2 * offload engine driver for the Intel Xscale series of i/o processors
3 * Copyright © 2006, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * This driver supports the asynchrounous DMA copy and RAID engines available
22 * on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/async_tx.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/spinlock.h>
31 #include <linux/interrupt.h>
32 #include <linux/platform_device.h>
33 #include <linux/memory.h>
34 #include <linux/ioport.h>
36 #include <asm/arch/adma.h>
38 #define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common)
39 #define to_iop_adma_device(dev) \
40 container_of(dev, struct iop_adma_device, common)
41 #define tx_to_iop_adma_slot(tx) \
42 container_of(tx, struct iop_adma_desc_slot, async_tx)
45 * iop_adma_free_slots - flags descriptor slots for reuse
47 * Caller must hold &iop_chan->lock while calling this function
49 static void iop_adma_free_slots(struct iop_adma_desc_slot
*slot
)
51 int stride
= slot
->slots_per_op
;
54 slot
->slots_per_op
= 0;
55 slot
= list_entry(slot
->slot_node
.next
,
56 struct iop_adma_desc_slot
,
62 iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot
*desc
,
63 struct iop_adma_chan
*iop_chan
, dma_cookie_t cookie
)
65 BUG_ON(desc
->async_tx
.cookie
< 0);
66 if (desc
->async_tx
.cookie
> 0) {
67 cookie
= desc
->async_tx
.cookie
;
68 desc
->async_tx
.cookie
= 0;
70 /* call the callback (must not sleep or submit new
71 * operations to this channel)
73 if (desc
->async_tx
.callback
)
74 desc
->async_tx
.callback(
75 desc
->async_tx
.callback_param
);
77 /* unmap dma addresses
78 * (unmap_single vs unmap_page?)
80 if (desc
->group_head
&& desc
->unmap_len
) {
81 struct iop_adma_desc_slot
*unmap
= desc
->group_head
;
83 &iop_chan
->device
->pdev
->dev
;
84 u32 len
= unmap
->unmap_len
;
85 u32 src_cnt
= unmap
->unmap_src_cnt
;
86 dma_addr_t addr
= iop_desc_get_dest_addr(unmap
,
89 dma_unmap_page(dev
, addr
, len
, DMA_FROM_DEVICE
);
91 addr
= iop_desc_get_src_addr(unmap
,
94 dma_unmap_page(dev
, addr
, len
,
97 desc
->group_head
= NULL
;
101 /* run dependent operations */
102 async_tx_run_dependencies(&desc
->async_tx
);
108 iop_adma_clean_slot(struct iop_adma_desc_slot
*desc
,
109 struct iop_adma_chan
*iop_chan
)
111 /* the client is allowed to attach dependent operations
114 if (!async_tx_test_ack(&desc
->async_tx
))
117 /* leave the last descriptor in the chain
118 * so we can append to it
120 if (desc
->chain_node
.next
== &iop_chan
->chain
)
123 dev_dbg(iop_chan
->device
->common
.dev
,
124 "\tfree slot: %d slots_per_op: %d\n",
125 desc
->idx
, desc
->slots_per_op
);
127 list_del(&desc
->chain_node
);
128 iop_adma_free_slots(desc
);
133 static void __iop_adma_slot_cleanup(struct iop_adma_chan
*iop_chan
)
135 struct iop_adma_desc_slot
*iter
, *_iter
, *grp_start
= NULL
;
136 dma_cookie_t cookie
= 0;
137 u32 current_desc
= iop_chan_get_current_descriptor(iop_chan
);
138 int busy
= iop_chan_is_busy(iop_chan
);
139 int seen_current
= 0, slot_cnt
= 0, slots_per_op
= 0;
141 dev_dbg(iop_chan
->device
->common
.dev
, "%s\n", __func__
);
142 /* free completed slots from the chain starting with
143 * the oldest descriptor
145 list_for_each_entry_safe(iter
, _iter
, &iop_chan
->chain
,
147 pr_debug("\tcookie: %d slot: %d busy: %d "
148 "this_desc: %#x next_desc: %#x ack: %d\n",
149 iter
->async_tx
.cookie
, iter
->idx
, busy
,
150 iter
->async_tx
.phys
, iop_desc_get_next_desc(iter
),
151 async_tx_test_ack(&iter
->async_tx
));
153 prefetch(&_iter
->async_tx
);
155 /* do not advance past the current descriptor loaded into the
156 * hardware channel, subsequent descriptors are either in
157 * process or have not been submitted
162 /* stop the search if we reach the current descriptor and the
163 * channel is busy, or if it appears that the current descriptor
164 * needs to be re-read (i.e. has been appended to)
166 if (iter
->async_tx
.phys
== current_desc
) {
167 BUG_ON(seen_current
++);
168 if (busy
|| iop_desc_get_next_desc(iter
))
172 /* detect the start of a group transaction */
173 if (!slot_cnt
&& !slots_per_op
) {
174 slot_cnt
= iter
->slot_cnt
;
175 slots_per_op
= iter
->slots_per_op
;
176 if (slot_cnt
<= slots_per_op
) {
183 pr_debug("\tgroup++\n");
186 slot_cnt
-= slots_per_op
;
189 /* all the members of a group are complete */
190 if (slots_per_op
!= 0 && slot_cnt
== 0) {
191 struct iop_adma_desc_slot
*grp_iter
, *_grp_iter
;
192 int end_of_chain
= 0;
193 pr_debug("\tgroup end\n");
195 /* collect the total results */
196 if (grp_start
->xor_check_result
) {
197 u32 zero_sum_result
= 0;
198 slot_cnt
= grp_start
->slot_cnt
;
199 grp_iter
= grp_start
;
201 list_for_each_entry_from(grp_iter
,
202 &iop_chan
->chain
, chain_node
) {
204 iop_desc_get_zero_result(grp_iter
);
205 pr_debug("\titer%d result: %d\n",
206 grp_iter
->idx
, zero_sum_result
);
207 slot_cnt
-= slots_per_op
;
211 pr_debug("\tgrp_start->xor_check_result: %p\n",
212 grp_start
->xor_check_result
);
213 *grp_start
->xor_check_result
= zero_sum_result
;
216 /* clean up the group */
217 slot_cnt
= grp_start
->slot_cnt
;
218 grp_iter
= grp_start
;
219 list_for_each_entry_safe_from(grp_iter
, _grp_iter
,
220 &iop_chan
->chain
, chain_node
) {
221 cookie
= iop_adma_run_tx_complete_actions(
222 grp_iter
, iop_chan
, cookie
);
224 slot_cnt
-= slots_per_op
;
225 end_of_chain
= iop_adma_clean_slot(grp_iter
,
228 if (slot_cnt
== 0 || end_of_chain
)
232 /* the group should be complete at this point */
241 } else if (slots_per_op
) /* wait for group completion */
244 /* write back zero sum results (single descriptor case) */
245 if (iter
->xor_check_result
&& iter
->async_tx
.cookie
)
246 *iter
->xor_check_result
=
247 iop_desc_get_zero_result(iter
);
249 cookie
= iop_adma_run_tx_complete_actions(
250 iter
, iop_chan
, cookie
);
252 if (iop_adma_clean_slot(iter
, iop_chan
))
256 BUG_ON(!seen_current
);
259 iop_chan
->completed_cookie
= cookie
;
260 pr_debug("\tcompleted cookie %d\n", cookie
);
265 iop_adma_slot_cleanup(struct iop_adma_chan
*iop_chan
)
267 spin_lock_bh(&iop_chan
->lock
);
268 __iop_adma_slot_cleanup(iop_chan
);
269 spin_unlock_bh(&iop_chan
->lock
);
272 static void iop_adma_tasklet(unsigned long data
)
274 struct iop_adma_chan
*iop_chan
= (struct iop_adma_chan
*) data
;
276 spin_lock(&iop_chan
->lock
);
277 __iop_adma_slot_cleanup(iop_chan
);
278 spin_unlock(&iop_chan
->lock
);
281 static struct iop_adma_desc_slot
*
282 iop_adma_alloc_slots(struct iop_adma_chan
*iop_chan
, int num_slots
,
285 struct iop_adma_desc_slot
*iter
, *_iter
, *alloc_start
= NULL
;
287 int slots_found
, retry
= 0;
289 /* start search from the last allocated descrtiptor
290 * if a contiguous allocation can not be found start searching
291 * from the beginning of the list
296 iter
= iop_chan
->last_used
;
298 iter
= list_entry(&iop_chan
->all_slots
,
299 struct iop_adma_desc_slot
,
302 list_for_each_entry_safe_continue(
303 iter
, _iter
, &iop_chan
->all_slots
, slot_node
) {
305 prefetch(&_iter
->async_tx
);
306 if (iter
->slots_per_op
) {
307 /* give up after finding the first busy slot
308 * on the second pass through the list
317 /* start the allocation if the slot is correctly aligned */
318 if (!slots_found
++) {
319 if (iop_desc_is_aligned(iter
, slots_per_op
))
327 if (slots_found
== num_slots
) {
328 struct iop_adma_desc_slot
*alloc_tail
= NULL
;
329 struct iop_adma_desc_slot
*last_used
= NULL
;
333 dev_dbg(iop_chan
->device
->common
.dev
,
334 "allocated slot: %d "
335 "(desc %p phys: %#x) slots_per_op %d\n",
336 iter
->idx
, iter
->hw_desc
,
337 iter
->async_tx
.phys
, slots_per_op
);
339 /* pre-ack all but the last descriptor */
340 if (num_slots
!= slots_per_op
)
341 async_tx_ack(&iter
->async_tx
);
343 list_add_tail(&iter
->chain_node
, &chain
);
345 iter
->async_tx
.cookie
= 0;
346 iter
->slot_cnt
= num_slots
;
347 iter
->xor_check_result
= NULL
;
348 for (i
= 0; i
< slots_per_op
; i
++) {
349 iter
->slots_per_op
= slots_per_op
- i
;
351 iter
= list_entry(iter
->slot_node
.next
,
352 struct iop_adma_desc_slot
,
355 num_slots
-= slots_per_op
;
357 alloc_tail
->group_head
= alloc_start
;
358 alloc_tail
->async_tx
.cookie
= -EBUSY
;
359 list_splice(&chain
, &alloc_tail
->async_tx
.tx_list
);
360 iop_chan
->last_used
= last_used
;
361 iop_desc_clear_next_desc(alloc_start
);
362 iop_desc_clear_next_desc(alloc_tail
);
369 /* try to free some slots if the allocation fails */
370 tasklet_schedule(&iop_chan
->irq_tasklet
);
376 iop_desc_assign_cookie(struct iop_adma_chan
*iop_chan
,
377 struct iop_adma_desc_slot
*desc
)
379 dma_cookie_t cookie
= iop_chan
->common
.cookie
;
383 iop_chan
->common
.cookie
= desc
->async_tx
.cookie
= cookie
;
387 static void iop_adma_check_threshold(struct iop_adma_chan
*iop_chan
)
389 dev_dbg(iop_chan
->device
->common
.dev
, "pending: %d\n",
392 if (iop_chan
->pending
>= IOP_ADMA_THRESHOLD
) {
393 iop_chan
->pending
= 0;
394 iop_chan_append(iop_chan
);
399 iop_adma_tx_submit(struct dma_async_tx_descriptor
*tx
)
401 struct iop_adma_desc_slot
*sw_desc
= tx_to_iop_adma_slot(tx
);
402 struct iop_adma_chan
*iop_chan
= to_iop_adma_chan(tx
->chan
);
403 struct iop_adma_desc_slot
*grp_start
, *old_chain_tail
;
408 grp_start
= sw_desc
->group_head
;
409 slot_cnt
= grp_start
->slot_cnt
;
410 slots_per_op
= grp_start
->slots_per_op
;
412 spin_lock_bh(&iop_chan
->lock
);
413 cookie
= iop_desc_assign_cookie(iop_chan
, sw_desc
);
415 old_chain_tail
= list_entry(iop_chan
->chain
.prev
,
416 struct iop_adma_desc_slot
, chain_node
);
417 list_splice_init(&sw_desc
->async_tx
.tx_list
,
418 &old_chain_tail
->chain_node
);
420 /* fix up the hardware chain */
421 iop_desc_set_next_desc(old_chain_tail
, grp_start
->async_tx
.phys
);
423 /* 1/ don't add pre-chained descriptors
424 * 2/ dummy read to flush next_desc write
426 BUG_ON(iop_desc_get_next_desc(sw_desc
));
428 /* increment the pending count by the number of slots
429 * memcpy operations have a 1:1 (slot:operation) relation
430 * other operations are heavier and will pop the threshold
433 iop_chan
->pending
+= slot_cnt
;
434 iop_adma_check_threshold(iop_chan
);
435 spin_unlock_bh(&iop_chan
->lock
);
437 dev_dbg(iop_chan
->device
->common
.dev
, "%s cookie: %d slot: %d\n",
438 __func__
, sw_desc
->async_tx
.cookie
, sw_desc
->idx
);
443 static void iop_chan_start_null_memcpy(struct iop_adma_chan
*iop_chan
);
444 static void iop_chan_start_null_xor(struct iop_adma_chan
*iop_chan
);
446 /* returns the number of allocated descriptors */
447 static int iop_adma_alloc_chan_resources(struct dma_chan
*chan
)
451 struct iop_adma_chan
*iop_chan
= to_iop_adma_chan(chan
);
452 struct iop_adma_desc_slot
*slot
= NULL
;
453 int init
= iop_chan
->slots_allocated
? 0 : 1;
454 struct iop_adma_platform_data
*plat_data
=
455 iop_chan
->device
->pdev
->dev
.platform_data
;
456 int num_descs_in_pool
= plat_data
->pool_size
/IOP_ADMA_SLOT_SIZE
;
458 /* Allocate descriptor slots */
460 idx
= iop_chan
->slots_allocated
;
461 if (idx
== num_descs_in_pool
)
464 slot
= kzalloc(sizeof(*slot
), GFP_KERNEL
);
466 printk(KERN_INFO
"IOP ADMA Channel only initialized"
467 " %d descriptor slots", idx
);
470 hw_desc
= (char *) iop_chan
->device
->dma_desc_pool_virt
;
471 slot
->hw_desc
= (void *) &hw_desc
[idx
* IOP_ADMA_SLOT_SIZE
];
473 dma_async_tx_descriptor_init(&slot
->async_tx
, chan
);
474 slot
->async_tx
.tx_submit
= iop_adma_tx_submit
;
475 INIT_LIST_HEAD(&slot
->chain_node
);
476 INIT_LIST_HEAD(&slot
->slot_node
);
477 INIT_LIST_HEAD(&slot
->async_tx
.tx_list
);
478 hw_desc
= (char *) iop_chan
->device
->dma_desc_pool
;
479 slot
->async_tx
.phys
=
480 (dma_addr_t
) &hw_desc
[idx
* IOP_ADMA_SLOT_SIZE
];
483 spin_lock_bh(&iop_chan
->lock
);
484 iop_chan
->slots_allocated
++;
485 list_add_tail(&slot
->slot_node
, &iop_chan
->all_slots
);
486 spin_unlock_bh(&iop_chan
->lock
);
487 } while (iop_chan
->slots_allocated
< num_descs_in_pool
);
489 if (idx
&& !iop_chan
->last_used
)
490 iop_chan
->last_used
= list_entry(iop_chan
->all_slots
.next
,
491 struct iop_adma_desc_slot
,
494 dev_dbg(iop_chan
->device
->common
.dev
,
495 "allocated %d descriptor slots last_used: %p\n",
496 iop_chan
->slots_allocated
, iop_chan
->last_used
);
498 /* initialize the channel and the chain with a null operation */
500 if (dma_has_cap(DMA_MEMCPY
,
501 iop_chan
->device
->common
.cap_mask
))
502 iop_chan_start_null_memcpy(iop_chan
);
503 else if (dma_has_cap(DMA_XOR
,
504 iop_chan
->device
->common
.cap_mask
))
505 iop_chan_start_null_xor(iop_chan
);
510 return (idx
> 0) ? idx
: -ENOMEM
;
513 static struct dma_async_tx_descriptor
*
514 iop_adma_prep_dma_interrupt(struct dma_chan
*chan
, unsigned long flags
)
516 struct iop_adma_chan
*iop_chan
= to_iop_adma_chan(chan
);
517 struct iop_adma_desc_slot
*sw_desc
, *grp_start
;
518 int slot_cnt
, slots_per_op
;
520 dev_dbg(iop_chan
->device
->common
.dev
, "%s\n", __func__
);
522 spin_lock_bh(&iop_chan
->lock
);
523 slot_cnt
= iop_chan_interrupt_slot_count(&slots_per_op
, iop_chan
);
524 sw_desc
= iop_adma_alloc_slots(iop_chan
, slot_cnt
, slots_per_op
);
526 grp_start
= sw_desc
->group_head
;
527 iop_desc_init_interrupt(grp_start
, iop_chan
);
528 grp_start
->unmap_len
= 0;
529 sw_desc
->async_tx
.flags
= flags
;
531 spin_unlock_bh(&iop_chan
->lock
);
533 return sw_desc
? &sw_desc
->async_tx
: NULL
;
536 static struct dma_async_tx_descriptor
*
537 iop_adma_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dma_dest
,
538 dma_addr_t dma_src
, size_t len
, unsigned long flags
)
540 struct iop_adma_chan
*iop_chan
= to_iop_adma_chan(chan
);
541 struct iop_adma_desc_slot
*sw_desc
, *grp_start
;
542 int slot_cnt
, slots_per_op
;
546 BUG_ON(unlikely(len
> IOP_ADMA_MAX_BYTE_COUNT
));
548 dev_dbg(iop_chan
->device
->common
.dev
, "%s len: %u\n",
551 spin_lock_bh(&iop_chan
->lock
);
552 slot_cnt
= iop_chan_memcpy_slot_count(len
, &slots_per_op
);
553 sw_desc
= iop_adma_alloc_slots(iop_chan
, slot_cnt
, slots_per_op
);
555 grp_start
= sw_desc
->group_head
;
556 iop_desc_init_memcpy(grp_start
, flags
);
557 iop_desc_set_byte_count(grp_start
, iop_chan
, len
);
558 iop_desc_set_dest_addr(grp_start
, iop_chan
, dma_dest
);
559 iop_desc_set_memcpy_src_addr(grp_start
, dma_src
);
560 sw_desc
->unmap_src_cnt
= 1;
561 sw_desc
->unmap_len
= len
;
562 sw_desc
->async_tx
.flags
= flags
;
564 spin_unlock_bh(&iop_chan
->lock
);
566 return sw_desc
? &sw_desc
->async_tx
: NULL
;
569 static struct dma_async_tx_descriptor
*
570 iop_adma_prep_dma_memset(struct dma_chan
*chan
, dma_addr_t dma_dest
,
571 int value
, size_t len
, unsigned long flags
)
573 struct iop_adma_chan
*iop_chan
= to_iop_adma_chan(chan
);
574 struct iop_adma_desc_slot
*sw_desc
, *grp_start
;
575 int slot_cnt
, slots_per_op
;
579 BUG_ON(unlikely(len
> IOP_ADMA_MAX_BYTE_COUNT
));
581 dev_dbg(iop_chan
->device
->common
.dev
, "%s len: %u\n",
584 spin_lock_bh(&iop_chan
->lock
);
585 slot_cnt
= iop_chan_memset_slot_count(len
, &slots_per_op
);
586 sw_desc
= iop_adma_alloc_slots(iop_chan
, slot_cnt
, slots_per_op
);
588 grp_start
= sw_desc
->group_head
;
589 iop_desc_init_memset(grp_start
, flags
);
590 iop_desc_set_byte_count(grp_start
, iop_chan
, len
);
591 iop_desc_set_block_fill_val(grp_start
, value
);
592 iop_desc_set_dest_addr(grp_start
, iop_chan
, dma_dest
);
593 sw_desc
->unmap_src_cnt
= 1;
594 sw_desc
->unmap_len
= len
;
595 sw_desc
->async_tx
.flags
= flags
;
597 spin_unlock_bh(&iop_chan
->lock
);
599 return sw_desc
? &sw_desc
->async_tx
: NULL
;
602 static struct dma_async_tx_descriptor
*
603 iop_adma_prep_dma_xor(struct dma_chan
*chan
, dma_addr_t dma_dest
,
604 dma_addr_t
*dma_src
, unsigned int src_cnt
, size_t len
,
607 struct iop_adma_chan
*iop_chan
= to_iop_adma_chan(chan
);
608 struct iop_adma_desc_slot
*sw_desc
, *grp_start
;
609 int slot_cnt
, slots_per_op
;
613 BUG_ON(unlikely(len
> IOP_ADMA_XOR_MAX_BYTE_COUNT
));
615 dev_dbg(iop_chan
->device
->common
.dev
,
616 "%s src_cnt: %d len: %u flags: %lx\n",
617 __func__
, src_cnt
, len
, flags
);
619 spin_lock_bh(&iop_chan
->lock
);
620 slot_cnt
= iop_chan_xor_slot_count(len
, src_cnt
, &slots_per_op
);
621 sw_desc
= iop_adma_alloc_slots(iop_chan
, slot_cnt
, slots_per_op
);
623 grp_start
= sw_desc
->group_head
;
624 iop_desc_init_xor(grp_start
, src_cnt
, flags
);
625 iop_desc_set_byte_count(grp_start
, iop_chan
, len
);
626 iop_desc_set_dest_addr(grp_start
, iop_chan
, dma_dest
);
627 sw_desc
->unmap_src_cnt
= src_cnt
;
628 sw_desc
->unmap_len
= len
;
629 sw_desc
->async_tx
.flags
= flags
;
631 iop_desc_set_xor_src_addr(grp_start
, src_cnt
,
634 spin_unlock_bh(&iop_chan
->lock
);
636 return sw_desc
? &sw_desc
->async_tx
: NULL
;
639 static struct dma_async_tx_descriptor
*
640 iop_adma_prep_dma_zero_sum(struct dma_chan
*chan
, dma_addr_t
*dma_src
,
641 unsigned int src_cnt
, size_t len
, u32
*result
,
644 struct iop_adma_chan
*iop_chan
= to_iop_adma_chan(chan
);
645 struct iop_adma_desc_slot
*sw_desc
, *grp_start
;
646 int slot_cnt
, slots_per_op
;
651 dev_dbg(iop_chan
->device
->common
.dev
, "%s src_cnt: %d len: %u\n",
652 __func__
, src_cnt
, len
);
654 spin_lock_bh(&iop_chan
->lock
);
655 slot_cnt
= iop_chan_zero_sum_slot_count(len
, src_cnt
, &slots_per_op
);
656 sw_desc
= iop_adma_alloc_slots(iop_chan
, slot_cnt
, slots_per_op
);
658 grp_start
= sw_desc
->group_head
;
659 iop_desc_init_zero_sum(grp_start
, src_cnt
, flags
);
660 iop_desc_set_zero_sum_byte_count(grp_start
, len
);
661 grp_start
->xor_check_result
= result
;
662 pr_debug("\t%s: grp_start->xor_check_result: %p\n",
663 __func__
, grp_start
->xor_check_result
);
664 sw_desc
->unmap_src_cnt
= src_cnt
;
665 sw_desc
->unmap_len
= len
;
666 sw_desc
->async_tx
.flags
= flags
;
668 iop_desc_set_zero_sum_src_addr(grp_start
, src_cnt
,
671 spin_unlock_bh(&iop_chan
->lock
);
673 return sw_desc
? &sw_desc
->async_tx
: NULL
;
676 static void iop_adma_free_chan_resources(struct dma_chan
*chan
)
678 struct iop_adma_chan
*iop_chan
= to_iop_adma_chan(chan
);
679 struct iop_adma_desc_slot
*iter
, *_iter
;
680 int in_use_descs
= 0;
682 iop_adma_slot_cleanup(iop_chan
);
684 spin_lock_bh(&iop_chan
->lock
);
685 list_for_each_entry_safe(iter
, _iter
, &iop_chan
->chain
,
688 list_del(&iter
->chain_node
);
690 list_for_each_entry_safe_reverse(
691 iter
, _iter
, &iop_chan
->all_slots
, slot_node
) {
692 list_del(&iter
->slot_node
);
694 iop_chan
->slots_allocated
--;
696 iop_chan
->last_used
= NULL
;
698 dev_dbg(iop_chan
->device
->common
.dev
, "%s slots_allocated %d\n",
699 __func__
, iop_chan
->slots_allocated
);
700 spin_unlock_bh(&iop_chan
->lock
);
702 /* one is ok since we left it on there on purpose */
703 if (in_use_descs
> 1)
704 printk(KERN_ERR
"IOP: Freeing %d in use descriptors!\n",
709 * iop_adma_is_complete - poll the status of an ADMA transaction
710 * @chan: ADMA channel handle
711 * @cookie: ADMA transaction identifier
713 static enum dma_status
iop_adma_is_complete(struct dma_chan
*chan
,
718 struct iop_adma_chan
*iop_chan
= to_iop_adma_chan(chan
);
719 dma_cookie_t last_used
;
720 dma_cookie_t last_complete
;
723 last_used
= chan
->cookie
;
724 last_complete
= iop_chan
->completed_cookie
;
727 *done
= last_complete
;
731 ret
= dma_async_is_complete(cookie
, last_complete
, last_used
);
732 if (ret
== DMA_SUCCESS
)
735 iop_adma_slot_cleanup(iop_chan
);
737 last_used
= chan
->cookie
;
738 last_complete
= iop_chan
->completed_cookie
;
741 *done
= last_complete
;
745 return dma_async_is_complete(cookie
, last_complete
, last_used
);
748 static irqreturn_t
iop_adma_eot_handler(int irq
, void *data
)
750 struct iop_adma_chan
*chan
= data
;
752 dev_dbg(chan
->device
->common
.dev
, "%s\n", __func__
);
754 tasklet_schedule(&chan
->irq_tasklet
);
756 iop_adma_device_clear_eot_status(chan
);
761 static irqreturn_t
iop_adma_eoc_handler(int irq
, void *data
)
763 struct iop_adma_chan
*chan
= data
;
765 dev_dbg(chan
->device
->common
.dev
, "%s\n", __func__
);
767 tasklet_schedule(&chan
->irq_tasklet
);
769 iop_adma_device_clear_eoc_status(chan
);
774 static irqreturn_t
iop_adma_err_handler(int irq
, void *data
)
776 struct iop_adma_chan
*chan
= data
;
777 unsigned long status
= iop_chan_get_status(chan
);
779 dev_printk(KERN_ERR
, chan
->device
->common
.dev
,
780 "error ( %s%s%s%s%s%s%s)\n",
781 iop_is_err_int_parity(status
, chan
) ? "int_parity " : "",
782 iop_is_err_mcu_abort(status
, chan
) ? "mcu_abort " : "",
783 iop_is_err_int_tabort(status
, chan
) ? "int_tabort " : "",
784 iop_is_err_int_mabort(status
, chan
) ? "int_mabort " : "",
785 iop_is_err_pci_tabort(status
, chan
) ? "pci_tabort " : "",
786 iop_is_err_pci_mabort(status
, chan
) ? "pci_mabort " : "",
787 iop_is_err_split_tx(status
, chan
) ? "split_tx " : "");
789 iop_adma_device_clear_err_status(chan
);
796 static void iop_adma_issue_pending(struct dma_chan
*chan
)
798 struct iop_adma_chan
*iop_chan
= to_iop_adma_chan(chan
);
800 if (iop_chan
->pending
) {
801 iop_chan
->pending
= 0;
802 iop_chan_append(iop_chan
);
807 * Perform a transaction to verify the HW works.
809 #define IOP_ADMA_TEST_SIZE 2000
811 static int __devinit
iop_adma_memcpy_self_test(struct iop_adma_device
*device
)
815 dma_addr_t src_dma
, dest_dma
;
816 struct dma_chan
*dma_chan
;
818 struct dma_async_tx_descriptor
*tx
;
820 struct iop_adma_chan
*iop_chan
;
822 dev_dbg(device
->common
.dev
, "%s\n", __func__
);
824 src
= kzalloc(sizeof(u8
) * IOP_ADMA_TEST_SIZE
, GFP_KERNEL
);
827 dest
= kzalloc(sizeof(u8
) * IOP_ADMA_TEST_SIZE
, GFP_KERNEL
);
833 /* Fill in src buffer */
834 for (i
= 0; i
< IOP_ADMA_TEST_SIZE
; i
++)
835 ((u8
*) src
)[i
] = (u8
)i
;
837 memset(dest
, 0, IOP_ADMA_TEST_SIZE
);
839 /* Start copy, using first DMA channel */
840 dma_chan
= container_of(device
->common
.channels
.next
,
843 if (iop_adma_alloc_chan_resources(dma_chan
) < 1) {
848 dest_dma
= dma_map_single(dma_chan
->device
->dev
, dest
,
849 IOP_ADMA_TEST_SIZE
, DMA_FROM_DEVICE
);
850 src_dma
= dma_map_single(dma_chan
->device
->dev
, src
,
851 IOP_ADMA_TEST_SIZE
, DMA_TO_DEVICE
);
852 tx
= iop_adma_prep_dma_memcpy(dma_chan
, dest_dma
, src_dma
,
854 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
856 cookie
= iop_adma_tx_submit(tx
);
857 iop_adma_issue_pending(dma_chan
);
860 if (iop_adma_is_complete(dma_chan
, cookie
, NULL
, NULL
) !=
862 dev_printk(KERN_ERR
, dma_chan
->device
->dev
,
863 "Self-test copy timed out, disabling\n");
868 iop_chan
= to_iop_adma_chan(dma_chan
);
869 dma_sync_single_for_cpu(&iop_chan
->device
->pdev
->dev
, dest_dma
,
870 IOP_ADMA_TEST_SIZE
, DMA_FROM_DEVICE
);
871 if (memcmp(src
, dest
, IOP_ADMA_TEST_SIZE
)) {
872 dev_printk(KERN_ERR
, dma_chan
->device
->dev
,
873 "Self-test copy failed compare, disabling\n");
879 iop_adma_free_chan_resources(dma_chan
);
886 #define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */
888 iop_adma_xor_zero_sum_self_test(struct iop_adma_device
*device
)
892 struct page
*xor_srcs
[IOP_ADMA_NUM_SRC_TEST
];
893 struct page
*zero_sum_srcs
[IOP_ADMA_NUM_SRC_TEST
+ 1];
894 dma_addr_t dma_srcs
[IOP_ADMA_NUM_SRC_TEST
+ 1];
895 dma_addr_t dma_addr
, dest_dma
;
896 struct dma_async_tx_descriptor
*tx
;
897 struct dma_chan
*dma_chan
;
903 struct iop_adma_chan
*iop_chan
;
905 dev_dbg(device
->common
.dev
, "%s\n", __func__
);
907 for (src_idx
= 0; src_idx
< IOP_ADMA_NUM_SRC_TEST
; src_idx
++) {
908 xor_srcs
[src_idx
] = alloc_page(GFP_KERNEL
);
909 if (!xor_srcs
[src_idx
])
911 __free_page(xor_srcs
[src_idx
]);
916 dest
= alloc_page(GFP_KERNEL
);
919 __free_page(xor_srcs
[src_idx
]);
923 /* Fill in src buffers */
924 for (src_idx
= 0; src_idx
< IOP_ADMA_NUM_SRC_TEST
; src_idx
++) {
925 u8
*ptr
= page_address(xor_srcs
[src_idx
]);
926 for (i
= 0; i
< PAGE_SIZE
; i
++)
927 ptr
[i
] = (1 << src_idx
);
930 for (src_idx
= 0; src_idx
< IOP_ADMA_NUM_SRC_TEST
; src_idx
++)
931 cmp_byte
^= (u8
) (1 << src_idx
);
933 cmp_word
= (cmp_byte
<< 24) | (cmp_byte
<< 16) |
934 (cmp_byte
<< 8) | cmp_byte
;
936 memset(page_address(dest
), 0, PAGE_SIZE
);
938 dma_chan
= container_of(device
->common
.channels
.next
,
941 if (iop_adma_alloc_chan_resources(dma_chan
) < 1) {
947 dest_dma
= dma_map_page(dma_chan
->device
->dev
, dest
, 0,
948 PAGE_SIZE
, DMA_FROM_DEVICE
);
949 for (i
= 0; i
< IOP_ADMA_NUM_SRC_TEST
; i
++)
950 dma_srcs
[i
] = dma_map_page(dma_chan
->device
->dev
, xor_srcs
[i
],
951 0, PAGE_SIZE
, DMA_TO_DEVICE
);
952 tx
= iop_adma_prep_dma_xor(dma_chan
, dest_dma
, dma_srcs
,
953 IOP_ADMA_NUM_SRC_TEST
, PAGE_SIZE
,
954 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
956 cookie
= iop_adma_tx_submit(tx
);
957 iop_adma_issue_pending(dma_chan
);
960 if (iop_adma_is_complete(dma_chan
, cookie
, NULL
, NULL
) !=
962 dev_printk(KERN_ERR
, dma_chan
->device
->dev
,
963 "Self-test xor timed out, disabling\n");
968 iop_chan
= to_iop_adma_chan(dma_chan
);
969 dma_sync_single_for_cpu(&iop_chan
->device
->pdev
->dev
, dest_dma
,
970 PAGE_SIZE
, DMA_FROM_DEVICE
);
971 for (i
= 0; i
< (PAGE_SIZE
/ sizeof(u32
)); i
++) {
972 u32
*ptr
= page_address(dest
);
973 if (ptr
[i
] != cmp_word
) {
974 dev_printk(KERN_ERR
, dma_chan
->device
->dev
,
975 "Self-test xor failed compare, disabling\n");
980 dma_sync_single_for_device(&iop_chan
->device
->pdev
->dev
, dest_dma
,
981 PAGE_SIZE
, DMA_TO_DEVICE
);
983 /* skip zero sum if the capability is not present */
984 if (!dma_has_cap(DMA_ZERO_SUM
, dma_chan
->device
->cap_mask
))
987 /* zero sum the sources with the destintation page */
988 for (i
= 0; i
< IOP_ADMA_NUM_SRC_TEST
; i
++)
989 zero_sum_srcs
[i
] = xor_srcs
[i
];
990 zero_sum_srcs
[i
] = dest
;
994 for (i
= 0; i
< IOP_ADMA_NUM_SRC_TEST
+ 1; i
++)
995 dma_srcs
[i
] = dma_map_page(dma_chan
->device
->dev
,
996 zero_sum_srcs
[i
], 0, PAGE_SIZE
,
998 tx
= iop_adma_prep_dma_zero_sum(dma_chan
, dma_srcs
,
999 IOP_ADMA_NUM_SRC_TEST
+ 1, PAGE_SIZE
,
1001 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1003 cookie
= iop_adma_tx_submit(tx
);
1004 iop_adma_issue_pending(dma_chan
);
1007 if (iop_adma_is_complete(dma_chan
, cookie
, NULL
, NULL
) != DMA_SUCCESS
) {
1008 dev_printk(KERN_ERR
, dma_chan
->device
->dev
,
1009 "Self-test zero sum timed out, disabling\n");
1011 goto free_resources
;
1014 if (zero_sum_result
!= 0) {
1015 dev_printk(KERN_ERR
, dma_chan
->device
->dev
,
1016 "Self-test zero sum failed compare, disabling\n");
1018 goto free_resources
;
1022 dma_addr
= dma_map_page(dma_chan
->device
->dev
, dest
, 0,
1023 PAGE_SIZE
, DMA_FROM_DEVICE
);
1024 tx
= iop_adma_prep_dma_memset(dma_chan
, dma_addr
, 0, PAGE_SIZE
,
1025 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1027 cookie
= iop_adma_tx_submit(tx
);
1028 iop_adma_issue_pending(dma_chan
);
1031 if (iop_adma_is_complete(dma_chan
, cookie
, NULL
, NULL
) != DMA_SUCCESS
) {
1032 dev_printk(KERN_ERR
, dma_chan
->device
->dev
,
1033 "Self-test memset timed out, disabling\n");
1035 goto free_resources
;
1038 for (i
= 0; i
< PAGE_SIZE
/sizeof(u32
); i
++) {
1039 u32
*ptr
= page_address(dest
);
1041 dev_printk(KERN_ERR
, dma_chan
->device
->dev
,
1042 "Self-test memset failed compare, disabling\n");
1044 goto free_resources
;
1048 /* test for non-zero parity sum */
1049 zero_sum_result
= 0;
1050 for (i
= 0; i
< IOP_ADMA_NUM_SRC_TEST
+ 1; i
++)
1051 dma_srcs
[i
] = dma_map_page(dma_chan
->device
->dev
,
1052 zero_sum_srcs
[i
], 0, PAGE_SIZE
,
1054 tx
= iop_adma_prep_dma_zero_sum(dma_chan
, dma_srcs
,
1055 IOP_ADMA_NUM_SRC_TEST
+ 1, PAGE_SIZE
,
1057 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1059 cookie
= iop_adma_tx_submit(tx
);
1060 iop_adma_issue_pending(dma_chan
);
1063 if (iop_adma_is_complete(dma_chan
, cookie
, NULL
, NULL
) != DMA_SUCCESS
) {
1064 dev_printk(KERN_ERR
, dma_chan
->device
->dev
,
1065 "Self-test non-zero sum timed out, disabling\n");
1067 goto free_resources
;
1070 if (zero_sum_result
!= 1) {
1071 dev_printk(KERN_ERR
, dma_chan
->device
->dev
,
1072 "Self-test non-zero sum failed compare, disabling\n");
1074 goto free_resources
;
1078 iop_adma_free_chan_resources(dma_chan
);
1080 src_idx
= IOP_ADMA_NUM_SRC_TEST
;
1082 __free_page(xor_srcs
[src_idx
]);
1087 static int __devexit
iop_adma_remove(struct platform_device
*dev
)
1089 struct iop_adma_device
*device
= platform_get_drvdata(dev
);
1090 struct dma_chan
*chan
, *_chan
;
1091 struct iop_adma_chan
*iop_chan
;
1093 struct iop_adma_platform_data
*plat_data
= dev
->dev
.platform_data
;
1095 dma_async_device_unregister(&device
->common
);
1097 for (i
= 0; i
< 3; i
++) {
1099 irq
= platform_get_irq(dev
, i
);
1100 free_irq(irq
, device
);
1103 dma_free_coherent(&dev
->dev
, plat_data
->pool_size
,
1104 device
->dma_desc_pool_virt
, device
->dma_desc_pool
);
1107 struct resource
*res
;
1108 res
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
1109 release_mem_region(res
->start
, res
->end
- res
->start
);
1112 list_for_each_entry_safe(chan
, _chan
, &device
->common
.channels
,
1114 iop_chan
= to_iop_adma_chan(chan
);
1115 list_del(&chan
->device_node
);
1123 static int __devinit
iop_adma_probe(struct platform_device
*pdev
)
1125 struct resource
*res
;
1127 struct iop_adma_device
*adev
;
1128 struct iop_adma_chan
*iop_chan
;
1129 struct dma_device
*dma_dev
;
1130 struct iop_adma_platform_data
*plat_data
= pdev
->dev
.platform_data
;
1132 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1136 if (!devm_request_mem_region(&pdev
->dev
, res
->start
,
1137 res
->end
- res
->start
, pdev
->name
))
1140 adev
= kzalloc(sizeof(*adev
), GFP_KERNEL
);
1143 dma_dev
= &adev
->common
;
1145 /* allocate coherent memory for hardware descriptors
1146 * note: writecombine gives slightly better performance, but
1147 * requires that we explicitly flush the writes
1149 if ((adev
->dma_desc_pool_virt
= dma_alloc_writecombine(&pdev
->dev
,
1150 plat_data
->pool_size
,
1151 &adev
->dma_desc_pool
,
1152 GFP_KERNEL
)) == NULL
) {
1157 dev_dbg(&pdev
->dev
, "%s: allocted descriptor pool virt %p phys %p\n",
1158 __func__
, adev
->dma_desc_pool_virt
,
1159 (void *) adev
->dma_desc_pool
);
1161 adev
->id
= plat_data
->hw_id
;
1163 /* discover transaction capabilites from the platform data */
1164 dma_dev
->cap_mask
= plat_data
->cap_mask
;
1167 platform_set_drvdata(pdev
, adev
);
1169 INIT_LIST_HEAD(&dma_dev
->channels
);
1171 /* set base routines */
1172 dma_dev
->device_alloc_chan_resources
= iop_adma_alloc_chan_resources
;
1173 dma_dev
->device_free_chan_resources
= iop_adma_free_chan_resources
;
1174 dma_dev
->device_is_tx_complete
= iop_adma_is_complete
;
1175 dma_dev
->device_issue_pending
= iop_adma_issue_pending
;
1176 dma_dev
->dev
= &pdev
->dev
;
1178 /* set prep routines based on capability */
1179 if (dma_has_cap(DMA_MEMCPY
, dma_dev
->cap_mask
))
1180 dma_dev
->device_prep_dma_memcpy
= iop_adma_prep_dma_memcpy
;
1181 if (dma_has_cap(DMA_MEMSET
, dma_dev
->cap_mask
))
1182 dma_dev
->device_prep_dma_memset
= iop_adma_prep_dma_memset
;
1183 if (dma_has_cap(DMA_XOR
, dma_dev
->cap_mask
)) {
1184 dma_dev
->max_xor
= iop_adma_get_max_xor();
1185 dma_dev
->device_prep_dma_xor
= iop_adma_prep_dma_xor
;
1187 if (dma_has_cap(DMA_ZERO_SUM
, dma_dev
->cap_mask
))
1188 dma_dev
->device_prep_dma_zero_sum
=
1189 iop_adma_prep_dma_zero_sum
;
1190 if (dma_has_cap(DMA_INTERRUPT
, dma_dev
->cap_mask
))
1191 dma_dev
->device_prep_dma_interrupt
=
1192 iop_adma_prep_dma_interrupt
;
1194 iop_chan
= kzalloc(sizeof(*iop_chan
), GFP_KERNEL
);
1199 iop_chan
->device
= adev
;
1201 iop_chan
->mmr_base
= devm_ioremap(&pdev
->dev
, res
->start
,
1202 res
->end
- res
->start
);
1203 if (!iop_chan
->mmr_base
) {
1205 goto err_free_iop_chan
;
1207 tasklet_init(&iop_chan
->irq_tasklet
, iop_adma_tasklet
, (unsigned long)
1210 /* clear errors before enabling interrupts */
1211 iop_adma_device_clear_err_status(iop_chan
);
1213 for (i
= 0; i
< 3; i
++) {
1214 irq_handler_t handler
[] = { iop_adma_eot_handler
,
1215 iop_adma_eoc_handler
,
1216 iop_adma_err_handler
};
1217 int irq
= platform_get_irq(pdev
, i
);
1220 goto err_free_iop_chan
;
1222 ret
= devm_request_irq(&pdev
->dev
, irq
,
1223 handler
[i
], 0, pdev
->name
, iop_chan
);
1225 goto err_free_iop_chan
;
1229 spin_lock_init(&iop_chan
->lock
);
1230 INIT_LIST_HEAD(&iop_chan
->chain
);
1231 INIT_LIST_HEAD(&iop_chan
->all_slots
);
1232 INIT_RCU_HEAD(&iop_chan
->common
.rcu
);
1233 iop_chan
->common
.device
= dma_dev
;
1234 list_add_tail(&iop_chan
->common
.device_node
, &dma_dev
->channels
);
1236 if (dma_has_cap(DMA_MEMCPY
, dma_dev
->cap_mask
)) {
1237 ret
= iop_adma_memcpy_self_test(adev
);
1238 dev_dbg(&pdev
->dev
, "memcpy self test returned %d\n", ret
);
1240 goto err_free_iop_chan
;
1243 if (dma_has_cap(DMA_XOR
, dma_dev
->cap_mask
) ||
1244 dma_has_cap(DMA_MEMSET
, dma_dev
->cap_mask
)) {
1245 ret
= iop_adma_xor_zero_sum_self_test(adev
);
1246 dev_dbg(&pdev
->dev
, "xor self test returned %d\n", ret
);
1248 goto err_free_iop_chan
;
1251 dev_printk(KERN_INFO
, &pdev
->dev
, "Intel(R) IOP: "
1252 "( %s%s%s%s%s%s%s%s%s%s)\n",
1253 dma_has_cap(DMA_PQ_XOR
, dma_dev
->cap_mask
) ? "pq_xor " : "",
1254 dma_has_cap(DMA_PQ_UPDATE
, dma_dev
->cap_mask
) ? "pq_update " : "",
1255 dma_has_cap(DMA_PQ_ZERO_SUM
, dma_dev
->cap_mask
) ? "pq_zero_sum " : "",
1256 dma_has_cap(DMA_XOR
, dma_dev
->cap_mask
) ? "xor " : "",
1257 dma_has_cap(DMA_DUAL_XOR
, dma_dev
->cap_mask
) ? "dual_xor " : "",
1258 dma_has_cap(DMA_ZERO_SUM
, dma_dev
->cap_mask
) ? "xor_zero_sum " : "",
1259 dma_has_cap(DMA_MEMSET
, dma_dev
->cap_mask
) ? "fill " : "",
1260 dma_has_cap(DMA_MEMCPY_CRC32C
, dma_dev
->cap_mask
) ? "cpy+crc " : "",
1261 dma_has_cap(DMA_MEMCPY
, dma_dev
->cap_mask
) ? "cpy " : "",
1262 dma_has_cap(DMA_INTERRUPT
, dma_dev
->cap_mask
) ? "intr " : "");
1264 dma_async_device_register(dma_dev
);
1270 dma_free_coherent(&adev
->pdev
->dev
, plat_data
->pool_size
,
1271 adev
->dma_desc_pool_virt
, adev
->dma_desc_pool
);
1278 static void iop_chan_start_null_memcpy(struct iop_adma_chan
*iop_chan
)
1280 struct iop_adma_desc_slot
*sw_desc
, *grp_start
;
1281 dma_cookie_t cookie
;
1282 int slot_cnt
, slots_per_op
;
1284 dev_dbg(iop_chan
->device
->common
.dev
, "%s\n", __func__
);
1286 spin_lock_bh(&iop_chan
->lock
);
1287 slot_cnt
= iop_chan_memcpy_slot_count(0, &slots_per_op
);
1288 sw_desc
= iop_adma_alloc_slots(iop_chan
, slot_cnt
, slots_per_op
);
1290 grp_start
= sw_desc
->group_head
;
1292 list_splice_init(&sw_desc
->async_tx
.tx_list
, &iop_chan
->chain
);
1293 async_tx_ack(&sw_desc
->async_tx
);
1294 iop_desc_init_memcpy(grp_start
, 0);
1295 iop_desc_set_byte_count(grp_start
, iop_chan
, 0);
1296 iop_desc_set_dest_addr(grp_start
, iop_chan
, 0);
1297 iop_desc_set_memcpy_src_addr(grp_start
, 0);
1299 cookie
= iop_chan
->common
.cookie
;
1304 /* initialize the completed cookie to be less than
1305 * the most recently used cookie
1307 iop_chan
->completed_cookie
= cookie
- 1;
1308 iop_chan
->common
.cookie
= sw_desc
->async_tx
.cookie
= cookie
;
1310 /* channel should not be busy */
1311 BUG_ON(iop_chan_is_busy(iop_chan
));
1313 /* clear any prior error-status bits */
1314 iop_adma_device_clear_err_status(iop_chan
);
1316 /* disable operation */
1317 iop_chan_disable(iop_chan
);
1319 /* set the descriptor address */
1320 iop_chan_set_next_descriptor(iop_chan
, sw_desc
->async_tx
.phys
);
1322 /* 1/ don't add pre-chained descriptors
1323 * 2/ dummy read to flush next_desc write
1325 BUG_ON(iop_desc_get_next_desc(sw_desc
));
1327 /* run the descriptor */
1328 iop_chan_enable(iop_chan
);
1330 dev_printk(KERN_ERR
, iop_chan
->device
->common
.dev
,
1331 "failed to allocate null descriptor\n");
1332 spin_unlock_bh(&iop_chan
->lock
);
1335 static void iop_chan_start_null_xor(struct iop_adma_chan
*iop_chan
)
1337 struct iop_adma_desc_slot
*sw_desc
, *grp_start
;
1338 dma_cookie_t cookie
;
1339 int slot_cnt
, slots_per_op
;
1341 dev_dbg(iop_chan
->device
->common
.dev
, "%s\n", __func__
);
1343 spin_lock_bh(&iop_chan
->lock
);
1344 slot_cnt
= iop_chan_xor_slot_count(0, 2, &slots_per_op
);
1345 sw_desc
= iop_adma_alloc_slots(iop_chan
, slot_cnt
, slots_per_op
);
1347 grp_start
= sw_desc
->group_head
;
1348 list_splice_init(&sw_desc
->async_tx
.tx_list
, &iop_chan
->chain
);
1349 async_tx_ack(&sw_desc
->async_tx
);
1350 iop_desc_init_null_xor(grp_start
, 2, 0);
1351 iop_desc_set_byte_count(grp_start
, iop_chan
, 0);
1352 iop_desc_set_dest_addr(grp_start
, iop_chan
, 0);
1353 iop_desc_set_xor_src_addr(grp_start
, 0, 0);
1354 iop_desc_set_xor_src_addr(grp_start
, 1, 0);
1356 cookie
= iop_chan
->common
.cookie
;
1361 /* initialize the completed cookie to be less than
1362 * the most recently used cookie
1364 iop_chan
->completed_cookie
= cookie
- 1;
1365 iop_chan
->common
.cookie
= sw_desc
->async_tx
.cookie
= cookie
;
1367 /* channel should not be busy */
1368 BUG_ON(iop_chan_is_busy(iop_chan
));
1370 /* clear any prior error-status bits */
1371 iop_adma_device_clear_err_status(iop_chan
);
1373 /* disable operation */
1374 iop_chan_disable(iop_chan
);
1376 /* set the descriptor address */
1377 iop_chan_set_next_descriptor(iop_chan
, sw_desc
->async_tx
.phys
);
1379 /* 1/ don't add pre-chained descriptors
1380 * 2/ dummy read to flush next_desc write
1382 BUG_ON(iop_desc_get_next_desc(sw_desc
));
1384 /* run the descriptor */
1385 iop_chan_enable(iop_chan
);
1387 dev_printk(KERN_ERR
, iop_chan
->device
->common
.dev
,
1388 "failed to allocate null descriptor\n");
1389 spin_unlock_bh(&iop_chan
->lock
);
1392 static struct platform_driver iop_adma_driver
= {
1393 .probe
= iop_adma_probe
,
1394 .remove
= iop_adma_remove
,
1396 .owner
= THIS_MODULE
,
1401 static int __init
iop_adma_init (void)
1403 return platform_driver_register(&iop_adma_driver
);
1406 /* it's currently unsafe to unload this module */
1408 static void __exit
iop_adma_exit (void)
1410 platform_driver_unregister(&iop_adma_driver
);
1413 module_exit(iop_adma_exit
);
1416 module_init(iop_adma_init
);
1418 MODULE_AUTHOR("Intel Corporation");
1419 MODULE_DESCRIPTION("IOP ADMA Engine Driver");
1420 MODULE_LICENSE("GPL");