2 * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3 * multifunction chip. Currently works with the Omnivision OV7670
6 * The data sheet for this device can be found at:
7 * http://www.marvell.com/products/pcconn/88ALP01.jsp
9 * Copyright 2006 One Laptop Per Child Association, Inc.
10 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
12 * Written by Jonathan Corbet, corbet@lwn.net.
14 * This file may be distributed under the terms of the GNU General
15 * Public License, version 2.
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
22 #include <linux/pci.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/videodev2.h>
27 #include <media/v4l2-common.h>
28 #include <media/v4l2-chip-ident.h>
29 #include <linux/device.h>
30 #include <linux/wait.h>
31 #include <linux/list.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/delay.h>
34 #include <linux/debugfs.h>
35 #include <linux/jiffies.h>
36 #include <linux/vmalloc.h>
38 #include <asm/uaccess.h>
41 #include "cafe_ccic-regs.h"
43 #define CAFE_VERSION 0x000002
49 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
50 MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
51 MODULE_LICENSE("GPL");
52 MODULE_SUPPORTED_DEVICE("Video");
55 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
56 * we must have physically contiguous buffers to bring frames into.
57 * These parameters control how many buffers we use, whether we
58 * allocate them at load time (better chance of success, but nails down
59 * memory) or when somebody tries to use the camera (riskier), and,
60 * for load-time allocation, how big they should be.
62 * The controller can cycle through three buffers. We could use
63 * more by flipping pointers around, but it probably makes little
67 #define MAX_DMA_BUFS 3
68 static int alloc_bufs_at_read
;
69 module_param(alloc_bufs_at_read
, bool, 0444);
70 MODULE_PARM_DESC(alloc_bufs_at_read
,
71 "Non-zero value causes DMA buffers to be allocated when the "
72 "video capture device is read, rather than at module load "
73 "time. This saves memory, but decreases the chances of "
74 "successfully getting those buffers.");
76 static int n_dma_bufs
= 3;
77 module_param(n_dma_bufs
, uint
, 0644);
78 MODULE_PARM_DESC(n_dma_bufs
,
79 "The number of DMA buffers to allocate. Can be either two "
80 "(saves memory, makes timing tighter) or three.");
82 static int dma_buf_size
= VGA_WIDTH
* VGA_HEIGHT
* 2; /* Worst case */
83 module_param(dma_buf_size
, uint
, 0444);
84 MODULE_PARM_DESC(dma_buf_size
,
85 "The size of the allocated DMA buffers. If actual operating "
86 "parameters require larger buffers, an attempt to reallocate "
89 static int min_buffers
= 1;
90 module_param(min_buffers
, uint
, 0644);
91 MODULE_PARM_DESC(min_buffers
,
92 "The minimum number of streaming I/O buffers we are willing "
95 static int max_buffers
= 10;
96 module_param(max_buffers
, uint
, 0644);
97 MODULE_PARM_DESC(max_buffers
,
98 "The maximum number of streaming I/O buffers an application "
99 "will be allowed to allocate. These buffers are big and live "
100 "in vmalloc space.");
103 module_param(flip
, bool, 0444);
104 MODULE_PARM_DESC(flip
,
105 "If set, the sensor will be instructed to flip the image "
110 S_NOTREADY
, /* Not yet initialized */
111 S_IDLE
, /* Just hanging around */
112 S_FLAKED
, /* Some sort of problem */
113 S_SINGLEREAD
, /* In read() */
114 S_SPECREAD
, /* Speculative read (for future read()) */
115 S_STREAMING
/* Streaming data */
119 * Tracking of streaming I/O buffers.
121 struct cafe_sio_buffer
{
122 struct list_head list
;
123 struct v4l2_buffer v4lbuf
;
124 char *buffer
; /* Where it lives in kernel space */
126 struct cafe_camera
*cam
;
130 * A description of one of our devices.
131 * Locking: controlled by s_mutex. Certain fields, however, require
132 * the dev_lock spinlock; they are marked as such by comments.
133 * dev_lock is also required for access to device registers.
137 enum cafe_state state
;
138 unsigned long flags
; /* Buffer status, mainly (dev_lock) */
139 int users
; /* How many open FDs */
140 struct file
*owner
; /* Who has data access (v4l2) */
143 * Subsystem structures.
145 struct pci_dev
*pdev
;
146 struct video_device v4ldev
;
147 struct i2c_adapter i2c_adapter
;
148 struct i2c_client
*sensor
;
150 unsigned char __iomem
*regs
;
151 struct list_head dev_list
; /* link to other devices */
154 unsigned int nbufs
; /* How many are alloc'd */
155 int next_buf
; /* Next to consume (dev_lock) */
156 unsigned int dma_buf_size
; /* allocated size */
157 void *dma_bufs
[MAX_DMA_BUFS
]; /* Internal buffer addresses */
158 dma_addr_t dma_handles
[MAX_DMA_BUFS
]; /* Buffer bus addresses */
159 unsigned int specframes
; /* Unconsumed spec frames (dev_lock) */
160 unsigned int sequence
; /* Frame sequence number */
161 unsigned int buf_seq
[MAX_DMA_BUFS
]; /* Sequence for individual buffers */
163 /* Streaming buffers */
164 unsigned int n_sbufs
; /* How many we have */
165 struct cafe_sio_buffer
*sb_bufs
; /* The array of housekeeping structs */
166 struct list_head sb_avail
; /* Available for data (we own) (dev_lock) */
167 struct list_head sb_full
; /* With data (user space owns) (dev_lock) */
168 struct tasklet_struct s_tasklet
;
170 /* Current operating parameters */
171 u32 sensor_type
; /* Currently ov7670 only */
172 struct v4l2_pix_format pix_format
;
175 struct mutex s_mutex
; /* Access to this structure */
176 spinlock_t dev_lock
; /* Access to device */
179 wait_queue_head_t smbus_wait
; /* Waiting on i2c events */
180 wait_queue_head_t iowait
; /* Waiting on frame data */
181 #ifdef CONFIG_VIDEO_ADV_DEBUG
182 struct dentry
*dfs_regs
;
183 struct dentry
*dfs_cam_regs
;
188 * Status flags. Always manipulated with bit operations.
190 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
191 #define CF_BUF1_VALID 1
192 #define CF_BUF2_VALID 2
193 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
194 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
199 * Start over with DMA buffers - dev_lock needed.
201 static void cafe_reset_buffers(struct cafe_camera
*cam
)
206 for (i
= 0; i
< cam
->nbufs
; i
++)
207 clear_bit(i
, &cam
->flags
);
211 static inline int cafe_needs_config(struct cafe_camera
*cam
)
213 return test_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
216 static void cafe_set_config_needed(struct cafe_camera
*cam
, int needed
)
219 set_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
221 clear_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
228 * Debugging and related.
230 #define cam_err(cam, fmt, arg...) \
231 dev_err(&(cam)->pdev->dev, fmt, ##arg);
232 #define cam_warn(cam, fmt, arg...) \
233 dev_warn(&(cam)->pdev->dev, fmt, ##arg);
234 #define cam_dbg(cam, fmt, arg...) \
235 dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
238 /* ---------------------------------------------------------------------*/
240 * We keep a simple list of known devices to search at open time.
242 static LIST_HEAD(cafe_dev_list
);
243 static DEFINE_MUTEX(cafe_dev_list_lock
);
245 static void cafe_add_dev(struct cafe_camera
*cam
)
247 mutex_lock(&cafe_dev_list_lock
);
248 list_add_tail(&cam
->dev_list
, &cafe_dev_list
);
249 mutex_unlock(&cafe_dev_list_lock
);
252 static void cafe_remove_dev(struct cafe_camera
*cam
)
254 mutex_lock(&cafe_dev_list_lock
);
255 list_del(&cam
->dev_list
);
256 mutex_unlock(&cafe_dev_list_lock
);
259 static struct cafe_camera
*cafe_find_dev(int minor
)
261 struct cafe_camera
*cam
;
263 mutex_lock(&cafe_dev_list_lock
);
264 list_for_each_entry(cam
, &cafe_dev_list
, dev_list
) {
265 if (cam
->v4ldev
.minor
== minor
)
270 mutex_unlock(&cafe_dev_list_lock
);
275 static struct cafe_camera
*cafe_find_by_pdev(struct pci_dev
*pdev
)
277 struct cafe_camera
*cam
;
279 mutex_lock(&cafe_dev_list_lock
);
280 list_for_each_entry(cam
, &cafe_dev_list
, dev_list
) {
281 if (cam
->pdev
== pdev
)
286 mutex_unlock(&cafe_dev_list_lock
);
291 /* ------------------------------------------------------------------------ */
293 * Device register I/O
295 static inline void cafe_reg_write(struct cafe_camera
*cam
, unsigned int reg
,
298 iowrite32(val
, cam
->regs
+ reg
);
301 static inline unsigned int cafe_reg_read(struct cafe_camera
*cam
,
304 return ioread32(cam
->regs
+ reg
);
308 static inline void cafe_reg_write_mask(struct cafe_camera
*cam
, unsigned int reg
,
309 unsigned int val
, unsigned int mask
)
311 unsigned int v
= cafe_reg_read(cam
, reg
);
313 v
= (v
& ~mask
) | (val
& mask
);
314 cafe_reg_write(cam
, reg
, v
);
317 static inline void cafe_reg_clear_bit(struct cafe_camera
*cam
,
318 unsigned int reg
, unsigned int val
)
320 cafe_reg_write_mask(cam
, reg
, 0, val
);
323 static inline void cafe_reg_set_bit(struct cafe_camera
*cam
,
324 unsigned int reg
, unsigned int val
)
326 cafe_reg_write_mask(cam
, reg
, val
, val
);
331 /* -------------------------------------------------------------------- */
333 * The I2C/SMBUS interface to the camera itself starts here. The
334 * controller handles SMBUS itself, presenting a relatively simple register
335 * interface; all we have to do is to tell it where to route the data.
337 #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
339 static int cafe_smbus_write_done(struct cafe_camera
*cam
)
345 * We must delay after the interrupt, or the controller gets confused
346 * and never does give us good status. Fortunately, we don't do this
350 spin_lock_irqsave(&cam
->dev_lock
, flags
);
351 c1
= cafe_reg_read(cam
, REG_TWSIC1
);
352 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
353 return (c1
& (TWSIC1_WSTAT
|TWSIC1_ERROR
)) != TWSIC1_WSTAT
;
356 static int cafe_smbus_write_data(struct cafe_camera
*cam
,
357 u16 addr
, u8 command
, u8 value
)
361 DEFINE_WAIT(the_wait
);
363 spin_lock_irqsave(&cam
->dev_lock
, flags
);
364 rval
= TWSIC0_EN
| ((addr
<< TWSIC0_SID_SHIFT
) & TWSIC0_SID
);
365 rval
|= TWSIC0_OVMAGIC
; /* Make OV sensors work */
367 * Marvell sez set clkdiv to all 1's for now.
369 rval
|= TWSIC0_CLKDIV
;
370 cafe_reg_write(cam
, REG_TWSIC0
, rval
);
371 (void) cafe_reg_read(cam
, REG_TWSIC1
); /* force write */
372 rval
= value
| ((command
<< TWSIC1_ADDR_SHIFT
) & TWSIC1_ADDR
);
373 cafe_reg_write(cam
, REG_TWSIC1
, rval
);
374 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
377 * Time to wait for the write to complete. THIS IS A RACY
378 * WAY TO DO IT, but the sad fact is that reading the TWSIC1
379 * register too quickly after starting the operation sends
380 * the device into a place that may be kinder and better, but
381 * which is absolutely useless for controlling the sensor. In
382 * practice we have plenty of time to get into our sleep state
383 * before the interrupt hits, and the worst case is that we
384 * time out and then see that things completed, so this seems
385 * the best way for now.
388 prepare_to_wait(&cam
->smbus_wait
, &the_wait
,
389 TASK_UNINTERRUPTIBLE
);
390 schedule_timeout(1); /* even 1 jiffy is too long */
391 finish_wait(&cam
->smbus_wait
, &the_wait
);
392 } while (!cafe_smbus_write_done(cam
));
394 #ifdef IF_THE_CAFE_HARDWARE_WORKED_RIGHT
395 wait_event_timeout(cam
->smbus_wait
, cafe_smbus_write_done(cam
),
398 spin_lock_irqsave(&cam
->dev_lock
, flags
);
399 rval
= cafe_reg_read(cam
, REG_TWSIC1
);
400 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
402 if (rval
& TWSIC1_WSTAT
) {
403 cam_err(cam
, "SMBUS write (%02x/%02x/%02x) timed out\n", addr
,
407 if (rval
& TWSIC1_ERROR
) {
408 cam_err(cam
, "SMBUS write (%02x/%02x/%02x) error\n", addr
,
417 static int cafe_smbus_read_done(struct cafe_camera
*cam
)
423 * We must delay after the interrupt, or the controller gets confused
424 * and never does give us good status. Fortunately, we don't do this
428 spin_lock_irqsave(&cam
->dev_lock
, flags
);
429 c1
= cafe_reg_read(cam
, REG_TWSIC1
);
430 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
431 return c1
& (TWSIC1_RVALID
|TWSIC1_ERROR
);
436 static int cafe_smbus_read_data(struct cafe_camera
*cam
,
437 u16 addr
, u8 command
, u8
*value
)
442 spin_lock_irqsave(&cam
->dev_lock
, flags
);
443 rval
= TWSIC0_EN
| ((addr
<< TWSIC0_SID_SHIFT
) & TWSIC0_SID
);
444 rval
|= TWSIC0_OVMAGIC
; /* Make OV sensors work */
446 * Marvel sez set clkdiv to all 1's for now.
448 rval
|= TWSIC0_CLKDIV
;
449 cafe_reg_write(cam
, REG_TWSIC0
, rval
);
450 (void) cafe_reg_read(cam
, REG_TWSIC1
); /* force write */
451 rval
= TWSIC1_READ
| ((command
<< TWSIC1_ADDR_SHIFT
) & TWSIC1_ADDR
);
452 cafe_reg_write(cam
, REG_TWSIC1
, rval
);
453 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
455 wait_event_timeout(cam
->smbus_wait
,
456 cafe_smbus_read_done(cam
), CAFE_SMBUS_TIMEOUT
);
457 spin_lock_irqsave(&cam
->dev_lock
, flags
);
458 rval
= cafe_reg_read(cam
, REG_TWSIC1
);
459 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
461 if (rval
& TWSIC1_ERROR
) {
462 cam_err(cam
, "SMBUS read (%02x/%02x) error\n", addr
, command
);
465 if (! (rval
& TWSIC1_RVALID
)) {
466 cam_err(cam
, "SMBUS read (%02x/%02x) timed out\n", addr
,
470 *value
= rval
& 0xff;
475 * Perform a transfer over SMBUS. This thing is called under
476 * the i2c bus lock, so we shouldn't race with ourselves...
478 static int cafe_smbus_xfer(struct i2c_adapter
*adapter
, u16 addr
,
479 unsigned short flags
, char rw
, u8 command
,
480 int size
, union i2c_smbus_data
*data
)
482 struct cafe_camera
*cam
= i2c_get_adapdata(adapter
);
486 * Refuse to talk to anything but OV cam chips. We should
487 * never even see an attempt to do so, but one never knows.
489 if (cam
->sensor
&& addr
!= cam
->sensor
->addr
) {
490 cam_err(cam
, "funky smbus addr %d\n", addr
);
494 * This interface would appear to only do byte data ops. OK
495 * it can do word too, but the cam chip has no use for that.
497 if (size
!= I2C_SMBUS_BYTE_DATA
) {
498 cam_err(cam
, "funky xfer size %d\n", size
);
502 if (rw
== I2C_SMBUS_WRITE
)
503 ret
= cafe_smbus_write_data(cam
, addr
, command
, data
->byte
);
504 else if (rw
== I2C_SMBUS_READ
)
505 ret
= cafe_smbus_read_data(cam
, addr
, command
, &data
->byte
);
510 static void cafe_smbus_enable_irq(struct cafe_camera
*cam
)
514 spin_lock_irqsave(&cam
->dev_lock
, flags
);
515 cafe_reg_set_bit(cam
, REG_IRQMASK
, TWSIIRQS
);
516 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
519 static u32
cafe_smbus_func(struct i2c_adapter
*adapter
)
521 return I2C_FUNC_SMBUS_READ_BYTE_DATA
|
522 I2C_FUNC_SMBUS_WRITE_BYTE_DATA
;
525 static struct i2c_algorithm cafe_smbus_algo
= {
526 .smbus_xfer
= cafe_smbus_xfer
,
527 .functionality
= cafe_smbus_func
530 /* Somebody is on the bus */
531 static int cafe_cam_init(struct cafe_camera
*cam
);
532 static void cafe_ctlr_stop_dma(struct cafe_camera
*cam
);
533 static void cafe_ctlr_power_down(struct cafe_camera
*cam
);
535 static int cafe_smbus_attach(struct i2c_client
*client
)
537 struct cafe_camera
*cam
= i2c_get_adapdata(client
->adapter
);
540 * Don't talk to chips we don't recognize.
542 if (client
->driver
->id
== I2C_DRIVERID_OV7670
) {
543 cam
->sensor
= client
;
544 return cafe_cam_init(cam
);
549 static int cafe_smbus_detach(struct i2c_client
*client
)
551 struct cafe_camera
*cam
= i2c_get_adapdata(client
->adapter
);
553 if (cam
->sensor
== client
) {
554 cafe_ctlr_stop_dma(cam
);
555 cafe_ctlr_power_down(cam
);
556 cam_err(cam
, "lost the sensor!\n");
557 cam
->sensor
= NULL
; /* Bummer, no camera */
558 cam
->state
= S_NOTREADY
;
563 static int cafe_smbus_setup(struct cafe_camera
*cam
)
565 struct i2c_adapter
*adap
= &cam
->i2c_adapter
;
568 cafe_smbus_enable_irq(cam
);
569 adap
->id
= I2C_HW_SMBUS_CAFE
;
570 adap
->class = I2C_CLASS_CAM_DIGITAL
;
571 adap
->owner
= THIS_MODULE
;
572 adap
->client_register
= cafe_smbus_attach
;
573 adap
->client_unregister
= cafe_smbus_detach
;
574 adap
->algo
= &cafe_smbus_algo
;
575 strcpy(adap
->name
, "cafe_ccic");
576 adap
->dev
.parent
= &cam
->pdev
->dev
;
577 i2c_set_adapdata(adap
, cam
);
578 ret
= i2c_add_adapter(adap
);
580 printk(KERN_ERR
"Unable to register cafe i2c adapter\n");
584 static void cafe_smbus_shutdown(struct cafe_camera
*cam
)
586 i2c_del_adapter(&cam
->i2c_adapter
);
590 /* ------------------------------------------------------------------- */
592 * Deal with the controller.
596 * Do everything we think we need to have the interface operating
597 * according to the desired format.
599 static void cafe_ctlr_dma(struct cafe_camera
*cam
)
602 * Store the first two Y buffers (we aren't supporting
603 * planar formats for now, so no UV bufs). Then either
604 * set the third if it exists, or tell the controller
607 cafe_reg_write(cam
, REG_Y0BAR
, cam
->dma_handles
[0]);
608 cafe_reg_write(cam
, REG_Y1BAR
, cam
->dma_handles
[1]);
609 if (cam
->nbufs
> 2) {
610 cafe_reg_write(cam
, REG_Y2BAR
, cam
->dma_handles
[2]);
611 cafe_reg_clear_bit(cam
, REG_CTRL1
, C1_TWOBUFS
);
614 cafe_reg_set_bit(cam
, REG_CTRL1
, C1_TWOBUFS
);
615 cafe_reg_write(cam
, REG_UBAR
, 0); /* 32 bits only for now */
618 static void cafe_ctlr_image(struct cafe_camera
*cam
)
621 struct v4l2_pix_format
*fmt
= &cam
->pix_format
;
623 imgsz
= ((fmt
->height
<< IMGSZ_V_SHIFT
) & IMGSZ_V_MASK
) |
624 (fmt
->bytesperline
& IMGSZ_H_MASK
);
625 cafe_reg_write(cam
, REG_IMGSIZE
, imgsz
);
626 cafe_reg_write(cam
, REG_IMGOFFSET
, 0);
627 /* YPITCH just drops the last two bits */
628 cafe_reg_write_mask(cam
, REG_IMGPITCH
, fmt
->bytesperline
,
631 * Tell the controller about the image format we are using.
633 switch (cam
->pix_format
.pixelformat
) {
634 case V4L2_PIX_FMT_YUYV
:
635 cafe_reg_write_mask(cam
, REG_CTRL0
,
636 C0_DF_YUV
|C0_YUV_PACKED
|C0_YUVE_YUYV
,
640 case V4L2_PIX_FMT_RGB444
:
641 cafe_reg_write_mask(cam
, REG_CTRL0
,
642 C0_DF_RGB
|C0_RGBF_444
|C0_RGB4_XRGB
,
647 case V4L2_PIX_FMT_RGB565
:
648 cafe_reg_write_mask(cam
, REG_CTRL0
,
649 C0_DF_RGB
|C0_RGBF_565
|C0_RGB5_BGGR
,
654 cam_err(cam
, "Unknown format %x\n", cam
->pix_format
.pixelformat
);
658 * Make sure it knows we want to use hsync/vsync.
660 cafe_reg_write_mask(cam
, REG_CTRL0
, C0_SIF_HVSYNC
,
666 * Configure the controller for operation; caller holds the
669 static int cafe_ctlr_configure(struct cafe_camera
*cam
)
673 spin_lock_irqsave(&cam
->dev_lock
, flags
);
675 cafe_ctlr_image(cam
);
676 cafe_set_config_needed(cam
, 0);
677 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
681 static void cafe_ctlr_irq_enable(struct cafe_camera
*cam
)
684 * Clear any pending interrupts, since we do not
685 * expect to have I/O active prior to enabling.
687 cafe_reg_write(cam
, REG_IRQSTAT
, FRAMEIRQS
);
688 cafe_reg_set_bit(cam
, REG_IRQMASK
, FRAMEIRQS
);
691 static void cafe_ctlr_irq_disable(struct cafe_camera
*cam
)
693 cafe_reg_clear_bit(cam
, REG_IRQMASK
, FRAMEIRQS
);
697 * Make the controller start grabbing images. Everything must
698 * be set up before doing this.
700 static void cafe_ctlr_start(struct cafe_camera
*cam
)
702 /* set_bit performs a read, so no other barrier should be
704 cafe_reg_set_bit(cam
, REG_CTRL0
, C0_ENABLE
);
707 static void cafe_ctlr_stop(struct cafe_camera
*cam
)
709 cafe_reg_clear_bit(cam
, REG_CTRL0
, C0_ENABLE
);
712 static void cafe_ctlr_init(struct cafe_camera
*cam
)
716 spin_lock_irqsave(&cam
->dev_lock
, flags
);
718 * Added magic to bring up the hardware on the B-Test board
720 cafe_reg_write(cam
, 0x3038, 0x8);
721 cafe_reg_write(cam
, 0x315c, 0x80008);
723 * Go through the dance needed to wake the device up.
724 * Note that these registers are global and shared
725 * with the NAND and SD devices. Interaction between the
726 * three still needs to be examined.
728 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_SRS
|GCSR_MRS
); /* Needed? */
729 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_SRC
|GCSR_MRC
);
730 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_SRC
|GCSR_MRS
);
732 * Here we must wait a bit for the controller to come around.
734 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
736 spin_lock_irqsave(&cam
->dev_lock
, flags
);
738 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_CCIC_EN
|GCSR_SRC
|GCSR_MRC
);
739 cafe_reg_set_bit(cam
, REG_GL_IMASK
, GIMSK_CCIC_EN
);
741 * Make sure it's not powered down.
743 cafe_reg_clear_bit(cam
, REG_CTRL1
, C1_PWRDWN
);
745 * Turn off the enable bit. It sure should be off anyway,
746 * but it's good to be sure.
748 cafe_reg_clear_bit(cam
, REG_CTRL0
, C0_ENABLE
);
750 * Mask all interrupts.
752 cafe_reg_write(cam
, REG_IRQMASK
, 0);
754 * Clock the sensor appropriately. Controller clock should
755 * be 48MHz, sensor "typical" value is half that.
757 cafe_reg_write_mask(cam
, REG_CLKCTRL
, 2, CLK_DIV_MASK
);
758 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
763 * Stop the controller, and don't return until we're really sure that no
764 * further DMA is going on.
766 static void cafe_ctlr_stop_dma(struct cafe_camera
*cam
)
771 * Theory: stop the camera controller (whether it is operating
772 * or not). Delay briefly just in case we race with the SOF
773 * interrupt, then wait until no DMA is active.
775 spin_lock_irqsave(&cam
->dev_lock
, flags
);
777 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
779 wait_event_timeout(cam
->iowait
,
780 !test_bit(CF_DMA_ACTIVE
, &cam
->flags
), HZ
);
781 if (test_bit(CF_DMA_ACTIVE
, &cam
->flags
))
782 cam_err(cam
, "Timeout waiting for DMA to end\n");
783 /* This would be bad news - what now? */
784 spin_lock_irqsave(&cam
->dev_lock
, flags
);
786 cafe_ctlr_irq_disable(cam
);
787 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
793 static void cafe_ctlr_power_up(struct cafe_camera
*cam
)
797 spin_lock_irqsave(&cam
->dev_lock
, flags
);
798 cafe_reg_clear_bit(cam
, REG_CTRL1
, C1_PWRDWN
);
800 * Part one of the sensor dance: turn the global
803 cafe_reg_write(cam
, REG_GL_FCR
, GFCR_GPIO_ON
);
804 cafe_reg_write(cam
, REG_GL_GPIOR
, GGPIO_OUT
|GGPIO_VAL
);
806 * Put the sensor into operational mode (assumes OLPC-style
807 * wiring). Control 0 is reset - set to 1 to operate.
808 * Control 1 is power down, set to 0 to operate.
810 cafe_reg_write(cam
, REG_GPR
, GPR_C1EN
|GPR_C0EN
); /* pwr up, reset */
811 // mdelay(1); /* Marvell says 1ms will do it */
812 cafe_reg_write(cam
, REG_GPR
, GPR_C1EN
|GPR_C0EN
|GPR_C0
);
813 // mdelay(1); /* Enough? */
814 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
815 msleep(5); /* Just to be sure */
818 static void cafe_ctlr_power_down(struct cafe_camera
*cam
)
822 spin_lock_irqsave(&cam
->dev_lock
, flags
);
823 cafe_reg_write(cam
, REG_GPR
, GPR_C1EN
|GPR_C0EN
|GPR_C1
);
824 cafe_reg_write(cam
, REG_GL_FCR
, GFCR_GPIO_ON
);
825 cafe_reg_write(cam
, REG_GL_GPIOR
, GGPIO_OUT
);
826 cafe_reg_set_bit(cam
, REG_CTRL1
, C1_PWRDWN
);
827 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
830 /* -------------------------------------------------------------------- */
832 * Communications with the sensor.
835 static int __cafe_cam_cmd(struct cafe_camera
*cam
, int cmd
, void *arg
)
837 struct i2c_client
*sc
= cam
->sensor
;
840 if (sc
== NULL
|| sc
->driver
== NULL
|| sc
->driver
->command
== NULL
)
842 ret
= sc
->driver
->command(sc
, cmd
, arg
);
843 if (ret
== -EPERM
) /* Unsupported command */
848 static int __cafe_cam_reset(struct cafe_camera
*cam
)
851 return __cafe_cam_cmd(cam
, VIDIOC_INT_RESET
, &zero
);
855 * We have found the sensor on the i2c. Let's try to have a
858 static int cafe_cam_init(struct cafe_camera
*cam
)
860 struct v4l2_chip_ident chip
= { V4L2_CHIP_MATCH_I2C_ADDR
, 0, 0, 0 };
863 mutex_lock(&cam
->s_mutex
);
864 if (cam
->state
!= S_NOTREADY
)
865 cam_warn(cam
, "Cam init with device in funky state %d",
867 ret
= __cafe_cam_reset(cam
);
870 chip
.match_chip
= cam
->sensor
->addr
;
871 ret
= __cafe_cam_cmd(cam
, VIDIOC_G_CHIP_IDENT
, &chip
);
874 cam
->sensor_type
= chip
.ident
;
875 // if (cam->sensor->addr != OV7xx0_SID) {
876 if (cam
->sensor_type
!= V4L2_IDENT_OV7670
) {
877 cam_err(cam
, "Unsupported sensor type %d", cam
->sensor
->addr
);
881 /* Get/set parameters? */
885 cafe_ctlr_power_down(cam
);
886 mutex_unlock(&cam
->s_mutex
);
891 * Configure the sensor to match the parameters we have. Caller should
894 static int cafe_cam_set_flip(struct cafe_camera
*cam
)
896 struct v4l2_control ctrl
;
898 memset(&ctrl
, 0, sizeof(ctrl
));
899 ctrl
.id
= V4L2_CID_VFLIP
;
901 return __cafe_cam_cmd(cam
, VIDIOC_S_CTRL
, &ctrl
);
905 static int cafe_cam_configure(struct cafe_camera
*cam
)
907 struct v4l2_format fmt
;
910 if (cam
->state
!= S_IDLE
)
912 fmt
.fmt
.pix
= cam
->pix_format
;
913 ret
= __cafe_cam_cmd(cam
, VIDIOC_INT_INIT
, &zero
);
915 ret
= __cafe_cam_cmd(cam
, VIDIOC_S_FMT
, &fmt
);
917 * OV7670 does weird things if flip is set *before* format...
919 ret
+= cafe_cam_set_flip(cam
);
923 /* -------------------------------------------------------------------- */
925 * DMA buffer management. These functions need s_mutex held.
928 /* FIXME: this is inefficient as hell, since dma_alloc_coherent just
929 * does a get_free_pages() call, and we waste a good chunk of an orderN
930 * allocation. Should try to allocate the whole set in one chunk.
932 static int cafe_alloc_dma_bufs(struct cafe_camera
*cam
, int loadtime
)
936 cafe_set_config_needed(cam
, 1);
938 cam
->dma_buf_size
= dma_buf_size
;
940 cam
->dma_buf_size
= cam
->pix_format
.sizeimage
;
945 for (i
= 0; i
< n_dma_bufs
; i
++) {
946 cam
->dma_bufs
[i
] = dma_alloc_coherent(&cam
->pdev
->dev
,
947 cam
->dma_buf_size
, cam
->dma_handles
+ i
,
949 if (cam
->dma_bufs
[i
] == NULL
) {
950 cam_warn(cam
, "Failed to allocate DMA buffer\n");
953 /* For debug, remove eventually */
954 memset(cam
->dma_bufs
[i
], 0xcc, cam
->dma_buf_size
);
958 switch (cam
->nbufs
) {
960 dma_free_coherent(&cam
->pdev
->dev
, cam
->dma_buf_size
,
961 cam
->dma_bufs
[0], cam
->dma_handles
[0]);
964 cam_err(cam
, "Insufficient DMA buffers, cannot operate\n");
969 cam_warn(cam
, "Will limp along with only 2 buffers\n");
975 static void cafe_free_dma_bufs(struct cafe_camera
*cam
)
979 for (i
= 0; i
< cam
->nbufs
; i
++) {
980 dma_free_coherent(&cam
->pdev
->dev
, cam
->dma_buf_size
,
981 cam
->dma_bufs
[i
], cam
->dma_handles
[i
]);
982 cam
->dma_bufs
[i
] = NULL
;
991 /* ----------------------------------------------------------------------- */
993 * Here starts the V4L2 interface code.
997 * Read an image from the device.
999 static ssize_t
cafe_deliver_buffer(struct cafe_camera
*cam
,
1000 char __user
*buffer
, size_t len
, loff_t
*pos
)
1003 unsigned long flags
;
1005 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1006 if (cam
->next_buf
< 0) {
1007 cam_err(cam
, "deliver_buffer: No next buffer\n");
1008 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1011 bufno
= cam
->next_buf
;
1012 clear_bit(bufno
, &cam
->flags
);
1013 if (++(cam
->next_buf
) >= cam
->nbufs
)
1015 if (! test_bit(cam
->next_buf
, &cam
->flags
))
1017 cam
->specframes
= 0;
1018 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1020 if (len
> cam
->pix_format
.sizeimage
)
1021 len
= cam
->pix_format
.sizeimage
;
1022 if (copy_to_user(buffer
, cam
->dma_bufs
[bufno
], len
))
1029 * Get everything ready, and start grabbing frames.
1031 static int cafe_read_setup(struct cafe_camera
*cam
, enum cafe_state state
)
1034 unsigned long flags
;
1037 * Configuration. If we still don't have DMA buffers,
1038 * make one last, desperate attempt.
1040 if (cam
->nbufs
== 0)
1041 if (cafe_alloc_dma_bufs(cam
, 0))
1044 if (cafe_needs_config(cam
)) {
1045 cafe_cam_configure(cam
);
1046 ret
= cafe_ctlr_configure(cam
);
1054 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1055 cafe_reset_buffers(cam
);
1056 cafe_ctlr_irq_enable(cam
);
1058 cafe_ctlr_start(cam
);
1059 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1064 static ssize_t
cafe_v4l_read(struct file
*filp
,
1065 char __user
*buffer
, size_t len
, loff_t
*pos
)
1067 struct cafe_camera
*cam
= filp
->private_data
;
1071 * Perhaps we're in speculative read mode and already
1074 mutex_lock(&cam
->s_mutex
);
1075 if (cam
->state
== S_SPECREAD
) {
1076 if (cam
->next_buf
>= 0) {
1077 ret
= cafe_deliver_buffer(cam
, buffer
, len
, pos
);
1081 } else if (cam
->state
== S_FLAKED
|| cam
->state
== S_NOTREADY
) {
1084 } else if (cam
->state
!= S_IDLE
) {
1090 * v4l2: multiple processes can open the device, but only
1091 * one gets to grab data from it.
1093 if (cam
->owner
&& cam
->owner
!= filp
) {
1100 * Do setup if need be.
1102 if (cam
->state
!= S_SPECREAD
) {
1103 ret
= cafe_read_setup(cam
, S_SINGLEREAD
);
1108 * Wait for something to happen. This should probably
1109 * be interruptible (FIXME).
1111 wait_event_timeout(cam
->iowait
, cam
->next_buf
>= 0, HZ
);
1112 if (cam
->next_buf
< 0) {
1113 cam_err(cam
, "read() operation timed out\n");
1114 cafe_ctlr_stop_dma(cam
);
1119 * Give them their data and we should be done.
1121 ret
= cafe_deliver_buffer(cam
, buffer
, len
, pos
);
1124 mutex_unlock(&cam
->s_mutex
);
1136 * Streaming I/O support.
1141 static int cafe_vidioc_streamon(struct file
*filp
, void *priv
,
1142 enum v4l2_buf_type type
)
1144 struct cafe_camera
*cam
= filp
->private_data
;
1147 if (type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1149 mutex_lock(&cam
->s_mutex
);
1150 if (cam
->state
!= S_IDLE
|| cam
->n_sbufs
== 0)
1154 ret
= cafe_read_setup(cam
, S_STREAMING
);
1157 mutex_unlock(&cam
->s_mutex
);
1163 static int cafe_vidioc_streamoff(struct file
*filp
, void *priv
,
1164 enum v4l2_buf_type type
)
1166 struct cafe_camera
*cam
= filp
->private_data
;
1169 if (type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1171 mutex_lock(&cam
->s_mutex
);
1172 if (cam
->state
!= S_STREAMING
)
1175 cafe_ctlr_stop_dma(cam
);
1179 mutex_unlock(&cam
->s_mutex
);
1186 static int cafe_setup_siobuf(struct cafe_camera
*cam
, int index
)
1188 struct cafe_sio_buffer
*buf
= cam
->sb_bufs
+ index
;
1190 INIT_LIST_HEAD(&buf
->list
);
1191 buf
->v4lbuf
.length
= PAGE_ALIGN(cam
->pix_format
.sizeimage
);
1192 buf
->buffer
= vmalloc_user(buf
->v4lbuf
.length
);
1193 if (buf
->buffer
== NULL
)
1198 buf
->v4lbuf
.index
= index
;
1199 buf
->v4lbuf
.type
= V4L2_BUF_TYPE_VIDEO_CAPTURE
;
1200 buf
->v4lbuf
.field
= V4L2_FIELD_NONE
;
1201 buf
->v4lbuf
.memory
= V4L2_MEMORY_MMAP
;
1203 * Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg
1204 * just uses the length times the index, but the spec warns
1205 * against doing just that - vma merging problems. So we
1206 * leave a gap between each pair of buffers.
1208 buf
->v4lbuf
.m
.offset
= 2*index
*buf
->v4lbuf
.length
;
1212 static int cafe_free_sio_buffers(struct cafe_camera
*cam
)
1217 * If any buffers are mapped, we cannot free them at all.
1219 for (i
= 0; i
< cam
->n_sbufs
; i
++)
1220 if (cam
->sb_bufs
[i
].mapcount
> 0)
1225 for (i
= 0; i
< cam
->n_sbufs
; i
++)
1226 vfree(cam
->sb_bufs
[i
].buffer
);
1228 kfree(cam
->sb_bufs
);
1229 cam
->sb_bufs
= NULL
;
1230 INIT_LIST_HEAD(&cam
->sb_avail
);
1231 INIT_LIST_HEAD(&cam
->sb_full
);
1237 static int cafe_vidioc_reqbufs(struct file
*filp
, void *priv
,
1238 struct v4l2_requestbuffers
*req
)
1240 struct cafe_camera
*cam
= filp
->private_data
;
1241 int ret
= 0; /* Silence warning */
1244 * Make sure it's something we can do. User pointers could be
1245 * implemented without great pain, but that's not been done yet.
1247 if (req
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1249 if (req
->memory
!= V4L2_MEMORY_MMAP
)
1252 * If they ask for zero buffers, they really want us to stop streaming
1253 * (if it's happening) and free everything. Should we check owner?
1255 mutex_lock(&cam
->s_mutex
);
1256 if (req
->count
== 0) {
1257 if (cam
->state
== S_STREAMING
)
1258 cafe_ctlr_stop_dma(cam
);
1259 ret
= cafe_free_sio_buffers (cam
);
1263 * Device needs to be idle and working. We *could* try to do the
1264 * right thing in S_SPECREAD by shutting things down, but it
1265 * probably doesn't matter.
1267 if (cam
->state
!= S_IDLE
|| (cam
->owner
&& cam
->owner
!= filp
)) {
1273 if (req
->count
< min_buffers
)
1274 req
->count
= min_buffers
;
1275 else if (req
->count
> max_buffers
)
1276 req
->count
= max_buffers
;
1277 if (cam
->n_sbufs
> 0) {
1278 ret
= cafe_free_sio_buffers(cam
);
1283 cam
->sb_bufs
= kzalloc(req
->count
*sizeof(struct cafe_sio_buffer
),
1285 if (cam
->sb_bufs
== NULL
) {
1289 for (cam
->n_sbufs
= 0; cam
->n_sbufs
< req
->count
; (cam
->n_sbufs
++)) {
1290 ret
= cafe_setup_siobuf(cam
, cam
->n_sbufs
);
1295 if (cam
->n_sbufs
== 0) /* no luck at all - ret already set */
1296 kfree(cam
->sb_bufs
);
1297 req
->count
= cam
->n_sbufs
; /* In case of partial success */
1300 mutex_unlock(&cam
->s_mutex
);
1305 static int cafe_vidioc_querybuf(struct file
*filp
, void *priv
,
1306 struct v4l2_buffer
*buf
)
1308 struct cafe_camera
*cam
= filp
->private_data
;
1311 mutex_lock(&cam
->s_mutex
);
1312 if (buf
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1314 if (buf
->index
< 0 || buf
->index
>= cam
->n_sbufs
)
1316 *buf
= cam
->sb_bufs
[buf
->index
].v4lbuf
;
1319 mutex_unlock(&cam
->s_mutex
);
1323 static int cafe_vidioc_qbuf(struct file
*filp
, void *priv
,
1324 struct v4l2_buffer
*buf
)
1326 struct cafe_camera
*cam
= filp
->private_data
;
1327 struct cafe_sio_buffer
*sbuf
;
1329 unsigned long flags
;
1331 mutex_lock(&cam
->s_mutex
);
1332 if (buf
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1334 if (buf
->index
< 0 || buf
->index
>= cam
->n_sbufs
)
1336 sbuf
= cam
->sb_bufs
+ buf
->index
;
1337 if (sbuf
->v4lbuf
.flags
& V4L2_BUF_FLAG_QUEUED
) {
1338 ret
= 0; /* Already queued?? */
1341 if (sbuf
->v4lbuf
.flags
& V4L2_BUF_FLAG_DONE
) {
1342 /* Spec doesn't say anything, seems appropriate tho */
1346 sbuf
->v4lbuf
.flags
|= V4L2_BUF_FLAG_QUEUED
;
1347 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1348 list_add(&sbuf
->list
, &cam
->sb_avail
);
1349 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1352 mutex_unlock(&cam
->s_mutex
);
1356 static int cafe_vidioc_dqbuf(struct file
*filp
, void *priv
,
1357 struct v4l2_buffer
*buf
)
1359 struct cafe_camera
*cam
= filp
->private_data
;
1360 struct cafe_sio_buffer
*sbuf
;
1362 unsigned long flags
;
1364 mutex_lock(&cam
->s_mutex
);
1365 if (buf
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1367 if (cam
->state
!= S_STREAMING
)
1369 if (list_empty(&cam
->sb_full
) && filp
->f_flags
& O_NONBLOCK
) {
1374 while (list_empty(&cam
->sb_full
) && cam
->state
== S_STREAMING
) {
1375 mutex_unlock(&cam
->s_mutex
);
1376 if (wait_event_interruptible(cam
->iowait
,
1377 !list_empty(&cam
->sb_full
))) {
1381 mutex_lock(&cam
->s_mutex
);
1384 if (cam
->state
!= S_STREAMING
)
1387 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1388 /* Should probably recheck !list_empty() here */
1389 sbuf
= list_entry(cam
->sb_full
.next
,
1390 struct cafe_sio_buffer
, list
);
1391 list_del_init(&sbuf
->list
);
1392 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1393 sbuf
->v4lbuf
.flags
&= ~V4L2_BUF_FLAG_DONE
;
1394 *buf
= sbuf
->v4lbuf
;
1399 mutex_unlock(&cam
->s_mutex
);
1406 static void cafe_v4l_vm_open(struct vm_area_struct
*vma
)
1408 struct cafe_sio_buffer
*sbuf
= vma
->vm_private_data
;
1410 * Locking: done under mmap_sem, so we don't need to
1411 * go back to the camera lock here.
1417 static void cafe_v4l_vm_close(struct vm_area_struct
*vma
)
1419 struct cafe_sio_buffer
*sbuf
= vma
->vm_private_data
;
1421 mutex_lock(&sbuf
->cam
->s_mutex
);
1423 /* Docs say we should stop I/O too... */
1424 if (sbuf
->mapcount
== 0)
1425 sbuf
->v4lbuf
.flags
&= ~V4L2_BUF_FLAG_MAPPED
;
1426 mutex_unlock(&sbuf
->cam
->s_mutex
);
1429 static struct vm_operations_struct cafe_v4l_vm_ops
= {
1430 .open
= cafe_v4l_vm_open
,
1431 .close
= cafe_v4l_vm_close
1435 static int cafe_v4l_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1437 struct cafe_camera
*cam
= filp
->private_data
;
1438 unsigned long offset
= vma
->vm_pgoff
<< PAGE_SHIFT
;
1441 struct cafe_sio_buffer
*sbuf
= NULL
;
1443 if (! (vma
->vm_flags
& VM_WRITE
) || ! (vma
->vm_flags
& VM_SHARED
))
1446 * Find the buffer they are looking for.
1448 mutex_lock(&cam
->s_mutex
);
1449 for (i
= 0; i
< cam
->n_sbufs
; i
++)
1450 if (cam
->sb_bufs
[i
].v4lbuf
.m
.offset
== offset
) {
1451 sbuf
= cam
->sb_bufs
+ i
;
1457 ret
= remap_vmalloc_range(vma
, sbuf
->buffer
, 0);
1460 vma
->vm_flags
|= VM_DONTEXPAND
;
1461 vma
->vm_private_data
= sbuf
;
1462 vma
->vm_ops
= &cafe_v4l_vm_ops
;
1463 sbuf
->v4lbuf
.flags
|= V4L2_BUF_FLAG_MAPPED
;
1464 cafe_v4l_vm_open(vma
);
1467 mutex_unlock(&cam
->s_mutex
);
1473 static int cafe_v4l_open(struct inode
*inode
, struct file
*filp
)
1475 struct cafe_camera
*cam
;
1477 cam
= cafe_find_dev(iminor(inode
));
1480 filp
->private_data
= cam
;
1482 mutex_lock(&cam
->s_mutex
);
1483 if (cam
->users
== 0) {
1484 cafe_ctlr_power_up(cam
);
1485 __cafe_cam_reset(cam
);
1486 cafe_set_config_needed(cam
, 1);
1487 /* FIXME make sure this is complete */
1490 mutex_unlock(&cam
->s_mutex
);
1495 static int cafe_v4l_release(struct inode
*inode
, struct file
*filp
)
1497 struct cafe_camera
*cam
= filp
->private_data
;
1499 mutex_lock(&cam
->s_mutex
);
1501 if (filp
== cam
->owner
) {
1502 cafe_ctlr_stop_dma(cam
);
1503 cafe_free_sio_buffers(cam
);
1506 if (cam
->users
== 0) {
1507 cafe_ctlr_power_down(cam
);
1508 if (alloc_bufs_at_read
)
1509 cafe_free_dma_bufs(cam
);
1511 mutex_unlock(&cam
->s_mutex
);
1517 static unsigned int cafe_v4l_poll(struct file
*filp
,
1518 struct poll_table_struct
*pt
)
1520 struct cafe_camera
*cam
= filp
->private_data
;
1522 poll_wait(filp
, &cam
->iowait
, pt
);
1523 if (cam
->next_buf
>= 0)
1524 return POLLIN
| POLLRDNORM
;
1530 static int cafe_vidioc_queryctrl(struct file
*filp
, void *priv
,
1531 struct v4l2_queryctrl
*qc
)
1533 struct cafe_camera
*cam
= filp
->private_data
;
1536 mutex_lock(&cam
->s_mutex
);
1537 ret
= __cafe_cam_cmd(cam
, VIDIOC_QUERYCTRL
, qc
);
1538 mutex_unlock(&cam
->s_mutex
);
1543 static int cafe_vidioc_g_ctrl(struct file
*filp
, void *priv
,
1544 struct v4l2_control
*ctrl
)
1546 struct cafe_camera
*cam
= filp
->private_data
;
1549 mutex_lock(&cam
->s_mutex
);
1550 ret
= __cafe_cam_cmd(cam
, VIDIOC_G_CTRL
, ctrl
);
1551 mutex_unlock(&cam
->s_mutex
);
1556 static int cafe_vidioc_s_ctrl(struct file
*filp
, void *priv
,
1557 struct v4l2_control
*ctrl
)
1559 struct cafe_camera
*cam
= filp
->private_data
;
1562 mutex_lock(&cam
->s_mutex
);
1563 ret
= __cafe_cam_cmd(cam
, VIDIOC_S_CTRL
, ctrl
);
1564 mutex_unlock(&cam
->s_mutex
);
1572 static int cafe_vidioc_querycap(struct file
*file
, void *priv
,
1573 struct v4l2_capability
*cap
)
1575 strcpy(cap
->driver
, "cafe_ccic");
1576 strcpy(cap
->card
, "cafe_ccic");
1577 cap
->version
= CAFE_VERSION
;
1578 cap
->capabilities
= V4L2_CAP_VIDEO_CAPTURE
|
1579 V4L2_CAP_READWRITE
| V4L2_CAP_STREAMING
;
1585 * The default format we use until somebody says otherwise.
1587 static struct v4l2_pix_format cafe_def_pix_format
= {
1589 .height
= VGA_HEIGHT
,
1590 .pixelformat
= V4L2_PIX_FMT_YUYV
,
1591 .field
= V4L2_FIELD_NONE
,
1592 .bytesperline
= VGA_WIDTH
*2,
1593 .sizeimage
= VGA_WIDTH
*VGA_HEIGHT
*2,
1596 static int cafe_vidioc_enum_fmt_cap(struct file
*filp
,
1597 void *priv
, struct v4l2_fmtdesc
*fmt
)
1599 struct cafe_camera
*cam
= priv
;
1602 if (fmt
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1604 mutex_lock(&cam
->s_mutex
);
1605 ret
= __cafe_cam_cmd(cam
, VIDIOC_ENUM_FMT
, fmt
);
1606 mutex_unlock(&cam
->s_mutex
);
1611 static int cafe_vidioc_try_fmt_cap (struct file
*filp
, void *priv
,
1612 struct v4l2_format
*fmt
)
1614 struct cafe_camera
*cam
= priv
;
1617 mutex_lock(&cam
->s_mutex
);
1618 ret
= __cafe_cam_cmd(cam
, VIDIOC_TRY_FMT
, fmt
);
1619 mutex_unlock(&cam
->s_mutex
);
1623 static int cafe_vidioc_s_fmt_cap(struct file
*filp
, void *priv
,
1624 struct v4l2_format
*fmt
)
1626 struct cafe_camera
*cam
= priv
;
1630 * Can't do anything if the device is not idle
1631 * Also can't if there are streaming buffers in place.
1633 if (cam
->state
!= S_IDLE
|| cam
->n_sbufs
> 0)
1636 * See if the formatting works in principle.
1638 ret
= cafe_vidioc_try_fmt_cap(filp
, priv
, fmt
);
1642 * Now we start to change things for real, so let's do it
1645 mutex_lock(&cam
->s_mutex
);
1646 cam
->pix_format
= fmt
->fmt
.pix
;
1648 * Make sure we have appropriate DMA buffers.
1651 if (cam
->nbufs
> 0 && cam
->dma_buf_size
< cam
->pix_format
.sizeimage
)
1652 cafe_free_dma_bufs(cam
);
1653 if (cam
->nbufs
== 0) {
1654 if (cafe_alloc_dma_bufs(cam
, 0))
1658 * It looks like this might work, so let's program the sensor.
1660 ret
= cafe_cam_configure(cam
);
1662 ret
= cafe_ctlr_configure(cam
);
1664 mutex_unlock(&cam
->s_mutex
);
1669 * Return our stored notion of how the camera is/should be configured.
1670 * The V4l2 spec wants us to be smarter, and actually get this from
1671 * the camera (and not mess with it at open time). Someday.
1673 static int cafe_vidioc_g_fmt_cap(struct file
*filp
, void *priv
,
1674 struct v4l2_format
*f
)
1676 struct cafe_camera
*cam
= priv
;
1678 f
->fmt
.pix
= cam
->pix_format
;
1683 * We only have one input - the sensor - so minimize the nonsense here.
1685 static int cafe_vidioc_enum_input(struct file
*filp
, void *priv
,
1686 struct v4l2_input
*input
)
1688 if (input
->index
!= 0)
1691 input
->type
= V4L2_INPUT_TYPE_CAMERA
;
1692 input
->std
= V4L2_STD_ALL
; /* Not sure what should go here */
1693 strcpy(input
->name
, "Camera");
1697 static int cafe_vidioc_g_input(struct file
*filp
, void *priv
, unsigned int *i
)
1703 static int cafe_vidioc_s_input(struct file
*filp
, void *priv
, unsigned int i
)
1711 static int cafe_vidioc_s_std(struct file
*filp
, void *priv
, v4l2_std_id
*a
)
1717 * G/S_PARM. Most of this is done by the sensor, but we are
1718 * the level which controls the number of read buffers.
1720 static int cafe_vidioc_g_parm(struct file
*filp
, void *priv
,
1721 struct v4l2_streamparm
*parms
)
1723 struct cafe_camera
*cam
= priv
;
1726 mutex_lock(&cam
->s_mutex
);
1727 ret
= __cafe_cam_cmd(cam
, VIDIOC_G_PARM
, parms
);
1728 mutex_unlock(&cam
->s_mutex
);
1729 parms
->parm
.capture
.readbuffers
= n_dma_bufs
;
1733 static int cafe_vidioc_s_parm(struct file
*filp
, void *priv
,
1734 struct v4l2_streamparm
*parms
)
1736 struct cafe_camera
*cam
= priv
;
1739 mutex_lock(&cam
->s_mutex
);
1740 ret
= __cafe_cam_cmd(cam
, VIDIOC_S_PARM
, parms
);
1741 mutex_unlock(&cam
->s_mutex
);
1742 parms
->parm
.capture
.readbuffers
= n_dma_bufs
;
1747 static void cafe_v4l_dev_release(struct video_device
*vd
)
1749 struct cafe_camera
*cam
= container_of(vd
, struct cafe_camera
, v4ldev
);
1756 * This template device holds all of those v4l2 methods; we
1757 * clone it for specific real devices.
1760 static const struct file_operations cafe_v4l_fops
= {
1761 .owner
= THIS_MODULE
,
1762 .open
= cafe_v4l_open
,
1763 .release
= cafe_v4l_release
,
1764 .read
= cafe_v4l_read
,
1765 .poll
= cafe_v4l_poll
,
1766 .mmap
= cafe_v4l_mmap
,
1767 .ioctl
= video_ioctl2
,
1768 .llseek
= no_llseek
,
1771 static struct video_device cafe_v4l_template
= {
1773 .type
= VFL_TYPE_GRABBER
,
1774 .type2
= VID_TYPE_CAPTURE
,
1775 .minor
= -1, /* Get one dynamically */
1776 .tvnorms
= V4L2_STD_NTSC_M
,
1777 .current_norm
= V4L2_STD_NTSC_M
, /* make mplayer happy */
1779 .fops
= &cafe_v4l_fops
,
1780 .release
= cafe_v4l_dev_release
,
1782 .vidioc_querycap
= cafe_vidioc_querycap
,
1783 .vidioc_enum_fmt_cap
= cafe_vidioc_enum_fmt_cap
,
1784 .vidioc_try_fmt_cap
= cafe_vidioc_try_fmt_cap
,
1785 .vidioc_s_fmt_cap
= cafe_vidioc_s_fmt_cap
,
1786 .vidioc_g_fmt_cap
= cafe_vidioc_g_fmt_cap
,
1787 .vidioc_enum_input
= cafe_vidioc_enum_input
,
1788 .vidioc_g_input
= cafe_vidioc_g_input
,
1789 .vidioc_s_input
= cafe_vidioc_s_input
,
1790 .vidioc_s_std
= cafe_vidioc_s_std
,
1791 .vidioc_reqbufs
= cafe_vidioc_reqbufs
,
1792 .vidioc_querybuf
= cafe_vidioc_querybuf
,
1793 .vidioc_qbuf
= cafe_vidioc_qbuf
,
1794 .vidioc_dqbuf
= cafe_vidioc_dqbuf
,
1795 .vidioc_streamon
= cafe_vidioc_streamon
,
1796 .vidioc_streamoff
= cafe_vidioc_streamoff
,
1797 .vidioc_queryctrl
= cafe_vidioc_queryctrl
,
1798 .vidioc_g_ctrl
= cafe_vidioc_g_ctrl
,
1799 .vidioc_s_ctrl
= cafe_vidioc_s_ctrl
,
1800 .vidioc_g_parm
= cafe_vidioc_g_parm
,
1801 .vidioc_s_parm
= cafe_vidioc_s_parm
,
1810 /* ---------------------------------------------------------------------- */
1812 * Interrupt handler stuff
1817 static void cafe_frame_tasklet(unsigned long data
)
1819 struct cafe_camera
*cam
= (struct cafe_camera
*) data
;
1821 unsigned long flags
;
1822 struct cafe_sio_buffer
*sbuf
;
1824 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1825 for (i
= 0; i
< cam
->nbufs
; i
++) {
1826 int bufno
= cam
->next_buf
;
1827 if (bufno
< 0) { /* "will never happen" */
1828 cam_err(cam
, "No valid bufs in tasklet!\n");
1831 if (++(cam
->next_buf
) >= cam
->nbufs
)
1833 if (! test_bit(bufno
, &cam
->flags
))
1835 if (list_empty(&cam
->sb_avail
))
1836 break; /* Leave it valid, hope for better later */
1837 clear_bit(bufno
, &cam
->flags
);
1838 sbuf
= list_entry(cam
->sb_avail
.next
,
1839 struct cafe_sio_buffer
, list
);
1841 * Drop the lock during the big copy. This *should* be safe...
1843 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1844 memcpy(sbuf
->buffer
, cam
->dma_bufs
[bufno
],
1845 cam
->pix_format
.sizeimage
);
1846 sbuf
->v4lbuf
.bytesused
= cam
->pix_format
.sizeimage
;
1847 sbuf
->v4lbuf
.sequence
= cam
->buf_seq
[bufno
];
1848 sbuf
->v4lbuf
.flags
&= ~V4L2_BUF_FLAG_QUEUED
;
1849 sbuf
->v4lbuf
.flags
|= V4L2_BUF_FLAG_DONE
;
1850 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1851 list_move_tail(&sbuf
->list
, &cam
->sb_full
);
1853 if (! list_empty(&cam
->sb_full
))
1854 wake_up(&cam
->iowait
);
1855 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1860 static void cafe_frame_complete(struct cafe_camera
*cam
, int frame
)
1863 * Basic frame housekeeping.
1865 if (test_bit(frame
, &cam
->flags
) && printk_ratelimit())
1866 cam_err(cam
, "Frame overrun on %d, frames lost\n", frame
);
1867 set_bit(frame
, &cam
->flags
);
1868 clear_bit(CF_DMA_ACTIVE
, &cam
->flags
);
1869 if (cam
->next_buf
< 0)
1870 cam
->next_buf
= frame
;
1871 cam
->buf_seq
[frame
] = ++(cam
->sequence
);
1873 switch (cam
->state
) {
1875 * If in single read mode, try going speculative.
1878 cam
->state
= S_SPECREAD
;
1879 cam
->specframes
= 0;
1880 wake_up(&cam
->iowait
);
1884 * If we are already doing speculative reads, and nobody is
1885 * reading them, just stop.
1888 if (++(cam
->specframes
) >= cam
->nbufs
) {
1889 cafe_ctlr_stop(cam
);
1890 cafe_ctlr_irq_disable(cam
);
1891 cam
->state
= S_IDLE
;
1893 wake_up(&cam
->iowait
);
1896 * For the streaming case, we defer the real work to the
1899 * FIXME: if the application is not consuming the buffers,
1900 * we should eventually put things on hold and restart in
1904 tasklet_schedule(&cam
->s_tasklet
);
1908 cam_err(cam
, "Frame interrupt in non-operational state\n");
1916 static void cafe_frame_irq(struct cafe_camera
*cam
, unsigned int irqs
)
1920 cafe_reg_write(cam
, REG_IRQSTAT
, FRAMEIRQS
); /* Clear'em all */
1922 * Handle any frame completions. There really should
1923 * not be more than one of these, or we have fallen
1926 for (frame
= 0; frame
< cam
->nbufs
; frame
++)
1927 if (irqs
& (IRQ_EOF0
<< frame
))
1928 cafe_frame_complete(cam
, frame
);
1930 * If a frame starts, note that we have DMA active. This
1931 * code assumes that we won't get multiple frame interrupts
1932 * at once; may want to rethink that.
1934 if (irqs
& (IRQ_SOF0
| IRQ_SOF1
| IRQ_SOF2
))
1935 set_bit(CF_DMA_ACTIVE
, &cam
->flags
);
1940 static irqreturn_t
cafe_irq(int irq
, void *data
)
1942 struct cafe_camera
*cam
= data
;
1945 spin_lock(&cam
->dev_lock
);
1946 irqs
= cafe_reg_read(cam
, REG_IRQSTAT
);
1947 if ((irqs
& ALLIRQS
) == 0) {
1948 spin_unlock(&cam
->dev_lock
);
1951 if (irqs
& FRAMEIRQS
)
1952 cafe_frame_irq(cam
, irqs
);
1953 if (irqs
& TWSIIRQS
) {
1954 cafe_reg_write(cam
, REG_IRQSTAT
, TWSIIRQS
);
1955 wake_up(&cam
->smbus_wait
);
1957 spin_unlock(&cam
->dev_lock
);
1962 /* -------------------------------------------------------------------------- */
1963 #ifdef CONFIG_VIDEO_ADV_DEBUG
1968 static char cafe_debug_buf
[1024];
1969 static struct dentry
*cafe_dfs_root
;
1971 static void cafe_dfs_setup(void)
1973 cafe_dfs_root
= debugfs_create_dir("cafe_ccic", NULL
);
1974 if (IS_ERR(cafe_dfs_root
)) {
1975 cafe_dfs_root
= NULL
; /* Never mind */
1976 printk(KERN_NOTICE
"cafe_ccic unable to set up debugfs\n");
1980 static void cafe_dfs_shutdown(void)
1983 debugfs_remove(cafe_dfs_root
);
1986 static int cafe_dfs_open(struct inode
*inode
, struct file
*file
)
1988 file
->private_data
= inode
->i_private
;
1992 static ssize_t
cafe_dfs_read_regs(struct file
*file
,
1993 char __user
*buf
, size_t count
, loff_t
*ppos
)
1995 struct cafe_camera
*cam
= file
->private_data
;
1996 char *s
= cafe_debug_buf
;
1999 for (offset
= 0; offset
< 0x44; offset
+= 4)
2000 s
+= sprintf(s
, "%02x: %08x\n", offset
,
2001 cafe_reg_read(cam
, offset
));
2002 for (offset
= 0x88; offset
<= 0x90; offset
+= 4)
2003 s
+= sprintf(s
, "%02x: %08x\n", offset
,
2004 cafe_reg_read(cam
, offset
));
2005 for (offset
= 0xb4; offset
<= 0xbc; offset
+= 4)
2006 s
+= sprintf(s
, "%02x: %08x\n", offset
,
2007 cafe_reg_read(cam
, offset
));
2008 for (offset
= 0x3000; offset
<= 0x300c; offset
+= 4)
2009 s
+= sprintf(s
, "%04x: %08x\n", offset
,
2010 cafe_reg_read(cam
, offset
));
2011 return simple_read_from_buffer(buf
, count
, ppos
, cafe_debug_buf
,
2012 s
- cafe_debug_buf
);
2015 static const struct file_operations cafe_dfs_reg_ops
= {
2016 .owner
= THIS_MODULE
,
2017 .read
= cafe_dfs_read_regs
,
2018 .open
= cafe_dfs_open
2021 static ssize_t
cafe_dfs_read_cam(struct file
*file
,
2022 char __user
*buf
, size_t count
, loff_t
*ppos
)
2024 struct cafe_camera
*cam
= file
->private_data
;
2025 char *s
= cafe_debug_buf
;
2030 for (offset
= 0x0; offset
< 0x8a; offset
++)
2034 cafe_smbus_read_data(cam
, cam
->sensor
->addr
, offset
, &v
);
2035 s
+= sprintf(s
, "%02x: %02x\n", offset
, v
);
2037 return simple_read_from_buffer(buf
, count
, ppos
, cafe_debug_buf
,
2038 s
- cafe_debug_buf
);
2041 static const struct file_operations cafe_dfs_cam_ops
= {
2042 .owner
= THIS_MODULE
,
2043 .read
= cafe_dfs_read_cam
,
2044 .open
= cafe_dfs_open
2049 static void cafe_dfs_cam_setup(struct cafe_camera
*cam
)
2055 sprintf(fname
, "regs-%d", cam
->v4ldev
.minor
);
2056 cam
->dfs_regs
= debugfs_create_file(fname
, 0444, cafe_dfs_root
,
2057 cam
, &cafe_dfs_reg_ops
);
2058 sprintf(fname
, "cam-%d", cam
->v4ldev
.minor
);
2059 cam
->dfs_cam_regs
= debugfs_create_file(fname
, 0444, cafe_dfs_root
,
2060 cam
, &cafe_dfs_cam_ops
);
2064 static void cafe_dfs_cam_shutdown(struct cafe_camera
*cam
)
2066 if (! IS_ERR(cam
->dfs_regs
))
2067 debugfs_remove(cam
->dfs_regs
);
2068 if (! IS_ERR(cam
->dfs_cam_regs
))
2069 debugfs_remove(cam
->dfs_cam_regs
);
2074 #define cafe_dfs_setup()
2075 #define cafe_dfs_shutdown()
2076 #define cafe_dfs_cam_setup(cam)
2077 #define cafe_dfs_cam_shutdown(cam)
2078 #endif /* CONFIG_VIDEO_ADV_DEBUG */
2083 /* ------------------------------------------------------------------------*/
2085 * PCI interface stuff.
2088 static int cafe_pci_probe(struct pci_dev
*pdev
,
2089 const struct pci_device_id
*id
)
2093 struct cafe_camera
*cam
;
2095 * Make sure we have a camera here - we'll get calls for
2096 * the other cafe devices as well.
2098 pci_read_config_word(pdev
, PCI_CLASS_DEVICE
, &classword
);
2099 if (classword
!= PCI_CLASS_MULTIMEDIA_VIDEO
)
2102 * Start putting together one of our big camera structures.
2105 cam
= kzalloc(sizeof(struct cafe_camera
), GFP_KERNEL
);
2108 mutex_init(&cam
->s_mutex
);
2109 mutex_lock(&cam
->s_mutex
);
2110 spin_lock_init(&cam
->dev_lock
);
2111 cam
->state
= S_NOTREADY
;
2112 cafe_set_config_needed(cam
, 1);
2113 init_waitqueue_head(&cam
->smbus_wait
);
2114 init_waitqueue_head(&cam
->iowait
);
2116 cam
->pix_format
= cafe_def_pix_format
;
2117 INIT_LIST_HEAD(&cam
->dev_list
);
2118 INIT_LIST_HEAD(&cam
->sb_avail
);
2119 INIT_LIST_HEAD(&cam
->sb_full
);
2120 tasklet_init(&cam
->s_tasklet
, cafe_frame_tasklet
, (unsigned long) cam
);
2122 * Get set up on the PCI bus.
2124 ret
= pci_enable_device(pdev
);
2127 pci_set_master(pdev
);
2130 cam
->regs
= pci_iomap(pdev
, 0, 0);
2132 printk(KERN_ERR
"Unable to ioremap cafe-ccic regs\n");
2135 ret
= request_irq(pdev
->irq
, cafe_irq
, IRQF_SHARED
, "cafe-ccic", cam
);
2139 * Initialize the controller and leave it powered up. It will
2140 * stay that way until the sensor driver shows up.
2142 cafe_ctlr_init(cam
);
2143 cafe_ctlr_power_up(cam
);
2145 * Set up I2C/SMBUS communications. We have to drop the mutex here
2146 * because the sensor could attach in this call chain, leading to
2147 * unsightly deadlocks.
2149 mutex_unlock(&cam
->s_mutex
); /* attach can deadlock */
2150 ret
= cafe_smbus_setup(cam
);
2154 * Get the v4l2 setup done.
2156 mutex_lock(&cam
->s_mutex
);
2157 cam
->v4ldev
= cafe_v4l_template
;
2158 cam
->v4ldev
.debug
= 0;
2159 // cam->v4ldev.debug = V4L2_DEBUG_IOCTL_ARG;
2160 cam
->v4ldev
.dev
= &pdev
->dev
;
2161 ret
= video_register_device(&cam
->v4ldev
, VFL_TYPE_GRABBER
, -1);
2165 * If so requested, try to get our DMA buffers now.
2167 if (!alloc_bufs_at_read
) {
2168 if (cafe_alloc_dma_bufs(cam
, 1))
2169 cam_warn(cam
, "Unable to alloc DMA buffers at load"
2170 " will try again later.");
2173 cafe_dfs_cam_setup(cam
);
2174 mutex_unlock(&cam
->s_mutex
);
2179 cafe_smbus_shutdown(cam
);
2181 cafe_ctlr_power_down(cam
);
2182 free_irq(pdev
->irq
, cam
);
2184 pci_iounmap(pdev
, cam
->regs
);
2193 * Shut down an initialized device
2195 static void cafe_shutdown(struct cafe_camera
*cam
)
2197 /* FIXME: Make sure we take care of everything here */
2198 cafe_dfs_cam_shutdown(cam
);
2199 if (cam
->n_sbufs
> 0)
2200 /* What if they are still mapped? Shouldn't be, but... */
2201 cafe_free_sio_buffers(cam
);
2202 cafe_remove_dev(cam
);
2203 cafe_ctlr_stop_dma(cam
);
2204 cafe_ctlr_power_down(cam
);
2205 cafe_smbus_shutdown(cam
);
2206 cafe_free_dma_bufs(cam
);
2207 free_irq(cam
->pdev
->irq
, cam
);
2208 pci_iounmap(cam
->pdev
, cam
->regs
);
2209 video_unregister_device(&cam
->v4ldev
);
2210 /* kfree(cam); done in v4l_release () */
2214 static void cafe_pci_remove(struct pci_dev
*pdev
)
2216 struct cafe_camera
*cam
= cafe_find_by_pdev(pdev
);
2219 printk(KERN_WARNING
"pci_remove on unknown pdev %p\n", pdev
);
2222 mutex_lock(&cam
->s_mutex
);
2224 cam_warn(cam
, "Removing a device with users!\n");
2226 /* No unlock - it no longer exists */
2232 * Basic power management.
2234 static int cafe_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2236 struct cafe_camera
*cam
= cafe_find_by_pdev(pdev
);
2238 enum cafe_state cstate
;
2240 ret
= pci_save_state(pdev
);
2243 cstate
= cam
->state
; /* HACK - stop_dma sets to idle */
2244 cafe_ctlr_stop_dma(cam
);
2245 cafe_ctlr_power_down(cam
);
2246 pci_disable_device(pdev
);
2247 cam
->state
= cstate
;
2252 static int cafe_pci_resume(struct pci_dev
*pdev
)
2254 struct cafe_camera
*cam
= cafe_find_by_pdev(pdev
);
2257 ret
= pci_restore_state(pdev
);
2260 ret
= pci_enable_device(pdev
);
2263 cam_warn(cam
, "Unable to re-enable device on resume!\n");
2266 cafe_ctlr_init(cam
);
2267 cafe_ctlr_power_down(cam
);
2269 mutex_lock(&cam
->s_mutex
);
2270 if (cam
->users
> 0) {
2271 cafe_ctlr_power_up(cam
);
2272 __cafe_cam_reset(cam
);
2274 mutex_unlock(&cam
->s_mutex
);
2276 set_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
2277 if (cam
->state
== S_SPECREAD
)
2278 cam
->state
= S_IDLE
; /* Don't bother restarting */
2279 else if (cam
->state
== S_SINGLEREAD
|| cam
->state
== S_STREAMING
)
2280 ret
= cafe_read_setup(cam
, cam
->state
);
2284 #endif /* CONFIG_PM */
2287 static struct pci_device_id cafe_ids
[] = {
2288 { PCI_DEVICE(0x11ab, 0x4100) }, /* Eventual real ID */
2289 { PCI_DEVICE(0x11ab, 0x4102) }, /* Really eventual real ID */
2293 MODULE_DEVICE_TABLE(pci
, cafe_ids
);
2295 static struct pci_driver cafe_pci_driver
= {
2296 .name
= "cafe1000-ccic",
2297 .id_table
= cafe_ids
,
2298 .probe
= cafe_pci_probe
,
2299 .remove
= cafe_pci_remove
,
2301 .suspend
= cafe_pci_suspend
,
2302 .resume
= cafe_pci_resume
,
2309 static int __init
cafe_init(void)
2313 printk(KERN_NOTICE
"Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
2316 ret
= pci_register_driver(&cafe_pci_driver
);
2318 printk(KERN_ERR
"Unable to register cafe_ccic driver\n");
2321 request_module("ov7670"); /* FIXME want something more general */
2329 static void __exit
cafe_exit(void)
2331 pci_unregister_driver(&cafe_pci_driver
);
2332 cafe_dfs_shutdown();
2335 module_init(cafe_init
);
2336 module_exit(cafe_exit
);