ia64/kvm: compilation fix. export account_system_vtime.
[pv_ops_mirror.git] / drivers / md / raid5.c
blob93fde48c0f42e52cbedad8be994d00362e6198b6
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
58 * Stripe cache
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 * The following can be used to debug the driver
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
102 static inline int raid6_next_disk(int disk, int raid_disks)
104 disk++;
105 return (disk < raid_disks) ? disk : 0;
108 static void return_io(struct bio *return_bi)
110 struct bio *bi = return_bi;
111 while (bi) {
113 return_bi = bi->bi_next;
114 bi->bi_next = NULL;
115 bi->bi_size = 0;
116 bi->bi_end_io(bi,
117 test_bit(BIO_UPTODATE, &bi->bi_flags)
118 ? 0 : -EIO);
119 bi = return_bi;
123 static void print_raid5_conf (raid5_conf_t *conf);
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
127 if (atomic_dec_and_test(&sh->count)) {
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
132 list_add_tail(&sh->lru, &conf->delayed_list);
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135 sh->bm_seq - conf->seq_write > 0) {
136 list_add_tail(&sh->lru, &conf->bitmap_list);
137 blk_plug_device(conf->mddev->queue);
138 } else {
139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140 list_add_tail(&sh->lru, &conf->handle_list);
142 md_wakeup_thread(conf->mddev->thread);
143 } else {
144 BUG_ON(sh->ops.pending);
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
150 atomic_dec(&conf->active_stripes);
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
153 wake_up(&conf->wait_for_stripe);
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
160 static void release_stripe(struct stripe_head *sh)
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
170 static inline void remove_hash(struct stripe_head *sh)
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
175 hlist_del_init(&sh->hash);
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
185 CHECK_DEVLOCK();
186 hlist_add_head(&sh->hash, hp);
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
196 CHECK_DEVLOCK();
197 if (list_empty(&conf->inactive_list))
198 goto out;
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
202 remove_hash(sh);
203 atomic_inc(&conf->active_stripes);
204 out:
205 return sh;
208 static void shrink_buffers(struct stripe_head *sh, int num)
210 struct page *p;
211 int i;
213 for (i=0; i<num ; i++) {
214 p = sh->dev[i].page;
215 if (!p)
216 continue;
217 sh->dev[i].page = NULL;
218 put_page(p);
222 static int grow_buffers(struct stripe_head *sh, int num)
224 int i;
226 for (i=0; i<num; i++) {
227 struct page *page;
229 if (!(page = alloc_page(GFP_KERNEL))) {
230 return 1;
232 sh->dev[i].page = page;
234 return 0;
237 static void raid5_build_block (struct stripe_head *sh, int i);
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
241 raid5_conf_t *conf = sh->raid_conf;
242 int i;
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
248 CHECK_DEVLOCK();
249 pr_debug("init_stripe called, stripe %llu\n",
250 (unsigned long long)sh->sector);
252 remove_hash(sh);
254 sh->sector = sector;
255 sh->pd_idx = pd_idx;
256 sh->state = 0;
258 sh->disks = disks;
260 for (i = sh->disks; i--; ) {
261 struct r5dev *dev = &sh->dev[i];
263 if (dev->toread || dev->read || dev->towrite || dev->written ||
264 test_bit(R5_LOCKED, &dev->flags)) {
265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266 (unsigned long long)sh->sector, i, dev->toread,
267 dev->read, dev->towrite, dev->written,
268 test_bit(R5_LOCKED, &dev->flags));
269 BUG();
271 dev->flags = 0;
272 raid5_build_block(sh, i);
274 insert_hash(conf, sh);
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
279 struct stripe_head *sh;
280 struct hlist_node *hn;
282 CHECK_DEVLOCK();
283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285 if (sh->sector == sector && sh->disks == disks)
286 return sh;
287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288 return NULL;
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
297 struct stripe_head *sh;
299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
301 spin_lock_irq(&conf->device_lock);
303 do {
304 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->quiesce == 0,
306 conf->device_lock, /* nothing */);
307 sh = __find_stripe(conf, sector, disks);
308 if (!sh) {
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
312 break;
313 if (!sh) {
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
319 || !conf->inactive_blocked),
320 conf->device_lock,
321 raid5_unplug_device(conf->mddev->queue)
323 conf->inactive_blocked = 0;
324 } else
325 init_stripe(sh, sector, pd_idx, disks);
326 } else {
327 if (atomic_read(&sh->count)) {
328 BUG_ON(!list_empty(&sh->lru));
329 } else {
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
334 BUG();
335 list_del_init(&sh->lru);
338 } while (sh == NULL);
340 if (sh)
341 atomic_inc(&sh->count);
343 spin_unlock_irq(&conf->device_lock);
344 return sh;
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do { \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
354 else \
355 ack++; \
356 } else \
357 clear_bit(op, &pend); \
358 } while (0)
360 /* find new work to run, do not resubmit work that is already
361 * in flight
363 static unsigned long get_stripe_work(struct stripe_head *sh)
365 unsigned long pending;
366 int ack = 0;
368 pending = sh->ops.pending;
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
376 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377 ack++;
379 sh->ops.count -= ack;
380 if (unlikely(sh->ops.count < 0)) {
381 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
382 "ops.complete: %#lx\n", pending, sh->ops.pending,
383 sh->ops.ack, sh->ops.complete);
384 BUG();
387 return pending;
390 static void
391 raid5_end_read_request(struct bio *bi, int error);
392 static void
393 raid5_end_write_request(struct bio *bi, int error);
395 static void ops_run_io(struct stripe_head *sh)
397 raid5_conf_t *conf = sh->raid_conf;
398 int i, disks = sh->disks;
400 might_sleep();
402 set_bit(STRIPE_IO_STARTED, &sh->state);
403 for (i = disks; i--; ) {
404 int rw;
405 struct bio *bi;
406 mdk_rdev_t *rdev;
407 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
408 rw = WRITE;
409 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
410 rw = READ;
411 else
412 continue;
414 bi = &sh->dev[i].req;
416 bi->bi_rw = rw;
417 if (rw == WRITE)
418 bi->bi_end_io = raid5_end_write_request;
419 else
420 bi->bi_end_io = raid5_end_read_request;
422 rcu_read_lock();
423 rdev = rcu_dereference(conf->disks[i].rdev);
424 if (rdev && test_bit(Faulty, &rdev->flags))
425 rdev = NULL;
426 if (rdev)
427 atomic_inc(&rdev->nr_pending);
428 rcu_read_unlock();
430 if (rdev) {
431 if (test_bit(STRIPE_SYNCING, &sh->state) ||
432 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
433 test_bit(STRIPE_EXPAND_READY, &sh->state))
434 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
436 bi->bi_bdev = rdev->bdev;
437 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
438 __func__, (unsigned long long)sh->sector,
439 bi->bi_rw, i);
440 atomic_inc(&sh->count);
441 bi->bi_sector = sh->sector + rdev->data_offset;
442 bi->bi_flags = 1 << BIO_UPTODATE;
443 bi->bi_vcnt = 1;
444 bi->bi_max_vecs = 1;
445 bi->bi_idx = 0;
446 bi->bi_io_vec = &sh->dev[i].vec;
447 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
448 bi->bi_io_vec[0].bv_offset = 0;
449 bi->bi_size = STRIPE_SIZE;
450 bi->bi_next = NULL;
451 if (rw == WRITE &&
452 test_bit(R5_ReWrite, &sh->dev[i].flags))
453 atomic_add(STRIPE_SECTORS,
454 &rdev->corrected_errors);
455 generic_make_request(bi);
456 } else {
457 if (rw == WRITE)
458 set_bit(STRIPE_DEGRADED, &sh->state);
459 pr_debug("skip op %ld on disc %d for sector %llu\n",
460 bi->bi_rw, i, (unsigned long long)sh->sector);
461 clear_bit(R5_LOCKED, &sh->dev[i].flags);
462 set_bit(STRIPE_HANDLE, &sh->state);
467 static struct dma_async_tx_descriptor *
468 async_copy_data(int frombio, struct bio *bio, struct page *page,
469 sector_t sector, struct dma_async_tx_descriptor *tx)
471 struct bio_vec *bvl;
472 struct page *bio_page;
473 int i;
474 int page_offset;
476 if (bio->bi_sector >= sector)
477 page_offset = (signed)(bio->bi_sector - sector) * 512;
478 else
479 page_offset = (signed)(sector - bio->bi_sector) * -512;
480 bio_for_each_segment(bvl, bio, i) {
481 int len = bio_iovec_idx(bio, i)->bv_len;
482 int clen;
483 int b_offset = 0;
485 if (page_offset < 0) {
486 b_offset = -page_offset;
487 page_offset += b_offset;
488 len -= b_offset;
491 if (len > 0 && page_offset + len > STRIPE_SIZE)
492 clen = STRIPE_SIZE - page_offset;
493 else
494 clen = len;
496 if (clen > 0) {
497 b_offset += bio_iovec_idx(bio, i)->bv_offset;
498 bio_page = bio_iovec_idx(bio, i)->bv_page;
499 if (frombio)
500 tx = async_memcpy(page, bio_page, page_offset,
501 b_offset, clen,
502 ASYNC_TX_DEP_ACK,
503 tx, NULL, NULL);
504 else
505 tx = async_memcpy(bio_page, page, b_offset,
506 page_offset, clen,
507 ASYNC_TX_DEP_ACK,
508 tx, NULL, NULL);
510 if (clen < len) /* hit end of page */
511 break;
512 page_offset += len;
515 return tx;
518 static void ops_complete_biofill(void *stripe_head_ref)
520 struct stripe_head *sh = stripe_head_ref;
521 struct bio *return_bi = NULL;
522 raid5_conf_t *conf = sh->raid_conf;
523 int i;
525 pr_debug("%s: stripe %llu\n", __func__,
526 (unsigned long long)sh->sector);
528 /* clear completed biofills */
529 for (i = sh->disks; i--; ) {
530 struct r5dev *dev = &sh->dev[i];
532 /* acknowledge completion of a biofill operation */
533 /* and check if we need to reply to a read request,
534 * new R5_Wantfill requests are held off until
535 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
537 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
538 struct bio *rbi, *rbi2;
540 /* The access to dev->read is outside of the
541 * spin_lock_irq(&conf->device_lock), but is protected
542 * by the STRIPE_OP_BIOFILL pending bit
544 BUG_ON(!dev->read);
545 rbi = dev->read;
546 dev->read = NULL;
547 while (rbi && rbi->bi_sector <
548 dev->sector + STRIPE_SECTORS) {
549 rbi2 = r5_next_bio(rbi, dev->sector);
550 spin_lock_irq(&conf->device_lock);
551 if (--rbi->bi_phys_segments == 0) {
552 rbi->bi_next = return_bi;
553 return_bi = rbi;
555 spin_unlock_irq(&conf->device_lock);
556 rbi = rbi2;
560 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
562 return_io(return_bi);
564 set_bit(STRIPE_HANDLE, &sh->state);
565 release_stripe(sh);
568 static void ops_run_biofill(struct stripe_head *sh)
570 struct dma_async_tx_descriptor *tx = NULL;
571 raid5_conf_t *conf = sh->raid_conf;
572 int i;
574 pr_debug("%s: stripe %llu\n", __func__,
575 (unsigned long long)sh->sector);
577 for (i = sh->disks; i--; ) {
578 struct r5dev *dev = &sh->dev[i];
579 if (test_bit(R5_Wantfill, &dev->flags)) {
580 struct bio *rbi;
581 spin_lock_irq(&conf->device_lock);
582 dev->read = rbi = dev->toread;
583 dev->toread = NULL;
584 spin_unlock_irq(&conf->device_lock);
585 while (rbi && rbi->bi_sector <
586 dev->sector + STRIPE_SECTORS) {
587 tx = async_copy_data(0, rbi, dev->page,
588 dev->sector, tx);
589 rbi = r5_next_bio(rbi, dev->sector);
594 atomic_inc(&sh->count);
595 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
596 ops_complete_biofill, sh);
599 static void ops_complete_compute5(void *stripe_head_ref)
601 struct stripe_head *sh = stripe_head_ref;
602 int target = sh->ops.target;
603 struct r5dev *tgt = &sh->dev[target];
605 pr_debug("%s: stripe %llu\n", __func__,
606 (unsigned long long)sh->sector);
608 set_bit(R5_UPTODATE, &tgt->flags);
609 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
610 clear_bit(R5_Wantcompute, &tgt->flags);
611 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
612 set_bit(STRIPE_HANDLE, &sh->state);
613 release_stripe(sh);
616 static struct dma_async_tx_descriptor *
617 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
619 /* kernel stack size limits the total number of disks */
620 int disks = sh->disks;
621 struct page *xor_srcs[disks];
622 int target = sh->ops.target;
623 struct r5dev *tgt = &sh->dev[target];
624 struct page *xor_dest = tgt->page;
625 int count = 0;
626 struct dma_async_tx_descriptor *tx;
627 int i;
629 pr_debug("%s: stripe %llu block: %d\n",
630 __func__, (unsigned long long)sh->sector, target);
631 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
633 for (i = disks; i--; )
634 if (i != target)
635 xor_srcs[count++] = sh->dev[i].page;
637 atomic_inc(&sh->count);
639 if (unlikely(count == 1))
640 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
641 0, NULL, ops_complete_compute5, sh);
642 else
643 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
644 ASYNC_TX_XOR_ZERO_DST, NULL,
645 ops_complete_compute5, sh);
647 /* ack now if postxor is not set to be run */
648 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
649 async_tx_ack(tx);
651 return tx;
654 static void ops_complete_prexor(void *stripe_head_ref)
656 struct stripe_head *sh = stripe_head_ref;
658 pr_debug("%s: stripe %llu\n", __func__,
659 (unsigned long long)sh->sector);
661 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
664 static struct dma_async_tx_descriptor *
665 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
667 /* kernel stack size limits the total number of disks */
668 int disks = sh->disks;
669 struct page *xor_srcs[disks];
670 int count = 0, pd_idx = sh->pd_idx, i;
672 /* existing parity data subtracted */
673 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
675 pr_debug("%s: stripe %llu\n", __func__,
676 (unsigned long long)sh->sector);
678 for (i = disks; i--; ) {
679 struct r5dev *dev = &sh->dev[i];
680 /* Only process blocks that are known to be uptodate */
681 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
682 xor_srcs[count++] = dev->page;
685 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
686 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
687 ops_complete_prexor, sh);
689 return tx;
692 static struct dma_async_tx_descriptor *
693 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
694 unsigned long pending)
696 int disks = sh->disks;
697 int pd_idx = sh->pd_idx, i;
699 /* check if prexor is active which means only process blocks
700 * that are part of a read-modify-write (Wantprexor)
702 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
704 pr_debug("%s: stripe %llu\n", __func__,
705 (unsigned long long)sh->sector);
707 for (i = disks; i--; ) {
708 struct r5dev *dev = &sh->dev[i];
709 struct bio *chosen;
710 int towrite;
712 towrite = 0;
713 if (prexor) { /* rmw */
714 if (dev->towrite &&
715 test_bit(R5_Wantprexor, &dev->flags))
716 towrite = 1;
717 } else { /* rcw */
718 if (i != pd_idx && dev->towrite &&
719 test_bit(R5_LOCKED, &dev->flags))
720 towrite = 1;
723 if (towrite) {
724 struct bio *wbi;
726 spin_lock(&sh->lock);
727 chosen = dev->towrite;
728 dev->towrite = NULL;
729 BUG_ON(dev->written);
730 wbi = dev->written = chosen;
731 spin_unlock(&sh->lock);
733 while (wbi && wbi->bi_sector <
734 dev->sector + STRIPE_SECTORS) {
735 tx = async_copy_data(1, wbi, dev->page,
736 dev->sector, tx);
737 wbi = r5_next_bio(wbi, dev->sector);
742 return tx;
745 static void ops_complete_postxor(void *stripe_head_ref)
747 struct stripe_head *sh = stripe_head_ref;
749 pr_debug("%s: stripe %llu\n", __func__,
750 (unsigned long long)sh->sector);
752 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
753 set_bit(STRIPE_HANDLE, &sh->state);
754 release_stripe(sh);
757 static void ops_complete_write(void *stripe_head_ref)
759 struct stripe_head *sh = stripe_head_ref;
760 int disks = sh->disks, i, pd_idx = sh->pd_idx;
762 pr_debug("%s: stripe %llu\n", __func__,
763 (unsigned long long)sh->sector);
765 for (i = disks; i--; ) {
766 struct r5dev *dev = &sh->dev[i];
767 if (dev->written || i == pd_idx)
768 set_bit(R5_UPTODATE, &dev->flags);
771 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
772 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
774 set_bit(STRIPE_HANDLE, &sh->state);
775 release_stripe(sh);
778 static void
779 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
780 unsigned long pending)
782 /* kernel stack size limits the total number of disks */
783 int disks = sh->disks;
784 struct page *xor_srcs[disks];
786 int count = 0, pd_idx = sh->pd_idx, i;
787 struct page *xor_dest;
788 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
789 unsigned long flags;
790 dma_async_tx_callback callback;
792 pr_debug("%s: stripe %llu\n", __func__,
793 (unsigned long long)sh->sector);
795 /* check if prexor is active which means only process blocks
796 * that are part of a read-modify-write (written)
798 if (prexor) {
799 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
800 for (i = disks; i--; ) {
801 struct r5dev *dev = &sh->dev[i];
802 if (dev->written)
803 xor_srcs[count++] = dev->page;
805 } else {
806 xor_dest = sh->dev[pd_idx].page;
807 for (i = disks; i--; ) {
808 struct r5dev *dev = &sh->dev[i];
809 if (i != pd_idx)
810 xor_srcs[count++] = dev->page;
814 /* check whether this postxor is part of a write */
815 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
816 ops_complete_write : ops_complete_postxor;
818 /* 1/ if we prexor'd then the dest is reused as a source
819 * 2/ if we did not prexor then we are redoing the parity
820 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
821 * for the synchronous xor case
823 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
824 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
826 atomic_inc(&sh->count);
828 if (unlikely(count == 1)) {
829 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
830 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
831 flags, tx, callback, sh);
832 } else
833 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
834 flags, tx, callback, sh);
837 static void ops_complete_check(void *stripe_head_ref)
839 struct stripe_head *sh = stripe_head_ref;
840 int pd_idx = sh->pd_idx;
842 pr_debug("%s: stripe %llu\n", __func__,
843 (unsigned long long)sh->sector);
845 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
846 sh->ops.zero_sum_result == 0)
847 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
849 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
850 set_bit(STRIPE_HANDLE, &sh->state);
851 release_stripe(sh);
854 static void ops_run_check(struct stripe_head *sh)
856 /* kernel stack size limits the total number of disks */
857 int disks = sh->disks;
858 struct page *xor_srcs[disks];
859 struct dma_async_tx_descriptor *tx;
861 int count = 0, pd_idx = sh->pd_idx, i;
862 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
864 pr_debug("%s: stripe %llu\n", __func__,
865 (unsigned long long)sh->sector);
867 for (i = disks; i--; ) {
868 struct r5dev *dev = &sh->dev[i];
869 if (i != pd_idx)
870 xor_srcs[count++] = dev->page;
873 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
874 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
876 if (tx)
877 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
878 else
879 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
881 atomic_inc(&sh->count);
882 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
883 ops_complete_check, sh);
886 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
888 int overlap_clear = 0, i, disks = sh->disks;
889 struct dma_async_tx_descriptor *tx = NULL;
891 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
892 ops_run_biofill(sh);
893 overlap_clear++;
896 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
897 tx = ops_run_compute5(sh, pending);
899 if (test_bit(STRIPE_OP_PREXOR, &pending))
900 tx = ops_run_prexor(sh, tx);
902 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
903 tx = ops_run_biodrain(sh, tx, pending);
904 overlap_clear++;
907 if (test_bit(STRIPE_OP_POSTXOR, &pending))
908 ops_run_postxor(sh, tx, pending);
910 if (test_bit(STRIPE_OP_CHECK, &pending))
911 ops_run_check(sh);
913 if (test_bit(STRIPE_OP_IO, &pending))
914 ops_run_io(sh);
916 if (overlap_clear)
917 for (i = disks; i--; ) {
918 struct r5dev *dev = &sh->dev[i];
919 if (test_and_clear_bit(R5_Overlap, &dev->flags))
920 wake_up(&sh->raid_conf->wait_for_overlap);
924 static int grow_one_stripe(raid5_conf_t *conf)
926 struct stripe_head *sh;
927 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
928 if (!sh)
929 return 0;
930 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
931 sh->raid_conf = conf;
932 spin_lock_init(&sh->lock);
934 if (grow_buffers(sh, conf->raid_disks)) {
935 shrink_buffers(sh, conf->raid_disks);
936 kmem_cache_free(conf->slab_cache, sh);
937 return 0;
939 sh->disks = conf->raid_disks;
940 /* we just created an active stripe so... */
941 atomic_set(&sh->count, 1);
942 atomic_inc(&conf->active_stripes);
943 INIT_LIST_HEAD(&sh->lru);
944 release_stripe(sh);
945 return 1;
948 static int grow_stripes(raid5_conf_t *conf, int num)
950 struct kmem_cache *sc;
951 int devs = conf->raid_disks;
953 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
954 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
955 conf->active_name = 0;
956 sc = kmem_cache_create(conf->cache_name[conf->active_name],
957 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
958 0, 0, NULL);
959 if (!sc)
960 return 1;
961 conf->slab_cache = sc;
962 conf->pool_size = devs;
963 while (num--)
964 if (!grow_one_stripe(conf))
965 return 1;
966 return 0;
969 #ifdef CONFIG_MD_RAID5_RESHAPE
970 static int resize_stripes(raid5_conf_t *conf, int newsize)
972 /* Make all the stripes able to hold 'newsize' devices.
973 * New slots in each stripe get 'page' set to a new page.
975 * This happens in stages:
976 * 1/ create a new kmem_cache and allocate the required number of
977 * stripe_heads.
978 * 2/ gather all the old stripe_heads and tranfer the pages across
979 * to the new stripe_heads. This will have the side effect of
980 * freezing the array as once all stripe_heads have been collected,
981 * no IO will be possible. Old stripe heads are freed once their
982 * pages have been transferred over, and the old kmem_cache is
983 * freed when all stripes are done.
984 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
985 * we simple return a failre status - no need to clean anything up.
986 * 4/ allocate new pages for the new slots in the new stripe_heads.
987 * If this fails, we don't bother trying the shrink the
988 * stripe_heads down again, we just leave them as they are.
989 * As each stripe_head is processed the new one is released into
990 * active service.
992 * Once step2 is started, we cannot afford to wait for a write,
993 * so we use GFP_NOIO allocations.
995 struct stripe_head *osh, *nsh;
996 LIST_HEAD(newstripes);
997 struct disk_info *ndisks;
998 int err = 0;
999 struct kmem_cache *sc;
1000 int i;
1002 if (newsize <= conf->pool_size)
1003 return 0; /* never bother to shrink */
1005 md_allow_write(conf->mddev);
1007 /* Step 1 */
1008 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1009 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1010 0, 0, NULL);
1011 if (!sc)
1012 return -ENOMEM;
1014 for (i = conf->max_nr_stripes; i; i--) {
1015 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1016 if (!nsh)
1017 break;
1019 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1021 nsh->raid_conf = conf;
1022 spin_lock_init(&nsh->lock);
1024 list_add(&nsh->lru, &newstripes);
1026 if (i) {
1027 /* didn't get enough, give up */
1028 while (!list_empty(&newstripes)) {
1029 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1030 list_del(&nsh->lru);
1031 kmem_cache_free(sc, nsh);
1033 kmem_cache_destroy(sc);
1034 return -ENOMEM;
1036 /* Step 2 - Must use GFP_NOIO now.
1037 * OK, we have enough stripes, start collecting inactive
1038 * stripes and copying them over
1040 list_for_each_entry(nsh, &newstripes, lru) {
1041 spin_lock_irq(&conf->device_lock);
1042 wait_event_lock_irq(conf->wait_for_stripe,
1043 !list_empty(&conf->inactive_list),
1044 conf->device_lock,
1045 unplug_slaves(conf->mddev)
1047 osh = get_free_stripe(conf);
1048 spin_unlock_irq(&conf->device_lock);
1049 atomic_set(&nsh->count, 1);
1050 for(i=0; i<conf->pool_size; i++)
1051 nsh->dev[i].page = osh->dev[i].page;
1052 for( ; i<newsize; i++)
1053 nsh->dev[i].page = NULL;
1054 kmem_cache_free(conf->slab_cache, osh);
1056 kmem_cache_destroy(conf->slab_cache);
1058 /* Step 3.
1059 * At this point, we are holding all the stripes so the array
1060 * is completely stalled, so now is a good time to resize
1061 * conf->disks.
1063 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1064 if (ndisks) {
1065 for (i=0; i<conf->raid_disks; i++)
1066 ndisks[i] = conf->disks[i];
1067 kfree(conf->disks);
1068 conf->disks = ndisks;
1069 } else
1070 err = -ENOMEM;
1072 /* Step 4, return new stripes to service */
1073 while(!list_empty(&newstripes)) {
1074 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1075 list_del_init(&nsh->lru);
1076 for (i=conf->raid_disks; i < newsize; i++)
1077 if (nsh->dev[i].page == NULL) {
1078 struct page *p = alloc_page(GFP_NOIO);
1079 nsh->dev[i].page = p;
1080 if (!p)
1081 err = -ENOMEM;
1083 release_stripe(nsh);
1085 /* critical section pass, GFP_NOIO no longer needed */
1087 conf->slab_cache = sc;
1088 conf->active_name = 1-conf->active_name;
1089 conf->pool_size = newsize;
1090 return err;
1092 #endif
1094 static int drop_one_stripe(raid5_conf_t *conf)
1096 struct stripe_head *sh;
1098 spin_lock_irq(&conf->device_lock);
1099 sh = get_free_stripe(conf);
1100 spin_unlock_irq(&conf->device_lock);
1101 if (!sh)
1102 return 0;
1103 BUG_ON(atomic_read(&sh->count));
1104 shrink_buffers(sh, conf->pool_size);
1105 kmem_cache_free(conf->slab_cache, sh);
1106 atomic_dec(&conf->active_stripes);
1107 return 1;
1110 static void shrink_stripes(raid5_conf_t *conf)
1112 while (drop_one_stripe(conf))
1115 if (conf->slab_cache)
1116 kmem_cache_destroy(conf->slab_cache);
1117 conf->slab_cache = NULL;
1120 static void raid5_end_read_request(struct bio * bi, int error)
1122 struct stripe_head *sh = bi->bi_private;
1123 raid5_conf_t *conf = sh->raid_conf;
1124 int disks = sh->disks, i;
1125 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1126 char b[BDEVNAME_SIZE];
1127 mdk_rdev_t *rdev;
1130 for (i=0 ; i<disks; i++)
1131 if (bi == &sh->dev[i].req)
1132 break;
1134 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1135 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1136 uptodate);
1137 if (i == disks) {
1138 BUG();
1139 return;
1142 if (uptodate) {
1143 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1144 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1145 rdev = conf->disks[i].rdev;
1146 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1147 mdname(conf->mddev), STRIPE_SECTORS,
1148 (unsigned long long)(sh->sector + rdev->data_offset),
1149 bdevname(rdev->bdev, b));
1150 clear_bit(R5_ReadError, &sh->dev[i].flags);
1151 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1153 if (atomic_read(&conf->disks[i].rdev->read_errors))
1154 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1155 } else {
1156 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1157 int retry = 0;
1158 rdev = conf->disks[i].rdev;
1160 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1161 atomic_inc(&rdev->read_errors);
1162 if (conf->mddev->degraded)
1163 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1164 mdname(conf->mddev),
1165 (unsigned long long)(sh->sector + rdev->data_offset),
1166 bdn);
1167 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1168 /* Oh, no!!! */
1169 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1170 mdname(conf->mddev),
1171 (unsigned long long)(sh->sector + rdev->data_offset),
1172 bdn);
1173 else if (atomic_read(&rdev->read_errors)
1174 > conf->max_nr_stripes)
1175 printk(KERN_WARNING
1176 "raid5:%s: Too many read errors, failing device %s.\n",
1177 mdname(conf->mddev), bdn);
1178 else
1179 retry = 1;
1180 if (retry)
1181 set_bit(R5_ReadError, &sh->dev[i].flags);
1182 else {
1183 clear_bit(R5_ReadError, &sh->dev[i].flags);
1184 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1185 md_error(conf->mddev, rdev);
1188 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1189 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1190 set_bit(STRIPE_HANDLE, &sh->state);
1191 release_stripe(sh);
1194 static void raid5_end_write_request (struct bio *bi, int error)
1196 struct stripe_head *sh = bi->bi_private;
1197 raid5_conf_t *conf = sh->raid_conf;
1198 int disks = sh->disks, i;
1199 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1201 for (i=0 ; i<disks; i++)
1202 if (bi == &sh->dev[i].req)
1203 break;
1205 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1206 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1207 uptodate);
1208 if (i == disks) {
1209 BUG();
1210 return;
1213 if (!uptodate)
1214 md_error(conf->mddev, conf->disks[i].rdev);
1216 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1218 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1219 set_bit(STRIPE_HANDLE, &sh->state);
1220 release_stripe(sh);
1224 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1226 static void raid5_build_block (struct stripe_head *sh, int i)
1228 struct r5dev *dev = &sh->dev[i];
1230 bio_init(&dev->req);
1231 dev->req.bi_io_vec = &dev->vec;
1232 dev->req.bi_vcnt++;
1233 dev->req.bi_max_vecs++;
1234 dev->vec.bv_page = dev->page;
1235 dev->vec.bv_len = STRIPE_SIZE;
1236 dev->vec.bv_offset = 0;
1238 dev->req.bi_sector = sh->sector;
1239 dev->req.bi_private = sh;
1241 dev->flags = 0;
1242 dev->sector = compute_blocknr(sh, i);
1245 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1247 char b[BDEVNAME_SIZE];
1248 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1249 pr_debug("raid5: error called\n");
1251 if (!test_bit(Faulty, &rdev->flags)) {
1252 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1253 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1254 unsigned long flags;
1255 spin_lock_irqsave(&conf->device_lock, flags);
1256 mddev->degraded++;
1257 spin_unlock_irqrestore(&conf->device_lock, flags);
1259 * if recovery was running, make sure it aborts.
1261 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1263 set_bit(Faulty, &rdev->flags);
1264 printk (KERN_ALERT
1265 "raid5: Disk failure on %s, disabling device.\n"
1266 "raid5: Operation continuing on %d devices.\n",
1267 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1272 * Input: a 'big' sector number,
1273 * Output: index of the data and parity disk, and the sector # in them.
1275 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1276 unsigned int data_disks, unsigned int * dd_idx,
1277 unsigned int * pd_idx, raid5_conf_t *conf)
1279 long stripe;
1280 unsigned long chunk_number;
1281 unsigned int chunk_offset;
1282 sector_t new_sector;
1283 int sectors_per_chunk = conf->chunk_size >> 9;
1285 /* First compute the information on this sector */
1288 * Compute the chunk number and the sector offset inside the chunk
1290 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1291 chunk_number = r_sector;
1292 BUG_ON(r_sector != chunk_number);
1295 * Compute the stripe number
1297 stripe = chunk_number / data_disks;
1300 * Compute the data disk and parity disk indexes inside the stripe
1302 *dd_idx = chunk_number % data_disks;
1305 * Select the parity disk based on the user selected algorithm.
1307 switch(conf->level) {
1308 case 4:
1309 *pd_idx = data_disks;
1310 break;
1311 case 5:
1312 switch (conf->algorithm) {
1313 case ALGORITHM_LEFT_ASYMMETRIC:
1314 *pd_idx = data_disks - stripe % raid_disks;
1315 if (*dd_idx >= *pd_idx)
1316 (*dd_idx)++;
1317 break;
1318 case ALGORITHM_RIGHT_ASYMMETRIC:
1319 *pd_idx = stripe % raid_disks;
1320 if (*dd_idx >= *pd_idx)
1321 (*dd_idx)++;
1322 break;
1323 case ALGORITHM_LEFT_SYMMETRIC:
1324 *pd_idx = data_disks - stripe % raid_disks;
1325 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1326 break;
1327 case ALGORITHM_RIGHT_SYMMETRIC:
1328 *pd_idx = stripe % raid_disks;
1329 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1330 break;
1331 default:
1332 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1333 conf->algorithm);
1335 break;
1336 case 6:
1338 /**** FIX THIS ****/
1339 switch (conf->algorithm) {
1340 case ALGORITHM_LEFT_ASYMMETRIC:
1341 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1342 if (*pd_idx == raid_disks-1)
1343 (*dd_idx)++; /* Q D D D P */
1344 else if (*dd_idx >= *pd_idx)
1345 (*dd_idx) += 2; /* D D P Q D */
1346 break;
1347 case ALGORITHM_RIGHT_ASYMMETRIC:
1348 *pd_idx = stripe % raid_disks;
1349 if (*pd_idx == raid_disks-1)
1350 (*dd_idx)++; /* Q D D D P */
1351 else if (*dd_idx >= *pd_idx)
1352 (*dd_idx) += 2; /* D D P Q D */
1353 break;
1354 case ALGORITHM_LEFT_SYMMETRIC:
1355 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1356 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1357 break;
1358 case ALGORITHM_RIGHT_SYMMETRIC:
1359 *pd_idx = stripe % raid_disks;
1360 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1361 break;
1362 default:
1363 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1364 conf->algorithm);
1366 break;
1370 * Finally, compute the new sector number
1372 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1373 return new_sector;
1377 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1379 raid5_conf_t *conf = sh->raid_conf;
1380 int raid_disks = sh->disks;
1381 int data_disks = raid_disks - conf->max_degraded;
1382 sector_t new_sector = sh->sector, check;
1383 int sectors_per_chunk = conf->chunk_size >> 9;
1384 sector_t stripe;
1385 int chunk_offset;
1386 int chunk_number, dummy1, dummy2, dd_idx = i;
1387 sector_t r_sector;
1390 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1391 stripe = new_sector;
1392 BUG_ON(new_sector != stripe);
1394 if (i == sh->pd_idx)
1395 return 0;
1396 switch(conf->level) {
1397 case 4: break;
1398 case 5:
1399 switch (conf->algorithm) {
1400 case ALGORITHM_LEFT_ASYMMETRIC:
1401 case ALGORITHM_RIGHT_ASYMMETRIC:
1402 if (i > sh->pd_idx)
1403 i--;
1404 break;
1405 case ALGORITHM_LEFT_SYMMETRIC:
1406 case ALGORITHM_RIGHT_SYMMETRIC:
1407 if (i < sh->pd_idx)
1408 i += raid_disks;
1409 i -= (sh->pd_idx + 1);
1410 break;
1411 default:
1412 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1413 conf->algorithm);
1415 break;
1416 case 6:
1417 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1418 return 0; /* It is the Q disk */
1419 switch (conf->algorithm) {
1420 case ALGORITHM_LEFT_ASYMMETRIC:
1421 case ALGORITHM_RIGHT_ASYMMETRIC:
1422 if (sh->pd_idx == raid_disks-1)
1423 i--; /* Q D D D P */
1424 else if (i > sh->pd_idx)
1425 i -= 2; /* D D P Q D */
1426 break;
1427 case ALGORITHM_LEFT_SYMMETRIC:
1428 case ALGORITHM_RIGHT_SYMMETRIC:
1429 if (sh->pd_idx == raid_disks-1)
1430 i--; /* Q D D D P */
1431 else {
1432 /* D D P Q D */
1433 if (i < sh->pd_idx)
1434 i += raid_disks;
1435 i -= (sh->pd_idx + 2);
1437 break;
1438 default:
1439 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1440 conf->algorithm);
1442 break;
1445 chunk_number = stripe * data_disks + i;
1446 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1448 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1449 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1450 printk(KERN_ERR "compute_blocknr: map not correct\n");
1451 return 0;
1453 return r_sector;
1459 * Copy data between a page in the stripe cache, and one or more bion
1460 * The page could align with the middle of the bio, or there could be
1461 * several bion, each with several bio_vecs, which cover part of the page
1462 * Multiple bion are linked together on bi_next. There may be extras
1463 * at the end of this list. We ignore them.
1465 static void copy_data(int frombio, struct bio *bio,
1466 struct page *page,
1467 sector_t sector)
1469 char *pa = page_address(page);
1470 struct bio_vec *bvl;
1471 int i;
1472 int page_offset;
1474 if (bio->bi_sector >= sector)
1475 page_offset = (signed)(bio->bi_sector - sector) * 512;
1476 else
1477 page_offset = (signed)(sector - bio->bi_sector) * -512;
1478 bio_for_each_segment(bvl, bio, i) {
1479 int len = bio_iovec_idx(bio,i)->bv_len;
1480 int clen;
1481 int b_offset = 0;
1483 if (page_offset < 0) {
1484 b_offset = -page_offset;
1485 page_offset += b_offset;
1486 len -= b_offset;
1489 if (len > 0 && page_offset + len > STRIPE_SIZE)
1490 clen = STRIPE_SIZE - page_offset;
1491 else clen = len;
1493 if (clen > 0) {
1494 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1495 if (frombio)
1496 memcpy(pa+page_offset, ba+b_offset, clen);
1497 else
1498 memcpy(ba+b_offset, pa+page_offset, clen);
1499 __bio_kunmap_atomic(ba, KM_USER0);
1501 if (clen < len) /* hit end of page */
1502 break;
1503 page_offset += len;
1507 #define check_xor() do { \
1508 if (count == MAX_XOR_BLOCKS) { \
1509 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1510 count = 0; \
1512 } while(0)
1514 static void compute_parity6(struct stripe_head *sh, int method)
1516 raid6_conf_t *conf = sh->raid_conf;
1517 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1518 struct bio *chosen;
1519 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1520 void *ptrs[disks];
1522 qd_idx = raid6_next_disk(pd_idx, disks);
1523 d0_idx = raid6_next_disk(qd_idx, disks);
1525 pr_debug("compute_parity, stripe %llu, method %d\n",
1526 (unsigned long long)sh->sector, method);
1528 switch(method) {
1529 case READ_MODIFY_WRITE:
1530 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1531 case RECONSTRUCT_WRITE:
1532 for (i= disks; i-- ;)
1533 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1534 chosen = sh->dev[i].towrite;
1535 sh->dev[i].towrite = NULL;
1537 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1538 wake_up(&conf->wait_for_overlap);
1540 BUG_ON(sh->dev[i].written);
1541 sh->dev[i].written = chosen;
1543 break;
1544 case CHECK_PARITY:
1545 BUG(); /* Not implemented yet */
1548 for (i = disks; i--;)
1549 if (sh->dev[i].written) {
1550 sector_t sector = sh->dev[i].sector;
1551 struct bio *wbi = sh->dev[i].written;
1552 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1553 copy_data(1, wbi, sh->dev[i].page, sector);
1554 wbi = r5_next_bio(wbi, sector);
1557 set_bit(R5_LOCKED, &sh->dev[i].flags);
1558 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1561 // switch(method) {
1562 // case RECONSTRUCT_WRITE:
1563 // case CHECK_PARITY:
1564 // case UPDATE_PARITY:
1565 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1566 /* FIX: Is this ordering of drives even remotely optimal? */
1567 count = 0;
1568 i = d0_idx;
1569 do {
1570 ptrs[count++] = page_address(sh->dev[i].page);
1571 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1572 printk("block %d/%d not uptodate on parity calc\n", i,count);
1573 i = raid6_next_disk(i, disks);
1574 } while ( i != d0_idx );
1575 // break;
1576 // }
1578 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1580 switch(method) {
1581 case RECONSTRUCT_WRITE:
1582 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1583 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1584 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1585 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1586 break;
1587 case UPDATE_PARITY:
1588 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1589 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1590 break;
1595 /* Compute one missing block */
1596 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1598 int i, count, disks = sh->disks;
1599 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1600 int pd_idx = sh->pd_idx;
1601 int qd_idx = raid6_next_disk(pd_idx, disks);
1603 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1604 (unsigned long long)sh->sector, dd_idx);
1606 if ( dd_idx == qd_idx ) {
1607 /* We're actually computing the Q drive */
1608 compute_parity6(sh, UPDATE_PARITY);
1609 } else {
1610 dest = page_address(sh->dev[dd_idx].page);
1611 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1612 count = 0;
1613 for (i = disks ; i--; ) {
1614 if (i == dd_idx || i == qd_idx)
1615 continue;
1616 p = page_address(sh->dev[i].page);
1617 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1618 ptr[count++] = p;
1619 else
1620 printk("compute_block() %d, stripe %llu, %d"
1621 " not present\n", dd_idx,
1622 (unsigned long long)sh->sector, i);
1624 check_xor();
1626 if (count)
1627 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1628 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1629 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1633 /* Compute two missing blocks */
1634 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1636 int i, count, disks = sh->disks;
1637 int pd_idx = sh->pd_idx;
1638 int qd_idx = raid6_next_disk(pd_idx, disks);
1639 int d0_idx = raid6_next_disk(qd_idx, disks);
1640 int faila, failb;
1642 /* faila and failb are disk numbers relative to d0_idx */
1643 /* pd_idx become disks-2 and qd_idx become disks-1 */
1644 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1645 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1647 BUG_ON(faila == failb);
1648 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1650 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1651 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1653 if ( failb == disks-1 ) {
1654 /* Q disk is one of the missing disks */
1655 if ( faila == disks-2 ) {
1656 /* Missing P+Q, just recompute */
1657 compute_parity6(sh, UPDATE_PARITY);
1658 return;
1659 } else {
1660 /* We're missing D+Q; recompute D from P */
1661 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1662 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1663 return;
1667 /* We're missing D+P or D+D; build pointer table */
1669 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1670 void *ptrs[disks];
1672 count = 0;
1673 i = d0_idx;
1674 do {
1675 ptrs[count++] = page_address(sh->dev[i].page);
1676 i = raid6_next_disk(i, disks);
1677 if (i != dd_idx1 && i != dd_idx2 &&
1678 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1679 printk("compute_2 with missing block %d/%d\n", count, i);
1680 } while ( i != d0_idx );
1682 if ( failb == disks-2 ) {
1683 /* We're missing D+P. */
1684 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1685 } else {
1686 /* We're missing D+D. */
1687 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1690 /* Both the above update both missing blocks */
1691 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1692 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1696 static int
1697 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1699 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1700 int locked = 0;
1702 if (rcw) {
1703 /* if we are not expanding this is a proper write request, and
1704 * there will be bios with new data to be drained into the
1705 * stripe cache
1707 if (!expand) {
1708 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1709 sh->ops.count++;
1712 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1713 sh->ops.count++;
1715 for (i = disks; i--; ) {
1716 struct r5dev *dev = &sh->dev[i];
1718 if (dev->towrite) {
1719 set_bit(R5_LOCKED, &dev->flags);
1720 if (!expand)
1721 clear_bit(R5_UPTODATE, &dev->flags);
1722 locked++;
1725 if (locked + 1 == disks)
1726 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1727 atomic_inc(&sh->raid_conf->pending_full_writes);
1728 } else {
1729 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1730 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1732 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1733 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1734 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1736 sh->ops.count += 3;
1738 for (i = disks; i--; ) {
1739 struct r5dev *dev = &sh->dev[i];
1740 if (i == pd_idx)
1741 continue;
1743 /* For a read-modify write there may be blocks that are
1744 * locked for reading while others are ready to be
1745 * written so we distinguish these blocks by the
1746 * R5_Wantprexor bit
1748 if (dev->towrite &&
1749 (test_bit(R5_UPTODATE, &dev->flags) ||
1750 test_bit(R5_Wantcompute, &dev->flags))) {
1751 set_bit(R5_Wantprexor, &dev->flags);
1752 set_bit(R5_LOCKED, &dev->flags);
1753 clear_bit(R5_UPTODATE, &dev->flags);
1754 locked++;
1759 /* keep the parity disk locked while asynchronous operations
1760 * are in flight
1762 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1763 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1764 locked++;
1766 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1767 __func__, (unsigned long long)sh->sector,
1768 locked, sh->ops.pending);
1770 return locked;
1774 * Each stripe/dev can have one or more bion attached.
1775 * toread/towrite point to the first in a chain.
1776 * The bi_next chain must be in order.
1778 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1780 struct bio **bip;
1781 raid5_conf_t *conf = sh->raid_conf;
1782 int firstwrite=0;
1784 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1785 (unsigned long long)bi->bi_sector,
1786 (unsigned long long)sh->sector);
1789 spin_lock(&sh->lock);
1790 spin_lock_irq(&conf->device_lock);
1791 if (forwrite) {
1792 bip = &sh->dev[dd_idx].towrite;
1793 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1794 firstwrite = 1;
1795 } else
1796 bip = &sh->dev[dd_idx].toread;
1797 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1798 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1799 goto overlap;
1800 bip = & (*bip)->bi_next;
1802 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1803 goto overlap;
1805 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1806 if (*bip)
1807 bi->bi_next = *bip;
1808 *bip = bi;
1809 bi->bi_phys_segments ++;
1810 spin_unlock_irq(&conf->device_lock);
1811 spin_unlock(&sh->lock);
1813 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1814 (unsigned long long)bi->bi_sector,
1815 (unsigned long long)sh->sector, dd_idx);
1817 if (conf->mddev->bitmap && firstwrite) {
1818 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1819 STRIPE_SECTORS, 0);
1820 sh->bm_seq = conf->seq_flush+1;
1821 set_bit(STRIPE_BIT_DELAY, &sh->state);
1824 if (forwrite) {
1825 /* check if page is covered */
1826 sector_t sector = sh->dev[dd_idx].sector;
1827 for (bi=sh->dev[dd_idx].towrite;
1828 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1829 bi && bi->bi_sector <= sector;
1830 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1831 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1832 sector = bi->bi_sector + (bi->bi_size>>9);
1834 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1835 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1837 return 1;
1839 overlap:
1840 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1841 spin_unlock_irq(&conf->device_lock);
1842 spin_unlock(&sh->lock);
1843 return 0;
1846 static void end_reshape(raid5_conf_t *conf);
1848 static int page_is_zero(struct page *p)
1850 char *a = page_address(p);
1851 return ((*(u32*)a) == 0 &&
1852 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1855 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1857 int sectors_per_chunk = conf->chunk_size >> 9;
1858 int pd_idx, dd_idx;
1859 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1861 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1862 *sectors_per_chunk + chunk_offset,
1863 disks, disks - conf->max_degraded,
1864 &dd_idx, &pd_idx, conf);
1865 return pd_idx;
1868 static void
1869 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1870 struct stripe_head_state *s, int disks,
1871 struct bio **return_bi)
1873 int i;
1874 for (i = disks; i--; ) {
1875 struct bio *bi;
1876 int bitmap_end = 0;
1878 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1879 mdk_rdev_t *rdev;
1880 rcu_read_lock();
1881 rdev = rcu_dereference(conf->disks[i].rdev);
1882 if (rdev && test_bit(In_sync, &rdev->flags))
1883 /* multiple read failures in one stripe */
1884 md_error(conf->mddev, rdev);
1885 rcu_read_unlock();
1887 spin_lock_irq(&conf->device_lock);
1888 /* fail all writes first */
1889 bi = sh->dev[i].towrite;
1890 sh->dev[i].towrite = NULL;
1891 if (bi) {
1892 s->to_write--;
1893 bitmap_end = 1;
1896 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1897 wake_up(&conf->wait_for_overlap);
1899 while (bi && bi->bi_sector <
1900 sh->dev[i].sector + STRIPE_SECTORS) {
1901 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1902 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1903 if (--bi->bi_phys_segments == 0) {
1904 md_write_end(conf->mddev);
1905 bi->bi_next = *return_bi;
1906 *return_bi = bi;
1908 bi = nextbi;
1910 /* and fail all 'written' */
1911 bi = sh->dev[i].written;
1912 sh->dev[i].written = NULL;
1913 if (bi) bitmap_end = 1;
1914 while (bi && bi->bi_sector <
1915 sh->dev[i].sector + STRIPE_SECTORS) {
1916 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1917 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1918 if (--bi->bi_phys_segments == 0) {
1919 md_write_end(conf->mddev);
1920 bi->bi_next = *return_bi;
1921 *return_bi = bi;
1923 bi = bi2;
1926 /* fail any reads if this device is non-operational and
1927 * the data has not reached the cache yet.
1929 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1930 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1931 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1932 bi = sh->dev[i].toread;
1933 sh->dev[i].toread = NULL;
1934 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1935 wake_up(&conf->wait_for_overlap);
1936 if (bi) s->to_read--;
1937 while (bi && bi->bi_sector <
1938 sh->dev[i].sector + STRIPE_SECTORS) {
1939 struct bio *nextbi =
1940 r5_next_bio(bi, sh->dev[i].sector);
1941 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1942 if (--bi->bi_phys_segments == 0) {
1943 bi->bi_next = *return_bi;
1944 *return_bi = bi;
1946 bi = nextbi;
1949 spin_unlock_irq(&conf->device_lock);
1950 if (bitmap_end)
1951 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1952 STRIPE_SECTORS, 0, 0);
1955 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1956 if (atomic_dec_and_test(&conf->pending_full_writes))
1957 md_wakeup_thread(conf->mddev->thread);
1960 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1961 * to process
1963 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1964 struct stripe_head_state *s, int disk_idx, int disks)
1966 struct r5dev *dev = &sh->dev[disk_idx];
1967 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1969 /* don't schedule compute operations or reads on the parity block while
1970 * a check is in flight
1972 if ((disk_idx == sh->pd_idx) &&
1973 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1974 return ~0;
1976 /* is the data in this block needed, and can we get it? */
1977 if (!test_bit(R5_LOCKED, &dev->flags) &&
1978 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1979 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1980 s->syncing || s->expanding || (s->failed &&
1981 (failed_dev->toread || (failed_dev->towrite &&
1982 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1983 ))))) {
1984 /* 1/ We would like to get this block, possibly by computing it,
1985 * but we might not be able to.
1987 * 2/ Since parity check operations potentially make the parity
1988 * block !uptodate it will need to be refreshed before any
1989 * compute operations on data disks are scheduled.
1991 * 3/ We hold off parity block re-reads until check operations
1992 * have quiesced.
1994 if ((s->uptodate == disks - 1) &&
1995 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1996 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1997 set_bit(R5_Wantcompute, &dev->flags);
1998 sh->ops.target = disk_idx;
1999 s->req_compute = 1;
2000 sh->ops.count++;
2001 /* Careful: from this point on 'uptodate' is in the eye
2002 * of raid5_run_ops which services 'compute' operations
2003 * before writes. R5_Wantcompute flags a block that will
2004 * be R5_UPTODATE by the time it is needed for a
2005 * subsequent operation.
2007 s->uptodate++;
2008 return 0; /* uptodate + compute == disks */
2009 } else if ((s->uptodate < disks - 1) &&
2010 test_bit(R5_Insync, &dev->flags)) {
2011 /* Note: we hold off compute operations while checks are
2012 * in flight, but we still prefer 'compute' over 'read'
2013 * hence we only read if (uptodate < * disks-1)
2015 set_bit(R5_LOCKED, &dev->flags);
2016 set_bit(R5_Wantread, &dev->flags);
2017 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2018 sh->ops.count++;
2019 s->locked++;
2020 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2021 s->syncing);
2025 return ~0;
2028 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2029 struct stripe_head_state *s, int disks)
2031 int i;
2033 /* Clear completed compute operations. Parity recovery
2034 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2035 * later on in this routine
2037 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2038 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2039 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2040 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2041 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2044 /* look for blocks to read/compute, skip this if a compute
2045 * is already in flight, or if the stripe contents are in the
2046 * midst of changing due to a write
2048 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2049 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2050 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2051 for (i = disks; i--; )
2052 if (__handle_issuing_new_read_requests5(
2053 sh, s, i, disks) == 0)
2054 break;
2056 set_bit(STRIPE_HANDLE, &sh->state);
2059 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2060 struct stripe_head_state *s, struct r6_state *r6s,
2061 int disks)
2063 int i;
2064 for (i = disks; i--; ) {
2065 struct r5dev *dev = &sh->dev[i];
2066 if (!test_bit(R5_LOCKED, &dev->flags) &&
2067 !test_bit(R5_UPTODATE, &dev->flags) &&
2068 (dev->toread || (dev->towrite &&
2069 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2070 s->syncing || s->expanding ||
2071 (s->failed >= 1 &&
2072 (sh->dev[r6s->failed_num[0]].toread ||
2073 s->to_write)) ||
2074 (s->failed >= 2 &&
2075 (sh->dev[r6s->failed_num[1]].toread ||
2076 s->to_write)))) {
2077 /* we would like to get this block, possibly
2078 * by computing it, but we might not be able to
2080 if (s->uptodate == disks-1) {
2081 pr_debug("Computing stripe %llu block %d\n",
2082 (unsigned long long)sh->sector, i);
2083 compute_block_1(sh, i, 0);
2084 s->uptodate++;
2085 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2086 /* Computing 2-failure is *very* expensive; only
2087 * do it if failed >= 2
2089 int other;
2090 for (other = disks; other--; ) {
2091 if (other == i)
2092 continue;
2093 if (!test_bit(R5_UPTODATE,
2094 &sh->dev[other].flags))
2095 break;
2097 BUG_ON(other < 0);
2098 pr_debug("Computing stripe %llu blocks %d,%d\n",
2099 (unsigned long long)sh->sector,
2100 i, other);
2101 compute_block_2(sh, i, other);
2102 s->uptodate += 2;
2103 } else if (test_bit(R5_Insync, &dev->flags)) {
2104 set_bit(R5_LOCKED, &dev->flags);
2105 set_bit(R5_Wantread, &dev->flags);
2106 s->locked++;
2107 pr_debug("Reading block %d (sync=%d)\n",
2108 i, s->syncing);
2112 set_bit(STRIPE_HANDLE, &sh->state);
2116 /* handle_completed_write_requests
2117 * any written block on an uptodate or failed drive can be returned.
2118 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2119 * never LOCKED, so we don't need to test 'failed' directly.
2121 static void handle_completed_write_requests(raid5_conf_t *conf,
2122 struct stripe_head *sh, int disks, struct bio **return_bi)
2124 int i;
2125 struct r5dev *dev;
2127 for (i = disks; i--; )
2128 if (sh->dev[i].written) {
2129 dev = &sh->dev[i];
2130 if (!test_bit(R5_LOCKED, &dev->flags) &&
2131 test_bit(R5_UPTODATE, &dev->flags)) {
2132 /* We can return any write requests */
2133 struct bio *wbi, *wbi2;
2134 int bitmap_end = 0;
2135 pr_debug("Return write for disc %d\n", i);
2136 spin_lock_irq(&conf->device_lock);
2137 wbi = dev->written;
2138 dev->written = NULL;
2139 while (wbi && wbi->bi_sector <
2140 dev->sector + STRIPE_SECTORS) {
2141 wbi2 = r5_next_bio(wbi, dev->sector);
2142 if (--wbi->bi_phys_segments == 0) {
2143 md_write_end(conf->mddev);
2144 wbi->bi_next = *return_bi;
2145 *return_bi = wbi;
2147 wbi = wbi2;
2149 if (dev->towrite == NULL)
2150 bitmap_end = 1;
2151 spin_unlock_irq(&conf->device_lock);
2152 if (bitmap_end)
2153 bitmap_endwrite(conf->mddev->bitmap,
2154 sh->sector,
2155 STRIPE_SECTORS,
2156 !test_bit(STRIPE_DEGRADED, &sh->state),
2161 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2162 if (atomic_dec_and_test(&conf->pending_full_writes))
2163 md_wakeup_thread(conf->mddev->thread);
2166 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2167 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2169 int rmw = 0, rcw = 0, i;
2170 for (i = disks; i--; ) {
2171 /* would I have to read this buffer for read_modify_write */
2172 struct r5dev *dev = &sh->dev[i];
2173 if ((dev->towrite || i == sh->pd_idx) &&
2174 !test_bit(R5_LOCKED, &dev->flags) &&
2175 !(test_bit(R5_UPTODATE, &dev->flags) ||
2176 test_bit(R5_Wantcompute, &dev->flags))) {
2177 if (test_bit(R5_Insync, &dev->flags))
2178 rmw++;
2179 else
2180 rmw += 2*disks; /* cannot read it */
2182 /* Would I have to read this buffer for reconstruct_write */
2183 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2184 !test_bit(R5_LOCKED, &dev->flags) &&
2185 !(test_bit(R5_UPTODATE, &dev->flags) ||
2186 test_bit(R5_Wantcompute, &dev->flags))) {
2187 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2188 else
2189 rcw += 2*disks;
2192 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2193 (unsigned long long)sh->sector, rmw, rcw);
2194 set_bit(STRIPE_HANDLE, &sh->state);
2195 if (rmw < rcw && rmw > 0)
2196 /* prefer read-modify-write, but need to get some data */
2197 for (i = disks; i--; ) {
2198 struct r5dev *dev = &sh->dev[i];
2199 if ((dev->towrite || i == sh->pd_idx) &&
2200 !test_bit(R5_LOCKED, &dev->flags) &&
2201 !(test_bit(R5_UPTODATE, &dev->flags) ||
2202 test_bit(R5_Wantcompute, &dev->flags)) &&
2203 test_bit(R5_Insync, &dev->flags)) {
2204 if (
2205 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2206 pr_debug("Read_old block "
2207 "%d for r-m-w\n", i);
2208 set_bit(R5_LOCKED, &dev->flags);
2209 set_bit(R5_Wantread, &dev->flags);
2210 if (!test_and_set_bit(
2211 STRIPE_OP_IO, &sh->ops.pending))
2212 sh->ops.count++;
2213 s->locked++;
2214 } else {
2215 set_bit(STRIPE_DELAYED, &sh->state);
2216 set_bit(STRIPE_HANDLE, &sh->state);
2220 if (rcw <= rmw && rcw > 0)
2221 /* want reconstruct write, but need to get some data */
2222 for (i = disks; i--; ) {
2223 struct r5dev *dev = &sh->dev[i];
2224 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2225 i != sh->pd_idx &&
2226 !test_bit(R5_LOCKED, &dev->flags) &&
2227 !(test_bit(R5_UPTODATE, &dev->flags) ||
2228 test_bit(R5_Wantcompute, &dev->flags)) &&
2229 test_bit(R5_Insync, &dev->flags)) {
2230 if (
2231 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2232 pr_debug("Read_old block "
2233 "%d for Reconstruct\n", i);
2234 set_bit(R5_LOCKED, &dev->flags);
2235 set_bit(R5_Wantread, &dev->flags);
2236 if (!test_and_set_bit(
2237 STRIPE_OP_IO, &sh->ops.pending))
2238 sh->ops.count++;
2239 s->locked++;
2240 } else {
2241 set_bit(STRIPE_DELAYED, &sh->state);
2242 set_bit(STRIPE_HANDLE, &sh->state);
2246 /* now if nothing is locked, and if we have enough data,
2247 * we can start a write request
2249 /* since handle_stripe can be called at any time we need to handle the
2250 * case where a compute block operation has been submitted and then a
2251 * subsequent call wants to start a write request. raid5_run_ops only
2252 * handles the case where compute block and postxor are requested
2253 * simultaneously. If this is not the case then new writes need to be
2254 * held off until the compute completes.
2256 if ((s->req_compute ||
2257 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2258 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2259 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2260 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2263 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2264 struct stripe_head *sh, struct stripe_head_state *s,
2265 struct r6_state *r6s, int disks)
2267 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2268 int qd_idx = r6s->qd_idx;
2269 for (i = disks; i--; ) {
2270 struct r5dev *dev = &sh->dev[i];
2271 /* Would I have to read this buffer for reconstruct_write */
2272 if (!test_bit(R5_OVERWRITE, &dev->flags)
2273 && i != pd_idx && i != qd_idx
2274 && (!test_bit(R5_LOCKED, &dev->flags)
2275 ) &&
2276 !test_bit(R5_UPTODATE, &dev->flags)) {
2277 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2278 else {
2279 pr_debug("raid6: must_compute: "
2280 "disk %d flags=%#lx\n", i, dev->flags);
2281 must_compute++;
2285 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2286 (unsigned long long)sh->sector, rcw, must_compute);
2287 set_bit(STRIPE_HANDLE, &sh->state);
2289 if (rcw > 0)
2290 /* want reconstruct write, but need to get some data */
2291 for (i = disks; i--; ) {
2292 struct r5dev *dev = &sh->dev[i];
2293 if (!test_bit(R5_OVERWRITE, &dev->flags)
2294 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2295 && !test_bit(R5_LOCKED, &dev->flags) &&
2296 !test_bit(R5_UPTODATE, &dev->flags) &&
2297 test_bit(R5_Insync, &dev->flags)) {
2298 if (
2299 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2300 pr_debug("Read_old stripe %llu "
2301 "block %d for Reconstruct\n",
2302 (unsigned long long)sh->sector, i);
2303 set_bit(R5_LOCKED, &dev->flags);
2304 set_bit(R5_Wantread, &dev->flags);
2305 s->locked++;
2306 } else {
2307 pr_debug("Request delayed stripe %llu "
2308 "block %d for Reconstruct\n",
2309 (unsigned long long)sh->sector, i);
2310 set_bit(STRIPE_DELAYED, &sh->state);
2311 set_bit(STRIPE_HANDLE, &sh->state);
2315 /* now if nothing is locked, and if we have enough data, we can start a
2316 * write request
2318 if (s->locked == 0 && rcw == 0 &&
2319 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2320 if (must_compute > 0) {
2321 /* We have failed blocks and need to compute them */
2322 switch (s->failed) {
2323 case 0:
2324 BUG();
2325 case 1:
2326 compute_block_1(sh, r6s->failed_num[0], 0);
2327 break;
2328 case 2:
2329 compute_block_2(sh, r6s->failed_num[0],
2330 r6s->failed_num[1]);
2331 break;
2332 default: /* This request should have been failed? */
2333 BUG();
2337 pr_debug("Computing parity for stripe %llu\n",
2338 (unsigned long long)sh->sector);
2339 compute_parity6(sh, RECONSTRUCT_WRITE);
2340 /* now every locked buffer is ready to be written */
2341 for (i = disks; i--; )
2342 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2343 pr_debug("Writing stripe %llu block %d\n",
2344 (unsigned long long)sh->sector, i);
2345 s->locked++;
2346 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2348 if (s->locked == disks)
2349 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2350 atomic_inc(&conf->pending_full_writes);
2351 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2352 set_bit(STRIPE_INSYNC, &sh->state);
2354 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2355 atomic_dec(&conf->preread_active_stripes);
2356 if (atomic_read(&conf->preread_active_stripes) <
2357 IO_THRESHOLD)
2358 md_wakeup_thread(conf->mddev->thread);
2363 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2364 struct stripe_head_state *s, int disks)
2366 int canceled_check = 0;
2368 set_bit(STRIPE_HANDLE, &sh->state);
2370 /* complete a check operation */
2371 if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2372 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2373 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2374 if (s->failed == 0) {
2375 if (sh->ops.zero_sum_result == 0)
2376 /* parity is correct (on disc,
2377 * not in buffer any more)
2379 set_bit(STRIPE_INSYNC, &sh->state);
2380 else {
2381 conf->mddev->resync_mismatches +=
2382 STRIPE_SECTORS;
2383 if (test_bit(
2384 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2385 /* don't try to repair!! */
2386 set_bit(STRIPE_INSYNC, &sh->state);
2387 else {
2388 set_bit(STRIPE_OP_COMPUTE_BLK,
2389 &sh->ops.pending);
2390 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2391 &sh->ops.pending);
2392 set_bit(R5_Wantcompute,
2393 &sh->dev[sh->pd_idx].flags);
2394 sh->ops.target = sh->pd_idx;
2395 sh->ops.count++;
2396 s->uptodate++;
2399 } else
2400 canceled_check = 1; /* STRIPE_INSYNC is not set */
2403 /* start a new check operation if there are no failures, the stripe is
2404 * not insync, and a repair is not in flight
2406 if (s->failed == 0 &&
2407 !test_bit(STRIPE_INSYNC, &sh->state) &&
2408 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2409 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2410 BUG_ON(s->uptodate != disks);
2411 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2412 sh->ops.count++;
2413 s->uptodate--;
2417 /* check if we can clear a parity disk reconstruct */
2418 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2419 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2421 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2422 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2423 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2424 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2428 /* Wait for check parity and compute block operations to complete
2429 * before write-back. If a failure occurred while the check operation
2430 * was in flight we need to cycle this stripe through handle_stripe
2431 * since the parity block may not be uptodate
2433 if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2434 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2435 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2436 struct r5dev *dev;
2437 /* either failed parity check, or recovery is happening */
2438 if (s->failed == 0)
2439 s->failed_num = sh->pd_idx;
2440 dev = &sh->dev[s->failed_num];
2441 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2442 BUG_ON(s->uptodate != disks);
2444 set_bit(R5_LOCKED, &dev->flags);
2445 set_bit(R5_Wantwrite, &dev->flags);
2446 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2447 sh->ops.count++;
2449 clear_bit(STRIPE_DEGRADED, &sh->state);
2450 s->locked++;
2451 set_bit(STRIPE_INSYNC, &sh->state);
2456 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2457 struct stripe_head_state *s,
2458 struct r6_state *r6s, struct page *tmp_page,
2459 int disks)
2461 int update_p = 0, update_q = 0;
2462 struct r5dev *dev;
2463 int pd_idx = sh->pd_idx;
2464 int qd_idx = r6s->qd_idx;
2466 set_bit(STRIPE_HANDLE, &sh->state);
2468 BUG_ON(s->failed > 2);
2469 BUG_ON(s->uptodate < disks);
2470 /* Want to check and possibly repair P and Q.
2471 * However there could be one 'failed' device, in which
2472 * case we can only check one of them, possibly using the
2473 * other to generate missing data
2476 /* If !tmp_page, we cannot do the calculations,
2477 * but as we have set STRIPE_HANDLE, we will soon be called
2478 * by stripe_handle with a tmp_page - just wait until then.
2480 if (tmp_page) {
2481 if (s->failed == r6s->q_failed) {
2482 /* The only possible failed device holds 'Q', so it
2483 * makes sense to check P (If anything else were failed,
2484 * we would have used P to recreate it).
2486 compute_block_1(sh, pd_idx, 1);
2487 if (!page_is_zero(sh->dev[pd_idx].page)) {
2488 compute_block_1(sh, pd_idx, 0);
2489 update_p = 1;
2492 if (!r6s->q_failed && s->failed < 2) {
2493 /* q is not failed, and we didn't use it to generate
2494 * anything, so it makes sense to check it
2496 memcpy(page_address(tmp_page),
2497 page_address(sh->dev[qd_idx].page),
2498 STRIPE_SIZE);
2499 compute_parity6(sh, UPDATE_PARITY);
2500 if (memcmp(page_address(tmp_page),
2501 page_address(sh->dev[qd_idx].page),
2502 STRIPE_SIZE) != 0) {
2503 clear_bit(STRIPE_INSYNC, &sh->state);
2504 update_q = 1;
2507 if (update_p || update_q) {
2508 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2509 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2510 /* don't try to repair!! */
2511 update_p = update_q = 0;
2514 /* now write out any block on a failed drive,
2515 * or P or Q if they need it
2518 if (s->failed == 2) {
2519 dev = &sh->dev[r6s->failed_num[1]];
2520 s->locked++;
2521 set_bit(R5_LOCKED, &dev->flags);
2522 set_bit(R5_Wantwrite, &dev->flags);
2524 if (s->failed >= 1) {
2525 dev = &sh->dev[r6s->failed_num[0]];
2526 s->locked++;
2527 set_bit(R5_LOCKED, &dev->flags);
2528 set_bit(R5_Wantwrite, &dev->flags);
2531 if (update_p) {
2532 dev = &sh->dev[pd_idx];
2533 s->locked++;
2534 set_bit(R5_LOCKED, &dev->flags);
2535 set_bit(R5_Wantwrite, &dev->flags);
2537 if (update_q) {
2538 dev = &sh->dev[qd_idx];
2539 s->locked++;
2540 set_bit(R5_LOCKED, &dev->flags);
2541 set_bit(R5_Wantwrite, &dev->flags);
2543 clear_bit(STRIPE_DEGRADED, &sh->state);
2545 set_bit(STRIPE_INSYNC, &sh->state);
2549 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2550 struct r6_state *r6s)
2552 int i;
2554 /* We have read all the blocks in this stripe and now we need to
2555 * copy some of them into a target stripe for expand.
2557 struct dma_async_tx_descriptor *tx = NULL;
2558 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2559 for (i = 0; i < sh->disks; i++)
2560 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2561 int dd_idx, pd_idx, j;
2562 struct stripe_head *sh2;
2564 sector_t bn = compute_blocknr(sh, i);
2565 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2566 conf->raid_disks -
2567 conf->max_degraded, &dd_idx,
2568 &pd_idx, conf);
2569 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2570 pd_idx, 1);
2571 if (sh2 == NULL)
2572 /* so far only the early blocks of this stripe
2573 * have been requested. When later blocks
2574 * get requested, we will try again
2576 continue;
2577 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2578 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2579 /* must have already done this block */
2580 release_stripe(sh2);
2581 continue;
2584 /* place all the copies on one channel */
2585 tx = async_memcpy(sh2->dev[dd_idx].page,
2586 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2587 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2589 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2590 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2591 for (j = 0; j < conf->raid_disks; j++)
2592 if (j != sh2->pd_idx &&
2593 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2594 sh2->disks)) &&
2595 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2596 break;
2597 if (j == conf->raid_disks) {
2598 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2599 set_bit(STRIPE_HANDLE, &sh2->state);
2601 release_stripe(sh2);
2604 /* done submitting copies, wait for them to complete */
2605 if (tx) {
2606 async_tx_ack(tx);
2607 dma_wait_for_async_tx(tx);
2613 * handle_stripe - do things to a stripe.
2615 * We lock the stripe and then examine the state of various bits
2616 * to see what needs to be done.
2617 * Possible results:
2618 * return some read request which now have data
2619 * return some write requests which are safely on disc
2620 * schedule a read on some buffers
2621 * schedule a write of some buffers
2622 * return confirmation of parity correctness
2624 * buffers are taken off read_list or write_list, and bh_cache buffers
2625 * get BH_Lock set before the stripe lock is released.
2629 static void handle_stripe5(struct stripe_head *sh)
2631 raid5_conf_t *conf = sh->raid_conf;
2632 int disks = sh->disks, i;
2633 struct bio *return_bi = NULL;
2634 struct stripe_head_state s;
2635 struct r5dev *dev;
2636 unsigned long pending = 0;
2637 mdk_rdev_t *blocked_rdev = NULL;
2639 memset(&s, 0, sizeof(s));
2640 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2641 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2642 atomic_read(&sh->count), sh->pd_idx,
2643 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2645 spin_lock(&sh->lock);
2646 clear_bit(STRIPE_HANDLE, &sh->state);
2647 clear_bit(STRIPE_DELAYED, &sh->state);
2649 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2650 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2651 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2652 /* Now to look around and see what can be done */
2654 /* clean-up completed biofill operations */
2655 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2656 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2657 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2658 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2661 rcu_read_lock();
2662 for (i=disks; i--; ) {
2663 mdk_rdev_t *rdev;
2664 struct r5dev *dev = &sh->dev[i];
2665 clear_bit(R5_Insync, &dev->flags);
2667 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2668 "written %p\n", i, dev->flags, dev->toread, dev->read,
2669 dev->towrite, dev->written);
2671 /* maybe we can request a biofill operation
2673 * new wantfill requests are only permitted while
2674 * STRIPE_OP_BIOFILL is clear
2676 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2677 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2678 set_bit(R5_Wantfill, &dev->flags);
2680 /* now count some things */
2681 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2682 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2683 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2685 if (test_bit(R5_Wantfill, &dev->flags))
2686 s.to_fill++;
2687 else if (dev->toread)
2688 s.to_read++;
2689 if (dev->towrite) {
2690 s.to_write++;
2691 if (!test_bit(R5_OVERWRITE, &dev->flags))
2692 s.non_overwrite++;
2694 if (dev->written)
2695 s.written++;
2696 rdev = rcu_dereference(conf->disks[i].rdev);
2697 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2698 blocked_rdev = rdev;
2699 atomic_inc(&rdev->nr_pending);
2700 break;
2702 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2703 /* The ReadError flag will just be confusing now */
2704 clear_bit(R5_ReadError, &dev->flags);
2705 clear_bit(R5_ReWrite, &dev->flags);
2707 if (!rdev || !test_bit(In_sync, &rdev->flags)
2708 || test_bit(R5_ReadError, &dev->flags)) {
2709 s.failed++;
2710 s.failed_num = i;
2711 } else
2712 set_bit(R5_Insync, &dev->flags);
2714 rcu_read_unlock();
2716 if (unlikely(blocked_rdev)) {
2717 set_bit(STRIPE_HANDLE, &sh->state);
2718 goto unlock;
2721 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2722 sh->ops.count++;
2724 pr_debug("locked=%d uptodate=%d to_read=%d"
2725 " to_write=%d failed=%d failed_num=%d\n",
2726 s.locked, s.uptodate, s.to_read, s.to_write,
2727 s.failed, s.failed_num);
2728 /* check if the array has lost two devices and, if so, some requests might
2729 * need to be failed
2731 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2732 handle_requests_to_failed_array(conf, sh, &s, disks,
2733 &return_bi);
2734 if (s.failed > 1 && s.syncing) {
2735 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2736 clear_bit(STRIPE_SYNCING, &sh->state);
2737 s.syncing = 0;
2740 /* might be able to return some write requests if the parity block
2741 * is safe, or on a failed drive
2743 dev = &sh->dev[sh->pd_idx];
2744 if ( s.written &&
2745 ((test_bit(R5_Insync, &dev->flags) &&
2746 !test_bit(R5_LOCKED, &dev->flags) &&
2747 test_bit(R5_UPTODATE, &dev->flags)) ||
2748 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2749 handle_completed_write_requests(conf, sh, disks, &return_bi);
2751 /* Now we might consider reading some blocks, either to check/generate
2752 * parity, or to satisfy requests
2753 * or to load a block that is being partially written.
2755 if (s.to_read || s.non_overwrite ||
2756 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2757 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2758 handle_issuing_new_read_requests5(sh, &s, disks);
2760 /* Now we check to see if any write operations have recently
2761 * completed
2764 /* leave prexor set until postxor is done, allows us to distinguish
2765 * a rmw from a rcw during biodrain
2767 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2768 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2770 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2771 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2772 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2774 for (i = disks; i--; )
2775 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2778 /* if only POSTXOR is set then this is an 'expand' postxor */
2779 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2780 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2782 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2783 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2784 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2786 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2787 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2788 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2790 /* All the 'written' buffers and the parity block are ready to
2791 * be written back to disk
2793 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2794 for (i = disks; i--; ) {
2795 dev = &sh->dev[i];
2796 if (test_bit(R5_LOCKED, &dev->flags) &&
2797 (i == sh->pd_idx || dev->written)) {
2798 pr_debug("Writing block %d\n", i);
2799 set_bit(R5_Wantwrite, &dev->flags);
2800 if (!test_and_set_bit(
2801 STRIPE_OP_IO, &sh->ops.pending))
2802 sh->ops.count++;
2803 if (!test_bit(R5_Insync, &dev->flags) ||
2804 (i == sh->pd_idx && s.failed == 0))
2805 set_bit(STRIPE_INSYNC, &sh->state);
2808 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2809 atomic_dec(&conf->preread_active_stripes);
2810 if (atomic_read(&conf->preread_active_stripes) <
2811 IO_THRESHOLD)
2812 md_wakeup_thread(conf->mddev->thread);
2816 /* Now to consider new write requests and what else, if anything
2817 * should be read. We do not handle new writes when:
2818 * 1/ A 'write' operation (copy+xor) is already in flight.
2819 * 2/ A 'check' operation is in flight, as it may clobber the parity
2820 * block.
2822 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2823 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2824 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2826 /* maybe we need to check and possibly fix the parity for this stripe
2827 * Any reads will already have been scheduled, so we just see if enough
2828 * data is available. The parity check is held off while parity
2829 * dependent operations are in flight.
2831 if ((s.syncing && s.locked == 0 &&
2832 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2833 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2834 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2835 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2836 handle_parity_checks5(conf, sh, &s, disks);
2838 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2839 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2840 clear_bit(STRIPE_SYNCING, &sh->state);
2843 /* If the failed drive is just a ReadError, then we might need to progress
2844 * the repair/check process
2846 if (s.failed == 1 && !conf->mddev->ro &&
2847 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2848 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2849 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2851 dev = &sh->dev[s.failed_num];
2852 if (!test_bit(R5_ReWrite, &dev->flags)) {
2853 set_bit(R5_Wantwrite, &dev->flags);
2854 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2855 sh->ops.count++;
2856 set_bit(R5_ReWrite, &dev->flags);
2857 set_bit(R5_LOCKED, &dev->flags);
2858 s.locked++;
2859 } else {
2860 /* let's read it back */
2861 set_bit(R5_Wantread, &dev->flags);
2862 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2863 sh->ops.count++;
2864 set_bit(R5_LOCKED, &dev->flags);
2865 s.locked++;
2869 /* Finish postxor operations initiated by the expansion
2870 * process
2872 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2873 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2875 clear_bit(STRIPE_EXPANDING, &sh->state);
2877 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2878 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2879 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2881 for (i = conf->raid_disks; i--; ) {
2882 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2883 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2884 sh->ops.count++;
2888 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2889 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2890 /* Need to write out all blocks after computing parity */
2891 sh->disks = conf->raid_disks;
2892 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2893 conf->raid_disks);
2894 s.locked += handle_write_operations5(sh, 1, 1);
2895 } else if (s.expanded &&
2896 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2897 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2898 atomic_dec(&conf->reshape_stripes);
2899 wake_up(&conf->wait_for_overlap);
2900 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2903 if (s.expanding && s.locked == 0 &&
2904 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2905 handle_stripe_expansion(conf, sh, NULL);
2907 if (sh->ops.count)
2908 pending = get_stripe_work(sh);
2910 unlock:
2911 spin_unlock(&sh->lock);
2913 /* wait for this device to become unblocked */
2914 if (unlikely(blocked_rdev))
2915 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2917 if (pending)
2918 raid5_run_ops(sh, pending);
2920 return_io(return_bi);
2924 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2926 raid6_conf_t *conf = sh->raid_conf;
2927 int disks = sh->disks;
2928 struct bio *return_bi = NULL;
2929 int i, pd_idx = sh->pd_idx;
2930 struct stripe_head_state s;
2931 struct r6_state r6s;
2932 struct r5dev *dev, *pdev, *qdev;
2933 mdk_rdev_t *blocked_rdev = NULL;
2935 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2936 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2937 "pd_idx=%d, qd_idx=%d\n",
2938 (unsigned long long)sh->sector, sh->state,
2939 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2940 memset(&s, 0, sizeof(s));
2942 spin_lock(&sh->lock);
2943 clear_bit(STRIPE_HANDLE, &sh->state);
2944 clear_bit(STRIPE_DELAYED, &sh->state);
2946 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2947 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2948 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2949 /* Now to look around and see what can be done */
2951 rcu_read_lock();
2952 for (i=disks; i--; ) {
2953 mdk_rdev_t *rdev;
2954 dev = &sh->dev[i];
2955 clear_bit(R5_Insync, &dev->flags);
2957 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2958 i, dev->flags, dev->toread, dev->towrite, dev->written);
2959 /* maybe we can reply to a read */
2960 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2961 struct bio *rbi, *rbi2;
2962 pr_debug("Return read for disc %d\n", i);
2963 spin_lock_irq(&conf->device_lock);
2964 rbi = dev->toread;
2965 dev->toread = NULL;
2966 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2967 wake_up(&conf->wait_for_overlap);
2968 spin_unlock_irq(&conf->device_lock);
2969 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2970 copy_data(0, rbi, dev->page, dev->sector);
2971 rbi2 = r5_next_bio(rbi, dev->sector);
2972 spin_lock_irq(&conf->device_lock);
2973 if (--rbi->bi_phys_segments == 0) {
2974 rbi->bi_next = return_bi;
2975 return_bi = rbi;
2977 spin_unlock_irq(&conf->device_lock);
2978 rbi = rbi2;
2982 /* now count some things */
2983 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2984 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2987 if (dev->toread)
2988 s.to_read++;
2989 if (dev->towrite) {
2990 s.to_write++;
2991 if (!test_bit(R5_OVERWRITE, &dev->flags))
2992 s.non_overwrite++;
2994 if (dev->written)
2995 s.written++;
2996 rdev = rcu_dereference(conf->disks[i].rdev);
2997 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2998 blocked_rdev = rdev;
2999 atomic_inc(&rdev->nr_pending);
3000 break;
3002 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3003 /* The ReadError flag will just be confusing now */
3004 clear_bit(R5_ReadError, &dev->flags);
3005 clear_bit(R5_ReWrite, &dev->flags);
3007 if (!rdev || !test_bit(In_sync, &rdev->flags)
3008 || test_bit(R5_ReadError, &dev->flags)) {
3009 if (s.failed < 2)
3010 r6s.failed_num[s.failed] = i;
3011 s.failed++;
3012 } else
3013 set_bit(R5_Insync, &dev->flags);
3015 rcu_read_unlock();
3017 if (unlikely(blocked_rdev)) {
3018 set_bit(STRIPE_HANDLE, &sh->state);
3019 goto unlock;
3021 pr_debug("locked=%d uptodate=%d to_read=%d"
3022 " to_write=%d failed=%d failed_num=%d,%d\n",
3023 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3024 r6s.failed_num[0], r6s.failed_num[1]);
3025 /* check if the array has lost >2 devices and, if so, some requests
3026 * might need to be failed
3028 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3029 handle_requests_to_failed_array(conf, sh, &s, disks,
3030 &return_bi);
3031 if (s.failed > 2 && s.syncing) {
3032 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3033 clear_bit(STRIPE_SYNCING, &sh->state);
3034 s.syncing = 0;
3038 * might be able to return some write requests if the parity blocks
3039 * are safe, or on a failed drive
3041 pdev = &sh->dev[pd_idx];
3042 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3043 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3044 qdev = &sh->dev[r6s.qd_idx];
3045 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3046 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3048 if ( s.written &&
3049 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3050 && !test_bit(R5_LOCKED, &pdev->flags)
3051 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3052 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3053 && !test_bit(R5_LOCKED, &qdev->flags)
3054 && test_bit(R5_UPTODATE, &qdev->flags)))))
3055 handle_completed_write_requests(conf, sh, disks, &return_bi);
3057 /* Now we might consider reading some blocks, either to check/generate
3058 * parity, or to satisfy requests
3059 * or to load a block that is being partially written.
3061 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3062 (s.syncing && (s.uptodate < disks)) || s.expanding)
3063 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3065 /* now to consider writing and what else, if anything should be read */
3066 if (s.to_write)
3067 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3069 /* maybe we need to check and possibly fix the parity for this stripe
3070 * Any reads will already have been scheduled, so we just see if enough
3071 * data is available
3073 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3074 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3076 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3077 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3078 clear_bit(STRIPE_SYNCING, &sh->state);
3081 /* If the failed drives are just a ReadError, then we might need
3082 * to progress the repair/check process
3084 if (s.failed <= 2 && !conf->mddev->ro)
3085 for (i = 0; i < s.failed; i++) {
3086 dev = &sh->dev[r6s.failed_num[i]];
3087 if (test_bit(R5_ReadError, &dev->flags)
3088 && !test_bit(R5_LOCKED, &dev->flags)
3089 && test_bit(R5_UPTODATE, &dev->flags)
3091 if (!test_bit(R5_ReWrite, &dev->flags)) {
3092 set_bit(R5_Wantwrite, &dev->flags);
3093 set_bit(R5_ReWrite, &dev->flags);
3094 set_bit(R5_LOCKED, &dev->flags);
3095 } else {
3096 /* let's read it back */
3097 set_bit(R5_Wantread, &dev->flags);
3098 set_bit(R5_LOCKED, &dev->flags);
3103 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3104 /* Need to write out all blocks after computing P&Q */
3105 sh->disks = conf->raid_disks;
3106 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3107 conf->raid_disks);
3108 compute_parity6(sh, RECONSTRUCT_WRITE);
3109 for (i = conf->raid_disks ; i-- ; ) {
3110 set_bit(R5_LOCKED, &sh->dev[i].flags);
3111 s.locked++;
3112 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3114 clear_bit(STRIPE_EXPANDING, &sh->state);
3115 } else if (s.expanded) {
3116 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3117 atomic_dec(&conf->reshape_stripes);
3118 wake_up(&conf->wait_for_overlap);
3119 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3122 if (s.expanding && s.locked == 0 &&
3123 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3124 handle_stripe_expansion(conf, sh, &r6s);
3126 unlock:
3127 spin_unlock(&sh->lock);
3129 /* wait for this device to become unblocked */
3130 if (unlikely(blocked_rdev))
3131 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3133 return_io(return_bi);
3135 for (i=disks; i-- ;) {
3136 int rw;
3137 struct bio *bi;
3138 mdk_rdev_t *rdev;
3139 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3140 rw = WRITE;
3141 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3142 rw = READ;
3143 else
3144 continue;
3146 set_bit(STRIPE_IO_STARTED, &sh->state);
3148 bi = &sh->dev[i].req;
3150 bi->bi_rw = rw;
3151 if (rw == WRITE)
3152 bi->bi_end_io = raid5_end_write_request;
3153 else
3154 bi->bi_end_io = raid5_end_read_request;
3156 rcu_read_lock();
3157 rdev = rcu_dereference(conf->disks[i].rdev);
3158 if (rdev && test_bit(Faulty, &rdev->flags))
3159 rdev = NULL;
3160 if (rdev)
3161 atomic_inc(&rdev->nr_pending);
3162 rcu_read_unlock();
3164 if (rdev) {
3165 if (s.syncing || s.expanding || s.expanded)
3166 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3168 bi->bi_bdev = rdev->bdev;
3169 pr_debug("for %llu schedule op %ld on disc %d\n",
3170 (unsigned long long)sh->sector, bi->bi_rw, i);
3171 atomic_inc(&sh->count);
3172 bi->bi_sector = sh->sector + rdev->data_offset;
3173 bi->bi_flags = 1 << BIO_UPTODATE;
3174 bi->bi_vcnt = 1;
3175 bi->bi_max_vecs = 1;
3176 bi->bi_idx = 0;
3177 bi->bi_io_vec = &sh->dev[i].vec;
3178 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3179 bi->bi_io_vec[0].bv_offset = 0;
3180 bi->bi_size = STRIPE_SIZE;
3181 bi->bi_next = NULL;
3182 if (rw == WRITE &&
3183 test_bit(R5_ReWrite, &sh->dev[i].flags))
3184 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3185 generic_make_request(bi);
3186 } else {
3187 if (rw == WRITE)
3188 set_bit(STRIPE_DEGRADED, &sh->state);
3189 pr_debug("skip op %ld on disc %d for sector %llu\n",
3190 bi->bi_rw, i, (unsigned long long)sh->sector);
3191 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3192 set_bit(STRIPE_HANDLE, &sh->state);
3197 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3199 if (sh->raid_conf->level == 6)
3200 handle_stripe6(sh, tmp_page);
3201 else
3202 handle_stripe5(sh);
3207 static void raid5_activate_delayed(raid5_conf_t *conf)
3209 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3210 while (!list_empty(&conf->delayed_list)) {
3211 struct list_head *l = conf->delayed_list.next;
3212 struct stripe_head *sh;
3213 sh = list_entry(l, struct stripe_head, lru);
3214 list_del_init(l);
3215 clear_bit(STRIPE_DELAYED, &sh->state);
3216 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3217 atomic_inc(&conf->preread_active_stripes);
3218 list_add_tail(&sh->lru, &conf->hold_list);
3220 } else
3221 blk_plug_device(conf->mddev->queue);
3224 static void activate_bit_delay(raid5_conf_t *conf)
3226 /* device_lock is held */
3227 struct list_head head;
3228 list_add(&head, &conf->bitmap_list);
3229 list_del_init(&conf->bitmap_list);
3230 while (!list_empty(&head)) {
3231 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3232 list_del_init(&sh->lru);
3233 atomic_inc(&sh->count);
3234 __release_stripe(conf, sh);
3238 static void unplug_slaves(mddev_t *mddev)
3240 raid5_conf_t *conf = mddev_to_conf(mddev);
3241 int i;
3243 rcu_read_lock();
3244 for (i=0; i<mddev->raid_disks; i++) {
3245 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3246 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3247 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3249 atomic_inc(&rdev->nr_pending);
3250 rcu_read_unlock();
3252 blk_unplug(r_queue);
3254 rdev_dec_pending(rdev, mddev);
3255 rcu_read_lock();
3258 rcu_read_unlock();
3261 static void raid5_unplug_device(struct request_queue *q)
3263 mddev_t *mddev = q->queuedata;
3264 raid5_conf_t *conf = mddev_to_conf(mddev);
3265 unsigned long flags;
3267 spin_lock_irqsave(&conf->device_lock, flags);
3269 if (blk_remove_plug(q)) {
3270 conf->seq_flush++;
3271 raid5_activate_delayed(conf);
3273 md_wakeup_thread(mddev->thread);
3275 spin_unlock_irqrestore(&conf->device_lock, flags);
3277 unplug_slaves(mddev);
3280 static int raid5_congested(void *data, int bits)
3282 mddev_t *mddev = data;
3283 raid5_conf_t *conf = mddev_to_conf(mddev);
3285 /* No difference between reads and writes. Just check
3286 * how busy the stripe_cache is
3288 if (conf->inactive_blocked)
3289 return 1;
3290 if (conf->quiesce)
3291 return 1;
3292 if (list_empty_careful(&conf->inactive_list))
3293 return 1;
3295 return 0;
3298 /* We want read requests to align with chunks where possible,
3299 * but write requests don't need to.
3301 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3303 mddev_t *mddev = q->queuedata;
3304 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3305 int max;
3306 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3307 unsigned int bio_sectors = bio->bi_size >> 9;
3309 if (bio_data_dir(bio) == WRITE)
3310 return biovec->bv_len; /* always allow writes to be mergeable */
3312 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3313 if (max < 0) max = 0;
3314 if (max <= biovec->bv_len && bio_sectors == 0)
3315 return biovec->bv_len;
3316 else
3317 return max;
3321 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3323 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3324 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3325 unsigned int bio_sectors = bio->bi_size >> 9;
3327 return chunk_sectors >=
3328 ((sector & (chunk_sectors - 1)) + bio_sectors);
3332 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3333 * later sampled by raid5d.
3335 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3337 unsigned long flags;
3339 spin_lock_irqsave(&conf->device_lock, flags);
3341 bi->bi_next = conf->retry_read_aligned_list;
3342 conf->retry_read_aligned_list = bi;
3344 spin_unlock_irqrestore(&conf->device_lock, flags);
3345 md_wakeup_thread(conf->mddev->thread);
3349 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3351 struct bio *bi;
3353 bi = conf->retry_read_aligned;
3354 if (bi) {
3355 conf->retry_read_aligned = NULL;
3356 return bi;
3358 bi = conf->retry_read_aligned_list;
3359 if(bi) {
3360 conf->retry_read_aligned_list = bi->bi_next;
3361 bi->bi_next = NULL;
3362 bi->bi_phys_segments = 1; /* biased count of active stripes */
3363 bi->bi_hw_segments = 0; /* count of processed stripes */
3366 return bi;
3371 * The "raid5_align_endio" should check if the read succeeded and if it
3372 * did, call bio_endio on the original bio (having bio_put the new bio
3373 * first).
3374 * If the read failed..
3376 static void raid5_align_endio(struct bio *bi, int error)
3378 struct bio* raid_bi = bi->bi_private;
3379 mddev_t *mddev;
3380 raid5_conf_t *conf;
3381 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3382 mdk_rdev_t *rdev;
3384 bio_put(bi);
3386 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3387 conf = mddev_to_conf(mddev);
3388 rdev = (void*)raid_bi->bi_next;
3389 raid_bi->bi_next = NULL;
3391 rdev_dec_pending(rdev, conf->mddev);
3393 if (!error && uptodate) {
3394 bio_endio(raid_bi, 0);
3395 if (atomic_dec_and_test(&conf->active_aligned_reads))
3396 wake_up(&conf->wait_for_stripe);
3397 return;
3401 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3403 add_bio_to_retry(raid_bi, conf);
3406 static int bio_fits_rdev(struct bio *bi)
3408 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3410 if ((bi->bi_size>>9) > q->max_sectors)
3411 return 0;
3412 blk_recount_segments(q, bi);
3413 if (bi->bi_phys_segments > q->max_phys_segments ||
3414 bi->bi_hw_segments > q->max_hw_segments)
3415 return 0;
3417 if (q->merge_bvec_fn)
3418 /* it's too hard to apply the merge_bvec_fn at this stage,
3419 * just just give up
3421 return 0;
3423 return 1;
3427 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3429 mddev_t *mddev = q->queuedata;
3430 raid5_conf_t *conf = mddev_to_conf(mddev);
3431 const unsigned int raid_disks = conf->raid_disks;
3432 const unsigned int data_disks = raid_disks - conf->max_degraded;
3433 unsigned int dd_idx, pd_idx;
3434 struct bio* align_bi;
3435 mdk_rdev_t *rdev;
3437 if (!in_chunk_boundary(mddev, raid_bio)) {
3438 pr_debug("chunk_aligned_read : non aligned\n");
3439 return 0;
3442 * use bio_clone to make a copy of the bio
3444 align_bi = bio_clone(raid_bio, GFP_NOIO);
3445 if (!align_bi)
3446 return 0;
3448 * set bi_end_io to a new function, and set bi_private to the
3449 * original bio.
3451 align_bi->bi_end_io = raid5_align_endio;
3452 align_bi->bi_private = raid_bio;
3454 * compute position
3456 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3457 raid_disks,
3458 data_disks,
3459 &dd_idx,
3460 &pd_idx,
3461 conf);
3463 rcu_read_lock();
3464 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3465 if (rdev && test_bit(In_sync, &rdev->flags)) {
3466 atomic_inc(&rdev->nr_pending);
3467 rcu_read_unlock();
3468 raid_bio->bi_next = (void*)rdev;
3469 align_bi->bi_bdev = rdev->bdev;
3470 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3471 align_bi->bi_sector += rdev->data_offset;
3473 if (!bio_fits_rdev(align_bi)) {
3474 /* too big in some way */
3475 bio_put(align_bi);
3476 rdev_dec_pending(rdev, mddev);
3477 return 0;
3480 spin_lock_irq(&conf->device_lock);
3481 wait_event_lock_irq(conf->wait_for_stripe,
3482 conf->quiesce == 0,
3483 conf->device_lock, /* nothing */);
3484 atomic_inc(&conf->active_aligned_reads);
3485 spin_unlock_irq(&conf->device_lock);
3487 generic_make_request(align_bi);
3488 return 1;
3489 } else {
3490 rcu_read_unlock();
3491 bio_put(align_bi);
3492 return 0;
3496 /* __get_priority_stripe - get the next stripe to process
3498 * Full stripe writes are allowed to pass preread active stripes up until
3499 * the bypass_threshold is exceeded. In general the bypass_count
3500 * increments when the handle_list is handled before the hold_list; however, it
3501 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3502 * stripe with in flight i/o. The bypass_count will be reset when the
3503 * head of the hold_list has changed, i.e. the head was promoted to the
3504 * handle_list.
3506 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3508 struct stripe_head *sh;
3510 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3511 __func__,
3512 list_empty(&conf->handle_list) ? "empty" : "busy",
3513 list_empty(&conf->hold_list) ? "empty" : "busy",
3514 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3516 if (!list_empty(&conf->handle_list)) {
3517 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3519 if (list_empty(&conf->hold_list))
3520 conf->bypass_count = 0;
3521 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3522 if (conf->hold_list.next == conf->last_hold)
3523 conf->bypass_count++;
3524 else {
3525 conf->last_hold = conf->hold_list.next;
3526 conf->bypass_count -= conf->bypass_threshold;
3527 if (conf->bypass_count < 0)
3528 conf->bypass_count = 0;
3531 } else if (!list_empty(&conf->hold_list) &&
3532 ((conf->bypass_threshold &&
3533 conf->bypass_count > conf->bypass_threshold) ||
3534 atomic_read(&conf->pending_full_writes) == 0)) {
3535 sh = list_entry(conf->hold_list.next,
3536 typeof(*sh), lru);
3537 conf->bypass_count -= conf->bypass_threshold;
3538 if (conf->bypass_count < 0)
3539 conf->bypass_count = 0;
3540 } else
3541 return NULL;
3543 list_del_init(&sh->lru);
3544 atomic_inc(&sh->count);
3545 BUG_ON(atomic_read(&sh->count) != 1);
3546 return sh;
3549 static int make_request(struct request_queue *q, struct bio * bi)
3551 mddev_t *mddev = q->queuedata;
3552 raid5_conf_t *conf = mddev_to_conf(mddev);
3553 unsigned int dd_idx, pd_idx;
3554 sector_t new_sector;
3555 sector_t logical_sector, last_sector;
3556 struct stripe_head *sh;
3557 const int rw = bio_data_dir(bi);
3558 int remaining;
3560 if (unlikely(bio_barrier(bi))) {
3561 bio_endio(bi, -EOPNOTSUPP);
3562 return 0;
3565 md_write_start(mddev, bi);
3567 disk_stat_inc(mddev->gendisk, ios[rw]);
3568 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3570 if (rw == READ &&
3571 mddev->reshape_position == MaxSector &&
3572 chunk_aligned_read(q,bi))
3573 return 0;
3575 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3576 last_sector = bi->bi_sector + (bi->bi_size>>9);
3577 bi->bi_next = NULL;
3578 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3580 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3581 DEFINE_WAIT(w);
3582 int disks, data_disks;
3584 retry:
3585 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3586 if (likely(conf->expand_progress == MaxSector))
3587 disks = conf->raid_disks;
3588 else {
3589 /* spinlock is needed as expand_progress may be
3590 * 64bit on a 32bit platform, and so it might be
3591 * possible to see a half-updated value
3592 * Ofcourse expand_progress could change after
3593 * the lock is dropped, so once we get a reference
3594 * to the stripe that we think it is, we will have
3595 * to check again.
3597 spin_lock_irq(&conf->device_lock);
3598 disks = conf->raid_disks;
3599 if (logical_sector >= conf->expand_progress)
3600 disks = conf->previous_raid_disks;
3601 else {
3602 if (logical_sector >= conf->expand_lo) {
3603 spin_unlock_irq(&conf->device_lock);
3604 schedule();
3605 goto retry;
3608 spin_unlock_irq(&conf->device_lock);
3610 data_disks = disks - conf->max_degraded;
3612 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3613 &dd_idx, &pd_idx, conf);
3614 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3615 (unsigned long long)new_sector,
3616 (unsigned long long)logical_sector);
3618 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3619 if (sh) {
3620 if (unlikely(conf->expand_progress != MaxSector)) {
3621 /* expansion might have moved on while waiting for a
3622 * stripe, so we must do the range check again.
3623 * Expansion could still move past after this
3624 * test, but as we are holding a reference to
3625 * 'sh', we know that if that happens,
3626 * STRIPE_EXPANDING will get set and the expansion
3627 * won't proceed until we finish with the stripe.
3629 int must_retry = 0;
3630 spin_lock_irq(&conf->device_lock);
3631 if (logical_sector < conf->expand_progress &&
3632 disks == conf->previous_raid_disks)
3633 /* mismatch, need to try again */
3634 must_retry = 1;
3635 spin_unlock_irq(&conf->device_lock);
3636 if (must_retry) {
3637 release_stripe(sh);
3638 goto retry;
3641 /* FIXME what if we get a false positive because these
3642 * are being updated.
3644 if (logical_sector >= mddev->suspend_lo &&
3645 logical_sector < mddev->suspend_hi) {
3646 release_stripe(sh);
3647 schedule();
3648 goto retry;
3651 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3652 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3653 /* Stripe is busy expanding or
3654 * add failed due to overlap. Flush everything
3655 * and wait a while
3657 raid5_unplug_device(mddev->queue);
3658 release_stripe(sh);
3659 schedule();
3660 goto retry;
3662 finish_wait(&conf->wait_for_overlap, &w);
3663 set_bit(STRIPE_HANDLE, &sh->state);
3664 clear_bit(STRIPE_DELAYED, &sh->state);
3665 release_stripe(sh);
3666 } else {
3667 /* cannot get stripe for read-ahead, just give-up */
3668 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3669 finish_wait(&conf->wait_for_overlap, &w);
3670 break;
3674 spin_lock_irq(&conf->device_lock);
3675 remaining = --bi->bi_phys_segments;
3676 spin_unlock_irq(&conf->device_lock);
3677 if (remaining == 0) {
3679 if ( rw == WRITE )
3680 md_write_end(mddev);
3682 bi->bi_end_io(bi,
3683 test_bit(BIO_UPTODATE, &bi->bi_flags)
3684 ? 0 : -EIO);
3686 return 0;
3689 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3691 /* reshaping is quite different to recovery/resync so it is
3692 * handled quite separately ... here.
3694 * On each call to sync_request, we gather one chunk worth of
3695 * destination stripes and flag them as expanding.
3696 * Then we find all the source stripes and request reads.
3697 * As the reads complete, handle_stripe will copy the data
3698 * into the destination stripe and release that stripe.
3700 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3701 struct stripe_head *sh;
3702 int pd_idx;
3703 sector_t first_sector, last_sector;
3704 int raid_disks = conf->previous_raid_disks;
3705 int data_disks = raid_disks - conf->max_degraded;
3706 int new_data_disks = conf->raid_disks - conf->max_degraded;
3707 int i;
3708 int dd_idx;
3709 sector_t writepos, safepos, gap;
3711 if (sector_nr == 0 &&
3712 conf->expand_progress != 0) {
3713 /* restarting in the middle, skip the initial sectors */
3714 sector_nr = conf->expand_progress;
3715 sector_div(sector_nr, new_data_disks);
3716 *skipped = 1;
3717 return sector_nr;
3720 /* we update the metadata when there is more than 3Meg
3721 * in the block range (that is rather arbitrary, should
3722 * probably be time based) or when the data about to be
3723 * copied would over-write the source of the data at
3724 * the front of the range.
3725 * i.e. one new_stripe forward from expand_progress new_maps
3726 * to after where expand_lo old_maps to
3728 writepos = conf->expand_progress +
3729 conf->chunk_size/512*(new_data_disks);
3730 sector_div(writepos, new_data_disks);
3731 safepos = conf->expand_lo;
3732 sector_div(safepos, data_disks);
3733 gap = conf->expand_progress - conf->expand_lo;
3735 if (writepos >= safepos ||
3736 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3737 /* Cannot proceed until we've updated the superblock... */
3738 wait_event(conf->wait_for_overlap,
3739 atomic_read(&conf->reshape_stripes)==0);
3740 mddev->reshape_position = conf->expand_progress;
3741 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3742 md_wakeup_thread(mddev->thread);
3743 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3744 kthread_should_stop());
3745 spin_lock_irq(&conf->device_lock);
3746 conf->expand_lo = mddev->reshape_position;
3747 spin_unlock_irq(&conf->device_lock);
3748 wake_up(&conf->wait_for_overlap);
3751 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3752 int j;
3753 int skipped = 0;
3754 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3755 sh = get_active_stripe(conf, sector_nr+i,
3756 conf->raid_disks, pd_idx, 0);
3757 set_bit(STRIPE_EXPANDING, &sh->state);
3758 atomic_inc(&conf->reshape_stripes);
3759 /* If any of this stripe is beyond the end of the old
3760 * array, then we need to zero those blocks
3762 for (j=sh->disks; j--;) {
3763 sector_t s;
3764 if (j == sh->pd_idx)
3765 continue;
3766 if (conf->level == 6 &&
3767 j == raid6_next_disk(sh->pd_idx, sh->disks))
3768 continue;
3769 s = compute_blocknr(sh, j);
3770 if (s < (mddev->array_size<<1)) {
3771 skipped = 1;
3772 continue;
3774 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3775 set_bit(R5_Expanded, &sh->dev[j].flags);
3776 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3778 if (!skipped) {
3779 set_bit(STRIPE_EXPAND_READY, &sh->state);
3780 set_bit(STRIPE_HANDLE, &sh->state);
3782 release_stripe(sh);
3784 spin_lock_irq(&conf->device_lock);
3785 conf->expand_progress = (sector_nr + i) * new_data_disks;
3786 spin_unlock_irq(&conf->device_lock);
3787 /* Ok, those stripe are ready. We can start scheduling
3788 * reads on the source stripes.
3789 * The source stripes are determined by mapping the first and last
3790 * block on the destination stripes.
3792 first_sector =
3793 raid5_compute_sector(sector_nr*(new_data_disks),
3794 raid_disks, data_disks,
3795 &dd_idx, &pd_idx, conf);
3796 last_sector =
3797 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3798 *(new_data_disks) -1,
3799 raid_disks, data_disks,
3800 &dd_idx, &pd_idx, conf);
3801 if (last_sector >= (mddev->size<<1))
3802 last_sector = (mddev->size<<1)-1;
3803 while (first_sector <= last_sector) {
3804 pd_idx = stripe_to_pdidx(first_sector, conf,
3805 conf->previous_raid_disks);
3806 sh = get_active_stripe(conf, first_sector,
3807 conf->previous_raid_disks, pd_idx, 0);
3808 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3809 set_bit(STRIPE_HANDLE, &sh->state);
3810 release_stripe(sh);
3811 first_sector += STRIPE_SECTORS;
3813 /* If this takes us to the resync_max point where we have to pause,
3814 * then we need to write out the superblock.
3816 sector_nr += conf->chunk_size>>9;
3817 if (sector_nr >= mddev->resync_max) {
3818 /* Cannot proceed until we've updated the superblock... */
3819 wait_event(conf->wait_for_overlap,
3820 atomic_read(&conf->reshape_stripes) == 0);
3821 mddev->reshape_position = conf->expand_progress;
3822 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3823 md_wakeup_thread(mddev->thread);
3824 wait_event(mddev->sb_wait,
3825 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3826 || kthread_should_stop());
3827 spin_lock_irq(&conf->device_lock);
3828 conf->expand_lo = mddev->reshape_position;
3829 spin_unlock_irq(&conf->device_lock);
3830 wake_up(&conf->wait_for_overlap);
3832 return conf->chunk_size>>9;
3835 /* FIXME go_faster isn't used */
3836 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3838 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3839 struct stripe_head *sh;
3840 int pd_idx;
3841 int raid_disks = conf->raid_disks;
3842 sector_t max_sector = mddev->size << 1;
3843 int sync_blocks;
3844 int still_degraded = 0;
3845 int i;
3847 if (sector_nr >= max_sector) {
3848 /* just being told to finish up .. nothing much to do */
3849 unplug_slaves(mddev);
3850 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3851 end_reshape(conf);
3852 return 0;
3855 if (mddev->curr_resync < max_sector) /* aborted */
3856 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3857 &sync_blocks, 1);
3858 else /* completed sync */
3859 conf->fullsync = 0;
3860 bitmap_close_sync(mddev->bitmap);
3862 return 0;
3865 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3866 return reshape_request(mddev, sector_nr, skipped);
3868 /* No need to check resync_max as we never do more than one
3869 * stripe, and as resync_max will always be on a chunk boundary,
3870 * if the check in md_do_sync didn't fire, there is no chance
3871 * of overstepping resync_max here
3874 /* if there is too many failed drives and we are trying
3875 * to resync, then assert that we are finished, because there is
3876 * nothing we can do.
3878 if (mddev->degraded >= conf->max_degraded &&
3879 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3880 sector_t rv = (mddev->size << 1) - sector_nr;
3881 *skipped = 1;
3882 return rv;
3884 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3885 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3886 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3887 /* we can skip this block, and probably more */
3888 sync_blocks /= STRIPE_SECTORS;
3889 *skipped = 1;
3890 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3894 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3896 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3897 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3898 if (sh == NULL) {
3899 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3900 /* make sure we don't swamp the stripe cache if someone else
3901 * is trying to get access
3903 schedule_timeout_uninterruptible(1);
3905 /* Need to check if array will still be degraded after recovery/resync
3906 * We don't need to check the 'failed' flag as when that gets set,
3907 * recovery aborts.
3909 for (i=0; i<mddev->raid_disks; i++)
3910 if (conf->disks[i].rdev == NULL)
3911 still_degraded = 1;
3913 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3915 spin_lock(&sh->lock);
3916 set_bit(STRIPE_SYNCING, &sh->state);
3917 clear_bit(STRIPE_INSYNC, &sh->state);
3918 spin_unlock(&sh->lock);
3920 handle_stripe(sh, NULL);
3921 release_stripe(sh);
3923 return STRIPE_SECTORS;
3926 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3928 /* We may not be able to submit a whole bio at once as there
3929 * may not be enough stripe_heads available.
3930 * We cannot pre-allocate enough stripe_heads as we may need
3931 * more than exist in the cache (if we allow ever large chunks).
3932 * So we do one stripe head at a time and record in
3933 * ->bi_hw_segments how many have been done.
3935 * We *know* that this entire raid_bio is in one chunk, so
3936 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3938 struct stripe_head *sh;
3939 int dd_idx, pd_idx;
3940 sector_t sector, logical_sector, last_sector;
3941 int scnt = 0;
3942 int remaining;
3943 int handled = 0;
3945 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3946 sector = raid5_compute_sector( logical_sector,
3947 conf->raid_disks,
3948 conf->raid_disks - conf->max_degraded,
3949 &dd_idx,
3950 &pd_idx,
3951 conf);
3952 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3954 for (; logical_sector < last_sector;
3955 logical_sector += STRIPE_SECTORS,
3956 sector += STRIPE_SECTORS,
3957 scnt++) {
3959 if (scnt < raid_bio->bi_hw_segments)
3960 /* already done this stripe */
3961 continue;
3963 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3965 if (!sh) {
3966 /* failed to get a stripe - must wait */
3967 raid_bio->bi_hw_segments = scnt;
3968 conf->retry_read_aligned = raid_bio;
3969 return handled;
3972 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3973 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3974 release_stripe(sh);
3975 raid_bio->bi_hw_segments = scnt;
3976 conf->retry_read_aligned = raid_bio;
3977 return handled;
3980 handle_stripe(sh, NULL);
3981 release_stripe(sh);
3982 handled++;
3984 spin_lock_irq(&conf->device_lock);
3985 remaining = --raid_bio->bi_phys_segments;
3986 spin_unlock_irq(&conf->device_lock);
3987 if (remaining == 0) {
3989 raid_bio->bi_end_io(raid_bio,
3990 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3991 ? 0 : -EIO);
3993 if (atomic_dec_and_test(&conf->active_aligned_reads))
3994 wake_up(&conf->wait_for_stripe);
3995 return handled;
4001 * This is our raid5 kernel thread.
4003 * We scan the hash table for stripes which can be handled now.
4004 * During the scan, completed stripes are saved for us by the interrupt
4005 * handler, so that they will not have to wait for our next wakeup.
4007 static void raid5d(mddev_t *mddev)
4009 struct stripe_head *sh;
4010 raid5_conf_t *conf = mddev_to_conf(mddev);
4011 int handled;
4013 pr_debug("+++ raid5d active\n");
4015 md_check_recovery(mddev);
4017 handled = 0;
4018 spin_lock_irq(&conf->device_lock);
4019 while (1) {
4020 struct bio *bio;
4022 if (conf->seq_flush != conf->seq_write) {
4023 int seq = conf->seq_flush;
4024 spin_unlock_irq(&conf->device_lock);
4025 bitmap_unplug(mddev->bitmap);
4026 spin_lock_irq(&conf->device_lock);
4027 conf->seq_write = seq;
4028 activate_bit_delay(conf);
4031 while ((bio = remove_bio_from_retry(conf))) {
4032 int ok;
4033 spin_unlock_irq(&conf->device_lock);
4034 ok = retry_aligned_read(conf, bio);
4035 spin_lock_irq(&conf->device_lock);
4036 if (!ok)
4037 break;
4038 handled++;
4041 sh = __get_priority_stripe(conf);
4043 if (!sh) {
4044 async_tx_issue_pending_all();
4045 break;
4047 spin_unlock_irq(&conf->device_lock);
4049 handled++;
4050 handle_stripe(sh, conf->spare_page);
4051 release_stripe(sh);
4053 spin_lock_irq(&conf->device_lock);
4055 pr_debug("%d stripes handled\n", handled);
4057 spin_unlock_irq(&conf->device_lock);
4059 unplug_slaves(mddev);
4061 pr_debug("--- raid5d inactive\n");
4064 static ssize_t
4065 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4067 raid5_conf_t *conf = mddev_to_conf(mddev);
4068 if (conf)
4069 return sprintf(page, "%d\n", conf->max_nr_stripes);
4070 else
4071 return 0;
4074 static ssize_t
4075 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4077 raid5_conf_t *conf = mddev_to_conf(mddev);
4078 unsigned long new;
4079 if (len >= PAGE_SIZE)
4080 return -EINVAL;
4081 if (!conf)
4082 return -ENODEV;
4084 if (strict_strtoul(page, 10, &new))
4085 return -EINVAL;
4086 if (new <= 16 || new > 32768)
4087 return -EINVAL;
4088 while (new < conf->max_nr_stripes) {
4089 if (drop_one_stripe(conf))
4090 conf->max_nr_stripes--;
4091 else
4092 break;
4094 md_allow_write(mddev);
4095 while (new > conf->max_nr_stripes) {
4096 if (grow_one_stripe(conf))
4097 conf->max_nr_stripes++;
4098 else break;
4100 return len;
4103 static struct md_sysfs_entry
4104 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4105 raid5_show_stripe_cache_size,
4106 raid5_store_stripe_cache_size);
4108 static ssize_t
4109 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4111 raid5_conf_t *conf = mddev_to_conf(mddev);
4112 if (conf)
4113 return sprintf(page, "%d\n", conf->bypass_threshold);
4114 else
4115 return 0;
4118 static ssize_t
4119 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4121 raid5_conf_t *conf = mddev_to_conf(mddev);
4122 unsigned long new;
4123 if (len >= PAGE_SIZE)
4124 return -EINVAL;
4125 if (!conf)
4126 return -ENODEV;
4128 if (strict_strtoul(page, 10, &new))
4129 return -EINVAL;
4130 if (new > conf->max_nr_stripes)
4131 return -EINVAL;
4132 conf->bypass_threshold = new;
4133 return len;
4136 static struct md_sysfs_entry
4137 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4138 S_IRUGO | S_IWUSR,
4139 raid5_show_preread_threshold,
4140 raid5_store_preread_threshold);
4142 static ssize_t
4143 stripe_cache_active_show(mddev_t *mddev, char *page)
4145 raid5_conf_t *conf = mddev_to_conf(mddev);
4146 if (conf)
4147 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4148 else
4149 return 0;
4152 static struct md_sysfs_entry
4153 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4155 static struct attribute *raid5_attrs[] = {
4156 &raid5_stripecache_size.attr,
4157 &raid5_stripecache_active.attr,
4158 &raid5_preread_bypass_threshold.attr,
4159 NULL,
4161 static struct attribute_group raid5_attrs_group = {
4162 .name = NULL,
4163 .attrs = raid5_attrs,
4166 static int run(mddev_t *mddev)
4168 raid5_conf_t *conf;
4169 int raid_disk, memory;
4170 mdk_rdev_t *rdev;
4171 struct disk_info *disk;
4172 struct list_head *tmp;
4173 int working_disks = 0;
4175 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4176 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4177 mdname(mddev), mddev->level);
4178 return -EIO;
4181 if (mddev->reshape_position != MaxSector) {
4182 /* Check that we can continue the reshape.
4183 * Currently only disks can change, it must
4184 * increase, and we must be past the point where
4185 * a stripe over-writes itself
4187 sector_t here_new, here_old;
4188 int old_disks;
4189 int max_degraded = (mddev->level == 5 ? 1 : 2);
4191 if (mddev->new_level != mddev->level ||
4192 mddev->new_layout != mddev->layout ||
4193 mddev->new_chunk != mddev->chunk_size) {
4194 printk(KERN_ERR "raid5: %s: unsupported reshape "
4195 "required - aborting.\n",
4196 mdname(mddev));
4197 return -EINVAL;
4199 if (mddev->delta_disks <= 0) {
4200 printk(KERN_ERR "raid5: %s: unsupported reshape "
4201 "(reduce disks) required - aborting.\n",
4202 mdname(mddev));
4203 return -EINVAL;
4205 old_disks = mddev->raid_disks - mddev->delta_disks;
4206 /* reshape_position must be on a new-stripe boundary, and one
4207 * further up in new geometry must map after here in old
4208 * geometry.
4210 here_new = mddev->reshape_position;
4211 if (sector_div(here_new, (mddev->chunk_size>>9)*
4212 (mddev->raid_disks - max_degraded))) {
4213 printk(KERN_ERR "raid5: reshape_position not "
4214 "on a stripe boundary\n");
4215 return -EINVAL;
4217 /* here_new is the stripe we will write to */
4218 here_old = mddev->reshape_position;
4219 sector_div(here_old, (mddev->chunk_size>>9)*
4220 (old_disks-max_degraded));
4221 /* here_old is the first stripe that we might need to read
4222 * from */
4223 if (here_new >= here_old) {
4224 /* Reading from the same stripe as writing to - bad */
4225 printk(KERN_ERR "raid5: reshape_position too early for "
4226 "auto-recovery - aborting.\n");
4227 return -EINVAL;
4229 printk(KERN_INFO "raid5: reshape will continue\n");
4230 /* OK, we should be able to continue; */
4234 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4235 if ((conf = mddev->private) == NULL)
4236 goto abort;
4237 if (mddev->reshape_position == MaxSector) {
4238 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4239 } else {
4240 conf->raid_disks = mddev->raid_disks;
4241 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4244 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4245 GFP_KERNEL);
4246 if (!conf->disks)
4247 goto abort;
4249 conf->mddev = mddev;
4251 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4252 goto abort;
4254 if (mddev->level == 6) {
4255 conf->spare_page = alloc_page(GFP_KERNEL);
4256 if (!conf->spare_page)
4257 goto abort;
4259 spin_lock_init(&conf->device_lock);
4260 mddev->queue->queue_lock = &conf->device_lock;
4261 init_waitqueue_head(&conf->wait_for_stripe);
4262 init_waitqueue_head(&conf->wait_for_overlap);
4263 INIT_LIST_HEAD(&conf->handle_list);
4264 INIT_LIST_HEAD(&conf->hold_list);
4265 INIT_LIST_HEAD(&conf->delayed_list);
4266 INIT_LIST_HEAD(&conf->bitmap_list);
4267 INIT_LIST_HEAD(&conf->inactive_list);
4268 atomic_set(&conf->active_stripes, 0);
4269 atomic_set(&conf->preread_active_stripes, 0);
4270 atomic_set(&conf->active_aligned_reads, 0);
4271 conf->bypass_threshold = BYPASS_THRESHOLD;
4273 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4275 rdev_for_each(rdev, tmp, mddev) {
4276 raid_disk = rdev->raid_disk;
4277 if (raid_disk >= conf->raid_disks
4278 || raid_disk < 0)
4279 continue;
4280 disk = conf->disks + raid_disk;
4282 disk->rdev = rdev;
4284 if (test_bit(In_sync, &rdev->flags)) {
4285 char b[BDEVNAME_SIZE];
4286 printk(KERN_INFO "raid5: device %s operational as raid"
4287 " disk %d\n", bdevname(rdev->bdev,b),
4288 raid_disk);
4289 working_disks++;
4294 * 0 for a fully functional array, 1 or 2 for a degraded array.
4296 mddev->degraded = conf->raid_disks - working_disks;
4297 conf->mddev = mddev;
4298 conf->chunk_size = mddev->chunk_size;
4299 conf->level = mddev->level;
4300 if (conf->level == 6)
4301 conf->max_degraded = 2;
4302 else
4303 conf->max_degraded = 1;
4304 conf->algorithm = mddev->layout;
4305 conf->max_nr_stripes = NR_STRIPES;
4306 conf->expand_progress = mddev->reshape_position;
4308 /* device size must be a multiple of chunk size */
4309 mddev->size &= ~(mddev->chunk_size/1024 -1);
4310 mddev->resync_max_sectors = mddev->size << 1;
4312 if (conf->level == 6 && conf->raid_disks < 4) {
4313 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4314 mdname(mddev), conf->raid_disks);
4315 goto abort;
4317 if (!conf->chunk_size || conf->chunk_size % 4) {
4318 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4319 conf->chunk_size, mdname(mddev));
4320 goto abort;
4322 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4323 printk(KERN_ERR
4324 "raid5: unsupported parity algorithm %d for %s\n",
4325 conf->algorithm, mdname(mddev));
4326 goto abort;
4328 if (mddev->degraded > conf->max_degraded) {
4329 printk(KERN_ERR "raid5: not enough operational devices for %s"
4330 " (%d/%d failed)\n",
4331 mdname(mddev), mddev->degraded, conf->raid_disks);
4332 goto abort;
4335 if (mddev->degraded > 0 &&
4336 mddev->recovery_cp != MaxSector) {
4337 if (mddev->ok_start_degraded)
4338 printk(KERN_WARNING
4339 "raid5: starting dirty degraded array: %s"
4340 "- data corruption possible.\n",
4341 mdname(mddev));
4342 else {
4343 printk(KERN_ERR
4344 "raid5: cannot start dirty degraded array for %s\n",
4345 mdname(mddev));
4346 goto abort;
4351 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4352 if (!mddev->thread) {
4353 printk(KERN_ERR
4354 "raid5: couldn't allocate thread for %s\n",
4355 mdname(mddev));
4356 goto abort;
4359 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4360 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4361 if (grow_stripes(conf, conf->max_nr_stripes)) {
4362 printk(KERN_ERR
4363 "raid5: couldn't allocate %dkB for buffers\n", memory);
4364 shrink_stripes(conf);
4365 md_unregister_thread(mddev->thread);
4366 goto abort;
4367 } else
4368 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4369 memory, mdname(mddev));
4371 if (mddev->degraded == 0)
4372 printk("raid5: raid level %d set %s active with %d out of %d"
4373 " devices, algorithm %d\n", conf->level, mdname(mddev),
4374 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4375 conf->algorithm);
4376 else
4377 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4378 " out of %d devices, algorithm %d\n", conf->level,
4379 mdname(mddev), mddev->raid_disks - mddev->degraded,
4380 mddev->raid_disks, conf->algorithm);
4382 print_raid5_conf(conf);
4384 if (conf->expand_progress != MaxSector) {
4385 printk("...ok start reshape thread\n");
4386 conf->expand_lo = conf->expand_progress;
4387 atomic_set(&conf->reshape_stripes, 0);
4388 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4389 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4390 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4391 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4392 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4393 "%s_reshape");
4396 /* read-ahead size must cover two whole stripes, which is
4397 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4400 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4401 int stripe = data_disks *
4402 (mddev->chunk_size / PAGE_SIZE);
4403 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4404 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4407 /* Ok, everything is just fine now */
4408 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4409 printk(KERN_WARNING
4410 "raid5: failed to create sysfs attributes for %s\n",
4411 mdname(mddev));
4413 mddev->queue->unplug_fn = raid5_unplug_device;
4414 mddev->queue->backing_dev_info.congested_data = mddev;
4415 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4417 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4418 conf->max_degraded);
4420 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4422 return 0;
4423 abort:
4424 if (conf) {
4425 print_raid5_conf(conf);
4426 safe_put_page(conf->spare_page);
4427 kfree(conf->disks);
4428 kfree(conf->stripe_hashtbl);
4429 kfree(conf);
4431 mddev->private = NULL;
4432 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4433 return -EIO;
4438 static int stop(mddev_t *mddev)
4440 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4442 md_unregister_thread(mddev->thread);
4443 mddev->thread = NULL;
4444 shrink_stripes(conf);
4445 kfree(conf->stripe_hashtbl);
4446 mddev->queue->backing_dev_info.congested_fn = NULL;
4447 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4448 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4449 kfree(conf->disks);
4450 kfree(conf);
4451 mddev->private = NULL;
4452 return 0;
4455 #ifdef DEBUG
4456 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4458 int i;
4460 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4461 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4462 seq_printf(seq, "sh %llu, count %d.\n",
4463 (unsigned long long)sh->sector, atomic_read(&sh->count));
4464 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4465 for (i = 0; i < sh->disks; i++) {
4466 seq_printf(seq, "(cache%d: %p %ld) ",
4467 i, sh->dev[i].page, sh->dev[i].flags);
4469 seq_printf(seq, "\n");
4472 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4474 struct stripe_head *sh;
4475 struct hlist_node *hn;
4476 int i;
4478 spin_lock_irq(&conf->device_lock);
4479 for (i = 0; i < NR_HASH; i++) {
4480 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4481 if (sh->raid_conf != conf)
4482 continue;
4483 print_sh(seq, sh);
4486 spin_unlock_irq(&conf->device_lock);
4488 #endif
4490 static void status (struct seq_file *seq, mddev_t *mddev)
4492 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4493 int i;
4495 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4496 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4497 for (i = 0; i < conf->raid_disks; i++)
4498 seq_printf (seq, "%s",
4499 conf->disks[i].rdev &&
4500 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4501 seq_printf (seq, "]");
4502 #ifdef DEBUG
4503 seq_printf (seq, "\n");
4504 printall(seq, conf);
4505 #endif
4508 static void print_raid5_conf (raid5_conf_t *conf)
4510 int i;
4511 struct disk_info *tmp;
4513 printk("RAID5 conf printout:\n");
4514 if (!conf) {
4515 printk("(conf==NULL)\n");
4516 return;
4518 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4519 conf->raid_disks - conf->mddev->degraded);
4521 for (i = 0; i < conf->raid_disks; i++) {
4522 char b[BDEVNAME_SIZE];
4523 tmp = conf->disks + i;
4524 if (tmp->rdev)
4525 printk(" disk %d, o:%d, dev:%s\n",
4526 i, !test_bit(Faulty, &tmp->rdev->flags),
4527 bdevname(tmp->rdev->bdev,b));
4531 static int raid5_spare_active(mddev_t *mddev)
4533 int i;
4534 raid5_conf_t *conf = mddev->private;
4535 struct disk_info *tmp;
4537 for (i = 0; i < conf->raid_disks; i++) {
4538 tmp = conf->disks + i;
4539 if (tmp->rdev
4540 && !test_bit(Faulty, &tmp->rdev->flags)
4541 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4542 unsigned long flags;
4543 spin_lock_irqsave(&conf->device_lock, flags);
4544 mddev->degraded--;
4545 spin_unlock_irqrestore(&conf->device_lock, flags);
4548 print_raid5_conf(conf);
4549 return 0;
4552 static int raid5_remove_disk(mddev_t *mddev, int number)
4554 raid5_conf_t *conf = mddev->private;
4555 int err = 0;
4556 mdk_rdev_t *rdev;
4557 struct disk_info *p = conf->disks + number;
4559 print_raid5_conf(conf);
4560 rdev = p->rdev;
4561 if (rdev) {
4562 if (test_bit(In_sync, &rdev->flags) ||
4563 atomic_read(&rdev->nr_pending)) {
4564 err = -EBUSY;
4565 goto abort;
4567 p->rdev = NULL;
4568 synchronize_rcu();
4569 if (atomic_read(&rdev->nr_pending)) {
4570 /* lost the race, try later */
4571 err = -EBUSY;
4572 p->rdev = rdev;
4575 abort:
4577 print_raid5_conf(conf);
4578 return err;
4581 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4583 raid5_conf_t *conf = mddev->private;
4584 int found = 0;
4585 int disk;
4586 struct disk_info *p;
4588 if (mddev->degraded > conf->max_degraded)
4589 /* no point adding a device */
4590 return 0;
4593 * find the disk ... but prefer rdev->saved_raid_disk
4594 * if possible.
4596 if (rdev->saved_raid_disk >= 0 &&
4597 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4598 disk = rdev->saved_raid_disk;
4599 else
4600 disk = 0;
4601 for ( ; disk < conf->raid_disks; disk++)
4602 if ((p=conf->disks + disk)->rdev == NULL) {
4603 clear_bit(In_sync, &rdev->flags);
4604 rdev->raid_disk = disk;
4605 found = 1;
4606 if (rdev->saved_raid_disk != disk)
4607 conf->fullsync = 1;
4608 rcu_assign_pointer(p->rdev, rdev);
4609 break;
4611 print_raid5_conf(conf);
4612 return found;
4615 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4617 /* no resync is happening, and there is enough space
4618 * on all devices, so we can resize.
4619 * We need to make sure resync covers any new space.
4620 * If the array is shrinking we should possibly wait until
4621 * any io in the removed space completes, but it hardly seems
4622 * worth it.
4624 raid5_conf_t *conf = mddev_to_conf(mddev);
4626 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4627 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4628 set_capacity(mddev->gendisk, mddev->array_size << 1);
4629 mddev->changed = 1;
4630 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4631 mddev->recovery_cp = mddev->size << 1;
4632 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4634 mddev->size = sectors /2;
4635 mddev->resync_max_sectors = sectors;
4636 return 0;
4639 #ifdef CONFIG_MD_RAID5_RESHAPE
4640 static int raid5_check_reshape(mddev_t *mddev)
4642 raid5_conf_t *conf = mddev_to_conf(mddev);
4643 int err;
4645 if (mddev->delta_disks < 0 ||
4646 mddev->new_level != mddev->level)
4647 return -EINVAL; /* Cannot shrink array or change level yet */
4648 if (mddev->delta_disks == 0)
4649 return 0; /* nothing to do */
4651 /* Can only proceed if there are plenty of stripe_heads.
4652 * We need a minimum of one full stripe,, and for sensible progress
4653 * it is best to have about 4 times that.
4654 * If we require 4 times, then the default 256 4K stripe_heads will
4655 * allow for chunk sizes up to 256K, which is probably OK.
4656 * If the chunk size is greater, user-space should request more
4657 * stripe_heads first.
4659 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4660 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4661 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4662 (mddev->chunk_size / STRIPE_SIZE)*4);
4663 return -ENOSPC;
4666 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4667 if (err)
4668 return err;
4670 if (mddev->degraded > conf->max_degraded)
4671 return -EINVAL;
4672 /* looks like we might be able to manage this */
4673 return 0;
4676 static int raid5_start_reshape(mddev_t *mddev)
4678 raid5_conf_t *conf = mddev_to_conf(mddev);
4679 mdk_rdev_t *rdev;
4680 struct list_head *rtmp;
4681 int spares = 0;
4682 int added_devices = 0;
4683 unsigned long flags;
4685 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4686 return -EBUSY;
4688 rdev_for_each(rdev, rtmp, mddev)
4689 if (rdev->raid_disk < 0 &&
4690 !test_bit(Faulty, &rdev->flags))
4691 spares++;
4693 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4694 /* Not enough devices even to make a degraded array
4695 * of that size
4697 return -EINVAL;
4699 atomic_set(&conf->reshape_stripes, 0);
4700 spin_lock_irq(&conf->device_lock);
4701 conf->previous_raid_disks = conf->raid_disks;
4702 conf->raid_disks += mddev->delta_disks;
4703 conf->expand_progress = 0;
4704 conf->expand_lo = 0;
4705 spin_unlock_irq(&conf->device_lock);
4707 /* Add some new drives, as many as will fit.
4708 * We know there are enough to make the newly sized array work.
4710 rdev_for_each(rdev, rtmp, mddev)
4711 if (rdev->raid_disk < 0 &&
4712 !test_bit(Faulty, &rdev->flags)) {
4713 if (raid5_add_disk(mddev, rdev)) {
4714 char nm[20];
4715 set_bit(In_sync, &rdev->flags);
4716 added_devices++;
4717 rdev->recovery_offset = 0;
4718 sprintf(nm, "rd%d", rdev->raid_disk);
4719 if (sysfs_create_link(&mddev->kobj,
4720 &rdev->kobj, nm))
4721 printk(KERN_WARNING
4722 "raid5: failed to create "
4723 " link %s for %s\n",
4724 nm, mdname(mddev));
4725 } else
4726 break;
4729 spin_lock_irqsave(&conf->device_lock, flags);
4730 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4731 spin_unlock_irqrestore(&conf->device_lock, flags);
4732 mddev->raid_disks = conf->raid_disks;
4733 mddev->reshape_position = 0;
4734 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4736 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4737 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4738 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4739 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4740 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4741 "%s_reshape");
4742 if (!mddev->sync_thread) {
4743 mddev->recovery = 0;
4744 spin_lock_irq(&conf->device_lock);
4745 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4746 conf->expand_progress = MaxSector;
4747 spin_unlock_irq(&conf->device_lock);
4748 return -EAGAIN;
4750 md_wakeup_thread(mddev->sync_thread);
4751 md_new_event(mddev);
4752 return 0;
4754 #endif
4756 static void end_reshape(raid5_conf_t *conf)
4758 struct block_device *bdev;
4760 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4761 conf->mddev->array_size = conf->mddev->size *
4762 (conf->raid_disks - conf->max_degraded);
4763 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4764 conf->mddev->changed = 1;
4766 bdev = bdget_disk(conf->mddev->gendisk, 0);
4767 if (bdev) {
4768 mutex_lock(&bdev->bd_inode->i_mutex);
4769 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4770 mutex_unlock(&bdev->bd_inode->i_mutex);
4771 bdput(bdev);
4773 spin_lock_irq(&conf->device_lock);
4774 conf->expand_progress = MaxSector;
4775 spin_unlock_irq(&conf->device_lock);
4776 conf->mddev->reshape_position = MaxSector;
4778 /* read-ahead size must cover two whole stripes, which is
4779 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4782 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4783 int stripe = data_disks *
4784 (conf->mddev->chunk_size / PAGE_SIZE);
4785 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4786 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4791 static void raid5_quiesce(mddev_t *mddev, int state)
4793 raid5_conf_t *conf = mddev_to_conf(mddev);
4795 switch(state) {
4796 case 2: /* resume for a suspend */
4797 wake_up(&conf->wait_for_overlap);
4798 break;
4800 case 1: /* stop all writes */
4801 spin_lock_irq(&conf->device_lock);
4802 conf->quiesce = 1;
4803 wait_event_lock_irq(conf->wait_for_stripe,
4804 atomic_read(&conf->active_stripes) == 0 &&
4805 atomic_read(&conf->active_aligned_reads) == 0,
4806 conf->device_lock, /* nothing */);
4807 spin_unlock_irq(&conf->device_lock);
4808 break;
4810 case 0: /* re-enable writes */
4811 spin_lock_irq(&conf->device_lock);
4812 conf->quiesce = 0;
4813 wake_up(&conf->wait_for_stripe);
4814 wake_up(&conf->wait_for_overlap);
4815 spin_unlock_irq(&conf->device_lock);
4816 break;
4820 static struct mdk_personality raid6_personality =
4822 .name = "raid6",
4823 .level = 6,
4824 .owner = THIS_MODULE,
4825 .make_request = make_request,
4826 .run = run,
4827 .stop = stop,
4828 .status = status,
4829 .error_handler = error,
4830 .hot_add_disk = raid5_add_disk,
4831 .hot_remove_disk= raid5_remove_disk,
4832 .spare_active = raid5_spare_active,
4833 .sync_request = sync_request,
4834 .resize = raid5_resize,
4835 #ifdef CONFIG_MD_RAID5_RESHAPE
4836 .check_reshape = raid5_check_reshape,
4837 .start_reshape = raid5_start_reshape,
4838 #endif
4839 .quiesce = raid5_quiesce,
4841 static struct mdk_personality raid5_personality =
4843 .name = "raid5",
4844 .level = 5,
4845 .owner = THIS_MODULE,
4846 .make_request = make_request,
4847 .run = run,
4848 .stop = stop,
4849 .status = status,
4850 .error_handler = error,
4851 .hot_add_disk = raid5_add_disk,
4852 .hot_remove_disk= raid5_remove_disk,
4853 .spare_active = raid5_spare_active,
4854 .sync_request = sync_request,
4855 .resize = raid5_resize,
4856 #ifdef CONFIG_MD_RAID5_RESHAPE
4857 .check_reshape = raid5_check_reshape,
4858 .start_reshape = raid5_start_reshape,
4859 #endif
4860 .quiesce = raid5_quiesce,
4863 static struct mdk_personality raid4_personality =
4865 .name = "raid4",
4866 .level = 4,
4867 .owner = THIS_MODULE,
4868 .make_request = make_request,
4869 .run = run,
4870 .stop = stop,
4871 .status = status,
4872 .error_handler = error,
4873 .hot_add_disk = raid5_add_disk,
4874 .hot_remove_disk= raid5_remove_disk,
4875 .spare_active = raid5_spare_active,
4876 .sync_request = sync_request,
4877 .resize = raid5_resize,
4878 #ifdef CONFIG_MD_RAID5_RESHAPE
4879 .check_reshape = raid5_check_reshape,
4880 .start_reshape = raid5_start_reshape,
4881 #endif
4882 .quiesce = raid5_quiesce,
4885 static int __init raid5_init(void)
4887 int e;
4889 e = raid6_select_algo();
4890 if ( e )
4891 return e;
4892 register_md_personality(&raid6_personality);
4893 register_md_personality(&raid5_personality);
4894 register_md_personality(&raid4_personality);
4895 return 0;
4898 static void raid5_exit(void)
4900 unregister_md_personality(&raid6_personality);
4901 unregister_md_personality(&raid5_personality);
4902 unregister_md_personality(&raid4_personality);
4905 module_init(raid5_init);
4906 module_exit(raid5_exit);
4907 MODULE_LICENSE("GPL");
4908 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4909 MODULE_ALIAS("md-raid5");
4910 MODULE_ALIAS("md-raid4");
4911 MODULE_ALIAS("md-level-5");
4912 MODULE_ALIAS("md-level-4");
4913 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4914 MODULE_ALIAS("md-raid6");
4915 MODULE_ALIAS("md-level-6");
4917 /* This used to be two separate modules, they were: */
4918 MODULE_ALIAS("raid5");
4919 MODULE_ALIAS("raid6");