3861 unsigned long horkage
;
3864 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
3865 /* Devices with DMA related problems under Linux */
3866 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
3867 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
3868 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
3869 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
3870 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
3871 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
3872 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
3873 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
3874 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
3875 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
3876 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
3877 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
3878 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
3879 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3880 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
3881 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
3882 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
3883 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
3884 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
3885 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
3886 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
3887 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
3888 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
3889 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
3890 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
3891 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
3892 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
3893 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
3894 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
3895 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
3896 /* Odd clown on sil3726/4726 PMPs */
3897 { "Config Disk", NULL
, ATA_HORKAGE_NODMA
|
3898 ATA_HORKAGE_SKIP_PM
},
3900 /* Weird ATAPI devices */
3901 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
3903 /* Devices we expect to fail diagnostics */
3905 /* Devices where NCQ should be avoided */
3907 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
3908 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
3909 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3910 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
3912 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
3913 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
3914 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
3915 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
3917 /* Blacklist entries taken from Silicon Image 3124/3132
3918 Windows driver .inf file - also several Linux problem reports */
3919 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
3920 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
3921 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
3923 /* devices which puke on READ_NATIVE_MAX */
3924 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
3925 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
3926 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
3927 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
3929 /* Devices which report 1 sector over size HPA */
3930 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
3931 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
3932 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
3934 /* Devices which get the IVB wrong */
3935 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
3936 /* Maybe we should just blacklist TSSTcorp... */
3937 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB
, },
3938 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB
, },
3939 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
3940 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
3941 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
3942 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
3948 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
3954 * check for trailing wildcard: *\0
3956 p
= strchr(patt
, wildchar
);
3957 if (p
&& ((*(p
+ 1)) == 0))
3968 return strncmp(patt
, name
, len
);
3971 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
3973 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
3974 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
3975 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
3977 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
3978 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
3980 while (ad
->model_num
) {
3981 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
3982 if (ad
->model_rev
== NULL
)
3984 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
3992 static int ata_dma_blacklisted(const struct ata_device
*dev
)
3994 /* We don't support polling DMA.
3995 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3996 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3998 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3999 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4001 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4005 * ata_is_40wire - check drive side detection
4008 * Perform drive side detection decoding, allowing for device vendors
4009 * who can't follow the documentation.
4012 static int ata_is_40wire(struct ata_device
*dev
)
4014 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4015 return ata_drive_40wire_relaxed(dev
->id
);
4016 return ata_drive_40wire(dev
->id
);
4020 * cable_is_40wire - 40/80/SATA decider
4021 * @ap: port to consider
4023 * This function encapsulates the policy for speed management
4024 * in one place. At the moment we don't cache the result but
4025 * there is a good case for setting ap->cbl to the result when
4026 * we are called with unknown cables (and figuring out if it
4027 * impacts hotplug at all).
4029 * Return 1 if the cable appears to be 40 wire.
4032 static int cable_is_40wire(struct ata_port
*ap
)
4034 struct ata_link
*link
;
4035 struct ata_device
*dev
;
4037 /* If the controller thinks we are 40 wire, we are */
4038 if (ap
->cbl
== ATA_CBL_PATA40
)
4040 /* If the controller thinks we are 80 wire, we are */
4041 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4043 /* If the system is known to be 40 wire short cable (eg laptop),
4044 then we allow 80 wire modes even if the drive isn't sure */
4045 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4047 /* If the controller doesn't know we scan
4049 - Note: We look for all 40 wire detects at this point.
4050 Any 80 wire detect is taken to be 80 wire cable
4052 - In many setups only the one drive (slave if present)
4053 will give a valid detect
4054 - If you have a non detect capable drive you don't
4055 want it to colour the choice
4057 ata_port_for_each_link(link
, ap
) {
4058 ata_link_for_each_dev(dev
, link
) {
4059 if (!ata_is_40wire(dev
))
4067 * ata_dev_xfermask - Compute supported xfermask of the given device
4068 * @dev: Device to compute xfermask for
4070 * Compute supported xfermask of @dev and store it in
4071 * dev->*_mask. This function is responsible for applying all
4072 * known limits including host controller limits, device
4078 static void ata_dev_xfermask(struct ata_device
*dev
)
4080 struct ata_link
*link
= dev
->link
;
4081 struct ata_port
*ap
= link
->ap
;
4082 struct ata_host
*host
= ap
->host
;
4083 unsigned long xfer_mask
;
4085 /* controller modes available */
4086 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4087 ap
->mwdma_mask
, ap
->udma_mask
);
4089 /* drive modes available */
4090 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4091 dev
->mwdma_mask
, dev
->udma_mask
);
4092 xfer_mask
&= ata_id_xfermask(dev
->id
);
4095 * CFA Advanced TrueIDE timings are not allowed on a shared
4098 if (ata_dev_pair(dev
)) {
4099 /* No PIO5 or PIO6 */
4100 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4101 /* No MWDMA3 or MWDMA 4 */
4102 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4105 if (ata_dma_blacklisted(dev
)) {
4106 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4107 ata_dev_printk(dev
, KERN_WARNING
,
4108 "device is on DMA blacklist, disabling DMA\n");
4111 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4112 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4113 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4114 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4115 "other device, disabling DMA\n");
4118 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4119 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4121 if (ap
->ops
->mode_filter
)
4122 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4124 /* Apply cable rule here. Don't apply it early because when
4125 * we handle hot plug the cable type can itself change.
4126 * Check this last so that we know if the transfer rate was
4127 * solely limited by the cable.
4128 * Unknown or 80 wire cables reported host side are checked
4129 * drive side as well. Cases where we know a 40wire cable
4130 * is used safely for 80 are not checked here.
4132 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4133 /* UDMA/44 or higher would be available */
4134 if (cable_is_40wire(ap
)) {
4135 ata_dev_printk(dev
, KERN_WARNING
,
4136 "limited to UDMA/33 due to 40-wire cable\n");
4137 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4140 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4141 &dev
->mwdma_mask
, &dev
->udma_mask
);
4145 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4146 * @dev: Device to which command will be sent
4148 * Issue SET FEATURES - XFER MODE command to device @dev
4152 * PCI/etc. bus probe sem.
4155 * 0 on success, AC_ERR_* mask otherwise.
4158 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4160 struct ata_taskfile tf
;
4161 unsigned int err_mask
;
4163 /* set up set-features taskfile */
4164 DPRINTK("set features - xfer mode\n");
4166 /* Some controllers and ATAPI devices show flaky interrupt
4167 * behavior after setting xfer mode. Use polling instead.
4169 ata_tf_init(dev
, &tf
);
4170 tf
.command
= ATA_CMD_SET_FEATURES
;
4171 tf
.feature
= SETFEATURES_XFER
;
4172 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4173 tf
.protocol
= ATA_PROT_NODATA
;
4174 /* If we are using IORDY we must send the mode setting command */
4175 if (ata_pio_need_iordy(dev
))
4176 tf
.nsect
= dev
->xfer_mode
;
4177 /* If the device has IORDY and the controller does not - turn it off */
4178 else if (ata_id_has_iordy(dev
->id
))
4180 else /* In the ancient relic department - skip all of this */
4183 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4185 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4189 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4190 * @dev: Device to which command will be sent
4191 * @enable: Whether to enable or disable the feature
4192 * @feature: The sector count represents the feature to set
4194 * Issue SET FEATURES - SATA FEATURES command to device @dev
4195 * on port @ap with sector count
4198 * PCI/etc. bus probe sem.
4201 * 0 on success, AC_ERR_* mask otherwise.
4203 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4206 struct ata_taskfile tf
;
4207 unsigned int err_mask
;
4209 /* set up set-features taskfile */
4210 DPRINTK("set features - SATA features\n");
4212 ata_tf_init(dev
, &tf
);
4213 tf
.command
= ATA_CMD_SET_FEATURES
;
4214 tf
.feature
= enable
;
4215 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4216 tf
.protocol
= ATA_PROT_NODATA
;
4219 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4221 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4226 * ata_dev_init_params - Issue INIT DEV PARAMS command
4227 * @dev: Device to which command will be sent
4228 * @heads: Number of heads (taskfile parameter)
4229 * @sectors: Number of sectors (taskfile parameter)
4232 * Kernel thread context (may sleep)
4235 * 0 on success, AC_ERR_* mask otherwise.
4237 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4238 u16 heads
, u16 sectors
)
4240 struct ata_taskfile tf
;
4241 unsigned int err_mask
;
4243 /* Number of sectors per track 1-255. Number of heads 1-16 */
4244 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4245 return AC_ERR_INVALID
;
4247 /* set up init dev params taskfile */
4248 DPRINTK("init dev params \n");
4250 ata_tf_init(dev
, &tf
);
4251 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4252 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4253 tf
.protocol
= ATA_PROT_NODATA
;
4255 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4257 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4258 /* A clean abort indicates an original or just out of spec drive
4259 and we should continue as we issue the setup based on the
4260 drive reported working geometry */
4261 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4264 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4269 * ata_sg_clean - Unmap DMA memory associated with command
4270 * @qc: Command containing DMA memory to be released
4272 * Unmap all mapped DMA memory associated with this command.
4275 * spin_lock_irqsave(host lock)
4277 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4279 struct ata_port
*ap
= qc
->ap
;
4280 struct scatterlist
*sg
= qc
->sg
;
4281 int dir
= qc
->dma_dir
;
4283 WARN_ON(sg
== NULL
);
4285 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4288 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4290 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4295 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4296 * @qc: Metadata associated with taskfile to check
4298 * Allow low-level driver to filter ATA PACKET commands, returning
4299 * a status indicating whether or not it is OK to use DMA for the
4300 * supplied PACKET command.
4303 * spin_lock_irqsave(host lock)
4305 * RETURNS: 0 when ATAPI DMA can be used
4308 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4310 struct ata_port
*ap
= qc
->ap
;
4312 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4313 * few ATAPI devices choke on such DMA requests.
4315 if (unlikely(qc
->nbytes
& 15))
4318 if (ap
->ops
->check_atapi_dma
)
4319 return ap
->ops
->check_atapi_dma(qc
);
4325 * ata_std_qc_defer - Check whether a qc needs to be deferred
4326 * @qc: ATA command in question
4328 * Non-NCQ commands cannot run with any other command, NCQ or
4329 * not. As upper layer only knows the queue depth, we are
4330 * responsible for maintaining exclusion. This function checks
4331 * whether a new command @qc can be issued.
4334 * spin_lock_irqsave(host lock)
4337 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4339 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4341 struct ata_link
*link
= qc
->dev
->link
;
4343 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4344 if (!ata_tag_valid(link
->active_tag
))
4347 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4351 return ATA_DEFER_LINK
;
4354 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4357 * ata_sg_init - Associate command with scatter-gather table.
4358 * @qc: Command to be associated
4359 * @sg: Scatter-gather table.
4360 * @n_elem: Number of elements in s/g table.
4362 * Initialize the data-related elements of queued_cmd @qc
4363 * to point to a scatter-gather table @sg, containing @n_elem
4367 * spin_lock_irqsave(host lock)
4369 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4370 unsigned int n_elem
)
4373 qc
->n_elem
= n_elem
;
4378 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4379 * @qc: Command with scatter-gather table to be mapped.
4381 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4384 * spin_lock_irqsave(host lock)
4387 * Zero on success, negative on error.
4390 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4392 struct ata_port
*ap
= qc
->ap
;
4393 unsigned int n_elem
;
4395 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4397 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4401 DPRINTK("%d sg elements mapped\n", n_elem
);
4403 qc
->n_elem
= n_elem
;
4404 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4410 * swap_buf_le16 - swap halves of 16-bit words in place
4411 * @buf: Buffer to swap
4412 * @buf_words: Number of 16-bit words in buffer.
4414 * Swap halves of 16-bit words if needed to convert from
4415 * little-endian byte order to native cpu byte order, or
4419 * Inherited from caller.
4421 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4426 for (i
= 0; i
< buf_words
; i
++)
4427 buf
[i
] = le16_to_cpu(buf
[i
]);
4428 #endif /* __BIG_ENDIAN */
4432 * ata_qc_new - Request an available ATA command, for queueing
4433 * @ap: Port associated with device @dev
4434 * @dev: Device from whom we request an available command structure
4440 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4442 struct ata_queued_cmd
*qc
= NULL
;
4445 /* no command while frozen */
4446 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4449 /* the last tag is reserved for internal command. */
4450 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4451 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4452 qc
= __ata_qc_from_tag(ap
, i
);
4463 * ata_qc_new_init - Request an available ATA command, and initialize it
4464 * @dev: Device from whom we request an available command structure
4470 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4472 struct ata_port
*ap
= dev
->link
->ap
;
4473 struct ata_queued_cmd
*qc
;
4475 qc
= ata_qc_new(ap
);
4488 * ata_qc_free - free unused ata_queued_cmd
4489 * @qc: Command to complete
4491 * Designed to free unused ata_queued_cmd object
4492 * in case something prevents using it.
4495 * spin_lock_irqsave(host lock)
4497 void ata_qc_free(struct ata_queued_cmd
*qc
)
4499 struct ata_port
*ap
= qc
->ap
;
4502 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4506 if (likely(ata_tag_valid(tag
))) {
4507 qc
->tag
= ATA_TAG_POISON
;
4508 clear_bit(tag
, &ap
->qc_allocated
);
4512 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4514 struct ata_port
*ap
= qc
->ap
;
4515 struct ata_link
*link
= qc
->dev
->link
;
4517 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4518 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4520 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4523 /* command should be marked inactive atomically with qc completion */
4524 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4525 link
->sactive
&= ~(1 << qc
->tag
);
4527 ap
->nr_active_links
--;
4529 link
->active_tag
= ATA_TAG_POISON
;
4530 ap
->nr_active_links
--;
4533 /* clear exclusive status */
4534 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4535 ap
->excl_link
== link
))
4536 ap
->excl_link
= NULL
;
4538 /* atapi: mark qc as inactive to prevent the interrupt handler
4539 * from completing the command twice later, before the error handler
4540 * is called. (when rc != 0 and atapi request sense is needed)
4542 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4543 ap
->qc_active
&= ~(1 << qc
->tag
);
4545 /* call completion callback */
4546 qc
->complete_fn(qc
);
4549 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4551 struct ata_port
*ap
= qc
->ap
;
4553 qc
->result_tf
.flags
= qc
->tf
.flags
;
4554 ap
->ops
->qc_fill_rtf(qc
);
4557 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4559 struct ata_device
*dev
= qc
->dev
;
4561 if (ata_tag_internal(qc
->tag
))
4564 if (ata_is_nodata(qc
->tf
.protocol
))
4567 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4570 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4574 * ata_qc_complete - Complete an active ATA command
4575 * @qc: Command to complete
4576 * @err_mask: ATA Status register contents
4578 * Indicate to the mid and upper layers that an ATA
4579 * command has completed, with either an ok or not-ok status.
4582 * spin_lock_irqsave(host lock)
4584 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4586 struct ata_port
*ap
= qc
->ap
;
4588 /* XXX: New EH and old EH use different mechanisms to
4589 * synchronize EH with regular execution path.
4591 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4592 * Normal execution path is responsible for not accessing a
4593 * failed qc. libata core enforces the rule by returning NULL
4594 * from ata_qc_from_tag() for failed qcs.
4596 * Old EH depends on ata_qc_complete() nullifying completion
4597 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4598 * not synchronize with interrupt handler. Only PIO task is
4601 if (ap
->ops
->error_handler
) {
4602 struct ata_device
*dev
= qc
->dev
;
4603 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4605 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
4607 if (unlikely(qc
->err_mask
))
4608 qc
->flags
|= ATA_QCFLAG_FAILED
;
4610 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4611 if (!ata_tag_internal(qc
->tag
)) {
4612 /* always fill result TF for failed qc */
4614 ata_qc_schedule_eh(qc
);
4619 /* read result TF if requested */
4620 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4623 /* Some commands need post-processing after successful
4626 switch (qc
->tf
.command
) {
4627 case ATA_CMD_SET_FEATURES
:
4628 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
4629 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
4632 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
4633 case ATA_CMD_SET_MULTI
: /* multi_count changed */
4634 /* revalidate device */
4635 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
4636 ata_port_schedule_eh(ap
);
4640 dev
->flags
|= ATA_DFLAG_SLEEPING
;
4644 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
4645 ata_verify_xfer(qc
);
4647 __ata_qc_complete(qc
);
4649 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4652 /* read result TF if failed or requested */
4653 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4656 __ata_qc_complete(qc
);
4661 * ata_qc_complete_multiple - Complete multiple qcs successfully
4662 * @ap: port in question
4663 * @qc_active: new qc_active mask
4665 * Complete in-flight commands. This functions is meant to be
4666 * called from low-level driver's interrupt routine to complete
4667 * requests normally. ap->qc_active and @qc_active is compared
4668 * and commands are completed accordingly.
4671 * spin_lock_irqsave(host lock)
4674 * Number of completed commands on success, -errno otherwise.
4676 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
4682 done_mask
= ap
->qc_active
^ qc_active
;
4684 if (unlikely(done_mask
& qc_active
)) {
4685 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
4686 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
4690 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
4691 struct ata_queued_cmd
*qc
;
4693 if (!(done_mask
& (1 << i
)))
4696 if ((qc
= ata_qc_from_tag(ap
, i
))) {
4697 ata_qc_complete(qc
);
4706 * ata_qc_issue - issue taskfile to device
4707 * @qc: command to issue to device
4709 * Prepare an ATA command to submission to device.
4710 * This includes mapping the data into a DMA-able
4711 * area, filling in the S/G table, and finally
4712 * writing the taskfile to hardware, starting the command.
4715 * spin_lock_irqsave(host lock)
4717 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4719 struct ata_port
*ap
= qc
->ap
;
4720 struct ata_link
*link
= qc
->dev
->link
;
4721 u8 prot
= qc
->tf
.protocol
;
4723 /* Make sure only one non-NCQ command is outstanding. The
4724 * check is skipped for old EH because it reuses active qc to
4725 * request ATAPI sense.
4727 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
4729 if (ata_is_ncq(prot
)) {
4730 WARN_ON(link
->sactive
& (1 << qc
->tag
));
4733 ap
->nr_active_links
++;
4734 link
->sactive
|= 1 << qc
->tag
;
4736 WARN_ON(link
->sactive
);
4738 ap
->nr_active_links
++;
4739 link
->active_tag
= qc
->tag
;
4742 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
4743 ap
->qc_active
|= 1 << qc
->tag
;
4745 /* We guarantee to LLDs that they will have at least one
4746 * non-zero sg if the command is a data command.
4748 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
4750 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
4751 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
4752 if (ata_sg_setup(qc
))
4755 /* if device is sleeping, schedule reset and abort the link */
4756 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
4757 link
->eh_info
.action
|= ATA_EH_RESET
;
4758 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
4759 ata_link_abort(link
);
4763 ap
->ops
->qc_prep(qc
);
4765 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
4766 if (unlikely(qc
->err_mask
))
4771 qc
->err_mask
|= AC_ERR_SYSTEM
;
4773 ata_qc_complete(qc
);
4777 * sata_scr_valid - test whether SCRs are accessible
4778 * @link: ATA link to test SCR accessibility for
4780 * Test whether SCRs are accessible for @link.
4786 * 1 if SCRs are accessible, 0 otherwise.
4788 int sata_scr_valid(struct ata_link
*link
)
4790 struct ata_port
*ap
= link
->ap
;
4792 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
4796 * sata_scr_read - read SCR register of the specified port
4797 * @link: ATA link to read SCR for
4799 * @val: Place to store read value
4801 * Read SCR register @reg of @link into *@val. This function is
4802 * guaranteed to succeed if @link is ap->link, the cable type of
4803 * the port is SATA and the port implements ->scr_read.
4806 * None if @link is ap->link. Kernel thread context otherwise.
4809 * 0 on success, negative errno on failure.
4811 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
4813 if (ata_is_host_link(link
)) {
4814 struct ata_port
*ap
= link
->ap
;
4816 if (sata_scr_valid(link
))
4817 return ap
->ops
->scr_read(ap
, reg
, val
);
4821 return sata_pmp_scr_read(link
, reg
, val
);
4825 * sata_scr_write - write SCR register of the specified port
4826 * @link: ATA link to write SCR for
4827 * @reg: SCR to write
4828 * @val: value to write
4830 * Write @val to SCR register @reg of @link. This function is
4831 * guaranteed to succeed if @link is ap->link, the cable type of
4832 * the port is SATA and the port implements ->scr_read.
4835 * None if @link is ap->link. Kernel thread context otherwise.
4838 * 0 on success, negative errno on failure.
4840 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
4842 if (ata_is_host_link(link
)) {
4843 struct ata_port
*ap
= link
->ap
;
4845 if (sata_scr_valid(link
))
4846 return ap
->ops
->scr_write(ap
, reg
, val
);
4850 return sata_pmp_scr_write(link
, reg
, val
);
4854 * sata_scr_write_flush - write SCR register of the specified port and flush
4855 * @link: ATA link to write SCR for
4856 * @reg: SCR to write
4857 * @val: value to write
4859 * This function is identical to sata_scr_write() except that this
4860 * function performs flush after writing to the register.
4863 * None if @link is ap->link. Kernel thread context otherwise.
4866 * 0 on success, negative errno on failure.
4868 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
4870 if (ata_is_host_link(link
)) {
4871 struct ata_port
*ap
= link
->ap
;
4874 if (sata_scr_valid(link
)) {
4875 rc
= ap
->ops
->scr_write(ap
, reg
, val
);
4877 rc
= ap
->ops
->scr_read(ap
, reg
, &val
);
4883 return sata_pmp_scr_write(link
, reg
, val
);
4887 * ata_link_online - test whether the given link is online
4888 * @link: ATA link to test
4890 * Test whether @link is online. Note that this function returns
4891 * 0 if online status of @link cannot be obtained, so
4892 * ata_link_online(link) != !ata_link_offline(link).
4898 * 1 if the port online status is available and online.
4900 int ata_link_online(struct ata_link
*link
)
4904 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
4905 (sstatus
& 0xf) == 0x3)
4911 * ata_link_offline - test whether the given link is offline
4912 * @link: ATA link to test
4914 * Test whether @link is offline. Note that this function
4915 * returns 0 if offline status of @link cannot be obtained, so
4916 * ata_link_online(link) != !ata_link_offline(link).
4922 * 1 if the port offline status is available and offline.
4924 int ata_link_offline(struct ata_link
*link
)
4928 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
4929 (sstatus
& 0xf) != 0x3)
4935 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
4936 unsigned int action
, unsigned int ehi_flags
,
4939 unsigned long flags
;
4942 for (i
= 0; i
< host
->n_ports
; i
++) {
4943 struct ata_port
*ap
= host
->ports
[i
];
4944 struct ata_link
*link
;
4946 /* Previous resume operation might still be in
4947 * progress. Wait for PM_PENDING to clear.
4949 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
4950 ata_port_wait_eh(ap
);
4951 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
4954 /* request PM ops to EH */
4955 spin_lock_irqsave(ap
->lock
, flags
);
4960 ap
->pm_result
= &rc
;
4963 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
4964 __ata_port_for_each_link(link
, ap
) {
4965 link
->eh_info
.action
|= action
;
4966 link
->eh_info
.flags
|= ehi_flags
;
4969 ata_port_schedule_eh(ap
);
4971 spin_unlock_irqrestore(ap
->lock
, flags
);
4973 /* wait and check result */
4975 ata_port_wait_eh(ap
);
4976 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
4986 * ata_host_suspend - suspend host
4987 * @host: host to suspend
4990 * Suspend @host. Actual operation is performed by EH. This
4991 * function requests EH to perform PM operations and waits for EH
4995 * Kernel thread context (may sleep).
4998 * 0 on success, -errno on failure.
5000 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5005 * disable link pm on all ports before requesting
5008 ata_lpm_enable(host
);
5010 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5012 host
->dev
->power
.power_state
= mesg
;
5017 * ata_host_resume - resume host
5018 * @host: host to resume
5020 * Resume @host. Actual operation is performed by EH. This
5021 * function requests EH to perform PM operations and returns.
5022 * Note that all resume operations are performed parallely.
5025 * Kernel thread context (may sleep).
5027 void ata_host_resume(struct ata_host
*host
)
5029 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_RESET
,
5030 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5031 host
->dev
->power
.power_state
= PMSG_ON
;
5033 /* reenable link pm */
5034 ata_lpm_disable(host
);
5039 * ata_port_start - Set port up for dma.
5040 * @ap: Port to initialize
5042 * Called just after data structures for each port are
5043 * initialized. Allocates space for PRD table.
5045 * May be used as the port_start() entry in ata_port_operations.
5048 * Inherited from caller.
5050 int ata_port_start(struct ata_port
*ap
)
5052 struct device
*dev
= ap
->dev
;
5054 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5063 * ata_dev_init - Initialize an ata_device structure
5064 * @dev: Device structure to initialize
5066 * Initialize @dev in preparation for probing.
5069 * Inherited from caller.
5071 void ata_dev_init(struct ata_device
*dev
)
5073 struct ata_link
*link
= dev
->link
;
5074 struct ata_port
*ap
= link
->ap
;
5075 unsigned long flags
;
5077 /* SATA spd limit is bound to the first device */
5078 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5081 /* High bits of dev->flags are used to record warm plug
5082 * requests which occur asynchronously. Synchronize using
5085 spin_lock_irqsave(ap
->lock
, flags
);
5086 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5088 spin_unlock_irqrestore(ap
->lock
, flags
);
5090 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5091 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5092 dev
->pio_mask
= UINT_MAX
;
5093 dev
->mwdma_mask
= UINT_MAX
;
5094 dev
->udma_mask
= UINT_MAX
;
5098 * ata_link_init - Initialize an ata_link structure
5099 * @ap: ATA port link is attached to
5100 * @link: Link structure to initialize
5101 * @pmp: Port multiplier port number
5106 * Kernel thread context (may sleep)
5108 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5112 /* clear everything except for devices */
5113 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
5117 link
->active_tag
= ATA_TAG_POISON
;
5118 link
->hw_sata_spd_limit
= UINT_MAX
;
5120 /* can't use iterator, ap isn't initialized yet */
5121 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5122 struct ata_device
*dev
= &link
->device
[i
];
5125 dev
->devno
= dev
- link
->device
;
5131 * sata_link_init_spd - Initialize link->sata_spd_limit
5132 * @link: Link to configure sata_spd_limit for
5134 * Initialize @link->[hw_]sata_spd_limit to the currently
5138 * Kernel thread context (may sleep).
5141 * 0 on success, -errno on failure.
5143 int sata_link_init_spd(struct ata_link
*link
)
5149 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
5153 spd
= (scontrol
>> 4) & 0xf;
5155 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5157 ata_force_spd_limit(link
);
5159 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5165 * ata_port_alloc - allocate and initialize basic ATA port resources
5166 * @host: ATA host this allocated port belongs to
5168 * Allocate and initialize basic ATA port resources.
5171 * Allocate ATA port on success, NULL on failure.
5174 * Inherited from calling layer (may sleep).
5176 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5178 struct ata_port
*ap
;
5182 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5186 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5187 ap
->lock
= &host
->lock
;
5188 ap
->flags
= ATA_FLAG_DISABLED
;
5190 ap
->ctl
= ATA_DEVCTL_OBS
;
5192 ap
->dev
= host
->dev
;
5193 ap
->last_ctl
= 0xFF;
5195 #if defined(ATA_VERBOSE_DEBUG)
5196 /* turn on all debugging levels */
5197 ap
->msg_enable
= 0x00FF;
5198 #elif defined(ATA_DEBUG)
5199 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5201 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5204 #ifdef CONFIG_ATA_SFF
5205 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
5207 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5208 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5209 INIT_LIST_HEAD(&ap
->eh_done_q
);
5210 init_waitqueue_head(&ap
->eh_wait_q
);
5211 init_timer_deferrable(&ap
->fastdrain_timer
);
5212 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5213 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5215 ap
->cbl
= ATA_CBL_NONE
;
5217 ata_link_init(ap
, &ap
->link
, 0);
5220 ap
->stats
.unhandled_irq
= 1;
5221 ap
->stats
.idle_irq
= 1;
5226 static void ata_host_release(struct device
*gendev
, void *res
)
5228 struct ata_host
*host
= dev_get_drvdata(gendev
);
5231 for (i
= 0; i
< host
->n_ports
; i
++) {
5232 struct ata_port
*ap
= host
->ports
[i
];
5238 scsi_host_put(ap
->scsi_host
);
5240 kfree(ap
->pmp_link
);
5242 host
->ports
[i
] = NULL
;
5245 dev_set_drvdata(gendev
, NULL
);
5249 * ata_host_alloc - allocate and init basic ATA host resources
5250 * @dev: generic device this host is associated with
5251 * @max_ports: maximum number of ATA ports associated with this host
5253 * Allocate and initialize basic ATA host resources. LLD calls
5254 * this function to allocate a host, initializes it fully and
5255 * attaches it using ata_host_register().
5257 * @max_ports ports are allocated and host->n_ports is
5258 * initialized to @max_ports. The caller is allowed to decrease
5259 * host->n_ports before calling ata_host_register(). The unused
5260 * ports will be automatically freed on registration.
5263 * Allocate ATA host on success, NULL on failure.
5266 * Inherited from calling layer (may sleep).
5268 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5270 struct ata_host
*host
;
5276 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5279 /* alloc a container for our list of ATA ports (buses) */
5280 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5281 /* alloc a container for our list of ATA ports (buses) */
5282 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5286 devres_add(dev
, host
);
5287 dev_set_drvdata(dev
, host
);
5289 spin_lock_init(&host
->lock
);
5291 host
->n_ports
= max_ports
;
5293 /* allocate ports bound to this host */
5294 for (i
= 0; i
< max_ports
; i
++) {
5295 struct ata_port
*ap
;
5297 ap
= ata_port_alloc(host
);
5302 host
->ports
[i
] = ap
;
5305 devres_remove_group(dev
, NULL
);
5309 devres_release_group(dev
, NULL
);
5314 * ata_host_alloc_pinfo - alloc host and init with port_info array
5315 * @dev: generic device this host is associated with
5316 * @ppi: array of ATA port_info to initialize host with
5317 * @n_ports: number of ATA ports attached to this host
5319 * Allocate ATA host and initialize with info from @ppi. If NULL
5320 * terminated, @ppi may contain fewer entries than @n_ports. The
5321 * last entry will be used for the remaining ports.
5324 * Allocate ATA host on success, NULL on failure.
5327 * Inherited from calling layer (may sleep).
5329 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5330 const struct ata_port_info
* const * ppi
,
5333 const struct ata_port_info
*pi
;
5334 struct ata_host
*host
;
5337 host
= ata_host_alloc(dev
, n_ports
);
5341 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5342 struct ata_port
*ap
= host
->ports
[i
];
5347 ap
->pio_mask
= pi
->pio_mask
;
5348 ap
->mwdma_mask
= pi
->mwdma_mask
;
5349 ap
->udma_mask
= pi
->udma_mask
;
5350 ap
->flags
|= pi
->flags
;
5351 ap
->link
.flags
|= pi
->link_flags
;
5352 ap
->ops
= pi
->port_ops
;
5354 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5355 host
->ops
= pi
->port_ops
;
5361 static void ata_host_stop(struct device
*gendev
, void *res
)
5363 struct ata_host
*host
= dev_get_drvdata(gendev
);
5366 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5368 for (i
= 0; i
< host
->n_ports
; i
++) {
5369 struct ata_port
*ap
= host
->ports
[i
];
5371 if (ap
->ops
->port_stop
)
5372 ap
->ops
->port_stop(ap
);
5375 if (host
->ops
->host_stop
)
5376 host
->ops
->host_stop(host
);
5380 * ata_finalize_port_ops - finalize ata_port_operations
5381 * @ops: ata_port_operations to finalize
5383 * An ata_port_operations can inherit from another ops and that
5384 * ops can again inherit from another. This can go on as many
5385 * times as necessary as long as there is no loop in the
5386 * inheritance chain.
5388 * Ops tables are finalized when the host is started. NULL or
5389 * unspecified entries are inherited from the closet ancestor
5390 * which has the method and the entry is populated with it.
5391 * After finalization, the ops table directly points to all the
5392 * methods and ->inherits is no longer necessary and cleared.
5394 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5399 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5401 static spinlock_t lock
= SPIN_LOCK_UNLOCKED
;
5402 const struct ata_port_operations
*cur
;
5403 void **begin
= (void **)ops
;
5404 void **end
= (void **)&ops
->inherits
;
5407 if (!ops
|| !ops
->inherits
)
5412 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5413 void **inherit
= (void **)cur
;
5415 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5420 for (pp
= begin
; pp
< end
; pp
++)
5424 ops
->inherits
= NULL
;
5430 * ata_host_start - start and freeze ports of an ATA host
5431 * @host: ATA host to start ports for
5433 * Start and then freeze ports of @host. Started status is
5434 * recorded in host->flags, so this function can be called
5435 * multiple times. Ports are guaranteed to get started only
5436 * once. If host->ops isn't initialized yet, its set to the
5437 * first non-dummy port ops.
5440 * Inherited from calling layer (may sleep).
5443 * 0 if all ports are started successfully, -errno otherwise.
5445 int ata_host_start(struct ata_host
*host
)
5448 void *start_dr
= NULL
;
5451 if (host
->flags
& ATA_HOST_STARTED
)
5454 ata_finalize_port_ops(host
->ops
);
5456 for (i
= 0; i
< host
->n_ports
; i
++) {
5457 struct ata_port
*ap
= host
->ports
[i
];
5459 ata_finalize_port_ops(ap
->ops
);
5461 if (!host
->ops
&& !ata_port_is_dummy(ap
))
5462 host
->ops
= ap
->ops
;
5464 if (ap
->ops
->port_stop
)
5468 if (host
->ops
->host_stop
)
5472 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
5477 for (i
= 0; i
< host
->n_ports
; i
++) {
5478 struct ata_port
*ap
= host
->ports
[i
];
5480 if (ap
->ops
->port_start
) {
5481 rc
= ap
->ops
->port_start(ap
);
5484 dev_printk(KERN_ERR
, host
->dev
,
5485 "failed to start port %d "
5486 "(errno=%d)\n", i
, rc
);
5490 ata_eh_freeze_port(ap
);
5494 devres_add(host
->dev
, start_dr
);
5495 host
->flags
|= ATA_HOST_STARTED
;
5500 struct ata_port
*ap
= host
->ports
[i
];
5502 if (ap
->ops
->port_stop
)
5503 ap
->ops
->port_stop(ap
);
5505 devres_free(start_dr
);
5510 * ata_sas_host_init - Initialize a host struct
5511 * @host: host to initialize
5512 * @dev: device host is attached to
5513 * @flags: host flags
5517 * PCI/etc. bus probe sem.
5520 /* KILLME - the only user left is ipr */
5521 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5522 unsigned long flags
, struct ata_port_operations
*ops
)
5524 spin_lock_init(&host
->lock
);
5526 host
->flags
= flags
;
5531 * ata_host_register - register initialized ATA host
5532 * @host: ATA host to register
5533 * @sht: template for SCSI host
5535 * Register initialized ATA host. @host is allocated using
5536 * ata_host_alloc() and fully initialized by LLD. This function
5537 * starts ports, registers @host with ATA and SCSI layers and
5538 * probe registered devices.
5541 * Inherited from calling layer (may sleep).
5544 * 0 on success, -errno otherwise.
5546 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
5550 /* host must have been started */
5551 if (!(host
->flags
& ATA_HOST_STARTED
)) {
5552 dev_printk(KERN_ERR
, host
->dev
,
5553 "BUG: trying to register unstarted host\n");
5558 /* Blow away unused ports. This happens when LLD can't
5559 * determine the exact number of ports to allocate at
5562 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
5563 kfree(host
->ports
[i
]);
5565 /* give ports names and add SCSI hosts */
5566 for (i
= 0; i
< host
->n_ports
; i
++)
5567 host
->ports
[i
]->print_id
= ata_print_id
++;
5569 rc
= ata_scsi_add_hosts(host
, sht
);
5573 /* associate with ACPI nodes */
5574 ata_acpi_associate(host
);
5576 /* set cable, sata_spd_limit and report */
5577 for (i
= 0; i
< host
->n_ports
; i
++) {
5578 struct ata_port
*ap
= host
->ports
[i
];
5579 unsigned long xfer_mask
;
5581 /* set SATA cable type if still unset */
5582 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
5583 ap
->cbl
= ATA_CBL_SATA
;
5585 /* init sata_spd_limit to the current value */
5586 sata_link_init_spd(&ap
->link
);
5588 /* print per-port info to dmesg */
5589 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
5592 if (!ata_port_is_dummy(ap
)) {
5593 ata_port_printk(ap
, KERN_INFO
,
5594 "%cATA max %s %s\n",
5595 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
5596 ata_mode_string(xfer_mask
),
5597 ap
->link
.eh_info
.desc
);
5598 ata_ehi_clear_desc(&ap
->link
.eh_info
);
5600 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
5603 /* perform each probe synchronously */
5604 DPRINTK("probe begin\n");
5605 for (i
= 0; i
< host
->n_ports
; i
++) {
5606 struct ata_port
*ap
= host
->ports
[i
];
5609 if (ap
->ops
->error_handler
) {
5610 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
5611 unsigned long flags
;
5615 /* kick EH for boot probing */
5616 spin_lock_irqsave(ap
->lock
, flags
);
5618 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
5619 ehi
->action
|= ATA_EH_RESET
;
5620 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
5622 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
5623 ap
->pflags
|= ATA_PFLAG_LOADING
;
5624 ata_port_schedule_eh(ap
);
5626 spin_unlock_irqrestore(ap
->lock
, flags
);
5628 /* wait for EH to finish */
5629 ata_port_wait_eh(ap
);
5631 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
5632 rc
= ata_bus_probe(ap
);
5633 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
5636 /* FIXME: do something useful here?
5637 * Current libata behavior will
5638 * tear down everything when
5639 * the module is removed
5640 * or the h/w is unplugged.
5646 /* probes are done, now scan each port's disk(s) */
5647 DPRINTK("host probe begin\n");
5648 for (i
= 0; i
< host
->n_ports
; i
++) {
5649 struct ata_port
*ap
= host
->ports
[i
];
5651 ata_scsi_scan_host(ap
, 1);
5652 ata_lpm_schedule(ap
, ap
->pm_policy
);
5659 * ata_host_activate - start host, request IRQ and register it
5660 * @host: target ATA host
5661 * @irq: IRQ to request
5662 * @irq_handler: irq_handler used when requesting IRQ
5663 * @irq_flags: irq_flags used when requesting IRQ
5664 * @sht: scsi_host_template to use when registering the host
5666 * After allocating an ATA host and initializing it, most libata
5667 * LLDs perform three steps to activate the host - start host,
5668 * request IRQ and register it. This helper takes necessasry
5669 * arguments and performs the three steps in one go.
5671 * An invalid IRQ skips the IRQ registration and expects the host to
5672 * have set polling mode on the port. In this case, @irq_handler
5676 * Inherited from calling layer (may sleep).
5679 * 0 on success, -errno otherwise.
5681 int ata_host_activate(struct ata_host
*host
, int irq
,
5682 irq_handler_t irq_handler
, unsigned long irq_flags
,
5683 struct scsi_host_template
*sht
)
5687 rc
= ata_host_start(host
);
5691 /* Special case for polling mode */
5693 WARN_ON(irq_handler
);
5694 return ata_host_register(host
, sht
);
5697 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
5698 dev_driver_string(host
->dev
), host
);
5702 for (i
= 0; i
< host
->n_ports
; i
++)
5703 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
5705 rc
= ata_host_register(host
, sht
);
5706 /* if failed, just free the IRQ and leave ports alone */
5708 devm_free_irq(host
->dev
, irq
, host
);
5714 * ata_port_detach - Detach ATA port in prepration of device removal
5715 * @ap: ATA port to be detached
5717 * Detach all ATA devices and the associated SCSI devices of @ap;
5718 * then, remove the associated SCSI host. @ap is guaranteed to
5719 * be quiescent on return from this function.
5722 * Kernel thread context (may sleep).
5724 static void ata_port_detach(struct ata_port
*ap
)
5726 unsigned long flags
;
5727 struct ata_link
*link
;
5728 struct ata_device
*dev
;
5730 if (!ap
->ops
->error_handler
)
5733 /* tell EH we're leaving & flush EH */
5734 spin_lock_irqsave(ap
->lock
, flags
);
5735 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
5736 spin_unlock_irqrestore(ap
->lock
, flags
);
5738 ata_port_wait_eh(ap
);
5740 /* EH is now guaranteed to see UNLOADING - EH context belongs
5741 * to us. Disable all existing devices.
5743 ata_port_for_each_link(link
, ap
) {
5744 ata_link_for_each_dev(dev
, link
)
5745 ata_dev_disable(dev
);
5748 /* Final freeze & EH. All in-flight commands are aborted. EH
5749 * will be skipped and retrials will be terminated with bad
5752 spin_lock_irqsave(ap
->lock
, flags
);
5753 ata_port_freeze(ap
); /* won't be thawed */
5754 spin_unlock_irqrestore(ap
->lock
, flags
);
5756 ata_port_wait_eh(ap
);
5757 cancel_rearming_delayed_work(&ap
->hotplug_task
);
5760 /* remove the associated SCSI host */
5761 scsi_remove_host(ap
->scsi_host
);
5765 * ata_host_detach - Detach all ports of an ATA host
5766 * @host: Host to detach
5768 * Detach all ports of @host.
5771 * Kernel thread context (may sleep).
5773 void ata_host_detach(struct ata_host
*host
)
5777 for (i
= 0; i
< host
->n_ports
; i
++)
5778 ata_port_detach(host
->ports
[i
]);
5780 /* the host is dead now, dissociate ACPI */
5781 ata_acpi_dissociate(host
);
5787 * ata_pci_remove_one - PCI layer callback for device removal
5788 * @pdev: PCI device that was removed
5790 * PCI layer indicates to libata via this hook that hot-unplug or
5791 * module unload event has occurred. Detach all ports. Resource
5792 * release is handled via devres.
5795 * Inherited from PCI layer (may sleep).
5797 void ata_pci_remove_one(struct pci_dev
*pdev
)
5799 struct device
*dev
= &pdev
->dev
;
5800 struct ata_host
*host
= dev_get_drvdata(dev
);
5802 ata_host_detach(host
);
5805 /* move to PCI subsystem */
5806 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
5808 unsigned long tmp
= 0;
5810 switch (bits
->width
) {
5813 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
5819 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
5825 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
5836 return (tmp
== bits
->val
) ? 1 : 0;
5840 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
5842 pci_save_state(pdev
);
5843 pci_disable_device(pdev
);
5845 if (mesg
.event
& PM_EVENT_SLEEP
)
5846 pci_set_power_state(pdev
, PCI_D3hot
);
5849 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
5853 pci_set_power_state(pdev
, PCI_D0
);
5854 pci_restore_state(pdev
);
5856 rc
= pcim_enable_device(pdev
);
5858 dev_printk(KERN_ERR
, &pdev
->dev
,
5859 "failed to enable device after resume (%d)\n", rc
);
5863 pci_set_master(pdev
);
5867 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
5869 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
5872 rc
= ata_host_suspend(host
, mesg
);
5876 ata_pci_device_do_suspend(pdev
, mesg
);
5881 int ata_pci_device_resume(struct pci_dev
*pdev
)
5883 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
5886 rc
= ata_pci_device_do_resume(pdev
);
5888 ata_host_resume(host
);
5891 #endif /* CONFIG_PM */
5893 #endif /* CONFIG_PCI */
5895 static int __init
ata_parse_force_one(char **cur
,
5896 struct ata_force_ent
*force_ent
,
5897 const char **reason
)
5899 /* FIXME: Currently, there's no way to tag init const data and
5900 * using __initdata causes build failure on some versions of
5901 * gcc. Once __initdataconst is implemented, add const to the
5902 * following structure.
5904 static struct ata_force_param force_tbl
[] __initdata
= {
5905 { "40c", .cbl
= ATA_CBL_PATA40
},
5906 { "80c", .cbl
= ATA_CBL_PATA80
},
5907 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
5908 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
5909 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
5910 { "sata", .cbl
= ATA_CBL_SATA
},
5911 { "1.5Gbps", .spd_limit
= 1 },
5912 { "3.0Gbps", .spd_limit
= 2 },
5913 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
5914 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
5915 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
5916 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
5917 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
5918 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
5919 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
5920 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
5921 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
5922 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
5923 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
5924 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
5925 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
5926 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
5927 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
5928 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
5929 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
5930 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
5931 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
5932 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
5933 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
5934 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
5935 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
5936 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
5937 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
5938 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
5939 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
5940 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
5941 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
5942 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
5943 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
5944 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
5945 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
5946 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
5947 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
5948 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
5950 char *start
= *cur
, *p
= *cur
;
5951 char *id
, *val
, *endp
;
5952 const struct ata_force_param
*match_fp
= NULL
;
5953 int nr_matches
= 0, i
;
5955 /* find where this param ends and update *cur */
5956 while (*p
!= '\0' && *p
!= ',')
5967 p
= strchr(start
, ':');
5969 val
= strstrip(start
);
5974 id
= strstrip(start
);
5975 val
= strstrip(p
+ 1);
5978 p
= strchr(id
, '.');
5981 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
5982 if (p
== endp
|| *endp
!= '\0') {
5983 *reason
= "invalid device";
5988 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
5989 if (p
== endp
|| *endp
!= '\0') {
5990 *reason
= "invalid port/link";
5995 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
5996 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
5997 const struct ata_force_param
*fp
= &force_tbl
[i
];
5999 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6005 if (strcasecmp(val
, fp
->name
) == 0) {
6012 *reason
= "unknown value";
6015 if (nr_matches
> 1) {
6016 *reason
= "ambigious value";
6020 force_ent
->param
= *match_fp
;
6025 static void __init
ata_parse_force_param(void)
6027 int idx
= 0, size
= 1;
6028 int last_port
= -1, last_device
= -1;
6029 char *p
, *cur
, *next
;
6031 /* calculate maximum number of params and allocate force_tbl */
6032 for (p
= ata_force_param_buf
; *p
; p
++)
6036 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6037 if (!ata_force_tbl
) {
6038 printk(KERN_WARNING
"ata: failed to extend force table, "
6039 "libata.force ignored\n");
6043 /* parse and populate the table */
6044 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6045 const char *reason
= "";
6046 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6049 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6050 printk(KERN_WARNING
"ata: failed to parse force "
6051 "parameter \"%s\" (%s)\n",
6056 if (te
.port
== -1) {
6057 te
.port
= last_port
;
6058 te
.device
= last_device
;
6061 ata_force_tbl
[idx
++] = te
;
6063 last_port
= te
.port
;
6064 last_device
= te
.device
;
6067 ata_force_tbl_size
= idx
;
6070 static int __init
ata_init(void)
6072 ata_probe_timeout
*= HZ
;
6074 ata_parse_force_param();
6076 ata_wq
= create_workqueue("ata");
6080 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6082 destroy_workqueue(ata_wq
);
6086 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6090 static void __exit
ata_exit(void)
6092 kfree(ata_force_tbl
);
6093 destroy_workqueue(ata_wq
);
6094 destroy_workqueue(ata_aux_wq
);
6097 subsys_initcall(ata_init
);
6098 module_exit(ata_exit
);
6100 static unsigned long ratelimit_time
;
6101 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6103 int ata_ratelimit(void)
6106 unsigned long flags
;
6108 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6110 if (time_after(jiffies
, ratelimit_time
)) {
6112 ratelimit_time
= jiffies
+ (HZ
/5);
6116 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6122 * ata_wait_register - wait until register value changes
6123 * @reg: IO-mapped register
6124 * @mask: Mask to apply to read register value
6125 * @val: Wait condition
6126 * @interval_msec: polling interval in milliseconds
6127 * @timeout_msec: timeout in milliseconds
6129 * Waiting for some bits of register to change is a common
6130 * operation for ATA controllers. This function reads 32bit LE
6131 * IO-mapped register @reg and tests for the following condition.
6133 * (*@reg & mask) != val
6135 * If the condition is met, it returns; otherwise, the process is
6136 * repeated after @interval_msec until timeout.
6139 * Kernel thread context (may sleep)
6142 * The final register value.
6144 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6145 unsigned long interval_msec
,
6146 unsigned long timeout_msec
)
6148 unsigned long timeout
;
6151 tmp
= ioread32(reg
);
6153 /* Calculate timeout _after_ the first read to make sure
6154 * preceding writes reach the controller before starting to
6155 * eat away the timeout.
6157 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
6159 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
6160 msleep(interval_msec
);
6161 tmp
= ioread32(reg
);
6170 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6172 return AC_ERR_SYSTEM
;
6175 static void ata_dummy_error_handler(struct ata_port
*ap
)
6180 struct ata_port_operations ata_dummy_port_ops
= {
6181 .qc_prep
= ata_noop_qc_prep
,
6182 .qc_issue
= ata_dummy_qc_issue
,
6183 .error_handler
= ata_dummy_error_handler
,
6186 const struct ata_port_info ata_dummy_port_info
= {
6187 .port_ops
= &ata_dummy_port_ops
,
6191 * libata is essentially a library of internal helper functions for
6192 * low-level ATA host controller drivers. As such, the API/ABI is
6193 * likely to change as new drivers are added and updated.
6194 * Do not depend on ABI/API stability.
6196 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6197 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6198 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6199 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6200 EXPORT_SYMBOL_GPL(sata_port_ops
);
6201 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6202 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6203 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6204 EXPORT_SYMBOL_GPL(ata_host_init
);
6205 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6206 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6207 EXPORT_SYMBOL_GPL(ata_host_start
);
6208 EXPORT_SYMBOL_GPL(ata_host_register
);
6209 EXPORT_SYMBOL_GPL(ata_host_activate
);
6210 EXPORT_SYMBOL_GPL(ata_host_detach
);
6211 EXPORT_SYMBOL_GPL(ata_sg_init
);
6212 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6213 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6214 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6215 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6216 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6217 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6218 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6219 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6220 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6221 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6222 EXPORT_SYMBOL_GPL(ata_mode_string
);
6223 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6224 EXPORT_SYMBOL_GPL(ata_port_start
);
6225 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6226 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6227 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6228 EXPORT_SYMBOL_GPL(ata_port_probe
);
6229 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6230 EXPORT_SYMBOL_GPL(sata_set_spd
);
6231 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6232 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6233 EXPORT_SYMBOL_GPL(sata_link_resume
);
6234 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6235 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6236 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6237 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6238 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6239 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6240 EXPORT_SYMBOL_GPL(ata_port_disable
);
6241 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6242 EXPORT_SYMBOL_GPL(ata_wait_register
);
6243 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6244 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6245 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6246 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6247 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6248 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6249 EXPORT_SYMBOL_GPL(sata_scr_read
);
6250 EXPORT_SYMBOL_GPL(sata_scr_write
);
6251 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6252 EXPORT_SYMBOL_GPL(ata_link_online
);
6253 EXPORT_SYMBOL_GPL(ata_link_offline
);
6255 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6256 EXPORT_SYMBOL_GPL(ata_host_resume
);
6257 #endif /* CONFIG_PM */
6258 EXPORT_SYMBOL_GPL(ata_id_string
);
6259 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6260 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6262 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6263 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6264 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6265 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6266 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6269 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6270 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6272 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6273 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6274 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6275 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6276 #endif /* CONFIG_PM */
6277 #endif /* CONFIG_PCI */
6279 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6280 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6281 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6282 EXPORT_SYMBOL_GPL(ata_port_desc
);
6284 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6285 #endif /* CONFIG_PCI */
6286 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6287 EXPORT_SYMBOL_GPL(ata_link_abort
);
6288 EXPORT_SYMBOL_GPL(ata_port_abort
);
6289 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6290 EXPORT_SYMBOL_GPL(sata_async_notification
);
6291 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6292 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6293 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6294 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6295 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
6296 EXPORT_SYMBOL_GPL(ata_do_eh
);
6297 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6299 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6300 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6301 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6302 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6303 EXPORT_SYMBOL_GPL(ata_cable_sata
);