ia64/kvm: compilation fix. export account_system_vtime.
[pv_ops_mirror.git] / drivers / ata / libata-core.c
blob927b692d723cb190f73e30d09891bf62336770ea
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/jiffies.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/byteorder.h>
65 #include <linux/cdrom.h>
67 #include "libata.h"
70 /* debounce timing parameters in msecs { interval, duration, timeout } */
71 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
72 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
73 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
75 const struct ata_port_operations ata_base_port_ops = {
76 .prereset = ata_std_prereset,
77 .postreset = ata_std_postreset,
78 .error_handler = ata_std_error_handler,
81 const struct ata_port_operations sata_port_ops = {
82 .inherits = &ata_base_port_ops,
84 .qc_defer = ata_std_qc_defer,
85 .hardreset = sata_std_hardreset,
88 static unsigned int ata_dev_init_params(struct ata_device *dev,
89 u16 heads, u16 sectors);
90 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
91 static unsigned int ata_dev_set_feature(struct ata_device *dev,
92 u8 enable, u8 feature);
93 static void ata_dev_xfermask(struct ata_device *dev);
94 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96 unsigned int ata_print_id = 1;
97 static struct workqueue_struct *ata_wq;
99 struct workqueue_struct *ata_aux_wq;
101 struct ata_force_param {
102 const char *name;
103 unsigned int cbl;
104 int spd_limit;
105 unsigned long xfer_mask;
106 unsigned int horkage_on;
107 unsigned int horkage_off;
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160 MODULE_AUTHOR("Jeff Garzik");
161 MODULE_DESCRIPTION("Library module for ATA devices");
162 MODULE_LICENSE("GPL");
163 MODULE_VERSION(DRV_VERSION);
167 * ata_force_cbl - force cable type according to libata.force
168 * @ap: ATA port of interest
170 * Force cable type according to libata.force and whine about it.
171 * The last entry which has matching port number is used, so it
172 * can be specified as part of device force parameters. For
173 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
174 * same effect.
176 * LOCKING:
177 * EH context.
179 void ata_force_cbl(struct ata_port *ap)
181 int i;
183 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
184 const struct ata_force_ent *fe = &ata_force_tbl[i];
186 if (fe->port != -1 && fe->port != ap->print_id)
187 continue;
189 if (fe->param.cbl == ATA_CBL_NONE)
190 continue;
192 ap->cbl = fe->param.cbl;
193 ata_port_printk(ap, KERN_NOTICE,
194 "FORCE: cable set to %s\n", fe->param.name);
195 return;
200 * ata_force_spd_limit - force SATA spd limit according to libata.force
201 * @link: ATA link of interest
203 * Force SATA spd limit according to libata.force and whine about
204 * it. When only the port part is specified (e.g. 1:), the limit
205 * applies to all links connected to both the host link and all
206 * fan-out ports connected via PMP. If the device part is
207 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
208 * link not the host link. Device number 15 always points to the
209 * host link whether PMP is attached or not.
211 * LOCKING:
212 * EH context.
214 static void ata_force_spd_limit(struct ata_link *link)
216 int linkno, i;
218 if (ata_is_host_link(link))
219 linkno = 15;
220 else
221 linkno = link->pmp;
223 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
224 const struct ata_force_ent *fe = &ata_force_tbl[i];
226 if (fe->port != -1 && fe->port != link->ap->print_id)
227 continue;
229 if (fe->device != -1 && fe->device != linkno)
230 continue;
232 if (!fe->param.spd_limit)
233 continue;
235 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
236 ata_link_printk(link, KERN_NOTICE,
237 "FORCE: PHY spd limit set to %s\n", fe->param.name);
238 return;
243 * ata_force_xfermask - force xfermask according to libata.force
244 * @dev: ATA device of interest
246 * Force xfer_mask according to libata.force and whine about it.
247 * For consistency with link selection, device number 15 selects
248 * the first device connected to the host link.
250 * LOCKING:
251 * EH context.
253 static void ata_force_xfermask(struct ata_device *dev)
255 int devno = dev->link->pmp + dev->devno;
256 int alt_devno = devno;
257 int i;
259 /* allow n.15 for the first device attached to host port */
260 if (ata_is_host_link(dev->link) && devno == 0)
261 alt_devno = 15;
263 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
264 const struct ata_force_ent *fe = &ata_force_tbl[i];
265 unsigned long pio_mask, mwdma_mask, udma_mask;
267 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
268 continue;
270 if (fe->device != -1 && fe->device != devno &&
271 fe->device != alt_devno)
272 continue;
274 if (!fe->param.xfer_mask)
275 continue;
277 ata_unpack_xfermask(fe->param.xfer_mask,
278 &pio_mask, &mwdma_mask, &udma_mask);
279 if (udma_mask)
280 dev->udma_mask = udma_mask;
281 else if (mwdma_mask) {
282 dev->udma_mask = 0;
283 dev->mwdma_mask = mwdma_mask;
284 } else {
285 dev->udma_mask = 0;
286 dev->mwdma_mask = 0;
287 dev->pio_mask = pio_mask;
290 ata_dev_printk(dev, KERN_NOTICE,
291 "FORCE: xfer_mask set to %s\n", fe->param.name);
292 return;
297 * ata_force_horkage - force horkage according to libata.force
298 * @dev: ATA device of interest
300 * Force horkage according to libata.force and whine about it.
301 * For consistency with link selection, device number 15 selects
302 * the first device connected to the host link.
304 * LOCKING:
305 * EH context.
307 static void ata_force_horkage(struct ata_device *dev)
309 int devno = dev->link->pmp + dev->devno;
310 int alt_devno = devno;
311 int i;
313 /* allow n.15 for the first device attached to host port */
314 if (ata_is_host_link(dev->link) && devno == 0)
315 alt_devno = 15;
317 for (i = 0; i < ata_force_tbl_size; i++) {
318 const struct ata_force_ent *fe = &ata_force_tbl[i];
320 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
321 continue;
323 if (fe->device != -1 && fe->device != devno &&
324 fe->device != alt_devno)
325 continue;
327 if (!(~dev->horkage & fe->param.horkage_on) &&
328 !(dev->horkage & fe->param.horkage_off))
329 continue;
331 dev->horkage |= fe->param.horkage_on;
332 dev->horkage &= ~fe->param.horkage_off;
334 ata_dev_printk(dev, KERN_NOTICE,
335 "FORCE: horkage modified (%s)\n", fe->param.name);
340 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
341 * @opcode: SCSI opcode
343 * Determine ATAPI command type from @opcode.
345 * LOCKING:
346 * None.
348 * RETURNS:
349 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
351 int atapi_cmd_type(u8 opcode)
353 switch (opcode) {
354 case GPCMD_READ_10:
355 case GPCMD_READ_12:
356 return ATAPI_READ;
358 case GPCMD_WRITE_10:
359 case GPCMD_WRITE_12:
360 case GPCMD_WRITE_AND_VERIFY_10:
361 return ATAPI_WRITE;
363 case GPCMD_READ_CD:
364 case GPCMD_READ_CD_MSF:
365 return ATAPI_READ_CD;
367 case ATA_16:
368 case ATA_12:
369 if (atapi_passthru16)
370 return ATAPI_PASS_THRU;
371 /* fall thru */
372 default:
373 return ATAPI_MISC;
378 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
379 * @tf: Taskfile to convert
380 * @pmp: Port multiplier port
381 * @is_cmd: This FIS is for command
382 * @fis: Buffer into which data will output
384 * Converts a standard ATA taskfile to a Serial ATA
385 * FIS structure (Register - Host to Device).
387 * LOCKING:
388 * Inherited from caller.
390 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
392 fis[0] = 0x27; /* Register - Host to Device FIS */
393 fis[1] = pmp & 0xf; /* Port multiplier number*/
394 if (is_cmd)
395 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
397 fis[2] = tf->command;
398 fis[3] = tf->feature;
400 fis[4] = tf->lbal;
401 fis[5] = tf->lbam;
402 fis[6] = tf->lbah;
403 fis[7] = tf->device;
405 fis[8] = tf->hob_lbal;
406 fis[9] = tf->hob_lbam;
407 fis[10] = tf->hob_lbah;
408 fis[11] = tf->hob_feature;
410 fis[12] = tf->nsect;
411 fis[13] = tf->hob_nsect;
412 fis[14] = 0;
413 fis[15] = tf->ctl;
415 fis[16] = 0;
416 fis[17] = 0;
417 fis[18] = 0;
418 fis[19] = 0;
422 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
423 * @fis: Buffer from which data will be input
424 * @tf: Taskfile to output
426 * Converts a serial ATA FIS structure to a standard ATA taskfile.
428 * LOCKING:
429 * Inherited from caller.
432 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
434 tf->command = fis[2]; /* status */
435 tf->feature = fis[3]; /* error */
437 tf->lbal = fis[4];
438 tf->lbam = fis[5];
439 tf->lbah = fis[6];
440 tf->device = fis[7];
442 tf->hob_lbal = fis[8];
443 tf->hob_lbam = fis[9];
444 tf->hob_lbah = fis[10];
446 tf->nsect = fis[12];
447 tf->hob_nsect = fis[13];
450 static const u8 ata_rw_cmds[] = {
451 /* pio multi */
452 ATA_CMD_READ_MULTI,
453 ATA_CMD_WRITE_MULTI,
454 ATA_CMD_READ_MULTI_EXT,
455 ATA_CMD_WRITE_MULTI_EXT,
459 ATA_CMD_WRITE_MULTI_FUA_EXT,
460 /* pio */
461 ATA_CMD_PIO_READ,
462 ATA_CMD_PIO_WRITE,
463 ATA_CMD_PIO_READ_EXT,
464 ATA_CMD_PIO_WRITE_EXT,
469 /* dma */
470 ATA_CMD_READ,
471 ATA_CMD_WRITE,
472 ATA_CMD_READ_EXT,
473 ATA_CMD_WRITE_EXT,
477 ATA_CMD_WRITE_FUA_EXT
481 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
482 * @tf: command to examine and configure
483 * @dev: device tf belongs to
485 * Examine the device configuration and tf->flags to calculate
486 * the proper read/write commands and protocol to use.
488 * LOCKING:
489 * caller.
491 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
493 u8 cmd;
495 int index, fua, lba48, write;
497 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
498 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
499 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
501 if (dev->flags & ATA_DFLAG_PIO) {
502 tf->protocol = ATA_PROT_PIO;
503 index = dev->multi_count ? 0 : 8;
504 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
505 /* Unable to use DMA due to host limitation */
506 tf->protocol = ATA_PROT_PIO;
507 index = dev->multi_count ? 0 : 8;
508 } else {
509 tf->protocol = ATA_PROT_DMA;
510 index = 16;
513 cmd = ata_rw_cmds[index + fua + lba48 + write];
514 if (cmd) {
515 tf->command = cmd;
516 return 0;
518 return -1;
522 * ata_tf_read_block - Read block address from ATA taskfile
523 * @tf: ATA taskfile of interest
524 * @dev: ATA device @tf belongs to
526 * LOCKING:
527 * None.
529 * Read block address from @tf. This function can handle all
530 * three address formats - LBA, LBA48 and CHS. tf->protocol and
531 * flags select the address format to use.
533 * RETURNS:
534 * Block address read from @tf.
536 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
538 u64 block = 0;
540 if (tf->flags & ATA_TFLAG_LBA) {
541 if (tf->flags & ATA_TFLAG_LBA48) {
542 block |= (u64)tf->hob_lbah << 40;
543 block |= (u64)tf->hob_lbam << 32;
544 block |= tf->hob_lbal << 24;
545 } else
546 block |= (tf->device & 0xf) << 24;
548 block |= tf->lbah << 16;
549 block |= tf->lbam << 8;
550 block |= tf->lbal;
551 } else {
552 u32 cyl, head, sect;
554 cyl = tf->lbam | (tf->lbah << 8);
555 head = tf->device & 0xf;
556 sect = tf->lbal;
558 block = (cyl * dev->heads + head) * dev->sectors + sect;
561 return block;
565 * ata_build_rw_tf - Build ATA taskfile for given read/write request
566 * @tf: Target ATA taskfile
567 * @dev: ATA device @tf belongs to
568 * @block: Block address
569 * @n_block: Number of blocks
570 * @tf_flags: RW/FUA etc...
571 * @tag: tag
573 * LOCKING:
574 * None.
576 * Build ATA taskfile @tf for read/write request described by
577 * @block, @n_block, @tf_flags and @tag on @dev.
579 * RETURNS:
581 * 0 on success, -ERANGE if the request is too large for @dev,
582 * -EINVAL if the request is invalid.
584 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
585 u64 block, u32 n_block, unsigned int tf_flags,
586 unsigned int tag)
588 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
589 tf->flags |= tf_flags;
591 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
592 /* yay, NCQ */
593 if (!lba_48_ok(block, n_block))
594 return -ERANGE;
596 tf->protocol = ATA_PROT_NCQ;
597 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
599 if (tf->flags & ATA_TFLAG_WRITE)
600 tf->command = ATA_CMD_FPDMA_WRITE;
601 else
602 tf->command = ATA_CMD_FPDMA_READ;
604 tf->nsect = tag << 3;
605 tf->hob_feature = (n_block >> 8) & 0xff;
606 tf->feature = n_block & 0xff;
608 tf->hob_lbah = (block >> 40) & 0xff;
609 tf->hob_lbam = (block >> 32) & 0xff;
610 tf->hob_lbal = (block >> 24) & 0xff;
611 tf->lbah = (block >> 16) & 0xff;
612 tf->lbam = (block >> 8) & 0xff;
613 tf->lbal = block & 0xff;
615 tf->device = 1 << 6;
616 if (tf->flags & ATA_TFLAG_FUA)
617 tf->device |= 1 << 7;
618 } else if (dev->flags & ATA_DFLAG_LBA) {
619 tf->flags |= ATA_TFLAG_LBA;
621 if (lba_28_ok(block, n_block)) {
622 /* use LBA28 */
623 tf->device |= (block >> 24) & 0xf;
624 } else if (lba_48_ok(block, n_block)) {
625 if (!(dev->flags & ATA_DFLAG_LBA48))
626 return -ERANGE;
628 /* use LBA48 */
629 tf->flags |= ATA_TFLAG_LBA48;
631 tf->hob_nsect = (n_block >> 8) & 0xff;
633 tf->hob_lbah = (block >> 40) & 0xff;
634 tf->hob_lbam = (block >> 32) & 0xff;
635 tf->hob_lbal = (block >> 24) & 0xff;
636 } else
637 /* request too large even for LBA48 */
638 return -ERANGE;
640 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
641 return -EINVAL;
643 tf->nsect = n_block & 0xff;
645 tf->lbah = (block >> 16) & 0xff;
646 tf->lbam = (block >> 8) & 0xff;
647 tf->lbal = block & 0xff;
649 tf->device |= ATA_LBA;
650 } else {
651 /* CHS */
652 u32 sect, head, cyl, track;
654 /* The request -may- be too large for CHS addressing. */
655 if (!lba_28_ok(block, n_block))
656 return -ERANGE;
658 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
659 return -EINVAL;
661 /* Convert LBA to CHS */
662 track = (u32)block / dev->sectors;
663 cyl = track / dev->heads;
664 head = track % dev->heads;
665 sect = (u32)block % dev->sectors + 1;
667 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
668 (u32)block, track, cyl, head, sect);
670 /* Check whether the converted CHS can fit.
671 Cylinder: 0-65535
672 Head: 0-15
673 Sector: 1-255*/
674 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
675 return -ERANGE;
677 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
678 tf->lbal = sect;
679 tf->lbam = cyl;
680 tf->lbah = cyl >> 8;
681 tf->device |= head;
684 return 0;
688 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
689 * @pio_mask: pio_mask
690 * @mwdma_mask: mwdma_mask
691 * @udma_mask: udma_mask
693 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
694 * unsigned int xfer_mask.
696 * LOCKING:
697 * None.
699 * RETURNS:
700 * Packed xfer_mask.
702 unsigned long ata_pack_xfermask(unsigned long pio_mask,
703 unsigned long mwdma_mask,
704 unsigned long udma_mask)
706 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
707 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
708 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
712 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
713 * @xfer_mask: xfer_mask to unpack
714 * @pio_mask: resulting pio_mask
715 * @mwdma_mask: resulting mwdma_mask
716 * @udma_mask: resulting udma_mask
718 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
719 * Any NULL distination masks will be ignored.
721 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
722 unsigned long *mwdma_mask, unsigned long *udma_mask)
724 if (pio_mask)
725 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
726 if (mwdma_mask)
727 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
728 if (udma_mask)
729 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
732 static const struct ata_xfer_ent {
733 int shift, bits;
734 u8 base;
735 } ata_xfer_tbl[] = {
736 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
737 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
738 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
739 { -1, },
743 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
744 * @xfer_mask: xfer_mask of interest
746 * Return matching XFER_* value for @xfer_mask. Only the highest
747 * bit of @xfer_mask is considered.
749 * LOCKING:
750 * None.
752 * RETURNS:
753 * Matching XFER_* value, 0xff if no match found.
755 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
757 int highbit = fls(xfer_mask) - 1;
758 const struct ata_xfer_ent *ent;
760 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
761 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
762 return ent->base + highbit - ent->shift;
763 return 0xff;
767 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
768 * @xfer_mode: XFER_* of interest
770 * Return matching xfer_mask for @xfer_mode.
772 * LOCKING:
773 * None.
775 * RETURNS:
776 * Matching xfer_mask, 0 if no match found.
778 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
780 const struct ata_xfer_ent *ent;
782 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
783 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
784 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
785 & ~((1 << ent->shift) - 1);
786 return 0;
790 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
791 * @xfer_mode: XFER_* of interest
793 * Return matching xfer_shift for @xfer_mode.
795 * LOCKING:
796 * None.
798 * RETURNS:
799 * Matching xfer_shift, -1 if no match found.
801 int ata_xfer_mode2shift(unsigned long xfer_mode)
803 const struct ata_xfer_ent *ent;
805 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
806 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
807 return ent->shift;
808 return -1;
812 * ata_mode_string - convert xfer_mask to string
813 * @xfer_mask: mask of bits supported; only highest bit counts.
815 * Determine string which represents the highest speed
816 * (highest bit in @modemask).
818 * LOCKING:
819 * None.
821 * RETURNS:
822 * Constant C string representing highest speed listed in
823 * @mode_mask, or the constant C string "<n/a>".
825 const char *ata_mode_string(unsigned long xfer_mask)
827 static const char * const xfer_mode_str[] = {
828 "PIO0",
829 "PIO1",
830 "PIO2",
831 "PIO3",
832 "PIO4",
833 "PIO5",
834 "PIO6",
835 "MWDMA0",
836 "MWDMA1",
837 "MWDMA2",
838 "MWDMA3",
839 "MWDMA4",
840 "UDMA/16",
841 "UDMA/25",
842 "UDMA/33",
843 "UDMA/44",
844 "UDMA/66",
845 "UDMA/100",
846 "UDMA/133",
847 "UDMA7",
849 int highbit;
851 highbit = fls(xfer_mask) - 1;
852 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
853 return xfer_mode_str[highbit];
854 return "<n/a>";
857 static const char *sata_spd_string(unsigned int spd)
859 static const char * const spd_str[] = {
860 "1.5 Gbps",
861 "3.0 Gbps",
864 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
865 return "<unknown>";
866 return spd_str[spd - 1];
869 void ata_dev_disable(struct ata_device *dev)
871 if (ata_dev_enabled(dev)) {
872 if (ata_msg_drv(dev->link->ap))
873 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
874 ata_acpi_on_disable(dev);
875 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
876 ATA_DNXFER_QUIET);
877 dev->class++;
881 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
883 struct ata_link *link = dev->link;
884 struct ata_port *ap = link->ap;
885 u32 scontrol;
886 unsigned int err_mask;
887 int rc;
890 * disallow DIPM for drivers which haven't set
891 * ATA_FLAG_IPM. This is because when DIPM is enabled,
892 * phy ready will be set in the interrupt status on
893 * state changes, which will cause some drivers to
894 * think there are errors - additionally drivers will
895 * need to disable hot plug.
897 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
898 ap->pm_policy = NOT_AVAILABLE;
899 return -EINVAL;
903 * For DIPM, we will only enable it for the
904 * min_power setting.
906 * Why? Because Disks are too stupid to know that
907 * If the host rejects a request to go to SLUMBER
908 * they should retry at PARTIAL, and instead it
909 * just would give up. So, for medium_power to
910 * work at all, we need to only allow HIPM.
912 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
913 if (rc)
914 return rc;
916 switch (policy) {
917 case MIN_POWER:
918 /* no restrictions on IPM transitions */
919 scontrol &= ~(0x3 << 8);
920 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
921 if (rc)
922 return rc;
924 /* enable DIPM */
925 if (dev->flags & ATA_DFLAG_DIPM)
926 err_mask = ata_dev_set_feature(dev,
927 SETFEATURES_SATA_ENABLE, SATA_DIPM);
928 break;
929 case MEDIUM_POWER:
930 /* allow IPM to PARTIAL */
931 scontrol &= ~(0x1 << 8);
932 scontrol |= (0x2 << 8);
933 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
934 if (rc)
935 return rc;
938 * we don't have to disable DIPM since IPM flags
939 * disallow transitions to SLUMBER, which effectively
940 * disable DIPM if it does not support PARTIAL
942 break;
943 case NOT_AVAILABLE:
944 case MAX_PERFORMANCE:
945 /* disable all IPM transitions */
946 scontrol |= (0x3 << 8);
947 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
948 if (rc)
949 return rc;
952 * we don't have to disable DIPM since IPM flags
953 * disallow all transitions which effectively
954 * disable DIPM anyway.
956 break;
959 /* FIXME: handle SET FEATURES failure */
960 (void) err_mask;
962 return 0;
966 * ata_dev_enable_pm - enable SATA interface power management
967 * @dev: device to enable power management
968 * @policy: the link power management policy
970 * Enable SATA Interface power management. This will enable
971 * Device Interface Power Management (DIPM) for min_power
972 * policy, and then call driver specific callbacks for
973 * enabling Host Initiated Power management.
975 * Locking: Caller.
976 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
978 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
980 int rc = 0;
981 struct ata_port *ap = dev->link->ap;
983 /* set HIPM first, then DIPM */
984 if (ap->ops->enable_pm)
985 rc = ap->ops->enable_pm(ap, policy);
986 if (rc)
987 goto enable_pm_out;
988 rc = ata_dev_set_dipm(dev, policy);
990 enable_pm_out:
991 if (rc)
992 ap->pm_policy = MAX_PERFORMANCE;
993 else
994 ap->pm_policy = policy;
995 return /* rc */; /* hopefully we can use 'rc' eventually */
998 #ifdef CONFIG_PM
1000 * ata_dev_disable_pm - disable SATA interface power management
1001 * @dev: device to disable power management
1003 * Disable SATA Interface power management. This will disable
1004 * Device Interface Power Management (DIPM) without changing
1005 * policy, call driver specific callbacks for disabling Host
1006 * Initiated Power management.
1008 * Locking: Caller.
1009 * Returns: void
1011 static void ata_dev_disable_pm(struct ata_device *dev)
1013 struct ata_port *ap = dev->link->ap;
1015 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1016 if (ap->ops->disable_pm)
1017 ap->ops->disable_pm(ap);
1019 #endif /* CONFIG_PM */
1021 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1023 ap->pm_policy = policy;
1024 ap->link.eh_info.action |= ATA_EH_LPM;
1025 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1026 ata_port_schedule_eh(ap);
1029 #ifdef CONFIG_PM
1030 static void ata_lpm_enable(struct ata_host *host)
1032 struct ata_link *link;
1033 struct ata_port *ap;
1034 struct ata_device *dev;
1035 int i;
1037 for (i = 0; i < host->n_ports; i++) {
1038 ap = host->ports[i];
1039 ata_port_for_each_link(link, ap) {
1040 ata_link_for_each_dev(dev, link)
1041 ata_dev_disable_pm(dev);
1046 static void ata_lpm_disable(struct ata_host *host)
1048 int i;
1050 for (i = 0; i < host->n_ports; i++) {
1051 struct ata_port *ap = host->ports[i];
1052 ata_lpm_schedule(ap, ap->pm_policy);
1055 #endif /* CONFIG_PM */
1058 * ata_dev_classify - determine device type based on ATA-spec signature
1059 * @tf: ATA taskfile register set for device to be identified
1061 * Determine from taskfile register contents whether a device is
1062 * ATA or ATAPI, as per "Signature and persistence" section
1063 * of ATA/PI spec (volume 1, sect 5.14).
1065 * LOCKING:
1066 * None.
1068 * RETURNS:
1069 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1070 * %ATA_DEV_UNKNOWN the event of failure.
1072 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1074 /* Apple's open source Darwin code hints that some devices only
1075 * put a proper signature into the LBA mid/high registers,
1076 * So, we only check those. It's sufficient for uniqueness.
1078 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1079 * signatures for ATA and ATAPI devices attached on SerialATA,
1080 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1081 * spec has never mentioned about using different signatures
1082 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1083 * Multiplier specification began to use 0x69/0x96 to identify
1084 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1085 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1086 * 0x69/0x96 shortly and described them as reserved for
1087 * SerialATA.
1089 * We follow the current spec and consider that 0x69/0x96
1090 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1092 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1093 DPRINTK("found ATA device by sig\n");
1094 return ATA_DEV_ATA;
1097 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1098 DPRINTK("found ATAPI device by sig\n");
1099 return ATA_DEV_ATAPI;
1102 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1103 DPRINTK("found PMP device by sig\n");
1104 return ATA_DEV_PMP;
1107 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1108 printk(KERN_INFO "ata: SEMB device ignored\n");
1109 return ATA_DEV_SEMB_UNSUP; /* not yet */
1112 DPRINTK("unknown device\n");
1113 return ATA_DEV_UNKNOWN;
1117 * ata_id_string - Convert IDENTIFY DEVICE page into string
1118 * @id: IDENTIFY DEVICE results we will examine
1119 * @s: string into which data is output
1120 * @ofs: offset into identify device page
1121 * @len: length of string to return. must be an even number.
1123 * The strings in the IDENTIFY DEVICE page are broken up into
1124 * 16-bit chunks. Run through the string, and output each
1125 * 8-bit chunk linearly, regardless of platform.
1127 * LOCKING:
1128 * caller.
1131 void ata_id_string(const u16 *id, unsigned char *s,
1132 unsigned int ofs, unsigned int len)
1134 unsigned int c;
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1145 ofs++;
1146 len -= 2;
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1161 * LOCKING:
1162 * caller.
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1167 unsigned char *p;
1169 WARN_ON(!(len & 1));
1171 ata_id_string(id, s, ofs, len - 1);
1173 p = s + strnlen(s, len - 1);
1174 while (p > s && p[-1] == ' ')
1175 p--;
1176 *p = '\0';
1179 static u64 ata_id_n_sectors(const u16 *id)
1181 if (ata_id_has_lba(id)) {
1182 if (ata_id_has_lba48(id))
1183 return ata_id_u64(id, 100);
1184 else
1185 return ata_id_u32(id, 60);
1186 } else {
1187 if (ata_id_current_chs_valid(id))
1188 return ata_id_u32(id, 57);
1189 else
1190 return id[1] * id[3] * id[6];
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1196 u64 sectors = 0;
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= (tf->hob_lbal & 0xff) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1205 return sectors;
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1210 u64 sectors = 0;
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1217 return sectors;
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1238 ata_tf_init(dev, &tf);
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1249 tf.protocol |= ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 if (err_mask) {
1254 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1255 "max address (err_mask=0x%x)\n", err_mask);
1256 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1257 return -EACCES;
1258 return -EIO;
1261 if (lba48)
1262 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1263 else
1264 *max_sectors = ata_tf_to_lba(&tf) + 1;
1265 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1266 (*max_sectors)--;
1267 return 0;
1271 * ata_set_max_sectors - Set max sectors
1272 * @dev: target device
1273 * @new_sectors: new max sectors value to set for the device
1275 * Set max sectors of @dev to @new_sectors.
1277 * RETURNS:
1278 * 0 on success, -EACCES if command is aborted or denied (due to
1279 * previous non-volatile SET_MAX) by the drive. -EIO on other
1280 * errors.
1282 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 unsigned int err_mask;
1285 struct ata_taskfile tf;
1286 int lba48 = ata_id_has_lba48(dev->id);
1288 new_sectors--;
1290 ata_tf_init(dev, &tf);
1292 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294 if (lba48) {
1295 tf.command = ATA_CMD_SET_MAX_EXT;
1296 tf.flags |= ATA_TFLAG_LBA48;
1298 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1299 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1300 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1301 } else {
1302 tf.command = ATA_CMD_SET_MAX;
1304 tf.device |= (new_sectors >> 24) & 0xf;
1307 tf.protocol |= ATA_PROT_NODATA;
1308 tf.device |= ATA_LBA;
1310 tf.lbal = (new_sectors >> 0) & 0xff;
1311 tf.lbam = (new_sectors >> 8) & 0xff;
1312 tf.lbah = (new_sectors >> 16) & 0xff;
1314 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1315 if (err_mask) {
1316 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1317 "max address (err_mask=0x%x)\n", err_mask);
1318 if (err_mask == AC_ERR_DEV &&
1319 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1320 return -EACCES;
1321 return -EIO;
1324 return 0;
1328 * ata_hpa_resize - Resize a device with an HPA set
1329 * @dev: Device to resize
1331 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1332 * it if required to the full size of the media. The caller must check
1333 * the drive has the HPA feature set enabled.
1335 * RETURNS:
1336 * 0 on success, -errno on failure.
1338 static int ata_hpa_resize(struct ata_device *dev)
1340 struct ata_eh_context *ehc = &dev->link->eh_context;
1341 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1342 u64 sectors = ata_id_n_sectors(dev->id);
1343 u64 native_sectors;
1344 int rc;
1346 /* do we need to do it? */
1347 if (dev->class != ATA_DEV_ATA ||
1348 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1349 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1350 return 0;
1352 /* read native max address */
1353 rc = ata_read_native_max_address(dev, &native_sectors);
1354 if (rc) {
1355 /* If device aborted the command or HPA isn't going to
1356 * be unlocked, skip HPA resizing.
1358 if (rc == -EACCES || !ata_ignore_hpa) {
1359 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1360 "broken, skipping HPA handling\n");
1361 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1363 /* we can continue if device aborted the command */
1364 if (rc == -EACCES)
1365 rc = 0;
1368 return rc;
1371 /* nothing to do? */
1372 if (native_sectors <= sectors || !ata_ignore_hpa) {
1373 if (!print_info || native_sectors == sectors)
1374 return 0;
1376 if (native_sectors > sectors)
1377 ata_dev_printk(dev, KERN_INFO,
1378 "HPA detected: current %llu, native %llu\n",
1379 (unsigned long long)sectors,
1380 (unsigned long long)native_sectors);
1381 else if (native_sectors < sectors)
1382 ata_dev_printk(dev, KERN_WARNING,
1383 "native sectors (%llu) is smaller than "
1384 "sectors (%llu)\n",
1385 (unsigned long long)native_sectors,
1386 (unsigned long long)sectors);
1387 return 0;
1390 /* let's unlock HPA */
1391 rc = ata_set_max_sectors(dev, native_sectors);
1392 if (rc == -EACCES) {
1393 /* if device aborted the command, skip HPA resizing */
1394 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1395 "(%llu -> %llu), skipping HPA handling\n",
1396 (unsigned long long)sectors,
1397 (unsigned long long)native_sectors);
1398 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1399 return 0;
1400 } else if (rc)
1401 return rc;
1403 /* re-read IDENTIFY data */
1404 rc = ata_dev_reread_id(dev, 0);
1405 if (rc) {
1406 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1407 "data after HPA resizing\n");
1408 return rc;
1411 if (print_info) {
1412 u64 new_sectors = ata_id_n_sectors(dev->id);
1413 ata_dev_printk(dev, KERN_INFO,
1414 "HPA unlocked: %llu -> %llu, native %llu\n",
1415 (unsigned long long)sectors,
1416 (unsigned long long)new_sectors,
1417 (unsigned long long)native_sectors);
1420 return 0;
1424 * ata_dump_id - IDENTIFY DEVICE info debugging output
1425 * @id: IDENTIFY DEVICE page to dump
1427 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1428 * page.
1430 * LOCKING:
1431 * caller.
1434 static inline void ata_dump_id(const u16 *id)
1436 DPRINTK("49==0x%04x "
1437 "53==0x%04x "
1438 "63==0x%04x "
1439 "64==0x%04x "
1440 "75==0x%04x \n",
1441 id[49],
1442 id[53],
1443 id[63],
1444 id[64],
1445 id[75]);
1446 DPRINTK("80==0x%04x "
1447 "81==0x%04x "
1448 "82==0x%04x "
1449 "83==0x%04x "
1450 "84==0x%04x \n",
1451 id[80],
1452 id[81],
1453 id[82],
1454 id[83],
1455 id[84]);
1456 DPRINTK("88==0x%04x "
1457 "93==0x%04x\n",
1458 id[88],
1459 id[93]);
1463 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1464 * @id: IDENTIFY data to compute xfer mask from
1466 * Compute the xfermask for this device. This is not as trivial
1467 * as it seems if we must consider early devices correctly.
1469 * FIXME: pre IDE drive timing (do we care ?).
1471 * LOCKING:
1472 * None.
1474 * RETURNS:
1475 * Computed xfermask
1477 unsigned long ata_id_xfermask(const u16 *id)
1479 unsigned long pio_mask, mwdma_mask, udma_mask;
1481 /* Usual case. Word 53 indicates word 64 is valid */
1482 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1483 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1484 pio_mask <<= 3;
1485 pio_mask |= 0x7;
1486 } else {
1487 /* If word 64 isn't valid then Word 51 high byte holds
1488 * the PIO timing number for the maximum. Turn it into
1489 * a mask.
1491 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1492 if (mode < 5) /* Valid PIO range */
1493 pio_mask = (2 << mode) - 1;
1494 else
1495 pio_mask = 1;
1497 /* But wait.. there's more. Design your standards by
1498 * committee and you too can get a free iordy field to
1499 * process. However its the speeds not the modes that
1500 * are supported... Note drivers using the timing API
1501 * will get this right anyway
1505 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1507 if (ata_id_is_cfa(id)) {
1509 * Process compact flash extended modes
1511 int pio = id[163] & 0x7;
1512 int dma = (id[163] >> 3) & 7;
1514 if (pio)
1515 pio_mask |= (1 << 5);
1516 if (pio > 1)
1517 pio_mask |= (1 << 6);
1518 if (dma)
1519 mwdma_mask |= (1 << 3);
1520 if (dma > 1)
1521 mwdma_mask |= (1 << 4);
1524 udma_mask = 0;
1525 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1526 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1528 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 * ata_pio_queue_task - Queue port_task
1533 * @ap: The ata_port to queue port_task for
1534 * @fn: workqueue function to be scheduled
1535 * @data: data for @fn to use
1536 * @delay: delay time for workqueue function
1538 * Schedule @fn(@data) for execution after @delay jiffies using
1539 * port_task. There is one port_task per port and it's the
1540 * user(low level driver)'s responsibility to make sure that only
1541 * one task is active at any given time.
1543 * libata core layer takes care of synchronization between
1544 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1545 * synchronization.
1547 * LOCKING:
1548 * Inherited from caller.
1550 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1552 ap->port_task_data = data;
1554 /* may fail if ata_port_flush_task() in progress */
1555 queue_delayed_work(ata_wq, &ap->port_task, delay);
1559 * ata_port_flush_task - Flush port_task
1560 * @ap: The ata_port to flush port_task for
1562 * After this function completes, port_task is guranteed not to
1563 * be running or scheduled.
1565 * LOCKING:
1566 * Kernel thread context (may sleep)
1568 void ata_port_flush_task(struct ata_port *ap)
1570 DPRINTK("ENTER\n");
1572 cancel_rearming_delayed_work(&ap->port_task);
1574 if (ata_msg_ctl(ap))
1575 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1578 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1580 struct completion *waiting = qc->private_data;
1582 complete(waiting);
1586 * ata_exec_internal_sg - execute libata internal command
1587 * @dev: Device to which the command is sent
1588 * @tf: Taskfile registers for the command and the result
1589 * @cdb: CDB for packet command
1590 * @dma_dir: Data tranfer direction of the command
1591 * @sgl: sg list for the data buffer of the command
1592 * @n_elem: Number of sg entries
1593 * @timeout: Timeout in msecs (0 for default)
1595 * Executes libata internal command with timeout. @tf contains
1596 * command on entry and result on return. Timeout and error
1597 * conditions are reported via return value. No recovery action
1598 * is taken after a command times out. It's caller's duty to
1599 * clean up after timeout.
1601 * LOCKING:
1602 * None. Should be called with kernel context, might sleep.
1604 * RETURNS:
1605 * Zero on success, AC_ERR_* mask on failure
1607 unsigned ata_exec_internal_sg(struct ata_device *dev,
1608 struct ata_taskfile *tf, const u8 *cdb,
1609 int dma_dir, struct scatterlist *sgl,
1610 unsigned int n_elem, unsigned long timeout)
1612 struct ata_link *link = dev->link;
1613 struct ata_port *ap = link->ap;
1614 u8 command = tf->command;
1615 struct ata_queued_cmd *qc;
1616 unsigned int tag, preempted_tag;
1617 u32 preempted_sactive, preempted_qc_active;
1618 int preempted_nr_active_links;
1619 DECLARE_COMPLETION_ONSTACK(wait);
1620 unsigned long flags;
1621 unsigned int err_mask;
1622 int rc;
1624 spin_lock_irqsave(ap->lock, flags);
1626 /* no internal command while frozen */
1627 if (ap->pflags & ATA_PFLAG_FROZEN) {
1628 spin_unlock_irqrestore(ap->lock, flags);
1629 return AC_ERR_SYSTEM;
1632 /* initialize internal qc */
1634 /* XXX: Tag 0 is used for drivers with legacy EH as some
1635 * drivers choke if any other tag is given. This breaks
1636 * ata_tag_internal() test for those drivers. Don't use new
1637 * EH stuff without converting to it.
1639 if (ap->ops->error_handler)
1640 tag = ATA_TAG_INTERNAL;
1641 else
1642 tag = 0;
1644 if (test_and_set_bit(tag, &ap->qc_allocated))
1645 BUG();
1646 qc = __ata_qc_from_tag(ap, tag);
1648 qc->tag = tag;
1649 qc->scsicmd = NULL;
1650 qc->ap = ap;
1651 qc->dev = dev;
1652 ata_qc_reinit(qc);
1654 preempted_tag = link->active_tag;
1655 preempted_sactive = link->sactive;
1656 preempted_qc_active = ap->qc_active;
1657 preempted_nr_active_links = ap->nr_active_links;
1658 link->active_tag = ATA_TAG_POISON;
1659 link->sactive = 0;
1660 ap->qc_active = 0;
1661 ap->nr_active_links = 0;
1663 /* prepare & issue qc */
1664 qc->tf = *tf;
1665 if (cdb)
1666 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1667 qc->flags |= ATA_QCFLAG_RESULT_TF;
1668 qc->dma_dir = dma_dir;
1669 if (dma_dir != DMA_NONE) {
1670 unsigned int i, buflen = 0;
1671 struct scatterlist *sg;
1673 for_each_sg(sgl, sg, n_elem, i)
1674 buflen += sg->length;
1676 ata_sg_init(qc, sgl, n_elem);
1677 qc->nbytes = buflen;
1680 qc->private_data = &wait;
1681 qc->complete_fn = ata_qc_complete_internal;
1683 ata_qc_issue(qc);
1685 spin_unlock_irqrestore(ap->lock, flags);
1687 if (!timeout)
1688 timeout = ata_probe_timeout * 1000 / HZ;
1690 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1692 ata_port_flush_task(ap);
1694 if (!rc) {
1695 spin_lock_irqsave(ap->lock, flags);
1697 /* We're racing with irq here. If we lose, the
1698 * following test prevents us from completing the qc
1699 * twice. If we win, the port is frozen and will be
1700 * cleaned up by ->post_internal_cmd().
1702 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1703 qc->err_mask |= AC_ERR_TIMEOUT;
1705 if (ap->ops->error_handler)
1706 ata_port_freeze(ap);
1707 else
1708 ata_qc_complete(qc);
1710 if (ata_msg_warn(ap))
1711 ata_dev_printk(dev, KERN_WARNING,
1712 "qc timeout (cmd 0x%x)\n", command);
1715 spin_unlock_irqrestore(ap->lock, flags);
1718 /* do post_internal_cmd */
1719 if (ap->ops->post_internal_cmd)
1720 ap->ops->post_internal_cmd(qc);
1722 /* perform minimal error analysis */
1723 if (qc->flags & ATA_QCFLAG_FAILED) {
1724 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1725 qc->err_mask |= AC_ERR_DEV;
1727 if (!qc->err_mask)
1728 qc->err_mask |= AC_ERR_OTHER;
1730 if (qc->err_mask & ~AC_ERR_OTHER)
1731 qc->err_mask &= ~AC_ERR_OTHER;
1734 /* finish up */
1735 spin_lock_irqsave(ap->lock, flags);
1737 *tf = qc->result_tf;
1738 err_mask = qc->err_mask;
1740 ata_qc_free(qc);
1741 link->active_tag = preempted_tag;
1742 link->sactive = preempted_sactive;
1743 ap->qc_active = preempted_qc_active;
1744 ap->nr_active_links = preempted_nr_active_links;
1746 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1747 * Until those drivers are fixed, we detect the condition
1748 * here, fail the command with AC_ERR_SYSTEM and reenable the
1749 * port.
1751 * Note that this doesn't change any behavior as internal
1752 * command failure results in disabling the device in the
1753 * higher layer for LLDDs without new reset/EH callbacks.
1755 * Kill the following code as soon as those drivers are fixed.
1757 if (ap->flags & ATA_FLAG_DISABLED) {
1758 err_mask |= AC_ERR_SYSTEM;
1759 ata_port_probe(ap);
1762 spin_unlock_irqrestore(ap->lock, flags);
1764 return err_mask;
1768 * ata_exec_internal - execute libata internal command
1769 * @dev: Device to which the command is sent
1770 * @tf: Taskfile registers for the command and the result
1771 * @cdb: CDB for packet command
1772 * @dma_dir: Data tranfer direction of the command
1773 * @buf: Data buffer of the command
1774 * @buflen: Length of data buffer
1775 * @timeout: Timeout in msecs (0 for default)
1777 * Wrapper around ata_exec_internal_sg() which takes simple
1778 * buffer instead of sg list.
1780 * LOCKING:
1781 * None. Should be called with kernel context, might sleep.
1783 * RETURNS:
1784 * Zero on success, AC_ERR_* mask on failure
1786 unsigned ata_exec_internal(struct ata_device *dev,
1787 struct ata_taskfile *tf, const u8 *cdb,
1788 int dma_dir, void *buf, unsigned int buflen,
1789 unsigned long timeout)
1791 struct scatterlist *psg = NULL, sg;
1792 unsigned int n_elem = 0;
1794 if (dma_dir != DMA_NONE) {
1795 WARN_ON(!buf);
1796 sg_init_one(&sg, buf, buflen);
1797 psg = &sg;
1798 n_elem++;
1801 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1802 timeout);
1806 * ata_do_simple_cmd - execute simple internal command
1807 * @dev: Device to which the command is sent
1808 * @cmd: Opcode to execute
1810 * Execute a 'simple' command, that only consists of the opcode
1811 * 'cmd' itself, without filling any other registers
1813 * LOCKING:
1814 * Kernel thread context (may sleep).
1816 * RETURNS:
1817 * Zero on success, AC_ERR_* mask on failure
1819 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1821 struct ata_taskfile tf;
1823 ata_tf_init(dev, &tf);
1825 tf.command = cmd;
1826 tf.flags |= ATA_TFLAG_DEVICE;
1827 tf.protocol = ATA_PROT_NODATA;
1829 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1833 * ata_pio_need_iordy - check if iordy needed
1834 * @adev: ATA device
1836 * Check if the current speed of the device requires IORDY. Used
1837 * by various controllers for chip configuration.
1840 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1842 /* Controller doesn't support IORDY. Probably a pointless check
1843 as the caller should know this */
1844 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1845 return 0;
1846 /* PIO3 and higher it is mandatory */
1847 if (adev->pio_mode > XFER_PIO_2)
1848 return 1;
1849 /* We turn it on when possible */
1850 if (ata_id_has_iordy(adev->id))
1851 return 1;
1852 return 0;
1856 * ata_pio_mask_no_iordy - Return the non IORDY mask
1857 * @adev: ATA device
1859 * Compute the highest mode possible if we are not using iordy. Return
1860 * -1 if no iordy mode is available.
1863 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1865 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1866 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1867 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1868 /* Is the speed faster than the drive allows non IORDY ? */
1869 if (pio) {
1870 /* This is cycle times not frequency - watch the logic! */
1871 if (pio > 240) /* PIO2 is 240nS per cycle */
1872 return 3 << ATA_SHIFT_PIO;
1873 return 7 << ATA_SHIFT_PIO;
1876 return 3 << ATA_SHIFT_PIO;
1880 * ata_dev_read_id - Read ID data from the specified device
1881 * @dev: target device
1882 * @p_class: pointer to class of the target device (may be changed)
1883 * @flags: ATA_READID_* flags
1884 * @id: buffer to read IDENTIFY data into
1886 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1887 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1888 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1889 * for pre-ATA4 drives.
1891 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1892 * now we abort if we hit that case.
1894 * LOCKING:
1895 * Kernel thread context (may sleep)
1897 * RETURNS:
1898 * 0 on success, -errno otherwise.
1900 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1901 unsigned int flags, u16 *id)
1903 struct ata_port *ap = dev->link->ap;
1904 unsigned int class = *p_class;
1905 struct ata_taskfile tf;
1906 unsigned int err_mask = 0;
1907 const char *reason;
1908 int may_fallback = 1, tried_spinup = 0;
1909 int rc;
1911 if (ata_msg_ctl(ap))
1912 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1914 retry:
1915 ata_tf_init(dev, &tf);
1917 switch (class) {
1918 case ATA_DEV_ATA:
1919 tf.command = ATA_CMD_ID_ATA;
1920 break;
1921 case ATA_DEV_ATAPI:
1922 tf.command = ATA_CMD_ID_ATAPI;
1923 break;
1924 default:
1925 rc = -ENODEV;
1926 reason = "unsupported class";
1927 goto err_out;
1930 tf.protocol = ATA_PROT_PIO;
1932 /* Some devices choke if TF registers contain garbage. Make
1933 * sure those are properly initialized.
1935 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1937 /* Device presence detection is unreliable on some
1938 * controllers. Always poll IDENTIFY if available.
1940 tf.flags |= ATA_TFLAG_POLLING;
1942 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1943 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1944 if (err_mask) {
1945 if (err_mask & AC_ERR_NODEV_HINT) {
1946 ata_dev_printk(dev, KERN_DEBUG,
1947 "NODEV after polling detection\n");
1948 return -ENOENT;
1951 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1952 /* Device or controller might have reported
1953 * the wrong device class. Give a shot at the
1954 * other IDENTIFY if the current one is
1955 * aborted by the device.
1957 if (may_fallback) {
1958 may_fallback = 0;
1960 if (class == ATA_DEV_ATA)
1961 class = ATA_DEV_ATAPI;
1962 else
1963 class = ATA_DEV_ATA;
1964 goto retry;
1967 /* Control reaches here iff the device aborted
1968 * both flavors of IDENTIFYs which happens
1969 * sometimes with phantom devices.
1971 ata_dev_printk(dev, KERN_DEBUG,
1972 "both IDENTIFYs aborted, assuming NODEV\n");
1973 return -ENOENT;
1976 rc = -EIO;
1977 reason = "I/O error";
1978 goto err_out;
1981 /* Falling back doesn't make sense if ID data was read
1982 * successfully at least once.
1984 may_fallback = 0;
1986 swap_buf_le16(id, ATA_ID_WORDS);
1988 /* sanity check */
1989 rc = -EINVAL;
1990 reason = "device reports invalid type";
1992 if (class == ATA_DEV_ATA) {
1993 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1994 goto err_out;
1995 } else {
1996 if (ata_id_is_ata(id))
1997 goto err_out;
2000 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2001 tried_spinup = 1;
2003 * Drive powered-up in standby mode, and requires a specific
2004 * SET_FEATURES spin-up subcommand before it will accept
2005 * anything other than the original IDENTIFY command.
2007 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2008 if (err_mask && id[2] != 0x738c) {
2009 rc = -EIO;
2010 reason = "SPINUP failed";
2011 goto err_out;
2014 * If the drive initially returned incomplete IDENTIFY info,
2015 * we now must reissue the IDENTIFY command.
2017 if (id[2] == 0x37c8)
2018 goto retry;
2021 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2023 * The exact sequence expected by certain pre-ATA4 drives is:
2024 * SRST RESET
2025 * IDENTIFY (optional in early ATA)
2026 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2027 * anything else..
2028 * Some drives were very specific about that exact sequence.
2030 * Note that ATA4 says lba is mandatory so the second check
2031 * shoud never trigger.
2033 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2034 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2035 if (err_mask) {
2036 rc = -EIO;
2037 reason = "INIT_DEV_PARAMS failed";
2038 goto err_out;
2041 /* current CHS translation info (id[53-58]) might be
2042 * changed. reread the identify device info.
2044 flags &= ~ATA_READID_POSTRESET;
2045 goto retry;
2049 *p_class = class;
2051 return 0;
2053 err_out:
2054 if (ata_msg_warn(ap))
2055 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2056 "(%s, err_mask=0x%x)\n", reason, err_mask);
2057 return rc;
2060 static inline u8 ata_dev_knobble(struct ata_device *dev)
2062 struct ata_port *ap = dev->link->ap;
2063 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2066 static void ata_dev_config_ncq(struct ata_device *dev,
2067 char *desc, size_t desc_sz)
2069 struct ata_port *ap = dev->link->ap;
2070 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2072 if (!ata_id_has_ncq(dev->id)) {
2073 desc[0] = '\0';
2074 return;
2076 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2077 snprintf(desc, desc_sz, "NCQ (not used)");
2078 return;
2080 if (ap->flags & ATA_FLAG_NCQ) {
2081 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2082 dev->flags |= ATA_DFLAG_NCQ;
2085 if (hdepth >= ddepth)
2086 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2087 else
2088 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2092 * ata_dev_configure - Configure the specified ATA/ATAPI device
2093 * @dev: Target device to configure
2095 * Configure @dev according to @dev->id. Generic and low-level
2096 * driver specific fixups are also applied.
2098 * LOCKING:
2099 * Kernel thread context (may sleep)
2101 * RETURNS:
2102 * 0 on success, -errno otherwise
2104 int ata_dev_configure(struct ata_device *dev)
2106 struct ata_port *ap = dev->link->ap;
2107 struct ata_eh_context *ehc = &dev->link->eh_context;
2108 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2109 const u16 *id = dev->id;
2110 unsigned long xfer_mask;
2111 char revbuf[7]; /* XYZ-99\0 */
2112 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2113 char modelbuf[ATA_ID_PROD_LEN+1];
2114 int rc;
2116 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2117 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2118 __func__);
2119 return 0;
2122 if (ata_msg_probe(ap))
2123 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2125 /* set horkage */
2126 dev->horkage |= ata_dev_blacklisted(dev);
2127 ata_force_horkage(dev);
2129 /* let ACPI work its magic */
2130 rc = ata_acpi_on_devcfg(dev);
2131 if (rc)
2132 return rc;
2134 /* massage HPA, do it early as it might change IDENTIFY data */
2135 rc = ata_hpa_resize(dev);
2136 if (rc)
2137 return rc;
2139 /* print device capabilities */
2140 if (ata_msg_probe(ap))
2141 ata_dev_printk(dev, KERN_DEBUG,
2142 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2143 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2144 __func__,
2145 id[49], id[82], id[83], id[84],
2146 id[85], id[86], id[87], id[88]);
2148 /* initialize to-be-configured parameters */
2149 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2150 dev->max_sectors = 0;
2151 dev->cdb_len = 0;
2152 dev->n_sectors = 0;
2153 dev->cylinders = 0;
2154 dev->heads = 0;
2155 dev->sectors = 0;
2158 * common ATA, ATAPI feature tests
2161 /* find max transfer mode; for printk only */
2162 xfer_mask = ata_id_xfermask(id);
2164 if (ata_msg_probe(ap))
2165 ata_dump_id(id);
2167 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2168 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2169 sizeof(fwrevbuf));
2171 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2172 sizeof(modelbuf));
2174 /* ATA-specific feature tests */
2175 if (dev->class == ATA_DEV_ATA) {
2176 if (ata_id_is_cfa(id)) {
2177 if (id[162] & 1) /* CPRM may make this media unusable */
2178 ata_dev_printk(dev, KERN_WARNING,
2179 "supports DRM functions and may "
2180 "not be fully accessable.\n");
2181 snprintf(revbuf, 7, "CFA");
2182 } else {
2183 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2184 /* Warn the user if the device has TPM extensions */
2185 if (ata_id_has_tpm(id))
2186 ata_dev_printk(dev, KERN_WARNING,
2187 "supports DRM functions and may "
2188 "not be fully accessable.\n");
2191 dev->n_sectors = ata_id_n_sectors(id);
2193 if (dev->id[59] & 0x100)
2194 dev->multi_count = dev->id[59] & 0xff;
2196 if (ata_id_has_lba(id)) {
2197 const char *lba_desc;
2198 char ncq_desc[20];
2200 lba_desc = "LBA";
2201 dev->flags |= ATA_DFLAG_LBA;
2202 if (ata_id_has_lba48(id)) {
2203 dev->flags |= ATA_DFLAG_LBA48;
2204 lba_desc = "LBA48";
2206 if (dev->n_sectors >= (1UL << 28) &&
2207 ata_id_has_flush_ext(id))
2208 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2211 /* config NCQ */
2212 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2214 /* print device info to dmesg */
2215 if (ata_msg_drv(ap) && print_info) {
2216 ata_dev_printk(dev, KERN_INFO,
2217 "%s: %s, %s, max %s\n",
2218 revbuf, modelbuf, fwrevbuf,
2219 ata_mode_string(xfer_mask));
2220 ata_dev_printk(dev, KERN_INFO,
2221 "%Lu sectors, multi %u: %s %s\n",
2222 (unsigned long long)dev->n_sectors,
2223 dev->multi_count, lba_desc, ncq_desc);
2225 } else {
2226 /* CHS */
2228 /* Default translation */
2229 dev->cylinders = id[1];
2230 dev->heads = id[3];
2231 dev->sectors = id[6];
2233 if (ata_id_current_chs_valid(id)) {
2234 /* Current CHS translation is valid. */
2235 dev->cylinders = id[54];
2236 dev->heads = id[55];
2237 dev->sectors = id[56];
2240 /* print device info to dmesg */
2241 if (ata_msg_drv(ap) && print_info) {
2242 ata_dev_printk(dev, KERN_INFO,
2243 "%s: %s, %s, max %s\n",
2244 revbuf, modelbuf, fwrevbuf,
2245 ata_mode_string(xfer_mask));
2246 ata_dev_printk(dev, KERN_INFO,
2247 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2248 (unsigned long long)dev->n_sectors,
2249 dev->multi_count, dev->cylinders,
2250 dev->heads, dev->sectors);
2254 dev->cdb_len = 16;
2257 /* ATAPI-specific feature tests */
2258 else if (dev->class == ATA_DEV_ATAPI) {
2259 const char *cdb_intr_string = "";
2260 const char *atapi_an_string = "";
2261 const char *dma_dir_string = "";
2262 u32 sntf;
2264 rc = atapi_cdb_len(id);
2265 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2266 if (ata_msg_warn(ap))
2267 ata_dev_printk(dev, KERN_WARNING,
2268 "unsupported CDB len\n");
2269 rc = -EINVAL;
2270 goto err_out_nosup;
2272 dev->cdb_len = (unsigned int) rc;
2274 /* Enable ATAPI AN if both the host and device have
2275 * the support. If PMP is attached, SNTF is required
2276 * to enable ATAPI AN to discern between PHY status
2277 * changed notifications and ATAPI ANs.
2279 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2280 (!sata_pmp_attached(ap) ||
2281 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2282 unsigned int err_mask;
2284 /* issue SET feature command to turn this on */
2285 err_mask = ata_dev_set_feature(dev,
2286 SETFEATURES_SATA_ENABLE, SATA_AN);
2287 if (err_mask)
2288 ata_dev_printk(dev, KERN_ERR,
2289 "failed to enable ATAPI AN "
2290 "(err_mask=0x%x)\n", err_mask);
2291 else {
2292 dev->flags |= ATA_DFLAG_AN;
2293 atapi_an_string = ", ATAPI AN";
2297 if (ata_id_cdb_intr(dev->id)) {
2298 dev->flags |= ATA_DFLAG_CDB_INTR;
2299 cdb_intr_string = ", CDB intr";
2302 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2303 dev->flags |= ATA_DFLAG_DMADIR;
2304 dma_dir_string = ", DMADIR";
2307 /* print device info to dmesg */
2308 if (ata_msg_drv(ap) && print_info)
2309 ata_dev_printk(dev, KERN_INFO,
2310 "ATAPI: %s, %s, max %s%s%s%s\n",
2311 modelbuf, fwrevbuf,
2312 ata_mode_string(xfer_mask),
2313 cdb_intr_string, atapi_an_string,
2314 dma_dir_string);
2317 /* determine max_sectors */
2318 dev->max_sectors = ATA_MAX_SECTORS;
2319 if (dev->flags & ATA_DFLAG_LBA48)
2320 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2322 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2323 if (ata_id_has_hipm(dev->id))
2324 dev->flags |= ATA_DFLAG_HIPM;
2325 if (ata_id_has_dipm(dev->id))
2326 dev->flags |= ATA_DFLAG_DIPM;
2329 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2330 200 sectors */
2331 if (ata_dev_knobble(dev)) {
2332 if (ata_msg_drv(ap) && print_info)
2333 ata_dev_printk(dev, KERN_INFO,
2334 "applying bridge limits\n");
2335 dev->udma_mask &= ATA_UDMA5;
2336 dev->max_sectors = ATA_MAX_SECTORS;
2339 if ((dev->class == ATA_DEV_ATAPI) &&
2340 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2341 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2342 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2345 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2346 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2347 dev->max_sectors);
2349 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2350 dev->horkage |= ATA_HORKAGE_IPM;
2352 /* reset link pm_policy for this port to no pm */
2353 ap->pm_policy = MAX_PERFORMANCE;
2356 if (ap->ops->dev_config)
2357 ap->ops->dev_config(dev);
2359 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2360 /* Let the user know. We don't want to disallow opens for
2361 rescue purposes, or in case the vendor is just a blithering
2362 idiot. Do this after the dev_config call as some controllers
2363 with buggy firmware may want to avoid reporting false device
2364 bugs */
2366 if (print_info) {
2367 ata_dev_printk(dev, KERN_WARNING,
2368 "Drive reports diagnostics failure. This may indicate a drive\n");
2369 ata_dev_printk(dev, KERN_WARNING,
2370 "fault or invalid emulation. Contact drive vendor for information.\n");
2374 return 0;
2376 err_out_nosup:
2377 if (ata_msg_probe(ap))
2378 ata_dev_printk(dev, KERN_DEBUG,
2379 "%s: EXIT, err\n", __func__);
2380 return rc;
2384 * ata_cable_40wire - return 40 wire cable type
2385 * @ap: port
2387 * Helper method for drivers which want to hardwire 40 wire cable
2388 * detection.
2391 int ata_cable_40wire(struct ata_port *ap)
2393 return ATA_CBL_PATA40;
2397 * ata_cable_80wire - return 80 wire cable type
2398 * @ap: port
2400 * Helper method for drivers which want to hardwire 80 wire cable
2401 * detection.
2404 int ata_cable_80wire(struct ata_port *ap)
2406 return ATA_CBL_PATA80;
2410 * ata_cable_unknown - return unknown PATA cable.
2411 * @ap: port
2413 * Helper method for drivers which have no PATA cable detection.
2416 int ata_cable_unknown(struct ata_port *ap)
2418 return ATA_CBL_PATA_UNK;
2422 * ata_cable_ignore - return ignored PATA cable.
2423 * @ap: port
2425 * Helper method for drivers which don't use cable type to limit
2426 * transfer mode.
2428 int ata_cable_ignore(struct ata_port *ap)
2430 return ATA_CBL_PATA_IGN;
2434 * ata_cable_sata - return SATA cable type
2435 * @ap: port
2437 * Helper method for drivers which have SATA cables
2440 int ata_cable_sata(struct ata_port *ap)
2442 return ATA_CBL_SATA;
2446 * ata_bus_probe - Reset and probe ATA bus
2447 * @ap: Bus to probe
2449 * Master ATA bus probing function. Initiates a hardware-dependent
2450 * bus reset, then attempts to identify any devices found on
2451 * the bus.
2453 * LOCKING:
2454 * PCI/etc. bus probe sem.
2456 * RETURNS:
2457 * Zero on success, negative errno otherwise.
2460 int ata_bus_probe(struct ata_port *ap)
2462 unsigned int classes[ATA_MAX_DEVICES];
2463 int tries[ATA_MAX_DEVICES];
2464 int rc;
2465 struct ata_device *dev;
2467 ata_port_probe(ap);
2469 ata_link_for_each_dev(dev, &ap->link)
2470 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2472 retry:
2473 ata_link_for_each_dev(dev, &ap->link) {
2474 /* If we issue an SRST then an ATA drive (not ATAPI)
2475 * may change configuration and be in PIO0 timing. If
2476 * we do a hard reset (or are coming from power on)
2477 * this is true for ATA or ATAPI. Until we've set a
2478 * suitable controller mode we should not touch the
2479 * bus as we may be talking too fast.
2481 dev->pio_mode = XFER_PIO_0;
2483 /* If the controller has a pio mode setup function
2484 * then use it to set the chipset to rights. Don't
2485 * touch the DMA setup as that will be dealt with when
2486 * configuring devices.
2488 if (ap->ops->set_piomode)
2489 ap->ops->set_piomode(ap, dev);
2492 /* reset and determine device classes */
2493 ap->ops->phy_reset(ap);
2495 ata_link_for_each_dev(dev, &ap->link) {
2496 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2497 dev->class != ATA_DEV_UNKNOWN)
2498 classes[dev->devno] = dev->class;
2499 else
2500 classes[dev->devno] = ATA_DEV_NONE;
2502 dev->class = ATA_DEV_UNKNOWN;
2505 ata_port_probe(ap);
2507 /* read IDENTIFY page and configure devices. We have to do the identify
2508 specific sequence bass-ackwards so that PDIAG- is released by
2509 the slave device */
2511 ata_link_for_each_dev_reverse(dev, &ap->link) {
2512 if (tries[dev->devno])
2513 dev->class = classes[dev->devno];
2515 if (!ata_dev_enabled(dev))
2516 continue;
2518 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2519 dev->id);
2520 if (rc)
2521 goto fail;
2524 /* Now ask for the cable type as PDIAG- should have been released */
2525 if (ap->ops->cable_detect)
2526 ap->cbl = ap->ops->cable_detect(ap);
2528 /* We may have SATA bridge glue hiding here irrespective of the
2529 reported cable types and sensed types */
2530 ata_link_for_each_dev(dev, &ap->link) {
2531 if (!ata_dev_enabled(dev))
2532 continue;
2533 /* SATA drives indicate we have a bridge. We don't know which
2534 end of the link the bridge is which is a problem */
2535 if (ata_id_is_sata(dev->id))
2536 ap->cbl = ATA_CBL_SATA;
2539 /* After the identify sequence we can now set up the devices. We do
2540 this in the normal order so that the user doesn't get confused */
2542 ata_link_for_each_dev(dev, &ap->link) {
2543 if (!ata_dev_enabled(dev))
2544 continue;
2546 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2547 rc = ata_dev_configure(dev);
2548 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2549 if (rc)
2550 goto fail;
2553 /* configure transfer mode */
2554 rc = ata_set_mode(&ap->link, &dev);
2555 if (rc)
2556 goto fail;
2558 ata_link_for_each_dev(dev, &ap->link)
2559 if (ata_dev_enabled(dev))
2560 return 0;
2562 /* no device present, disable port */
2563 ata_port_disable(ap);
2564 return -ENODEV;
2566 fail:
2567 tries[dev->devno]--;
2569 switch (rc) {
2570 case -EINVAL:
2571 /* eeek, something went very wrong, give up */
2572 tries[dev->devno] = 0;
2573 break;
2575 case -ENODEV:
2576 /* give it just one more chance */
2577 tries[dev->devno] = min(tries[dev->devno], 1);
2578 case -EIO:
2579 if (tries[dev->devno] == 1) {
2580 /* This is the last chance, better to slow
2581 * down than lose it.
2583 sata_down_spd_limit(&ap->link);
2584 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2588 if (!tries[dev->devno])
2589 ata_dev_disable(dev);
2591 goto retry;
2595 * ata_port_probe - Mark port as enabled
2596 * @ap: Port for which we indicate enablement
2598 * Modify @ap data structure such that the system
2599 * thinks that the entire port is enabled.
2601 * LOCKING: host lock, or some other form of
2602 * serialization.
2605 void ata_port_probe(struct ata_port *ap)
2607 ap->flags &= ~ATA_FLAG_DISABLED;
2611 * sata_print_link_status - Print SATA link status
2612 * @link: SATA link to printk link status about
2614 * This function prints link speed and status of a SATA link.
2616 * LOCKING:
2617 * None.
2619 static void sata_print_link_status(struct ata_link *link)
2621 u32 sstatus, scontrol, tmp;
2623 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2624 return;
2625 sata_scr_read(link, SCR_CONTROL, &scontrol);
2627 if (ata_link_online(link)) {
2628 tmp = (sstatus >> 4) & 0xf;
2629 ata_link_printk(link, KERN_INFO,
2630 "SATA link up %s (SStatus %X SControl %X)\n",
2631 sata_spd_string(tmp), sstatus, scontrol);
2632 } else {
2633 ata_link_printk(link, KERN_INFO,
2634 "SATA link down (SStatus %X SControl %X)\n",
2635 sstatus, scontrol);
2640 * ata_dev_pair - return other device on cable
2641 * @adev: device
2643 * Obtain the other device on the same cable, or if none is
2644 * present NULL is returned
2647 struct ata_device *ata_dev_pair(struct ata_device *adev)
2649 struct ata_link *link = adev->link;
2650 struct ata_device *pair = &link->device[1 - adev->devno];
2651 if (!ata_dev_enabled(pair))
2652 return NULL;
2653 return pair;
2657 * ata_port_disable - Disable port.
2658 * @ap: Port to be disabled.
2660 * Modify @ap data structure such that the system
2661 * thinks that the entire port is disabled, and should
2662 * never attempt to probe or communicate with devices
2663 * on this port.
2665 * LOCKING: host lock, or some other form of
2666 * serialization.
2669 void ata_port_disable(struct ata_port *ap)
2671 ap->link.device[0].class = ATA_DEV_NONE;
2672 ap->link.device[1].class = ATA_DEV_NONE;
2673 ap->flags |= ATA_FLAG_DISABLED;
2677 * sata_down_spd_limit - adjust SATA spd limit downward
2678 * @link: Link to adjust SATA spd limit for
2680 * Adjust SATA spd limit of @link downward. Note that this
2681 * function only adjusts the limit. The change must be applied
2682 * using sata_set_spd().
2684 * LOCKING:
2685 * Inherited from caller.
2687 * RETURNS:
2688 * 0 on success, negative errno on failure
2690 int sata_down_spd_limit(struct ata_link *link)
2692 u32 sstatus, spd, mask;
2693 int rc, highbit;
2695 if (!sata_scr_valid(link))
2696 return -EOPNOTSUPP;
2698 /* If SCR can be read, use it to determine the current SPD.
2699 * If not, use cached value in link->sata_spd.
2701 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2702 if (rc == 0)
2703 spd = (sstatus >> 4) & 0xf;
2704 else
2705 spd = link->sata_spd;
2707 mask = link->sata_spd_limit;
2708 if (mask <= 1)
2709 return -EINVAL;
2711 /* unconditionally mask off the highest bit */
2712 highbit = fls(mask) - 1;
2713 mask &= ~(1 << highbit);
2715 /* Mask off all speeds higher than or equal to the current
2716 * one. Force 1.5Gbps if current SPD is not available.
2718 if (spd > 1)
2719 mask &= (1 << (spd - 1)) - 1;
2720 else
2721 mask &= 1;
2723 /* were we already at the bottom? */
2724 if (!mask)
2725 return -EINVAL;
2727 link->sata_spd_limit = mask;
2729 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2730 sata_spd_string(fls(mask)));
2732 return 0;
2735 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2737 struct ata_link *host_link = &link->ap->link;
2738 u32 limit, target, spd;
2740 limit = link->sata_spd_limit;
2742 /* Don't configure downstream link faster than upstream link.
2743 * It doesn't speed up anything and some PMPs choke on such
2744 * configuration.
2746 if (!ata_is_host_link(link) && host_link->sata_spd)
2747 limit &= (1 << host_link->sata_spd) - 1;
2749 if (limit == UINT_MAX)
2750 target = 0;
2751 else
2752 target = fls(limit);
2754 spd = (*scontrol >> 4) & 0xf;
2755 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2757 return spd != target;
2761 * sata_set_spd_needed - is SATA spd configuration needed
2762 * @link: Link in question
2764 * Test whether the spd limit in SControl matches
2765 * @link->sata_spd_limit. This function is used to determine
2766 * whether hardreset is necessary to apply SATA spd
2767 * configuration.
2769 * LOCKING:
2770 * Inherited from caller.
2772 * RETURNS:
2773 * 1 if SATA spd configuration is needed, 0 otherwise.
2775 static int sata_set_spd_needed(struct ata_link *link)
2777 u32 scontrol;
2779 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2780 return 1;
2782 return __sata_set_spd_needed(link, &scontrol);
2786 * sata_set_spd - set SATA spd according to spd limit
2787 * @link: Link to set SATA spd for
2789 * Set SATA spd of @link according to sata_spd_limit.
2791 * LOCKING:
2792 * Inherited from caller.
2794 * RETURNS:
2795 * 0 if spd doesn't need to be changed, 1 if spd has been
2796 * changed. Negative errno if SCR registers are inaccessible.
2798 int sata_set_spd(struct ata_link *link)
2800 u32 scontrol;
2801 int rc;
2803 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2804 return rc;
2806 if (!__sata_set_spd_needed(link, &scontrol))
2807 return 0;
2809 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2810 return rc;
2812 return 1;
2816 * This mode timing computation functionality is ported over from
2817 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2820 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2821 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2822 * for UDMA6, which is currently supported only by Maxtor drives.
2824 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2827 static const struct ata_timing ata_timing[] = {
2828 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2829 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2830 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2831 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2832 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2833 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2834 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2835 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2837 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2838 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2839 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2841 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2842 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2843 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2844 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2845 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2847 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2848 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2849 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2850 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2851 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2852 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2853 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2854 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2856 { 0xFF }
2859 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2860 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2862 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2864 q->setup = EZ(t->setup * 1000, T);
2865 q->act8b = EZ(t->act8b * 1000, T);
2866 q->rec8b = EZ(t->rec8b * 1000, T);
2867 q->cyc8b = EZ(t->cyc8b * 1000, T);
2868 q->active = EZ(t->active * 1000, T);
2869 q->recover = EZ(t->recover * 1000, T);
2870 q->cycle = EZ(t->cycle * 1000, T);
2871 q->udma = EZ(t->udma * 1000, UT);
2874 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2875 struct ata_timing *m, unsigned int what)
2877 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2878 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2879 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2880 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2881 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2882 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2883 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2884 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2887 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2889 const struct ata_timing *t = ata_timing;
2891 while (xfer_mode > t->mode)
2892 t++;
2894 if (xfer_mode == t->mode)
2895 return t;
2896 return NULL;
2899 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2900 struct ata_timing *t, int T, int UT)
2902 const struct ata_timing *s;
2903 struct ata_timing p;
2906 * Find the mode.
2909 if (!(s = ata_timing_find_mode(speed)))
2910 return -EINVAL;
2912 memcpy(t, s, sizeof(*s));
2915 * If the drive is an EIDE drive, it can tell us it needs extended
2916 * PIO/MW_DMA cycle timing.
2919 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2920 memset(&p, 0, sizeof(p));
2921 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2922 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2923 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2924 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2925 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2927 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2931 * Convert the timing to bus clock counts.
2934 ata_timing_quantize(t, t, T, UT);
2937 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2938 * S.M.A.R.T * and some other commands. We have to ensure that the
2939 * DMA cycle timing is slower/equal than the fastest PIO timing.
2942 if (speed > XFER_PIO_6) {
2943 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2944 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2948 * Lengthen active & recovery time so that cycle time is correct.
2951 if (t->act8b + t->rec8b < t->cyc8b) {
2952 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2953 t->rec8b = t->cyc8b - t->act8b;
2956 if (t->active + t->recover < t->cycle) {
2957 t->active += (t->cycle - (t->active + t->recover)) / 2;
2958 t->recover = t->cycle - t->active;
2961 /* In a few cases quantisation may produce enough errors to
2962 leave t->cycle too low for the sum of active and recovery
2963 if so we must correct this */
2964 if (t->active + t->recover > t->cycle)
2965 t->cycle = t->active + t->recover;
2967 return 0;
2971 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2972 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2973 * @cycle: cycle duration in ns
2975 * Return matching xfer mode for @cycle. The returned mode is of
2976 * the transfer type specified by @xfer_shift. If @cycle is too
2977 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
2978 * than the fastest known mode, the fasted mode is returned.
2980 * LOCKING:
2981 * None.
2983 * RETURNS:
2984 * Matching xfer_mode, 0xff if no match found.
2986 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
2988 u8 base_mode = 0xff, last_mode = 0xff;
2989 const struct ata_xfer_ent *ent;
2990 const struct ata_timing *t;
2992 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
2993 if (ent->shift == xfer_shift)
2994 base_mode = ent->base;
2996 for (t = ata_timing_find_mode(base_mode);
2997 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
2998 unsigned short this_cycle;
3000 switch (xfer_shift) {
3001 case ATA_SHIFT_PIO:
3002 case ATA_SHIFT_MWDMA:
3003 this_cycle = t->cycle;
3004 break;
3005 case ATA_SHIFT_UDMA:
3006 this_cycle = t->udma;
3007 break;
3008 default:
3009 return 0xff;
3012 if (cycle > this_cycle)
3013 break;
3015 last_mode = t->mode;
3018 return last_mode;
3022 * ata_down_xfermask_limit - adjust dev xfer masks downward
3023 * @dev: Device to adjust xfer masks
3024 * @sel: ATA_DNXFER_* selector
3026 * Adjust xfer masks of @dev downward. Note that this function
3027 * does not apply the change. Invoking ata_set_mode() afterwards
3028 * will apply the limit.
3030 * LOCKING:
3031 * Inherited from caller.
3033 * RETURNS:
3034 * 0 on success, negative errno on failure
3036 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3038 char buf[32];
3039 unsigned long orig_mask, xfer_mask;
3040 unsigned long pio_mask, mwdma_mask, udma_mask;
3041 int quiet, highbit;
3043 quiet = !!(sel & ATA_DNXFER_QUIET);
3044 sel &= ~ATA_DNXFER_QUIET;
3046 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3047 dev->mwdma_mask,
3048 dev->udma_mask);
3049 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3051 switch (sel) {
3052 case ATA_DNXFER_PIO:
3053 highbit = fls(pio_mask) - 1;
3054 pio_mask &= ~(1 << highbit);
3055 break;
3057 case ATA_DNXFER_DMA:
3058 if (udma_mask) {
3059 highbit = fls(udma_mask) - 1;
3060 udma_mask &= ~(1 << highbit);
3061 if (!udma_mask)
3062 return -ENOENT;
3063 } else if (mwdma_mask) {
3064 highbit = fls(mwdma_mask) - 1;
3065 mwdma_mask &= ~(1 << highbit);
3066 if (!mwdma_mask)
3067 return -ENOENT;
3069 break;
3071 case ATA_DNXFER_40C:
3072 udma_mask &= ATA_UDMA_MASK_40C;
3073 break;
3075 case ATA_DNXFER_FORCE_PIO0:
3076 pio_mask &= 1;
3077 case ATA_DNXFER_FORCE_PIO:
3078 mwdma_mask = 0;
3079 udma_mask = 0;
3080 break;
3082 default:
3083 BUG();
3086 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3088 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3089 return -ENOENT;
3091 if (!quiet) {
3092 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3093 snprintf(buf, sizeof(buf), "%s:%s",
3094 ata_mode_string(xfer_mask),
3095 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3096 else
3097 snprintf(buf, sizeof(buf), "%s",
3098 ata_mode_string(xfer_mask));
3100 ata_dev_printk(dev, KERN_WARNING,
3101 "limiting speed to %s\n", buf);
3104 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3105 &dev->udma_mask);
3107 return 0;
3110 static int ata_dev_set_mode(struct ata_device *dev)
3112 struct ata_eh_context *ehc = &dev->link->eh_context;
3113 const char *dev_err_whine = "";
3114 int ign_dev_err = 0;
3115 unsigned int err_mask;
3116 int rc;
3118 dev->flags &= ~ATA_DFLAG_PIO;
3119 if (dev->xfer_shift == ATA_SHIFT_PIO)
3120 dev->flags |= ATA_DFLAG_PIO;
3122 err_mask = ata_dev_set_xfermode(dev);
3124 if (err_mask & ~AC_ERR_DEV)
3125 goto fail;
3127 /* revalidate */
3128 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3129 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3130 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3131 if (rc)
3132 return rc;
3134 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3135 /* Old CFA may refuse this command, which is just fine */
3136 if (ata_id_is_cfa(dev->id))
3137 ign_dev_err = 1;
3138 /* Catch several broken garbage emulations plus some pre
3139 ATA devices */
3140 if (ata_id_major_version(dev->id) == 0 &&
3141 dev->pio_mode <= XFER_PIO_2)
3142 ign_dev_err = 1;
3143 /* Some very old devices and some bad newer ones fail
3144 any kind of SET_XFERMODE request but support PIO0-2
3145 timings and no IORDY */
3146 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3147 ign_dev_err = 1;
3149 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3150 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3151 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3152 dev->dma_mode == XFER_MW_DMA_0 &&
3153 (dev->id[63] >> 8) & 1)
3154 ign_dev_err = 1;
3156 /* if the device is actually configured correctly, ignore dev err */
3157 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3158 ign_dev_err = 1;
3160 if (err_mask & AC_ERR_DEV) {
3161 if (!ign_dev_err)
3162 goto fail;
3163 else
3164 dev_err_whine = " (device error ignored)";
3167 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3168 dev->xfer_shift, (int)dev->xfer_mode);
3170 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3171 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3172 dev_err_whine);
3174 return 0;
3176 fail:
3177 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3178 "(err_mask=0x%x)\n", err_mask);
3179 return -EIO;
3183 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3184 * @link: link on which timings will be programmed
3185 * @r_failed_dev: out parameter for failed device
3187 * Standard implementation of the function used to tune and set
3188 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3189 * ata_dev_set_mode() fails, pointer to the failing device is
3190 * returned in @r_failed_dev.
3192 * LOCKING:
3193 * PCI/etc. bus probe sem.
3195 * RETURNS:
3196 * 0 on success, negative errno otherwise
3199 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3201 struct ata_port *ap = link->ap;
3202 struct ata_device *dev;
3203 int rc = 0, used_dma = 0, found = 0;
3205 /* step 1: calculate xfer_mask */
3206 ata_link_for_each_dev(dev, link) {
3207 unsigned long pio_mask, dma_mask;
3208 unsigned int mode_mask;
3210 if (!ata_dev_enabled(dev))
3211 continue;
3213 mode_mask = ATA_DMA_MASK_ATA;
3214 if (dev->class == ATA_DEV_ATAPI)
3215 mode_mask = ATA_DMA_MASK_ATAPI;
3216 else if (ata_id_is_cfa(dev->id))
3217 mode_mask = ATA_DMA_MASK_CFA;
3219 ata_dev_xfermask(dev);
3220 ata_force_xfermask(dev);
3222 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3223 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3225 if (libata_dma_mask & mode_mask)
3226 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3227 else
3228 dma_mask = 0;
3230 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3231 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3233 found = 1;
3234 if (dev->dma_mode != 0xff)
3235 used_dma = 1;
3237 if (!found)
3238 goto out;
3240 /* step 2: always set host PIO timings */
3241 ata_link_for_each_dev(dev, link) {
3242 if (!ata_dev_enabled(dev))
3243 continue;
3245 if (dev->pio_mode == 0xff) {
3246 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3247 rc = -EINVAL;
3248 goto out;
3251 dev->xfer_mode = dev->pio_mode;
3252 dev->xfer_shift = ATA_SHIFT_PIO;
3253 if (ap->ops->set_piomode)
3254 ap->ops->set_piomode(ap, dev);
3257 /* step 3: set host DMA timings */
3258 ata_link_for_each_dev(dev, link) {
3259 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3260 continue;
3262 dev->xfer_mode = dev->dma_mode;
3263 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3264 if (ap->ops->set_dmamode)
3265 ap->ops->set_dmamode(ap, dev);
3268 /* step 4: update devices' xfer mode */
3269 ata_link_for_each_dev(dev, link) {
3270 /* don't update suspended devices' xfer mode */
3271 if (!ata_dev_enabled(dev))
3272 continue;
3274 rc = ata_dev_set_mode(dev);
3275 if (rc)
3276 goto out;
3279 /* Record simplex status. If we selected DMA then the other
3280 * host channels are not permitted to do so.
3282 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3283 ap->host->simplex_claimed = ap;
3285 out:
3286 if (rc)
3287 *r_failed_dev = dev;
3288 return rc;
3292 * ata_wait_ready - wait for link to become ready
3293 * @link: link to be waited on
3294 * @deadline: deadline jiffies for the operation
3295 * @check_ready: callback to check link readiness
3297 * Wait for @link to become ready. @check_ready should return
3298 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3299 * link doesn't seem to be occupied, other errno for other error
3300 * conditions.
3302 * Transient -ENODEV conditions are allowed for
3303 * ATA_TMOUT_FF_WAIT.
3305 * LOCKING:
3306 * EH context.
3308 * RETURNS:
3309 * 0 if @linke is ready before @deadline; otherwise, -errno.
3311 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3312 int (*check_ready)(struct ata_link *link))
3314 unsigned long start = jiffies;
3315 unsigned long nodev_deadline = start + ATA_TMOUT_FF_WAIT;
3316 int warned = 0;
3318 if (time_after(nodev_deadline, deadline))
3319 nodev_deadline = deadline;
3321 while (1) {
3322 unsigned long now = jiffies;
3323 int ready, tmp;
3325 ready = tmp = check_ready(link);
3326 if (ready > 0)
3327 return 0;
3329 /* -ENODEV could be transient. Ignore -ENODEV if link
3330 * is online. Also, some SATA devices take a long
3331 * time to clear 0xff after reset. For example,
3332 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3333 * GoVault needs even more than that. Wait for
3334 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3336 * Note that some PATA controllers (pata_ali) explode
3337 * if status register is read more than once when
3338 * there's no device attached.
3340 if (ready == -ENODEV) {
3341 if (ata_link_online(link))
3342 ready = 0;
3343 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3344 !ata_link_offline(link) &&
3345 time_before(now, nodev_deadline))
3346 ready = 0;
3349 if (ready)
3350 return ready;
3351 if (time_after(now, deadline))
3352 return -EBUSY;
3354 if (!warned && time_after(now, start + 5 * HZ) &&
3355 (deadline - now > 3 * HZ)) {
3356 ata_link_printk(link, KERN_WARNING,
3357 "link is slow to respond, please be patient "
3358 "(ready=%d)\n", tmp);
3359 warned = 1;
3362 msleep(50);
3367 * ata_wait_after_reset - wait for link to become ready after reset
3368 * @link: link to be waited on
3369 * @deadline: deadline jiffies for the operation
3370 * @check_ready: callback to check link readiness
3372 * Wait for @link to become ready after reset.
3374 * LOCKING:
3375 * EH context.
3377 * RETURNS:
3378 * 0 if @linke is ready before @deadline; otherwise, -errno.
3380 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3381 int (*check_ready)(struct ata_link *link))
3383 msleep(ATA_WAIT_AFTER_RESET_MSECS);
3385 return ata_wait_ready(link, deadline, check_ready);
3389 * sata_link_debounce - debounce SATA phy status
3390 * @link: ATA link to debounce SATA phy status for
3391 * @params: timing parameters { interval, duratinon, timeout } in msec
3392 * @deadline: deadline jiffies for the operation
3394 * Make sure SStatus of @link reaches stable state, determined by
3395 * holding the same value where DET is not 1 for @duration polled
3396 * every @interval, before @timeout. Timeout constraints the
3397 * beginning of the stable state. Because DET gets stuck at 1 on
3398 * some controllers after hot unplugging, this functions waits
3399 * until timeout then returns 0 if DET is stable at 1.
3401 * @timeout is further limited by @deadline. The sooner of the
3402 * two is used.
3404 * LOCKING:
3405 * Kernel thread context (may sleep)
3407 * RETURNS:
3408 * 0 on success, -errno on failure.
3410 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3411 unsigned long deadline)
3413 unsigned long interval_msec = params[0];
3414 unsigned long duration = msecs_to_jiffies(params[1]);
3415 unsigned long last_jiffies, t;
3416 u32 last, cur;
3417 int rc;
3419 t = jiffies + msecs_to_jiffies(params[2]);
3420 if (time_before(t, deadline))
3421 deadline = t;
3423 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3424 return rc;
3425 cur &= 0xf;
3427 last = cur;
3428 last_jiffies = jiffies;
3430 while (1) {
3431 msleep(interval_msec);
3432 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3433 return rc;
3434 cur &= 0xf;
3436 /* DET stable? */
3437 if (cur == last) {
3438 if (cur == 1 && time_before(jiffies, deadline))
3439 continue;
3440 if (time_after(jiffies, last_jiffies + duration))
3441 return 0;
3442 continue;
3445 /* unstable, start over */
3446 last = cur;
3447 last_jiffies = jiffies;
3449 /* Check deadline. If debouncing failed, return
3450 * -EPIPE to tell upper layer to lower link speed.
3452 if (time_after(jiffies, deadline))
3453 return -EPIPE;
3458 * sata_link_resume - resume SATA link
3459 * @link: ATA link to resume SATA
3460 * @params: timing parameters { interval, duratinon, timeout } in msec
3461 * @deadline: deadline jiffies for the operation
3463 * Resume SATA phy @link and debounce it.
3465 * LOCKING:
3466 * Kernel thread context (may sleep)
3468 * RETURNS:
3469 * 0 on success, -errno on failure.
3471 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3472 unsigned long deadline)
3474 u32 scontrol, serror;
3475 int rc;
3477 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3478 return rc;
3480 scontrol = (scontrol & 0x0f0) | 0x300;
3482 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3483 return rc;
3485 /* Some PHYs react badly if SStatus is pounded immediately
3486 * after resuming. Delay 200ms before debouncing.
3488 msleep(200);
3490 if ((rc = sata_link_debounce(link, params, deadline)))
3491 return rc;
3493 /* Clear SError. PMP and some host PHYs require this to
3494 * operate and clearing should be done before checking PHY
3495 * online status to avoid race condition (hotplugging between
3496 * link resume and status check).
3498 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3499 rc = sata_scr_write(link, SCR_ERROR, serror);
3500 if (rc == 0 || rc == -EINVAL) {
3501 unsigned long flags;
3503 spin_lock_irqsave(link->ap->lock, flags);
3504 link->eh_info.serror = 0;
3505 spin_unlock_irqrestore(link->ap->lock, flags);
3506 rc = 0;
3508 return rc;
3512 * ata_std_prereset - prepare for reset
3513 * @link: ATA link to be reset
3514 * @deadline: deadline jiffies for the operation
3516 * @link is about to be reset. Initialize it. Failure from
3517 * prereset makes libata abort whole reset sequence and give up
3518 * that port, so prereset should be best-effort. It does its
3519 * best to prepare for reset sequence but if things go wrong, it
3520 * should just whine, not fail.
3522 * LOCKING:
3523 * Kernel thread context (may sleep)
3525 * RETURNS:
3526 * 0 on success, -errno otherwise.
3528 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3530 struct ata_port *ap = link->ap;
3531 struct ata_eh_context *ehc = &link->eh_context;
3532 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3533 int rc;
3535 /* if we're about to do hardreset, nothing more to do */
3536 if (ehc->i.action & ATA_EH_HARDRESET)
3537 return 0;
3539 /* if SATA, resume link */
3540 if (ap->flags & ATA_FLAG_SATA) {
3541 rc = sata_link_resume(link, timing, deadline);
3542 /* whine about phy resume failure but proceed */
3543 if (rc && rc != -EOPNOTSUPP)
3544 ata_link_printk(link, KERN_WARNING, "failed to resume "
3545 "link for reset (errno=%d)\n", rc);
3548 /* no point in trying softreset on offline link */
3549 if (ata_link_offline(link))
3550 ehc->i.action &= ~ATA_EH_SOFTRESET;
3552 return 0;
3556 * sata_link_hardreset - reset link via SATA phy reset
3557 * @link: link to reset
3558 * @timing: timing parameters { interval, duratinon, timeout } in msec
3559 * @deadline: deadline jiffies for the operation
3560 * @online: optional out parameter indicating link onlineness
3561 * @check_ready: optional callback to check link readiness
3563 * SATA phy-reset @link using DET bits of SControl register.
3564 * After hardreset, link readiness is waited upon using
3565 * ata_wait_ready() if @check_ready is specified. LLDs are
3566 * allowed to not specify @check_ready and wait itself after this
3567 * function returns. Device classification is LLD's
3568 * responsibility.
3570 * *@online is set to one iff reset succeeded and @link is online
3571 * after reset.
3573 * LOCKING:
3574 * Kernel thread context (may sleep)
3576 * RETURNS:
3577 * 0 on success, -errno otherwise.
3579 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3580 unsigned long deadline,
3581 bool *online, int (*check_ready)(struct ata_link *))
3583 u32 scontrol;
3584 int rc;
3586 DPRINTK("ENTER\n");
3588 if (online)
3589 *online = false;
3591 if (sata_set_spd_needed(link)) {
3592 /* SATA spec says nothing about how to reconfigure
3593 * spd. To be on the safe side, turn off phy during
3594 * reconfiguration. This works for at least ICH7 AHCI
3595 * and Sil3124.
3597 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3598 goto out;
3600 scontrol = (scontrol & 0x0f0) | 0x304;
3602 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3603 goto out;
3605 sata_set_spd(link);
3608 /* issue phy wake/reset */
3609 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3610 goto out;
3612 scontrol = (scontrol & 0x0f0) | 0x301;
3614 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3615 goto out;
3617 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3618 * 10.4.2 says at least 1 ms.
3620 msleep(1);
3622 /* bring link back */
3623 rc = sata_link_resume(link, timing, deadline);
3624 if (rc)
3625 goto out;
3626 /* if link is offline nothing more to do */
3627 if (ata_link_offline(link))
3628 goto out;
3630 /* Link is online. From this point, -ENODEV too is an error. */
3631 if (online)
3632 *online = true;
3634 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3635 /* If PMP is supported, we have to do follow-up SRST.
3636 * Some PMPs don't send D2H Reg FIS after hardreset if
3637 * the first port is empty. Wait only for
3638 * ATA_TMOUT_PMP_SRST_WAIT.
3640 if (check_ready) {
3641 unsigned long pmp_deadline;
3643 pmp_deadline = jiffies + ATA_TMOUT_PMP_SRST_WAIT;
3644 if (time_after(pmp_deadline, deadline))
3645 pmp_deadline = deadline;
3646 ata_wait_ready(link, pmp_deadline, check_ready);
3648 rc = -EAGAIN;
3649 goto out;
3652 rc = 0;
3653 if (check_ready)
3654 rc = ata_wait_ready(link, deadline, check_ready);
3655 out:
3656 if (rc && rc != -EAGAIN)
3657 ata_link_printk(link, KERN_ERR,
3658 "COMRESET failed (errno=%d)\n", rc);
3659 DPRINTK("EXIT, rc=%d\n", rc);
3660 return rc;
3664 * sata_std_hardreset - COMRESET w/o waiting or classification
3665 * @link: link to reset
3666 * @class: resulting class of attached device
3667 * @deadline: deadline jiffies for the operation
3669 * Standard SATA COMRESET w/o waiting or classification.
3671 * LOCKING:
3672 * Kernel thread context (may sleep)
3674 * RETURNS:
3675 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3677 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3678 unsigned long deadline)
3680 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3681 bool online;
3682 int rc;
3684 /* do hardreset */
3685 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3686 return online ? -EAGAIN : rc;
3690 * ata_std_postreset - standard postreset callback
3691 * @link: the target ata_link
3692 * @classes: classes of attached devices
3694 * This function is invoked after a successful reset. Note that
3695 * the device might have been reset more than once using
3696 * different reset methods before postreset is invoked.
3698 * LOCKING:
3699 * Kernel thread context (may sleep)
3701 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3703 DPRINTK("ENTER\n");
3705 /* print link status */
3706 sata_print_link_status(link);
3708 DPRINTK("EXIT\n");
3712 * ata_dev_same_device - Determine whether new ID matches configured device
3713 * @dev: device to compare against
3714 * @new_class: class of the new device
3715 * @new_id: IDENTIFY page of the new device
3717 * Compare @new_class and @new_id against @dev and determine
3718 * whether @dev is the device indicated by @new_class and
3719 * @new_id.
3721 * LOCKING:
3722 * None.
3724 * RETURNS:
3725 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3727 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3728 const u16 *new_id)
3730 const u16 *old_id = dev->id;
3731 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3732 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3734 if (dev->class != new_class) {
3735 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3736 dev->class, new_class);
3737 return 0;
3740 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3741 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3742 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3743 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3745 if (strcmp(model[0], model[1])) {
3746 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3747 "'%s' != '%s'\n", model[0], model[1]);
3748 return 0;
3751 if (strcmp(serial[0], serial[1])) {
3752 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3753 "'%s' != '%s'\n", serial[0], serial[1]);
3754 return 0;
3757 return 1;
3761 * ata_dev_reread_id - Re-read IDENTIFY data
3762 * @dev: target ATA device
3763 * @readid_flags: read ID flags
3765 * Re-read IDENTIFY page and make sure @dev is still attached to
3766 * the port.
3768 * LOCKING:
3769 * Kernel thread context (may sleep)
3771 * RETURNS:
3772 * 0 on success, negative errno otherwise
3774 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3776 unsigned int class = dev->class;
3777 u16 *id = (void *)dev->link->ap->sector_buf;
3778 int rc;
3780 /* read ID data */
3781 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3782 if (rc)
3783 return rc;
3785 /* is the device still there? */
3786 if (!ata_dev_same_device(dev, class, id))
3787 return -ENODEV;
3789 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3790 return 0;
3794 * ata_dev_revalidate - Revalidate ATA device
3795 * @dev: device to revalidate
3796 * @new_class: new class code
3797 * @readid_flags: read ID flags
3799 * Re-read IDENTIFY page, make sure @dev is still attached to the
3800 * port and reconfigure it according to the new IDENTIFY page.
3802 * LOCKING:
3803 * Kernel thread context (may sleep)
3805 * RETURNS:
3806 * 0 on success, negative errno otherwise
3808 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3809 unsigned int readid_flags)
3811 u64 n_sectors = dev->n_sectors;
3812 int rc;
3814 if (!ata_dev_enabled(dev))
3815 return -ENODEV;
3817 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3818 if (ata_class_enabled(new_class) &&
3819 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3820 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3821 dev->class, new_class);
3822 rc = -ENODEV;
3823 goto fail;
3826 /* re-read ID */
3827 rc = ata_dev_reread_id(dev, readid_flags);
3828 if (rc)
3829 goto fail;
3831 /* configure device according to the new ID */
3832 rc = ata_dev_configure(dev);
3833 if (rc)
3834 goto fail;
3836 /* verify n_sectors hasn't changed */
3837 if (dev->class == ATA_DEV_ATA && n_sectors &&
3838 dev->n_sectors != n_sectors) {
3839 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3840 "%llu != %llu\n",
3841 (unsigned long long)n_sectors,
3842 (unsigned long long)dev->n_sectors);
3844 /* restore original n_sectors */
3845 dev->n_sectors = n_sectors;
3847 rc = -ENODEV;
3848 goto fail;
3851 return 0;
3853 fail:
3854 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3855 return rc;
3858 struct ata_blacklist_entry {
3859 const char *model_num;
3860 const char *model_rev;
3861 unsigned long horkage;
3864 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3865 /* Devices with DMA related problems under Linux */
3866 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3867 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3868 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3869 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3870 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3871 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3872 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3873 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3874 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3875 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3876 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3877 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3878 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3879 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3880 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3881 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3882 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3883 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3884 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3885 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3886 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3887 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3888 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3889 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3890 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3891 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3892 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3893 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3894 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3895 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3896 /* Odd clown on sil3726/4726 PMPs */
3897 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3898 ATA_HORKAGE_SKIP_PM },
3900 /* Weird ATAPI devices */
3901 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3903 /* Devices we expect to fail diagnostics */
3905 /* Devices where NCQ should be avoided */
3906 /* NCQ is slow */
3907 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3908 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3909 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3910 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3911 /* NCQ is broken */
3912 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3913 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3914 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3915 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3917 /* Blacklist entries taken from Silicon Image 3124/3132
3918 Windows driver .inf file - also several Linux problem reports */
3919 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3920 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3921 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3923 /* devices which puke on READ_NATIVE_MAX */
3924 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3925 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3926 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3927 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3929 /* Devices which report 1 sector over size HPA */
3930 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3931 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3932 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
3934 /* Devices which get the IVB wrong */
3935 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3936 /* Maybe we should just blacklist TSSTcorp... */
3937 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
3938 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
3939 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
3940 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
3941 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
3942 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
3944 /* End Marker */
3948 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
3950 const char *p;
3951 int len;
3954 * check for trailing wildcard: *\0
3956 p = strchr(patt, wildchar);
3957 if (p && ((*(p + 1)) == 0))
3958 len = p - patt;
3959 else {
3960 len = strlen(name);
3961 if (!len) {
3962 if (!*patt)
3963 return 0;
3964 return -1;
3968 return strncmp(patt, name, len);
3971 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3973 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3974 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3975 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3977 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3978 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3980 while (ad->model_num) {
3981 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
3982 if (ad->model_rev == NULL)
3983 return ad->horkage;
3984 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
3985 return ad->horkage;
3987 ad++;
3989 return 0;
3992 static int ata_dma_blacklisted(const struct ata_device *dev)
3994 /* We don't support polling DMA.
3995 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3996 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3998 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
3999 (dev->flags & ATA_DFLAG_CDB_INTR))
4000 return 1;
4001 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4005 * ata_is_40wire - check drive side detection
4006 * @dev: device
4008 * Perform drive side detection decoding, allowing for device vendors
4009 * who can't follow the documentation.
4012 static int ata_is_40wire(struct ata_device *dev)
4014 if (dev->horkage & ATA_HORKAGE_IVB)
4015 return ata_drive_40wire_relaxed(dev->id);
4016 return ata_drive_40wire(dev->id);
4020 * cable_is_40wire - 40/80/SATA decider
4021 * @ap: port to consider
4023 * This function encapsulates the policy for speed management
4024 * in one place. At the moment we don't cache the result but
4025 * there is a good case for setting ap->cbl to the result when
4026 * we are called with unknown cables (and figuring out if it
4027 * impacts hotplug at all).
4029 * Return 1 if the cable appears to be 40 wire.
4032 static int cable_is_40wire(struct ata_port *ap)
4034 struct ata_link *link;
4035 struct ata_device *dev;
4037 /* If the controller thinks we are 40 wire, we are */
4038 if (ap->cbl == ATA_CBL_PATA40)
4039 return 1;
4040 /* If the controller thinks we are 80 wire, we are */
4041 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4042 return 0;
4043 /* If the system is known to be 40 wire short cable (eg laptop),
4044 then we allow 80 wire modes even if the drive isn't sure */
4045 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4046 return 0;
4047 /* If the controller doesn't know we scan
4049 - Note: We look for all 40 wire detects at this point.
4050 Any 80 wire detect is taken to be 80 wire cable
4051 because
4052 - In many setups only the one drive (slave if present)
4053 will give a valid detect
4054 - If you have a non detect capable drive you don't
4055 want it to colour the choice
4057 ata_port_for_each_link(link, ap) {
4058 ata_link_for_each_dev(dev, link) {
4059 if (!ata_is_40wire(dev))
4060 return 0;
4063 return 1;
4067 * ata_dev_xfermask - Compute supported xfermask of the given device
4068 * @dev: Device to compute xfermask for
4070 * Compute supported xfermask of @dev and store it in
4071 * dev->*_mask. This function is responsible for applying all
4072 * known limits including host controller limits, device
4073 * blacklist, etc...
4075 * LOCKING:
4076 * None.
4078 static void ata_dev_xfermask(struct ata_device *dev)
4080 struct ata_link *link = dev->link;
4081 struct ata_port *ap = link->ap;
4082 struct ata_host *host = ap->host;
4083 unsigned long xfer_mask;
4085 /* controller modes available */
4086 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4087 ap->mwdma_mask, ap->udma_mask);
4089 /* drive modes available */
4090 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4091 dev->mwdma_mask, dev->udma_mask);
4092 xfer_mask &= ata_id_xfermask(dev->id);
4095 * CFA Advanced TrueIDE timings are not allowed on a shared
4096 * cable
4098 if (ata_dev_pair(dev)) {
4099 /* No PIO5 or PIO6 */
4100 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4101 /* No MWDMA3 or MWDMA 4 */
4102 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4105 if (ata_dma_blacklisted(dev)) {
4106 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4107 ata_dev_printk(dev, KERN_WARNING,
4108 "device is on DMA blacklist, disabling DMA\n");
4111 if ((host->flags & ATA_HOST_SIMPLEX) &&
4112 host->simplex_claimed && host->simplex_claimed != ap) {
4113 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4114 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4115 "other device, disabling DMA\n");
4118 if (ap->flags & ATA_FLAG_NO_IORDY)
4119 xfer_mask &= ata_pio_mask_no_iordy(dev);
4121 if (ap->ops->mode_filter)
4122 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4124 /* Apply cable rule here. Don't apply it early because when
4125 * we handle hot plug the cable type can itself change.
4126 * Check this last so that we know if the transfer rate was
4127 * solely limited by the cable.
4128 * Unknown or 80 wire cables reported host side are checked
4129 * drive side as well. Cases where we know a 40wire cable
4130 * is used safely for 80 are not checked here.
4132 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4133 /* UDMA/44 or higher would be available */
4134 if (cable_is_40wire(ap)) {
4135 ata_dev_printk(dev, KERN_WARNING,
4136 "limited to UDMA/33 due to 40-wire cable\n");
4137 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4140 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4141 &dev->mwdma_mask, &dev->udma_mask);
4145 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4146 * @dev: Device to which command will be sent
4148 * Issue SET FEATURES - XFER MODE command to device @dev
4149 * on port @ap.
4151 * LOCKING:
4152 * PCI/etc. bus probe sem.
4154 * RETURNS:
4155 * 0 on success, AC_ERR_* mask otherwise.
4158 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4160 struct ata_taskfile tf;
4161 unsigned int err_mask;
4163 /* set up set-features taskfile */
4164 DPRINTK("set features - xfer mode\n");
4166 /* Some controllers and ATAPI devices show flaky interrupt
4167 * behavior after setting xfer mode. Use polling instead.
4169 ata_tf_init(dev, &tf);
4170 tf.command = ATA_CMD_SET_FEATURES;
4171 tf.feature = SETFEATURES_XFER;
4172 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4173 tf.protocol = ATA_PROT_NODATA;
4174 /* If we are using IORDY we must send the mode setting command */
4175 if (ata_pio_need_iordy(dev))
4176 tf.nsect = dev->xfer_mode;
4177 /* If the device has IORDY and the controller does not - turn it off */
4178 else if (ata_id_has_iordy(dev->id))
4179 tf.nsect = 0x01;
4180 else /* In the ancient relic department - skip all of this */
4181 return 0;
4183 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4185 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4186 return err_mask;
4189 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4190 * @dev: Device to which command will be sent
4191 * @enable: Whether to enable or disable the feature
4192 * @feature: The sector count represents the feature to set
4194 * Issue SET FEATURES - SATA FEATURES command to device @dev
4195 * on port @ap with sector count
4197 * LOCKING:
4198 * PCI/etc. bus probe sem.
4200 * RETURNS:
4201 * 0 on success, AC_ERR_* mask otherwise.
4203 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4204 u8 feature)
4206 struct ata_taskfile tf;
4207 unsigned int err_mask;
4209 /* set up set-features taskfile */
4210 DPRINTK("set features - SATA features\n");
4212 ata_tf_init(dev, &tf);
4213 tf.command = ATA_CMD_SET_FEATURES;
4214 tf.feature = enable;
4215 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4216 tf.protocol = ATA_PROT_NODATA;
4217 tf.nsect = feature;
4219 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4221 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4222 return err_mask;
4226 * ata_dev_init_params - Issue INIT DEV PARAMS command
4227 * @dev: Device to which command will be sent
4228 * @heads: Number of heads (taskfile parameter)
4229 * @sectors: Number of sectors (taskfile parameter)
4231 * LOCKING:
4232 * Kernel thread context (may sleep)
4234 * RETURNS:
4235 * 0 on success, AC_ERR_* mask otherwise.
4237 static unsigned int ata_dev_init_params(struct ata_device *dev,
4238 u16 heads, u16 sectors)
4240 struct ata_taskfile tf;
4241 unsigned int err_mask;
4243 /* Number of sectors per track 1-255. Number of heads 1-16 */
4244 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4245 return AC_ERR_INVALID;
4247 /* set up init dev params taskfile */
4248 DPRINTK("init dev params \n");
4250 ata_tf_init(dev, &tf);
4251 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4252 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4253 tf.protocol = ATA_PROT_NODATA;
4254 tf.nsect = sectors;
4255 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4257 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4258 /* A clean abort indicates an original or just out of spec drive
4259 and we should continue as we issue the setup based on the
4260 drive reported working geometry */
4261 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4262 err_mask = 0;
4264 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4265 return err_mask;
4269 * ata_sg_clean - Unmap DMA memory associated with command
4270 * @qc: Command containing DMA memory to be released
4272 * Unmap all mapped DMA memory associated with this command.
4274 * LOCKING:
4275 * spin_lock_irqsave(host lock)
4277 void ata_sg_clean(struct ata_queued_cmd *qc)
4279 struct ata_port *ap = qc->ap;
4280 struct scatterlist *sg = qc->sg;
4281 int dir = qc->dma_dir;
4283 WARN_ON(sg == NULL);
4285 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4287 if (qc->n_elem)
4288 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4290 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4291 qc->sg = NULL;
4295 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4296 * @qc: Metadata associated with taskfile to check
4298 * Allow low-level driver to filter ATA PACKET commands, returning
4299 * a status indicating whether or not it is OK to use DMA for the
4300 * supplied PACKET command.
4302 * LOCKING:
4303 * spin_lock_irqsave(host lock)
4305 * RETURNS: 0 when ATAPI DMA can be used
4306 * nonzero otherwise
4308 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4310 struct ata_port *ap = qc->ap;
4312 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4313 * few ATAPI devices choke on such DMA requests.
4315 if (unlikely(qc->nbytes & 15))
4316 return 1;
4318 if (ap->ops->check_atapi_dma)
4319 return ap->ops->check_atapi_dma(qc);
4321 return 0;
4325 * ata_std_qc_defer - Check whether a qc needs to be deferred
4326 * @qc: ATA command in question
4328 * Non-NCQ commands cannot run with any other command, NCQ or
4329 * not. As upper layer only knows the queue depth, we are
4330 * responsible for maintaining exclusion. This function checks
4331 * whether a new command @qc can be issued.
4333 * LOCKING:
4334 * spin_lock_irqsave(host lock)
4336 * RETURNS:
4337 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4339 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4341 struct ata_link *link = qc->dev->link;
4343 if (qc->tf.protocol == ATA_PROT_NCQ) {
4344 if (!ata_tag_valid(link->active_tag))
4345 return 0;
4346 } else {
4347 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4348 return 0;
4351 return ATA_DEFER_LINK;
4354 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4357 * ata_sg_init - Associate command with scatter-gather table.
4358 * @qc: Command to be associated
4359 * @sg: Scatter-gather table.
4360 * @n_elem: Number of elements in s/g table.
4362 * Initialize the data-related elements of queued_cmd @qc
4363 * to point to a scatter-gather table @sg, containing @n_elem
4364 * elements.
4366 * LOCKING:
4367 * spin_lock_irqsave(host lock)
4369 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4370 unsigned int n_elem)
4372 qc->sg = sg;
4373 qc->n_elem = n_elem;
4374 qc->cursg = qc->sg;
4378 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4379 * @qc: Command with scatter-gather table to be mapped.
4381 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4383 * LOCKING:
4384 * spin_lock_irqsave(host lock)
4386 * RETURNS:
4387 * Zero on success, negative on error.
4390 static int ata_sg_setup(struct ata_queued_cmd *qc)
4392 struct ata_port *ap = qc->ap;
4393 unsigned int n_elem;
4395 VPRINTK("ENTER, ata%u\n", ap->print_id);
4397 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4398 if (n_elem < 1)
4399 return -1;
4401 DPRINTK("%d sg elements mapped\n", n_elem);
4403 qc->n_elem = n_elem;
4404 qc->flags |= ATA_QCFLAG_DMAMAP;
4406 return 0;
4410 * swap_buf_le16 - swap halves of 16-bit words in place
4411 * @buf: Buffer to swap
4412 * @buf_words: Number of 16-bit words in buffer.
4414 * Swap halves of 16-bit words if needed to convert from
4415 * little-endian byte order to native cpu byte order, or
4416 * vice-versa.
4418 * LOCKING:
4419 * Inherited from caller.
4421 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4423 #ifdef __BIG_ENDIAN
4424 unsigned int i;
4426 for (i = 0; i < buf_words; i++)
4427 buf[i] = le16_to_cpu(buf[i]);
4428 #endif /* __BIG_ENDIAN */
4432 * ata_qc_new - Request an available ATA command, for queueing
4433 * @ap: Port associated with device @dev
4434 * @dev: Device from whom we request an available command structure
4436 * LOCKING:
4437 * None.
4440 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4442 struct ata_queued_cmd *qc = NULL;
4443 unsigned int i;
4445 /* no command while frozen */
4446 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4447 return NULL;
4449 /* the last tag is reserved for internal command. */
4450 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4451 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4452 qc = __ata_qc_from_tag(ap, i);
4453 break;
4456 if (qc)
4457 qc->tag = i;
4459 return qc;
4463 * ata_qc_new_init - Request an available ATA command, and initialize it
4464 * @dev: Device from whom we request an available command structure
4466 * LOCKING:
4467 * None.
4470 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4472 struct ata_port *ap = dev->link->ap;
4473 struct ata_queued_cmd *qc;
4475 qc = ata_qc_new(ap);
4476 if (qc) {
4477 qc->scsicmd = NULL;
4478 qc->ap = ap;
4479 qc->dev = dev;
4481 ata_qc_reinit(qc);
4484 return qc;
4488 * ata_qc_free - free unused ata_queued_cmd
4489 * @qc: Command to complete
4491 * Designed to free unused ata_queued_cmd object
4492 * in case something prevents using it.
4494 * LOCKING:
4495 * spin_lock_irqsave(host lock)
4497 void ata_qc_free(struct ata_queued_cmd *qc)
4499 struct ata_port *ap = qc->ap;
4500 unsigned int tag;
4502 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4504 qc->flags = 0;
4505 tag = qc->tag;
4506 if (likely(ata_tag_valid(tag))) {
4507 qc->tag = ATA_TAG_POISON;
4508 clear_bit(tag, &ap->qc_allocated);
4512 void __ata_qc_complete(struct ata_queued_cmd *qc)
4514 struct ata_port *ap = qc->ap;
4515 struct ata_link *link = qc->dev->link;
4517 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4518 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4520 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4521 ata_sg_clean(qc);
4523 /* command should be marked inactive atomically with qc completion */
4524 if (qc->tf.protocol == ATA_PROT_NCQ) {
4525 link->sactive &= ~(1 << qc->tag);
4526 if (!link->sactive)
4527 ap->nr_active_links--;
4528 } else {
4529 link->active_tag = ATA_TAG_POISON;
4530 ap->nr_active_links--;
4533 /* clear exclusive status */
4534 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4535 ap->excl_link == link))
4536 ap->excl_link = NULL;
4538 /* atapi: mark qc as inactive to prevent the interrupt handler
4539 * from completing the command twice later, before the error handler
4540 * is called. (when rc != 0 and atapi request sense is needed)
4542 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4543 ap->qc_active &= ~(1 << qc->tag);
4545 /* call completion callback */
4546 qc->complete_fn(qc);
4549 static void fill_result_tf(struct ata_queued_cmd *qc)
4551 struct ata_port *ap = qc->ap;
4553 qc->result_tf.flags = qc->tf.flags;
4554 ap->ops->qc_fill_rtf(qc);
4557 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4559 struct ata_device *dev = qc->dev;
4561 if (ata_tag_internal(qc->tag))
4562 return;
4564 if (ata_is_nodata(qc->tf.protocol))
4565 return;
4567 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4568 return;
4570 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4574 * ata_qc_complete - Complete an active ATA command
4575 * @qc: Command to complete
4576 * @err_mask: ATA Status register contents
4578 * Indicate to the mid and upper layers that an ATA
4579 * command has completed, with either an ok or not-ok status.
4581 * LOCKING:
4582 * spin_lock_irqsave(host lock)
4584 void ata_qc_complete(struct ata_queued_cmd *qc)
4586 struct ata_port *ap = qc->ap;
4588 /* XXX: New EH and old EH use different mechanisms to
4589 * synchronize EH with regular execution path.
4591 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4592 * Normal execution path is responsible for not accessing a
4593 * failed qc. libata core enforces the rule by returning NULL
4594 * from ata_qc_from_tag() for failed qcs.
4596 * Old EH depends on ata_qc_complete() nullifying completion
4597 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4598 * not synchronize with interrupt handler. Only PIO task is
4599 * taken care of.
4601 if (ap->ops->error_handler) {
4602 struct ata_device *dev = qc->dev;
4603 struct ata_eh_info *ehi = &dev->link->eh_info;
4605 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4607 if (unlikely(qc->err_mask))
4608 qc->flags |= ATA_QCFLAG_FAILED;
4610 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4611 if (!ata_tag_internal(qc->tag)) {
4612 /* always fill result TF for failed qc */
4613 fill_result_tf(qc);
4614 ata_qc_schedule_eh(qc);
4615 return;
4619 /* read result TF if requested */
4620 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4621 fill_result_tf(qc);
4623 /* Some commands need post-processing after successful
4624 * completion.
4626 switch (qc->tf.command) {
4627 case ATA_CMD_SET_FEATURES:
4628 if (qc->tf.feature != SETFEATURES_WC_ON &&
4629 qc->tf.feature != SETFEATURES_WC_OFF)
4630 break;
4631 /* fall through */
4632 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4633 case ATA_CMD_SET_MULTI: /* multi_count changed */
4634 /* revalidate device */
4635 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4636 ata_port_schedule_eh(ap);
4637 break;
4639 case ATA_CMD_SLEEP:
4640 dev->flags |= ATA_DFLAG_SLEEPING;
4641 break;
4644 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4645 ata_verify_xfer(qc);
4647 __ata_qc_complete(qc);
4648 } else {
4649 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4650 return;
4652 /* read result TF if failed or requested */
4653 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4654 fill_result_tf(qc);
4656 __ata_qc_complete(qc);
4661 * ata_qc_complete_multiple - Complete multiple qcs successfully
4662 * @ap: port in question
4663 * @qc_active: new qc_active mask
4665 * Complete in-flight commands. This functions is meant to be
4666 * called from low-level driver's interrupt routine to complete
4667 * requests normally. ap->qc_active and @qc_active is compared
4668 * and commands are completed accordingly.
4670 * LOCKING:
4671 * spin_lock_irqsave(host lock)
4673 * RETURNS:
4674 * Number of completed commands on success, -errno otherwise.
4676 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4678 int nr_done = 0;
4679 u32 done_mask;
4680 int i;
4682 done_mask = ap->qc_active ^ qc_active;
4684 if (unlikely(done_mask & qc_active)) {
4685 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4686 "(%08x->%08x)\n", ap->qc_active, qc_active);
4687 return -EINVAL;
4690 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4691 struct ata_queued_cmd *qc;
4693 if (!(done_mask & (1 << i)))
4694 continue;
4696 if ((qc = ata_qc_from_tag(ap, i))) {
4697 ata_qc_complete(qc);
4698 nr_done++;
4702 return nr_done;
4706 * ata_qc_issue - issue taskfile to device
4707 * @qc: command to issue to device
4709 * Prepare an ATA command to submission to device.
4710 * This includes mapping the data into a DMA-able
4711 * area, filling in the S/G table, and finally
4712 * writing the taskfile to hardware, starting the command.
4714 * LOCKING:
4715 * spin_lock_irqsave(host lock)
4717 void ata_qc_issue(struct ata_queued_cmd *qc)
4719 struct ata_port *ap = qc->ap;
4720 struct ata_link *link = qc->dev->link;
4721 u8 prot = qc->tf.protocol;
4723 /* Make sure only one non-NCQ command is outstanding. The
4724 * check is skipped for old EH because it reuses active qc to
4725 * request ATAPI sense.
4727 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4729 if (ata_is_ncq(prot)) {
4730 WARN_ON(link->sactive & (1 << qc->tag));
4732 if (!link->sactive)
4733 ap->nr_active_links++;
4734 link->sactive |= 1 << qc->tag;
4735 } else {
4736 WARN_ON(link->sactive);
4738 ap->nr_active_links++;
4739 link->active_tag = qc->tag;
4742 qc->flags |= ATA_QCFLAG_ACTIVE;
4743 ap->qc_active |= 1 << qc->tag;
4745 /* We guarantee to LLDs that they will have at least one
4746 * non-zero sg if the command is a data command.
4748 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4750 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4751 (ap->flags & ATA_FLAG_PIO_DMA)))
4752 if (ata_sg_setup(qc))
4753 goto sg_err;
4755 /* if device is sleeping, schedule reset and abort the link */
4756 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4757 link->eh_info.action |= ATA_EH_RESET;
4758 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4759 ata_link_abort(link);
4760 return;
4763 ap->ops->qc_prep(qc);
4765 qc->err_mask |= ap->ops->qc_issue(qc);
4766 if (unlikely(qc->err_mask))
4767 goto err;
4768 return;
4770 sg_err:
4771 qc->err_mask |= AC_ERR_SYSTEM;
4772 err:
4773 ata_qc_complete(qc);
4777 * sata_scr_valid - test whether SCRs are accessible
4778 * @link: ATA link to test SCR accessibility for
4780 * Test whether SCRs are accessible for @link.
4782 * LOCKING:
4783 * None.
4785 * RETURNS:
4786 * 1 if SCRs are accessible, 0 otherwise.
4788 int sata_scr_valid(struct ata_link *link)
4790 struct ata_port *ap = link->ap;
4792 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4796 * sata_scr_read - read SCR register of the specified port
4797 * @link: ATA link to read SCR for
4798 * @reg: SCR to read
4799 * @val: Place to store read value
4801 * Read SCR register @reg of @link into *@val. This function is
4802 * guaranteed to succeed if @link is ap->link, the cable type of
4803 * the port is SATA and the port implements ->scr_read.
4805 * LOCKING:
4806 * None if @link is ap->link. Kernel thread context otherwise.
4808 * RETURNS:
4809 * 0 on success, negative errno on failure.
4811 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4813 if (ata_is_host_link(link)) {
4814 struct ata_port *ap = link->ap;
4816 if (sata_scr_valid(link))
4817 return ap->ops->scr_read(ap, reg, val);
4818 return -EOPNOTSUPP;
4821 return sata_pmp_scr_read(link, reg, val);
4825 * sata_scr_write - write SCR register of the specified port
4826 * @link: ATA link to write SCR for
4827 * @reg: SCR to write
4828 * @val: value to write
4830 * Write @val to SCR register @reg of @link. This function is
4831 * guaranteed to succeed if @link is ap->link, the cable type of
4832 * the port is SATA and the port implements ->scr_read.
4834 * LOCKING:
4835 * None if @link is ap->link. Kernel thread context otherwise.
4837 * RETURNS:
4838 * 0 on success, negative errno on failure.
4840 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4842 if (ata_is_host_link(link)) {
4843 struct ata_port *ap = link->ap;
4845 if (sata_scr_valid(link))
4846 return ap->ops->scr_write(ap, reg, val);
4847 return -EOPNOTSUPP;
4850 return sata_pmp_scr_write(link, reg, val);
4854 * sata_scr_write_flush - write SCR register of the specified port and flush
4855 * @link: ATA link to write SCR for
4856 * @reg: SCR to write
4857 * @val: value to write
4859 * This function is identical to sata_scr_write() except that this
4860 * function performs flush after writing to the register.
4862 * LOCKING:
4863 * None if @link is ap->link. Kernel thread context otherwise.
4865 * RETURNS:
4866 * 0 on success, negative errno on failure.
4868 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
4870 if (ata_is_host_link(link)) {
4871 struct ata_port *ap = link->ap;
4872 int rc;
4874 if (sata_scr_valid(link)) {
4875 rc = ap->ops->scr_write(ap, reg, val);
4876 if (rc == 0)
4877 rc = ap->ops->scr_read(ap, reg, &val);
4878 return rc;
4880 return -EOPNOTSUPP;
4883 return sata_pmp_scr_write(link, reg, val);
4887 * ata_link_online - test whether the given link is online
4888 * @link: ATA link to test
4890 * Test whether @link is online. Note that this function returns
4891 * 0 if online status of @link cannot be obtained, so
4892 * ata_link_online(link) != !ata_link_offline(link).
4894 * LOCKING:
4895 * None.
4897 * RETURNS:
4898 * 1 if the port online status is available and online.
4900 int ata_link_online(struct ata_link *link)
4902 u32 sstatus;
4904 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4905 (sstatus & 0xf) == 0x3)
4906 return 1;
4907 return 0;
4911 * ata_link_offline - test whether the given link is offline
4912 * @link: ATA link to test
4914 * Test whether @link is offline. Note that this function
4915 * returns 0 if offline status of @link cannot be obtained, so
4916 * ata_link_online(link) != !ata_link_offline(link).
4918 * LOCKING:
4919 * None.
4921 * RETURNS:
4922 * 1 if the port offline status is available and offline.
4924 int ata_link_offline(struct ata_link *link)
4926 u32 sstatus;
4928 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4929 (sstatus & 0xf) != 0x3)
4930 return 1;
4931 return 0;
4934 #ifdef CONFIG_PM
4935 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
4936 unsigned int action, unsigned int ehi_flags,
4937 int wait)
4939 unsigned long flags;
4940 int i, rc;
4942 for (i = 0; i < host->n_ports; i++) {
4943 struct ata_port *ap = host->ports[i];
4944 struct ata_link *link;
4946 /* Previous resume operation might still be in
4947 * progress. Wait for PM_PENDING to clear.
4949 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4950 ata_port_wait_eh(ap);
4951 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4954 /* request PM ops to EH */
4955 spin_lock_irqsave(ap->lock, flags);
4957 ap->pm_mesg = mesg;
4958 if (wait) {
4959 rc = 0;
4960 ap->pm_result = &rc;
4963 ap->pflags |= ATA_PFLAG_PM_PENDING;
4964 __ata_port_for_each_link(link, ap) {
4965 link->eh_info.action |= action;
4966 link->eh_info.flags |= ehi_flags;
4969 ata_port_schedule_eh(ap);
4971 spin_unlock_irqrestore(ap->lock, flags);
4973 /* wait and check result */
4974 if (wait) {
4975 ata_port_wait_eh(ap);
4976 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4977 if (rc)
4978 return rc;
4982 return 0;
4986 * ata_host_suspend - suspend host
4987 * @host: host to suspend
4988 * @mesg: PM message
4990 * Suspend @host. Actual operation is performed by EH. This
4991 * function requests EH to perform PM operations and waits for EH
4992 * to finish.
4994 * LOCKING:
4995 * Kernel thread context (may sleep).
4997 * RETURNS:
4998 * 0 on success, -errno on failure.
5000 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5002 int rc;
5005 * disable link pm on all ports before requesting
5006 * any pm activity
5008 ata_lpm_enable(host);
5010 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5011 if (rc == 0)
5012 host->dev->power.power_state = mesg;
5013 return rc;
5017 * ata_host_resume - resume host
5018 * @host: host to resume
5020 * Resume @host. Actual operation is performed by EH. This
5021 * function requests EH to perform PM operations and returns.
5022 * Note that all resume operations are performed parallely.
5024 * LOCKING:
5025 * Kernel thread context (may sleep).
5027 void ata_host_resume(struct ata_host *host)
5029 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5030 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5031 host->dev->power.power_state = PMSG_ON;
5033 /* reenable link pm */
5034 ata_lpm_disable(host);
5036 #endif
5039 * ata_port_start - Set port up for dma.
5040 * @ap: Port to initialize
5042 * Called just after data structures for each port are
5043 * initialized. Allocates space for PRD table.
5045 * May be used as the port_start() entry in ata_port_operations.
5047 * LOCKING:
5048 * Inherited from caller.
5050 int ata_port_start(struct ata_port *ap)
5052 struct device *dev = ap->dev;
5054 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5055 GFP_KERNEL);
5056 if (!ap->prd)
5057 return -ENOMEM;
5059 return 0;
5063 * ata_dev_init - Initialize an ata_device structure
5064 * @dev: Device structure to initialize
5066 * Initialize @dev in preparation for probing.
5068 * LOCKING:
5069 * Inherited from caller.
5071 void ata_dev_init(struct ata_device *dev)
5073 struct ata_link *link = dev->link;
5074 struct ata_port *ap = link->ap;
5075 unsigned long flags;
5077 /* SATA spd limit is bound to the first device */
5078 link->sata_spd_limit = link->hw_sata_spd_limit;
5079 link->sata_spd = 0;
5081 /* High bits of dev->flags are used to record warm plug
5082 * requests which occur asynchronously. Synchronize using
5083 * host lock.
5085 spin_lock_irqsave(ap->lock, flags);
5086 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5087 dev->horkage = 0;
5088 spin_unlock_irqrestore(ap->lock, flags);
5090 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5091 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5092 dev->pio_mask = UINT_MAX;
5093 dev->mwdma_mask = UINT_MAX;
5094 dev->udma_mask = UINT_MAX;
5098 * ata_link_init - Initialize an ata_link structure
5099 * @ap: ATA port link is attached to
5100 * @link: Link structure to initialize
5101 * @pmp: Port multiplier port number
5103 * Initialize @link.
5105 * LOCKING:
5106 * Kernel thread context (may sleep)
5108 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5110 int i;
5112 /* clear everything except for devices */
5113 memset(link, 0, offsetof(struct ata_link, device[0]));
5115 link->ap = ap;
5116 link->pmp = pmp;
5117 link->active_tag = ATA_TAG_POISON;
5118 link->hw_sata_spd_limit = UINT_MAX;
5120 /* can't use iterator, ap isn't initialized yet */
5121 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5122 struct ata_device *dev = &link->device[i];
5124 dev->link = link;
5125 dev->devno = dev - link->device;
5126 ata_dev_init(dev);
5131 * sata_link_init_spd - Initialize link->sata_spd_limit
5132 * @link: Link to configure sata_spd_limit for
5134 * Initialize @link->[hw_]sata_spd_limit to the currently
5135 * configured value.
5137 * LOCKING:
5138 * Kernel thread context (may sleep).
5140 * RETURNS:
5141 * 0 on success, -errno on failure.
5143 int sata_link_init_spd(struct ata_link *link)
5145 u32 scontrol;
5146 u8 spd;
5147 int rc;
5149 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
5150 if (rc)
5151 return rc;
5153 spd = (scontrol >> 4) & 0xf;
5154 if (spd)
5155 link->hw_sata_spd_limit &= (1 << spd) - 1;
5157 ata_force_spd_limit(link);
5159 link->sata_spd_limit = link->hw_sata_spd_limit;
5161 return 0;
5165 * ata_port_alloc - allocate and initialize basic ATA port resources
5166 * @host: ATA host this allocated port belongs to
5168 * Allocate and initialize basic ATA port resources.
5170 * RETURNS:
5171 * Allocate ATA port on success, NULL on failure.
5173 * LOCKING:
5174 * Inherited from calling layer (may sleep).
5176 struct ata_port *ata_port_alloc(struct ata_host *host)
5178 struct ata_port *ap;
5180 DPRINTK("ENTER\n");
5182 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5183 if (!ap)
5184 return NULL;
5186 ap->pflags |= ATA_PFLAG_INITIALIZING;
5187 ap->lock = &host->lock;
5188 ap->flags = ATA_FLAG_DISABLED;
5189 ap->print_id = -1;
5190 ap->ctl = ATA_DEVCTL_OBS;
5191 ap->host = host;
5192 ap->dev = host->dev;
5193 ap->last_ctl = 0xFF;
5195 #if defined(ATA_VERBOSE_DEBUG)
5196 /* turn on all debugging levels */
5197 ap->msg_enable = 0x00FF;
5198 #elif defined(ATA_DEBUG)
5199 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5200 #else
5201 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5202 #endif
5204 #ifdef CONFIG_ATA_SFF
5205 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5206 #endif
5207 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5208 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5209 INIT_LIST_HEAD(&ap->eh_done_q);
5210 init_waitqueue_head(&ap->eh_wait_q);
5211 init_timer_deferrable(&ap->fastdrain_timer);
5212 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5213 ap->fastdrain_timer.data = (unsigned long)ap;
5215 ap->cbl = ATA_CBL_NONE;
5217 ata_link_init(ap, &ap->link, 0);
5219 #ifdef ATA_IRQ_TRAP
5220 ap->stats.unhandled_irq = 1;
5221 ap->stats.idle_irq = 1;
5222 #endif
5223 return ap;
5226 static void ata_host_release(struct device *gendev, void *res)
5228 struct ata_host *host = dev_get_drvdata(gendev);
5229 int i;
5231 for (i = 0; i < host->n_ports; i++) {
5232 struct ata_port *ap = host->ports[i];
5234 if (!ap)
5235 continue;
5237 if (ap->scsi_host)
5238 scsi_host_put(ap->scsi_host);
5240 kfree(ap->pmp_link);
5241 kfree(ap);
5242 host->ports[i] = NULL;
5245 dev_set_drvdata(gendev, NULL);
5249 * ata_host_alloc - allocate and init basic ATA host resources
5250 * @dev: generic device this host is associated with
5251 * @max_ports: maximum number of ATA ports associated with this host
5253 * Allocate and initialize basic ATA host resources. LLD calls
5254 * this function to allocate a host, initializes it fully and
5255 * attaches it using ata_host_register().
5257 * @max_ports ports are allocated and host->n_ports is
5258 * initialized to @max_ports. The caller is allowed to decrease
5259 * host->n_ports before calling ata_host_register(). The unused
5260 * ports will be automatically freed on registration.
5262 * RETURNS:
5263 * Allocate ATA host on success, NULL on failure.
5265 * LOCKING:
5266 * Inherited from calling layer (may sleep).
5268 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5270 struct ata_host *host;
5271 size_t sz;
5272 int i;
5274 DPRINTK("ENTER\n");
5276 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5277 return NULL;
5279 /* alloc a container for our list of ATA ports (buses) */
5280 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5281 /* alloc a container for our list of ATA ports (buses) */
5282 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5283 if (!host)
5284 goto err_out;
5286 devres_add(dev, host);
5287 dev_set_drvdata(dev, host);
5289 spin_lock_init(&host->lock);
5290 host->dev = dev;
5291 host->n_ports = max_ports;
5293 /* allocate ports bound to this host */
5294 for (i = 0; i < max_ports; i++) {
5295 struct ata_port *ap;
5297 ap = ata_port_alloc(host);
5298 if (!ap)
5299 goto err_out;
5301 ap->port_no = i;
5302 host->ports[i] = ap;
5305 devres_remove_group(dev, NULL);
5306 return host;
5308 err_out:
5309 devres_release_group(dev, NULL);
5310 return NULL;
5314 * ata_host_alloc_pinfo - alloc host and init with port_info array
5315 * @dev: generic device this host is associated with
5316 * @ppi: array of ATA port_info to initialize host with
5317 * @n_ports: number of ATA ports attached to this host
5319 * Allocate ATA host and initialize with info from @ppi. If NULL
5320 * terminated, @ppi may contain fewer entries than @n_ports. The
5321 * last entry will be used for the remaining ports.
5323 * RETURNS:
5324 * Allocate ATA host on success, NULL on failure.
5326 * LOCKING:
5327 * Inherited from calling layer (may sleep).
5329 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5330 const struct ata_port_info * const * ppi,
5331 int n_ports)
5333 const struct ata_port_info *pi;
5334 struct ata_host *host;
5335 int i, j;
5337 host = ata_host_alloc(dev, n_ports);
5338 if (!host)
5339 return NULL;
5341 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5342 struct ata_port *ap = host->ports[i];
5344 if (ppi[j])
5345 pi = ppi[j++];
5347 ap->pio_mask = pi->pio_mask;
5348 ap->mwdma_mask = pi->mwdma_mask;
5349 ap->udma_mask = pi->udma_mask;
5350 ap->flags |= pi->flags;
5351 ap->link.flags |= pi->link_flags;
5352 ap->ops = pi->port_ops;
5354 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5355 host->ops = pi->port_ops;
5358 return host;
5361 static void ata_host_stop(struct device *gendev, void *res)
5363 struct ata_host *host = dev_get_drvdata(gendev);
5364 int i;
5366 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5368 for (i = 0; i < host->n_ports; i++) {
5369 struct ata_port *ap = host->ports[i];
5371 if (ap->ops->port_stop)
5372 ap->ops->port_stop(ap);
5375 if (host->ops->host_stop)
5376 host->ops->host_stop(host);
5380 * ata_finalize_port_ops - finalize ata_port_operations
5381 * @ops: ata_port_operations to finalize
5383 * An ata_port_operations can inherit from another ops and that
5384 * ops can again inherit from another. This can go on as many
5385 * times as necessary as long as there is no loop in the
5386 * inheritance chain.
5388 * Ops tables are finalized when the host is started. NULL or
5389 * unspecified entries are inherited from the closet ancestor
5390 * which has the method and the entry is populated with it.
5391 * After finalization, the ops table directly points to all the
5392 * methods and ->inherits is no longer necessary and cleared.
5394 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5396 * LOCKING:
5397 * None.
5399 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5401 static spinlock_t lock = SPIN_LOCK_UNLOCKED;
5402 const struct ata_port_operations *cur;
5403 void **begin = (void **)ops;
5404 void **end = (void **)&ops->inherits;
5405 void **pp;
5407 if (!ops || !ops->inherits)
5408 return;
5410 spin_lock(&lock);
5412 for (cur = ops->inherits; cur; cur = cur->inherits) {
5413 void **inherit = (void **)cur;
5415 for (pp = begin; pp < end; pp++, inherit++)
5416 if (!*pp)
5417 *pp = *inherit;
5420 for (pp = begin; pp < end; pp++)
5421 if (IS_ERR(*pp))
5422 *pp = NULL;
5424 ops->inherits = NULL;
5426 spin_unlock(&lock);
5430 * ata_host_start - start and freeze ports of an ATA host
5431 * @host: ATA host to start ports for
5433 * Start and then freeze ports of @host. Started status is
5434 * recorded in host->flags, so this function can be called
5435 * multiple times. Ports are guaranteed to get started only
5436 * once. If host->ops isn't initialized yet, its set to the
5437 * first non-dummy port ops.
5439 * LOCKING:
5440 * Inherited from calling layer (may sleep).
5442 * RETURNS:
5443 * 0 if all ports are started successfully, -errno otherwise.
5445 int ata_host_start(struct ata_host *host)
5447 int have_stop = 0;
5448 void *start_dr = NULL;
5449 int i, rc;
5451 if (host->flags & ATA_HOST_STARTED)
5452 return 0;
5454 ata_finalize_port_ops(host->ops);
5456 for (i = 0; i < host->n_ports; i++) {
5457 struct ata_port *ap = host->ports[i];
5459 ata_finalize_port_ops(ap->ops);
5461 if (!host->ops && !ata_port_is_dummy(ap))
5462 host->ops = ap->ops;
5464 if (ap->ops->port_stop)
5465 have_stop = 1;
5468 if (host->ops->host_stop)
5469 have_stop = 1;
5471 if (have_stop) {
5472 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5473 if (!start_dr)
5474 return -ENOMEM;
5477 for (i = 0; i < host->n_ports; i++) {
5478 struct ata_port *ap = host->ports[i];
5480 if (ap->ops->port_start) {
5481 rc = ap->ops->port_start(ap);
5482 if (rc) {
5483 if (rc != -ENODEV)
5484 dev_printk(KERN_ERR, host->dev,
5485 "failed to start port %d "
5486 "(errno=%d)\n", i, rc);
5487 goto err_out;
5490 ata_eh_freeze_port(ap);
5493 if (start_dr)
5494 devres_add(host->dev, start_dr);
5495 host->flags |= ATA_HOST_STARTED;
5496 return 0;
5498 err_out:
5499 while (--i >= 0) {
5500 struct ata_port *ap = host->ports[i];
5502 if (ap->ops->port_stop)
5503 ap->ops->port_stop(ap);
5505 devres_free(start_dr);
5506 return rc;
5510 * ata_sas_host_init - Initialize a host struct
5511 * @host: host to initialize
5512 * @dev: device host is attached to
5513 * @flags: host flags
5514 * @ops: port_ops
5516 * LOCKING:
5517 * PCI/etc. bus probe sem.
5520 /* KILLME - the only user left is ipr */
5521 void ata_host_init(struct ata_host *host, struct device *dev,
5522 unsigned long flags, struct ata_port_operations *ops)
5524 spin_lock_init(&host->lock);
5525 host->dev = dev;
5526 host->flags = flags;
5527 host->ops = ops;
5531 * ata_host_register - register initialized ATA host
5532 * @host: ATA host to register
5533 * @sht: template for SCSI host
5535 * Register initialized ATA host. @host is allocated using
5536 * ata_host_alloc() and fully initialized by LLD. This function
5537 * starts ports, registers @host with ATA and SCSI layers and
5538 * probe registered devices.
5540 * LOCKING:
5541 * Inherited from calling layer (may sleep).
5543 * RETURNS:
5544 * 0 on success, -errno otherwise.
5546 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5548 int i, rc;
5550 /* host must have been started */
5551 if (!(host->flags & ATA_HOST_STARTED)) {
5552 dev_printk(KERN_ERR, host->dev,
5553 "BUG: trying to register unstarted host\n");
5554 WARN_ON(1);
5555 return -EINVAL;
5558 /* Blow away unused ports. This happens when LLD can't
5559 * determine the exact number of ports to allocate at
5560 * allocation time.
5562 for (i = host->n_ports; host->ports[i]; i++)
5563 kfree(host->ports[i]);
5565 /* give ports names and add SCSI hosts */
5566 for (i = 0; i < host->n_ports; i++)
5567 host->ports[i]->print_id = ata_print_id++;
5569 rc = ata_scsi_add_hosts(host, sht);
5570 if (rc)
5571 return rc;
5573 /* associate with ACPI nodes */
5574 ata_acpi_associate(host);
5576 /* set cable, sata_spd_limit and report */
5577 for (i = 0; i < host->n_ports; i++) {
5578 struct ata_port *ap = host->ports[i];
5579 unsigned long xfer_mask;
5581 /* set SATA cable type if still unset */
5582 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5583 ap->cbl = ATA_CBL_SATA;
5585 /* init sata_spd_limit to the current value */
5586 sata_link_init_spd(&ap->link);
5588 /* print per-port info to dmesg */
5589 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5590 ap->udma_mask);
5592 if (!ata_port_is_dummy(ap)) {
5593 ata_port_printk(ap, KERN_INFO,
5594 "%cATA max %s %s\n",
5595 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5596 ata_mode_string(xfer_mask),
5597 ap->link.eh_info.desc);
5598 ata_ehi_clear_desc(&ap->link.eh_info);
5599 } else
5600 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5603 /* perform each probe synchronously */
5604 DPRINTK("probe begin\n");
5605 for (i = 0; i < host->n_ports; i++) {
5606 struct ata_port *ap = host->ports[i];
5608 /* probe */
5609 if (ap->ops->error_handler) {
5610 struct ata_eh_info *ehi = &ap->link.eh_info;
5611 unsigned long flags;
5613 ata_port_probe(ap);
5615 /* kick EH for boot probing */
5616 spin_lock_irqsave(ap->lock, flags);
5618 ehi->probe_mask |= ATA_ALL_DEVICES;
5619 ehi->action |= ATA_EH_RESET;
5620 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5622 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5623 ap->pflags |= ATA_PFLAG_LOADING;
5624 ata_port_schedule_eh(ap);
5626 spin_unlock_irqrestore(ap->lock, flags);
5628 /* wait for EH to finish */
5629 ata_port_wait_eh(ap);
5630 } else {
5631 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5632 rc = ata_bus_probe(ap);
5633 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5635 if (rc) {
5636 /* FIXME: do something useful here?
5637 * Current libata behavior will
5638 * tear down everything when
5639 * the module is removed
5640 * or the h/w is unplugged.
5646 /* probes are done, now scan each port's disk(s) */
5647 DPRINTK("host probe begin\n");
5648 for (i = 0; i < host->n_ports; i++) {
5649 struct ata_port *ap = host->ports[i];
5651 ata_scsi_scan_host(ap, 1);
5652 ata_lpm_schedule(ap, ap->pm_policy);
5655 return 0;
5659 * ata_host_activate - start host, request IRQ and register it
5660 * @host: target ATA host
5661 * @irq: IRQ to request
5662 * @irq_handler: irq_handler used when requesting IRQ
5663 * @irq_flags: irq_flags used when requesting IRQ
5664 * @sht: scsi_host_template to use when registering the host
5666 * After allocating an ATA host and initializing it, most libata
5667 * LLDs perform three steps to activate the host - start host,
5668 * request IRQ and register it. This helper takes necessasry
5669 * arguments and performs the three steps in one go.
5671 * An invalid IRQ skips the IRQ registration and expects the host to
5672 * have set polling mode on the port. In this case, @irq_handler
5673 * should be NULL.
5675 * LOCKING:
5676 * Inherited from calling layer (may sleep).
5678 * RETURNS:
5679 * 0 on success, -errno otherwise.
5681 int ata_host_activate(struct ata_host *host, int irq,
5682 irq_handler_t irq_handler, unsigned long irq_flags,
5683 struct scsi_host_template *sht)
5685 int i, rc;
5687 rc = ata_host_start(host);
5688 if (rc)
5689 return rc;
5691 /* Special case for polling mode */
5692 if (!irq) {
5693 WARN_ON(irq_handler);
5694 return ata_host_register(host, sht);
5697 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5698 dev_driver_string(host->dev), host);
5699 if (rc)
5700 return rc;
5702 for (i = 0; i < host->n_ports; i++)
5703 ata_port_desc(host->ports[i], "irq %d", irq);
5705 rc = ata_host_register(host, sht);
5706 /* if failed, just free the IRQ and leave ports alone */
5707 if (rc)
5708 devm_free_irq(host->dev, irq, host);
5710 return rc;
5714 * ata_port_detach - Detach ATA port in prepration of device removal
5715 * @ap: ATA port to be detached
5717 * Detach all ATA devices and the associated SCSI devices of @ap;
5718 * then, remove the associated SCSI host. @ap is guaranteed to
5719 * be quiescent on return from this function.
5721 * LOCKING:
5722 * Kernel thread context (may sleep).
5724 static void ata_port_detach(struct ata_port *ap)
5726 unsigned long flags;
5727 struct ata_link *link;
5728 struct ata_device *dev;
5730 if (!ap->ops->error_handler)
5731 goto skip_eh;
5733 /* tell EH we're leaving & flush EH */
5734 spin_lock_irqsave(ap->lock, flags);
5735 ap->pflags |= ATA_PFLAG_UNLOADING;
5736 spin_unlock_irqrestore(ap->lock, flags);
5738 ata_port_wait_eh(ap);
5740 /* EH is now guaranteed to see UNLOADING - EH context belongs
5741 * to us. Disable all existing devices.
5743 ata_port_for_each_link(link, ap) {
5744 ata_link_for_each_dev(dev, link)
5745 ata_dev_disable(dev);
5748 /* Final freeze & EH. All in-flight commands are aborted. EH
5749 * will be skipped and retrials will be terminated with bad
5750 * target.
5752 spin_lock_irqsave(ap->lock, flags);
5753 ata_port_freeze(ap); /* won't be thawed */
5754 spin_unlock_irqrestore(ap->lock, flags);
5756 ata_port_wait_eh(ap);
5757 cancel_rearming_delayed_work(&ap->hotplug_task);
5759 skip_eh:
5760 /* remove the associated SCSI host */
5761 scsi_remove_host(ap->scsi_host);
5765 * ata_host_detach - Detach all ports of an ATA host
5766 * @host: Host to detach
5768 * Detach all ports of @host.
5770 * LOCKING:
5771 * Kernel thread context (may sleep).
5773 void ata_host_detach(struct ata_host *host)
5775 int i;
5777 for (i = 0; i < host->n_ports; i++)
5778 ata_port_detach(host->ports[i]);
5780 /* the host is dead now, dissociate ACPI */
5781 ata_acpi_dissociate(host);
5784 #ifdef CONFIG_PCI
5787 * ata_pci_remove_one - PCI layer callback for device removal
5788 * @pdev: PCI device that was removed
5790 * PCI layer indicates to libata via this hook that hot-unplug or
5791 * module unload event has occurred. Detach all ports. Resource
5792 * release is handled via devres.
5794 * LOCKING:
5795 * Inherited from PCI layer (may sleep).
5797 void ata_pci_remove_one(struct pci_dev *pdev)
5799 struct device *dev = &pdev->dev;
5800 struct ata_host *host = dev_get_drvdata(dev);
5802 ata_host_detach(host);
5805 /* move to PCI subsystem */
5806 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5808 unsigned long tmp = 0;
5810 switch (bits->width) {
5811 case 1: {
5812 u8 tmp8 = 0;
5813 pci_read_config_byte(pdev, bits->reg, &tmp8);
5814 tmp = tmp8;
5815 break;
5817 case 2: {
5818 u16 tmp16 = 0;
5819 pci_read_config_word(pdev, bits->reg, &tmp16);
5820 tmp = tmp16;
5821 break;
5823 case 4: {
5824 u32 tmp32 = 0;
5825 pci_read_config_dword(pdev, bits->reg, &tmp32);
5826 tmp = tmp32;
5827 break;
5830 default:
5831 return -EINVAL;
5834 tmp &= bits->mask;
5836 return (tmp == bits->val) ? 1 : 0;
5839 #ifdef CONFIG_PM
5840 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5842 pci_save_state(pdev);
5843 pci_disable_device(pdev);
5845 if (mesg.event & PM_EVENT_SLEEP)
5846 pci_set_power_state(pdev, PCI_D3hot);
5849 int ata_pci_device_do_resume(struct pci_dev *pdev)
5851 int rc;
5853 pci_set_power_state(pdev, PCI_D0);
5854 pci_restore_state(pdev);
5856 rc = pcim_enable_device(pdev);
5857 if (rc) {
5858 dev_printk(KERN_ERR, &pdev->dev,
5859 "failed to enable device after resume (%d)\n", rc);
5860 return rc;
5863 pci_set_master(pdev);
5864 return 0;
5867 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5869 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5870 int rc = 0;
5872 rc = ata_host_suspend(host, mesg);
5873 if (rc)
5874 return rc;
5876 ata_pci_device_do_suspend(pdev, mesg);
5878 return 0;
5881 int ata_pci_device_resume(struct pci_dev *pdev)
5883 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5884 int rc;
5886 rc = ata_pci_device_do_resume(pdev);
5887 if (rc == 0)
5888 ata_host_resume(host);
5889 return rc;
5891 #endif /* CONFIG_PM */
5893 #endif /* CONFIG_PCI */
5895 static int __init ata_parse_force_one(char **cur,
5896 struct ata_force_ent *force_ent,
5897 const char **reason)
5899 /* FIXME: Currently, there's no way to tag init const data and
5900 * using __initdata causes build failure on some versions of
5901 * gcc. Once __initdataconst is implemented, add const to the
5902 * following structure.
5904 static struct ata_force_param force_tbl[] __initdata = {
5905 { "40c", .cbl = ATA_CBL_PATA40 },
5906 { "80c", .cbl = ATA_CBL_PATA80 },
5907 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
5908 { "unk", .cbl = ATA_CBL_PATA_UNK },
5909 { "ign", .cbl = ATA_CBL_PATA_IGN },
5910 { "sata", .cbl = ATA_CBL_SATA },
5911 { "1.5Gbps", .spd_limit = 1 },
5912 { "3.0Gbps", .spd_limit = 2 },
5913 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
5914 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
5915 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
5916 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
5917 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
5918 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
5919 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
5920 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
5921 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
5922 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
5923 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
5924 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
5925 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
5926 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
5927 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5928 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5929 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5930 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5931 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5932 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5933 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5934 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5935 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5936 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5937 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5938 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5939 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5940 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5941 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5942 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5943 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5944 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5945 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5946 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5947 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5948 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
5950 char *start = *cur, *p = *cur;
5951 char *id, *val, *endp;
5952 const struct ata_force_param *match_fp = NULL;
5953 int nr_matches = 0, i;
5955 /* find where this param ends and update *cur */
5956 while (*p != '\0' && *p != ',')
5957 p++;
5959 if (*p == '\0')
5960 *cur = p;
5961 else
5962 *cur = p + 1;
5964 *p = '\0';
5966 /* parse */
5967 p = strchr(start, ':');
5968 if (!p) {
5969 val = strstrip(start);
5970 goto parse_val;
5972 *p = '\0';
5974 id = strstrip(start);
5975 val = strstrip(p + 1);
5977 /* parse id */
5978 p = strchr(id, '.');
5979 if (p) {
5980 *p++ = '\0';
5981 force_ent->device = simple_strtoul(p, &endp, 10);
5982 if (p == endp || *endp != '\0') {
5983 *reason = "invalid device";
5984 return -EINVAL;
5988 force_ent->port = simple_strtoul(id, &endp, 10);
5989 if (p == endp || *endp != '\0') {
5990 *reason = "invalid port/link";
5991 return -EINVAL;
5994 parse_val:
5995 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
5996 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
5997 const struct ata_force_param *fp = &force_tbl[i];
5999 if (strncasecmp(val, fp->name, strlen(val)))
6000 continue;
6002 nr_matches++;
6003 match_fp = fp;
6005 if (strcasecmp(val, fp->name) == 0) {
6006 nr_matches = 1;
6007 break;
6011 if (!nr_matches) {
6012 *reason = "unknown value";
6013 return -EINVAL;
6015 if (nr_matches > 1) {
6016 *reason = "ambigious value";
6017 return -EINVAL;
6020 force_ent->param = *match_fp;
6022 return 0;
6025 static void __init ata_parse_force_param(void)
6027 int idx = 0, size = 1;
6028 int last_port = -1, last_device = -1;
6029 char *p, *cur, *next;
6031 /* calculate maximum number of params and allocate force_tbl */
6032 for (p = ata_force_param_buf; *p; p++)
6033 if (*p == ',')
6034 size++;
6036 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6037 if (!ata_force_tbl) {
6038 printk(KERN_WARNING "ata: failed to extend force table, "
6039 "libata.force ignored\n");
6040 return;
6043 /* parse and populate the table */
6044 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6045 const char *reason = "";
6046 struct ata_force_ent te = { .port = -1, .device = -1 };
6048 next = cur;
6049 if (ata_parse_force_one(&next, &te, &reason)) {
6050 printk(KERN_WARNING "ata: failed to parse force "
6051 "parameter \"%s\" (%s)\n",
6052 cur, reason);
6053 continue;
6056 if (te.port == -1) {
6057 te.port = last_port;
6058 te.device = last_device;
6061 ata_force_tbl[idx++] = te;
6063 last_port = te.port;
6064 last_device = te.device;
6067 ata_force_tbl_size = idx;
6070 static int __init ata_init(void)
6072 ata_probe_timeout *= HZ;
6074 ata_parse_force_param();
6076 ata_wq = create_workqueue("ata");
6077 if (!ata_wq)
6078 return -ENOMEM;
6080 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6081 if (!ata_aux_wq) {
6082 destroy_workqueue(ata_wq);
6083 return -ENOMEM;
6086 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6087 return 0;
6090 static void __exit ata_exit(void)
6092 kfree(ata_force_tbl);
6093 destroy_workqueue(ata_wq);
6094 destroy_workqueue(ata_aux_wq);
6097 subsys_initcall(ata_init);
6098 module_exit(ata_exit);
6100 static unsigned long ratelimit_time;
6101 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6103 int ata_ratelimit(void)
6105 int rc;
6106 unsigned long flags;
6108 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6110 if (time_after(jiffies, ratelimit_time)) {
6111 rc = 1;
6112 ratelimit_time = jiffies + (HZ/5);
6113 } else
6114 rc = 0;
6116 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6118 return rc;
6122 * ata_wait_register - wait until register value changes
6123 * @reg: IO-mapped register
6124 * @mask: Mask to apply to read register value
6125 * @val: Wait condition
6126 * @interval_msec: polling interval in milliseconds
6127 * @timeout_msec: timeout in milliseconds
6129 * Waiting for some bits of register to change is a common
6130 * operation for ATA controllers. This function reads 32bit LE
6131 * IO-mapped register @reg and tests for the following condition.
6133 * (*@reg & mask) != val
6135 * If the condition is met, it returns; otherwise, the process is
6136 * repeated after @interval_msec until timeout.
6138 * LOCKING:
6139 * Kernel thread context (may sleep)
6141 * RETURNS:
6142 * The final register value.
6144 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6145 unsigned long interval_msec,
6146 unsigned long timeout_msec)
6148 unsigned long timeout;
6149 u32 tmp;
6151 tmp = ioread32(reg);
6153 /* Calculate timeout _after_ the first read to make sure
6154 * preceding writes reach the controller before starting to
6155 * eat away the timeout.
6157 timeout = jiffies + (timeout_msec * HZ) / 1000;
6159 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6160 msleep(interval_msec);
6161 tmp = ioread32(reg);
6164 return tmp;
6168 * Dummy port_ops
6170 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6172 return AC_ERR_SYSTEM;
6175 static void ata_dummy_error_handler(struct ata_port *ap)
6177 /* truly dummy */
6180 struct ata_port_operations ata_dummy_port_ops = {
6181 .qc_prep = ata_noop_qc_prep,
6182 .qc_issue = ata_dummy_qc_issue,
6183 .error_handler = ata_dummy_error_handler,
6186 const struct ata_port_info ata_dummy_port_info = {
6187 .port_ops = &ata_dummy_port_ops,
6191 * libata is essentially a library of internal helper functions for
6192 * low-level ATA host controller drivers. As such, the API/ABI is
6193 * likely to change as new drivers are added and updated.
6194 * Do not depend on ABI/API stability.
6196 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6197 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6198 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6199 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6200 EXPORT_SYMBOL_GPL(sata_port_ops);
6201 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6202 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6203 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6204 EXPORT_SYMBOL_GPL(ata_host_init);
6205 EXPORT_SYMBOL_GPL(ata_host_alloc);
6206 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6207 EXPORT_SYMBOL_GPL(ata_host_start);
6208 EXPORT_SYMBOL_GPL(ata_host_register);
6209 EXPORT_SYMBOL_GPL(ata_host_activate);
6210 EXPORT_SYMBOL_GPL(ata_host_detach);
6211 EXPORT_SYMBOL_GPL(ata_sg_init);
6212 EXPORT_SYMBOL_GPL(ata_qc_complete);
6213 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6214 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6215 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6216 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6217 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6218 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6219 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6220 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6221 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6222 EXPORT_SYMBOL_GPL(ata_mode_string);
6223 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6224 EXPORT_SYMBOL_GPL(ata_port_start);
6225 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6226 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6227 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6228 EXPORT_SYMBOL_GPL(ata_port_probe);
6229 EXPORT_SYMBOL_GPL(ata_dev_disable);
6230 EXPORT_SYMBOL_GPL(sata_set_spd);
6231 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6232 EXPORT_SYMBOL_GPL(sata_link_debounce);
6233 EXPORT_SYMBOL_GPL(sata_link_resume);
6234 EXPORT_SYMBOL_GPL(ata_std_prereset);
6235 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6236 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6237 EXPORT_SYMBOL_GPL(ata_std_postreset);
6238 EXPORT_SYMBOL_GPL(ata_dev_classify);
6239 EXPORT_SYMBOL_GPL(ata_dev_pair);
6240 EXPORT_SYMBOL_GPL(ata_port_disable);
6241 EXPORT_SYMBOL_GPL(ata_ratelimit);
6242 EXPORT_SYMBOL_GPL(ata_wait_register);
6243 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6244 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6245 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6246 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6247 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6248 EXPORT_SYMBOL_GPL(sata_scr_valid);
6249 EXPORT_SYMBOL_GPL(sata_scr_read);
6250 EXPORT_SYMBOL_GPL(sata_scr_write);
6251 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6252 EXPORT_SYMBOL_GPL(ata_link_online);
6253 EXPORT_SYMBOL_GPL(ata_link_offline);
6254 #ifdef CONFIG_PM
6255 EXPORT_SYMBOL_GPL(ata_host_suspend);
6256 EXPORT_SYMBOL_GPL(ata_host_resume);
6257 #endif /* CONFIG_PM */
6258 EXPORT_SYMBOL_GPL(ata_id_string);
6259 EXPORT_SYMBOL_GPL(ata_id_c_string);
6260 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6262 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6263 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6264 EXPORT_SYMBOL_GPL(ata_timing_compute);
6265 EXPORT_SYMBOL_GPL(ata_timing_merge);
6266 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6268 #ifdef CONFIG_PCI
6269 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6270 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6271 #ifdef CONFIG_PM
6272 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6273 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6274 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6275 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6276 #endif /* CONFIG_PM */
6277 #endif /* CONFIG_PCI */
6279 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6280 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6281 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6282 EXPORT_SYMBOL_GPL(ata_port_desc);
6283 #ifdef CONFIG_PCI
6284 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6285 #endif /* CONFIG_PCI */
6286 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6287 EXPORT_SYMBOL_GPL(ata_link_abort);
6288 EXPORT_SYMBOL_GPL(ata_port_abort);
6289 EXPORT_SYMBOL_GPL(ata_port_freeze);
6290 EXPORT_SYMBOL_GPL(sata_async_notification);
6291 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6292 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6293 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6294 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6295 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6296 EXPORT_SYMBOL_GPL(ata_do_eh);
6297 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6299 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6300 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6301 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6302 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6303 EXPORT_SYMBOL_GPL(ata_cable_sata);