ia64/kvm: compilation fix. export account_system_vtime.
[pv_ops_mirror.git] / drivers / mtd / nand / diskonchip.c
blob0e72153b329736000e4c43abfc76038b725d5959
1 /*
2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
19 * $Id: diskonchip.c,v 1.55 2005/11/07 11:14:30 gleixner Exp $
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/rslib.h>
27 #include <linux/moduleparam.h>
28 #include <asm/io.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/doc2000.h>
33 #include <linux/mtd/compatmac.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/mtd/inftl.h>
37 /* Where to look for the devices? */
38 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
40 #endif
42 static unsigned long __initdata doc_locations[] = {
43 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
44 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50 #else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #elif defined(__PPC__)
58 0xe4000000,
59 #else
60 #warning Unknown architecture for DiskOnChip. No default probe locations defined
61 #endif
62 0xffffffff };
64 static struct mtd_info *doclist = NULL;
66 struct doc_priv {
67 void __iomem *virtadr;
68 unsigned long physadr;
69 u_char ChipID;
70 u_char CDSNControl;
71 int chips_per_floor; /* The number of chips detected on each floor */
72 int curfloor;
73 int curchip;
74 int mh0_page;
75 int mh1_page;
76 struct mtd_info *nextdoc;
79 /* This is the syndrome computed by the HW ecc generator upon reading an empty
80 page, one with all 0xff for data and stored ecc code. */
81 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
83 /* This is the ecc value computed by the HW ecc generator upon writing an empty
84 page, one with all 0xff for data. */
85 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
87 #define INFTL_BBT_RESERVED_BLOCKS 4
89 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
90 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
91 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
93 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
94 unsigned int bitmask);
95 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
97 static int debug = 0;
98 module_param(debug, int, 0);
100 static int try_dword = 1;
101 module_param(try_dword, int, 0);
103 static int no_ecc_failures = 0;
104 module_param(no_ecc_failures, int, 0);
106 static int no_autopart = 0;
107 module_param(no_autopart, int, 0);
109 static int show_firmware_partition = 0;
110 module_param(show_firmware_partition, int, 0);
112 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
113 static int inftl_bbt_write = 1;
114 #else
115 static int inftl_bbt_write = 0;
116 #endif
117 module_param(inftl_bbt_write, int, 0);
119 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
120 module_param(doc_config_location, ulong, 0);
121 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
123 /* Sector size for HW ECC */
124 #define SECTOR_SIZE 512
125 /* The sector bytes are packed into NB_DATA 10 bit words */
126 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
127 /* Number of roots */
128 #define NROOTS 4
129 /* First consective root */
130 #define FCR 510
131 /* Number of symbols */
132 #define NN 1023
134 /* the Reed Solomon control structure */
135 static struct rs_control *rs_decoder;
138 * The HW decoder in the DoC ASIC's provides us a error syndrome,
139 * which we must convert to a standard syndrom usable by the generic
140 * Reed-Solomon library code.
142 * Fabrice Bellard figured this out in the old docecc code. I added
143 * some comments, improved a minor bit and converted it to make use
144 * of the generic Reed-Solomon libary. tglx
146 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
148 int i, j, nerr, errpos[8];
149 uint8_t parity;
150 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
152 /* Convert the ecc bytes into words */
153 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
154 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
155 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
156 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
157 parity = ecc[1];
159 /* Initialize the syndrom buffer */
160 for (i = 0; i < NROOTS; i++)
161 s[i] = ds[0];
163 * Evaluate
164 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
165 * where x = alpha^(FCR + i)
167 for (j = 1; j < NROOTS; j++) {
168 if (ds[j] == 0)
169 continue;
170 tmp = rs->index_of[ds[j]];
171 for (i = 0; i < NROOTS; i++)
172 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
175 /* Calc s[i] = s[i] / alpha^(v + i) */
176 for (i = 0; i < NROOTS; i++) {
177 if (syn[i])
178 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
180 /* Call the decoder library */
181 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
183 /* Incorrectable errors ? */
184 if (nerr < 0)
185 return nerr;
188 * Correct the errors. The bitpositions are a bit of magic,
189 * but they are given by the design of the de/encoder circuit
190 * in the DoC ASIC's.
192 for (i = 0; i < nerr; i++) {
193 int index, bitpos, pos = 1015 - errpos[i];
194 uint8_t val;
195 if (pos >= NB_DATA && pos < 1019)
196 continue;
197 if (pos < NB_DATA) {
198 /* extract bit position (MSB first) */
199 pos = 10 * (NB_DATA - 1 - pos) - 6;
200 /* now correct the following 10 bits. At most two bytes
201 can be modified since pos is even */
202 index = (pos >> 3) ^ 1;
203 bitpos = pos & 7;
204 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
205 val = (uint8_t) (errval[i] >> (2 + bitpos));
206 parity ^= val;
207 if (index < SECTOR_SIZE)
208 data[index] ^= val;
210 index = ((pos >> 3) + 1) ^ 1;
211 bitpos = (bitpos + 10) & 7;
212 if (bitpos == 0)
213 bitpos = 8;
214 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
215 val = (uint8_t) (errval[i] << (8 - bitpos));
216 parity ^= val;
217 if (index < SECTOR_SIZE)
218 data[index] ^= val;
222 /* If the parity is wrong, no rescue possible */
223 return parity ? -EBADMSG : nerr;
226 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
228 volatile char dummy;
229 int i;
231 for (i = 0; i < cycles; i++) {
232 if (DoC_is_Millennium(doc))
233 dummy = ReadDOC(doc->virtadr, NOP);
234 else if (DoC_is_MillenniumPlus(doc))
235 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
236 else
237 dummy = ReadDOC(doc->virtadr, DOCStatus);
242 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
244 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
245 static int _DoC_WaitReady(struct doc_priv *doc)
247 void __iomem *docptr = doc->virtadr;
248 unsigned long timeo = jiffies + (HZ * 10);
250 if (debug)
251 printk("_DoC_WaitReady...\n");
252 /* Out-of-line routine to wait for chip response */
253 if (DoC_is_MillenniumPlus(doc)) {
254 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
255 if (time_after(jiffies, timeo)) {
256 printk("_DoC_WaitReady timed out.\n");
257 return -EIO;
259 udelay(1);
260 cond_resched();
262 } else {
263 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
264 if (time_after(jiffies, timeo)) {
265 printk("_DoC_WaitReady timed out.\n");
266 return -EIO;
268 udelay(1);
269 cond_resched();
273 return 0;
276 static inline int DoC_WaitReady(struct doc_priv *doc)
278 void __iomem *docptr = doc->virtadr;
279 int ret = 0;
281 if (DoC_is_MillenniumPlus(doc)) {
282 DoC_Delay(doc, 4);
284 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
285 /* Call the out-of-line routine to wait */
286 ret = _DoC_WaitReady(doc);
287 } else {
288 DoC_Delay(doc, 4);
290 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
291 /* Call the out-of-line routine to wait */
292 ret = _DoC_WaitReady(doc);
293 DoC_Delay(doc, 2);
296 if (debug)
297 printk("DoC_WaitReady OK\n");
298 return ret;
301 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
303 struct nand_chip *this = mtd->priv;
304 struct doc_priv *doc = this->priv;
305 void __iomem *docptr = doc->virtadr;
307 if (debug)
308 printk("write_byte %02x\n", datum);
309 WriteDOC(datum, docptr, CDSNSlowIO);
310 WriteDOC(datum, docptr, 2k_CDSN_IO);
313 static u_char doc2000_read_byte(struct mtd_info *mtd)
315 struct nand_chip *this = mtd->priv;
316 struct doc_priv *doc = this->priv;
317 void __iomem *docptr = doc->virtadr;
318 u_char ret;
320 ReadDOC(docptr, CDSNSlowIO);
321 DoC_Delay(doc, 2);
322 ret = ReadDOC(docptr, 2k_CDSN_IO);
323 if (debug)
324 printk("read_byte returns %02x\n", ret);
325 return ret;
328 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
330 struct nand_chip *this = mtd->priv;
331 struct doc_priv *doc = this->priv;
332 void __iomem *docptr = doc->virtadr;
333 int i;
334 if (debug)
335 printk("writebuf of %d bytes: ", len);
336 for (i = 0; i < len; i++) {
337 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
338 if (debug && i < 16)
339 printk("%02x ", buf[i]);
341 if (debug)
342 printk("\n");
345 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
347 struct nand_chip *this = mtd->priv;
348 struct doc_priv *doc = this->priv;
349 void __iomem *docptr = doc->virtadr;
350 int i;
352 if (debug)
353 printk("readbuf of %d bytes: ", len);
355 for (i = 0; i < len; i++) {
356 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
360 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
362 struct nand_chip *this = mtd->priv;
363 struct doc_priv *doc = this->priv;
364 void __iomem *docptr = doc->virtadr;
365 int i;
367 if (debug)
368 printk("readbuf_dword of %d bytes: ", len);
370 if (unlikely((((unsigned long)buf) | len) & 3)) {
371 for (i = 0; i < len; i++) {
372 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
374 } else {
375 for (i = 0; i < len; i += 4) {
376 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
381 static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
383 struct nand_chip *this = mtd->priv;
384 struct doc_priv *doc = this->priv;
385 void __iomem *docptr = doc->virtadr;
386 int i;
388 for (i = 0; i < len; i++)
389 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
390 return -EFAULT;
391 return 0;
394 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
396 struct nand_chip *this = mtd->priv;
397 struct doc_priv *doc = this->priv;
398 uint16_t ret;
400 doc200x_select_chip(mtd, nr);
401 doc200x_hwcontrol(mtd, NAND_CMD_READID,
402 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
403 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
404 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
406 /* We cant' use dev_ready here, but at least we wait for the
407 * command to complete
409 udelay(50);
411 ret = this->read_byte(mtd) << 8;
412 ret |= this->read_byte(mtd);
414 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
415 /* First chip probe. See if we get same results by 32-bit access */
416 union {
417 uint32_t dword;
418 uint8_t byte[4];
419 } ident;
420 void __iomem *docptr = doc->virtadr;
422 doc200x_hwcontrol(mtd, NAND_CMD_READID,
423 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
424 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
425 doc200x_hwcontrol(mtd, NAND_CMD_NONE,
426 NAND_NCE | NAND_CTRL_CHANGE);
428 udelay(50);
430 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
431 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
432 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
433 this->read_buf = &doc2000_readbuf_dword;
437 return ret;
440 static void __init doc2000_count_chips(struct mtd_info *mtd)
442 struct nand_chip *this = mtd->priv;
443 struct doc_priv *doc = this->priv;
444 uint16_t mfrid;
445 int i;
447 /* Max 4 chips per floor on DiskOnChip 2000 */
448 doc->chips_per_floor = 4;
450 /* Find out what the first chip is */
451 mfrid = doc200x_ident_chip(mtd, 0);
453 /* Find how many chips in each floor. */
454 for (i = 1; i < 4; i++) {
455 if (doc200x_ident_chip(mtd, i) != mfrid)
456 break;
458 doc->chips_per_floor = i;
459 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
462 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
464 struct doc_priv *doc = this->priv;
466 int status;
468 DoC_WaitReady(doc);
469 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
470 DoC_WaitReady(doc);
471 status = (int)this->read_byte(mtd);
473 return status;
476 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
478 struct nand_chip *this = mtd->priv;
479 struct doc_priv *doc = this->priv;
480 void __iomem *docptr = doc->virtadr;
482 WriteDOC(datum, docptr, CDSNSlowIO);
483 WriteDOC(datum, docptr, Mil_CDSN_IO);
484 WriteDOC(datum, docptr, WritePipeTerm);
487 static u_char doc2001_read_byte(struct mtd_info *mtd)
489 struct nand_chip *this = mtd->priv;
490 struct doc_priv *doc = this->priv;
491 void __iomem *docptr = doc->virtadr;
493 //ReadDOC(docptr, CDSNSlowIO);
494 /* 11.4.5 -- delay twice to allow extended length cycle */
495 DoC_Delay(doc, 2);
496 ReadDOC(docptr, ReadPipeInit);
497 //return ReadDOC(docptr, Mil_CDSN_IO);
498 return ReadDOC(docptr, LastDataRead);
501 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
503 struct nand_chip *this = mtd->priv;
504 struct doc_priv *doc = this->priv;
505 void __iomem *docptr = doc->virtadr;
506 int i;
508 for (i = 0; i < len; i++)
509 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
510 /* Terminate write pipeline */
511 WriteDOC(0x00, docptr, WritePipeTerm);
514 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
516 struct nand_chip *this = mtd->priv;
517 struct doc_priv *doc = this->priv;
518 void __iomem *docptr = doc->virtadr;
519 int i;
521 /* Start read pipeline */
522 ReadDOC(docptr, ReadPipeInit);
524 for (i = 0; i < len - 1; i++)
525 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
527 /* Terminate read pipeline */
528 buf[i] = ReadDOC(docptr, LastDataRead);
531 static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
533 struct nand_chip *this = mtd->priv;
534 struct doc_priv *doc = this->priv;
535 void __iomem *docptr = doc->virtadr;
536 int i;
538 /* Start read pipeline */
539 ReadDOC(docptr, ReadPipeInit);
541 for (i = 0; i < len - 1; i++)
542 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
543 ReadDOC(docptr, LastDataRead);
544 return i;
546 if (buf[i] != ReadDOC(docptr, LastDataRead))
547 return i;
548 return 0;
551 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
553 struct nand_chip *this = mtd->priv;
554 struct doc_priv *doc = this->priv;
555 void __iomem *docptr = doc->virtadr;
556 u_char ret;
558 ReadDOC(docptr, Mplus_ReadPipeInit);
559 ReadDOC(docptr, Mplus_ReadPipeInit);
560 ret = ReadDOC(docptr, Mplus_LastDataRead);
561 if (debug)
562 printk("read_byte returns %02x\n", ret);
563 return ret;
566 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
568 struct nand_chip *this = mtd->priv;
569 struct doc_priv *doc = this->priv;
570 void __iomem *docptr = doc->virtadr;
571 int i;
573 if (debug)
574 printk("writebuf of %d bytes: ", len);
575 for (i = 0; i < len; i++) {
576 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
577 if (debug && i < 16)
578 printk("%02x ", buf[i]);
580 if (debug)
581 printk("\n");
584 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
586 struct nand_chip *this = mtd->priv;
587 struct doc_priv *doc = this->priv;
588 void __iomem *docptr = doc->virtadr;
589 int i;
591 if (debug)
592 printk("readbuf of %d bytes: ", len);
594 /* Start read pipeline */
595 ReadDOC(docptr, Mplus_ReadPipeInit);
596 ReadDOC(docptr, Mplus_ReadPipeInit);
598 for (i = 0; i < len - 2; i++) {
599 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
600 if (debug && i < 16)
601 printk("%02x ", buf[i]);
604 /* Terminate read pipeline */
605 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
606 if (debug && i < 16)
607 printk("%02x ", buf[len - 2]);
608 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
609 if (debug && i < 16)
610 printk("%02x ", buf[len - 1]);
611 if (debug)
612 printk("\n");
615 static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
617 struct nand_chip *this = mtd->priv;
618 struct doc_priv *doc = this->priv;
619 void __iomem *docptr = doc->virtadr;
620 int i;
622 if (debug)
623 printk("verifybuf of %d bytes: ", len);
625 /* Start read pipeline */
626 ReadDOC(docptr, Mplus_ReadPipeInit);
627 ReadDOC(docptr, Mplus_ReadPipeInit);
629 for (i = 0; i < len - 2; i++)
630 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
631 ReadDOC(docptr, Mplus_LastDataRead);
632 ReadDOC(docptr, Mplus_LastDataRead);
633 return i;
635 if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
636 return len - 2;
637 if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
638 return len - 1;
639 return 0;
642 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
644 struct nand_chip *this = mtd->priv;
645 struct doc_priv *doc = this->priv;
646 void __iomem *docptr = doc->virtadr;
647 int floor = 0;
649 if (debug)
650 printk("select chip (%d)\n", chip);
652 if (chip == -1) {
653 /* Disable flash internally */
654 WriteDOC(0, docptr, Mplus_FlashSelect);
655 return;
658 floor = chip / doc->chips_per_floor;
659 chip -= (floor * doc->chips_per_floor);
661 /* Assert ChipEnable and deassert WriteProtect */
662 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
663 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
665 doc->curchip = chip;
666 doc->curfloor = floor;
669 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
671 struct nand_chip *this = mtd->priv;
672 struct doc_priv *doc = this->priv;
673 void __iomem *docptr = doc->virtadr;
674 int floor = 0;
676 if (debug)
677 printk("select chip (%d)\n", chip);
679 if (chip == -1)
680 return;
682 floor = chip / doc->chips_per_floor;
683 chip -= (floor * doc->chips_per_floor);
685 /* 11.4.4 -- deassert CE before changing chip */
686 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
688 WriteDOC(floor, docptr, FloorSelect);
689 WriteDOC(chip, docptr, CDSNDeviceSelect);
691 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
693 doc->curchip = chip;
694 doc->curfloor = floor;
697 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
699 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
700 unsigned int ctrl)
702 struct nand_chip *this = mtd->priv;
703 struct doc_priv *doc = this->priv;
704 void __iomem *docptr = doc->virtadr;
706 if (ctrl & NAND_CTRL_CHANGE) {
707 doc->CDSNControl &= ~CDSN_CTRL_MSK;
708 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
709 if (debug)
710 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
711 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
712 /* 11.4.3 -- 4 NOPs after CSDNControl write */
713 DoC_Delay(doc, 4);
715 if (cmd != NAND_CMD_NONE) {
716 if (DoC_is_2000(doc))
717 doc2000_write_byte(mtd, cmd);
718 else
719 doc2001_write_byte(mtd, cmd);
723 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
725 struct nand_chip *this = mtd->priv;
726 struct doc_priv *doc = this->priv;
727 void __iomem *docptr = doc->virtadr;
730 * Must terminate write pipeline before sending any commands
731 * to the device.
733 if (command == NAND_CMD_PAGEPROG) {
734 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
735 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
739 * Write out the command to the device.
741 if (command == NAND_CMD_SEQIN) {
742 int readcmd;
744 if (column >= mtd->writesize) {
745 /* OOB area */
746 column -= mtd->writesize;
747 readcmd = NAND_CMD_READOOB;
748 } else if (column < 256) {
749 /* First 256 bytes --> READ0 */
750 readcmd = NAND_CMD_READ0;
751 } else {
752 column -= 256;
753 readcmd = NAND_CMD_READ1;
755 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
757 WriteDOC(command, docptr, Mplus_FlashCmd);
758 WriteDOC(0, docptr, Mplus_WritePipeTerm);
759 WriteDOC(0, docptr, Mplus_WritePipeTerm);
761 if (column != -1 || page_addr != -1) {
762 /* Serially input address */
763 if (column != -1) {
764 /* Adjust columns for 16 bit buswidth */
765 if (this->options & NAND_BUSWIDTH_16)
766 column >>= 1;
767 WriteDOC(column, docptr, Mplus_FlashAddress);
769 if (page_addr != -1) {
770 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
771 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
772 /* One more address cycle for higher density devices */
773 if (this->chipsize & 0x0c000000) {
774 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
775 printk("high density\n");
778 WriteDOC(0, docptr, Mplus_WritePipeTerm);
779 WriteDOC(0, docptr, Mplus_WritePipeTerm);
780 /* deassert ALE */
781 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
782 command == NAND_CMD_READOOB || command == NAND_CMD_READID)
783 WriteDOC(0, docptr, Mplus_FlashControl);
787 * program and erase have their own busy handlers
788 * status and sequential in needs no delay
790 switch (command) {
792 case NAND_CMD_PAGEPROG:
793 case NAND_CMD_ERASE1:
794 case NAND_CMD_ERASE2:
795 case NAND_CMD_SEQIN:
796 case NAND_CMD_STATUS:
797 return;
799 case NAND_CMD_RESET:
800 if (this->dev_ready)
801 break;
802 udelay(this->chip_delay);
803 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
804 WriteDOC(0, docptr, Mplus_WritePipeTerm);
805 WriteDOC(0, docptr, Mplus_WritePipeTerm);
806 while (!(this->read_byte(mtd) & 0x40)) ;
807 return;
809 /* This applies to read commands */
810 default:
812 * If we don't have access to the busy pin, we apply the given
813 * command delay
815 if (!this->dev_ready) {
816 udelay(this->chip_delay);
817 return;
821 /* Apply this short delay always to ensure that we do wait tWB in
822 * any case on any machine. */
823 ndelay(100);
824 /* wait until command is processed */
825 while (!this->dev_ready(mtd)) ;
828 static int doc200x_dev_ready(struct mtd_info *mtd)
830 struct nand_chip *this = mtd->priv;
831 struct doc_priv *doc = this->priv;
832 void __iomem *docptr = doc->virtadr;
834 if (DoC_is_MillenniumPlus(doc)) {
835 /* 11.4.2 -- must NOP four times before checking FR/B# */
836 DoC_Delay(doc, 4);
837 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
838 if (debug)
839 printk("not ready\n");
840 return 0;
842 if (debug)
843 printk("was ready\n");
844 return 1;
845 } else {
846 /* 11.4.2 -- must NOP four times before checking FR/B# */
847 DoC_Delay(doc, 4);
848 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
849 if (debug)
850 printk("not ready\n");
851 return 0;
853 /* 11.4.2 -- Must NOP twice if it's ready */
854 DoC_Delay(doc, 2);
855 if (debug)
856 printk("was ready\n");
857 return 1;
861 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
863 /* This is our last resort if we couldn't find or create a BBT. Just
864 pretend all blocks are good. */
865 return 0;
868 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
870 struct nand_chip *this = mtd->priv;
871 struct doc_priv *doc = this->priv;
872 void __iomem *docptr = doc->virtadr;
874 /* Prime the ECC engine */
875 switch (mode) {
876 case NAND_ECC_READ:
877 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
878 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
879 break;
880 case NAND_ECC_WRITE:
881 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
882 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
883 break;
887 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
889 struct nand_chip *this = mtd->priv;
890 struct doc_priv *doc = this->priv;
891 void __iomem *docptr = doc->virtadr;
893 /* Prime the ECC engine */
894 switch (mode) {
895 case NAND_ECC_READ:
896 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
897 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
898 break;
899 case NAND_ECC_WRITE:
900 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
901 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
902 break;
906 /* This code is only called on write */
907 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
909 struct nand_chip *this = mtd->priv;
910 struct doc_priv *doc = this->priv;
911 void __iomem *docptr = doc->virtadr;
912 int i;
913 int emptymatch = 1;
915 /* flush the pipeline */
916 if (DoC_is_2000(doc)) {
917 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
918 WriteDOC(0, docptr, 2k_CDSN_IO);
919 WriteDOC(0, docptr, 2k_CDSN_IO);
920 WriteDOC(0, docptr, 2k_CDSN_IO);
921 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
922 } else if (DoC_is_MillenniumPlus(doc)) {
923 WriteDOC(0, docptr, Mplus_NOP);
924 WriteDOC(0, docptr, Mplus_NOP);
925 WriteDOC(0, docptr, Mplus_NOP);
926 } else {
927 WriteDOC(0, docptr, NOP);
928 WriteDOC(0, docptr, NOP);
929 WriteDOC(0, docptr, NOP);
932 for (i = 0; i < 6; i++) {
933 if (DoC_is_MillenniumPlus(doc))
934 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
935 else
936 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
937 if (ecc_code[i] != empty_write_ecc[i])
938 emptymatch = 0;
940 if (DoC_is_MillenniumPlus(doc))
941 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
942 else
943 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
944 #if 0
945 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
946 if (emptymatch) {
947 /* Note: this somewhat expensive test should not be triggered
948 often. It could be optimized away by examining the data in
949 the writebuf routine, and remembering the result. */
950 for (i = 0; i < 512; i++) {
951 if (dat[i] == 0xff)
952 continue;
953 emptymatch = 0;
954 break;
957 /* If emptymatch still =1, we do have an all-0xff data buffer.
958 Return all-0xff ecc value instead of the computed one, so
959 it'll look just like a freshly-erased page. */
960 if (emptymatch)
961 memset(ecc_code, 0xff, 6);
962 #endif
963 return 0;
966 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
967 u_char *read_ecc, u_char *isnull)
969 int i, ret = 0;
970 struct nand_chip *this = mtd->priv;
971 struct doc_priv *doc = this->priv;
972 void __iomem *docptr = doc->virtadr;
973 uint8_t calc_ecc[6];
974 volatile u_char dummy;
975 int emptymatch = 1;
977 /* flush the pipeline */
978 if (DoC_is_2000(doc)) {
979 dummy = ReadDOC(docptr, 2k_ECCStatus);
980 dummy = ReadDOC(docptr, 2k_ECCStatus);
981 dummy = ReadDOC(docptr, 2k_ECCStatus);
982 } else if (DoC_is_MillenniumPlus(doc)) {
983 dummy = ReadDOC(docptr, Mplus_ECCConf);
984 dummy = ReadDOC(docptr, Mplus_ECCConf);
985 dummy = ReadDOC(docptr, Mplus_ECCConf);
986 } else {
987 dummy = ReadDOC(docptr, ECCConf);
988 dummy = ReadDOC(docptr, ECCConf);
989 dummy = ReadDOC(docptr, ECCConf);
992 /* Error occured ? */
993 if (dummy & 0x80) {
994 for (i = 0; i < 6; i++) {
995 if (DoC_is_MillenniumPlus(doc))
996 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
997 else
998 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
999 if (calc_ecc[i] != empty_read_syndrome[i])
1000 emptymatch = 0;
1002 /* If emptymatch=1, the read syndrome is consistent with an
1003 all-0xff data and stored ecc block. Check the stored ecc. */
1004 if (emptymatch) {
1005 for (i = 0; i < 6; i++) {
1006 if (read_ecc[i] == 0xff)
1007 continue;
1008 emptymatch = 0;
1009 break;
1012 /* If emptymatch still =1, check the data block. */
1013 if (emptymatch) {
1014 /* Note: this somewhat expensive test should not be triggered
1015 often. It could be optimized away by examining the data in
1016 the readbuf routine, and remembering the result. */
1017 for (i = 0; i < 512; i++) {
1018 if (dat[i] == 0xff)
1019 continue;
1020 emptymatch = 0;
1021 break;
1024 /* If emptymatch still =1, this is almost certainly a freshly-
1025 erased block, in which case the ECC will not come out right.
1026 We'll suppress the error and tell the caller everything's
1027 OK. Because it is. */
1028 if (!emptymatch)
1029 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1030 if (ret > 0)
1031 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1033 if (DoC_is_MillenniumPlus(doc))
1034 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1035 else
1036 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1037 if (no_ecc_failures && (ret == -EBADMSG)) {
1038 printk(KERN_ERR "suppressing ECC failure\n");
1039 ret = 0;
1041 return ret;
1044 //u_char mydatabuf[528];
1046 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1047 * attempt to retain compatibility. It used to read:
1048 * .oobfree = { {8, 8} }
1049 * Since that leaves two bytes unusable, it was changed. But the following
1050 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1051 * .oobfree = { {6, 10} }
1052 * jffs2 seems to handle the above gracefully, but the current scheme seems
1053 * safer. The only problem with it is that any code that parses oobfree must
1054 * be able to handle out-of-order segments.
1056 static struct nand_ecclayout doc200x_oobinfo = {
1057 .eccbytes = 6,
1058 .eccpos = {0, 1, 2, 3, 4, 5},
1059 .oobfree = {{8, 8}, {6, 2}}
1062 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1063 On sucessful return, buf will contain a copy of the media header for
1064 further processing. id is the string to scan for, and will presumably be
1065 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1066 header. The page #s of the found media headers are placed in mh0_page and
1067 mh1_page in the DOC private structure. */
1068 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1070 struct nand_chip *this = mtd->priv;
1071 struct doc_priv *doc = this->priv;
1072 unsigned offs;
1073 int ret;
1074 size_t retlen;
1076 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1077 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1078 if (retlen != mtd->writesize)
1079 continue;
1080 if (ret) {
1081 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1083 if (memcmp(buf, id, 6))
1084 continue;
1085 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1086 if (doc->mh0_page == -1) {
1087 doc->mh0_page = offs >> this->page_shift;
1088 if (!findmirror)
1089 return 1;
1090 continue;
1092 doc->mh1_page = offs >> this->page_shift;
1093 return 2;
1095 if (doc->mh0_page == -1) {
1096 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1097 return 0;
1099 /* Only one mediaheader was found. We want buf to contain a
1100 mediaheader on return, so we'll have to re-read the one we found. */
1101 offs = doc->mh0_page << this->page_shift;
1102 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1103 if (retlen != mtd->writesize) {
1104 /* Insanity. Give up. */
1105 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1106 return 0;
1108 return 1;
1111 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1113 struct nand_chip *this = mtd->priv;
1114 struct doc_priv *doc = this->priv;
1115 int ret = 0;
1116 u_char *buf;
1117 struct NFTLMediaHeader *mh;
1118 const unsigned psize = 1 << this->page_shift;
1119 int numparts = 0;
1120 unsigned blocks, maxblocks;
1121 int offs, numheaders;
1123 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1124 if (!buf) {
1125 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1126 return 0;
1128 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1129 goto out;
1130 mh = (struct NFTLMediaHeader *)buf;
1132 mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
1133 mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
1134 mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
1136 printk(KERN_INFO " DataOrgID = %s\n"
1137 " NumEraseUnits = %d\n"
1138 " FirstPhysicalEUN = %d\n"
1139 " FormattedSize = %d\n"
1140 " UnitSizeFactor = %d\n",
1141 mh->DataOrgID, mh->NumEraseUnits,
1142 mh->FirstPhysicalEUN, mh->FormattedSize,
1143 mh->UnitSizeFactor);
1145 blocks = mtd->size >> this->phys_erase_shift;
1146 maxblocks = min(32768U, mtd->erasesize - psize);
1148 if (mh->UnitSizeFactor == 0x00) {
1149 /* Auto-determine UnitSizeFactor. The constraints are:
1150 - There can be at most 32768 virtual blocks.
1151 - There can be at most (virtual block size - page size)
1152 virtual blocks (because MediaHeader+BBT must fit in 1).
1154 mh->UnitSizeFactor = 0xff;
1155 while (blocks > maxblocks) {
1156 blocks >>= 1;
1157 maxblocks = min(32768U, (maxblocks << 1) + psize);
1158 mh->UnitSizeFactor--;
1160 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1163 /* NOTE: The lines below modify internal variables of the NAND and MTD
1164 layers; variables with have already been configured by nand_scan.
1165 Unfortunately, we didn't know before this point what these values
1166 should be. Thus, this code is somewhat dependant on the exact
1167 implementation of the NAND layer. */
1168 if (mh->UnitSizeFactor != 0xff) {
1169 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1170 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1171 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1172 blocks = mtd->size >> this->bbt_erase_shift;
1173 maxblocks = min(32768U, mtd->erasesize - psize);
1176 if (blocks > maxblocks) {
1177 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1178 goto out;
1181 /* Skip past the media headers. */
1182 offs = max(doc->mh0_page, doc->mh1_page);
1183 offs <<= this->page_shift;
1184 offs += mtd->erasesize;
1186 if (show_firmware_partition == 1) {
1187 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1188 parts[0].offset = 0;
1189 parts[0].size = offs;
1190 numparts = 1;
1193 parts[numparts].name = " DiskOnChip BDTL partition";
1194 parts[numparts].offset = offs;
1195 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1197 offs += parts[numparts].size;
1198 numparts++;
1200 if (offs < mtd->size) {
1201 parts[numparts].name = " DiskOnChip Remainder partition";
1202 parts[numparts].offset = offs;
1203 parts[numparts].size = mtd->size - offs;
1204 numparts++;
1207 ret = numparts;
1208 out:
1209 kfree(buf);
1210 return ret;
1213 /* This is a stripped-down copy of the code in inftlmount.c */
1214 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1216 struct nand_chip *this = mtd->priv;
1217 struct doc_priv *doc = this->priv;
1218 int ret = 0;
1219 u_char *buf;
1220 struct INFTLMediaHeader *mh;
1221 struct INFTLPartition *ip;
1222 int numparts = 0;
1223 int blocks;
1224 int vshift, lastvunit = 0;
1225 int i;
1226 int end = mtd->size;
1228 if (inftl_bbt_write)
1229 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1231 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1232 if (!buf) {
1233 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1234 return 0;
1237 if (!find_media_headers(mtd, buf, "BNAND", 0))
1238 goto out;
1239 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1240 mh = (struct INFTLMediaHeader *)buf;
1242 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
1243 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
1244 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
1245 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
1246 mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
1247 mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
1249 printk(KERN_INFO " bootRecordID = %s\n"
1250 " NoOfBootImageBlocks = %d\n"
1251 " NoOfBinaryPartitions = %d\n"
1252 " NoOfBDTLPartitions = %d\n"
1253 " BlockMultiplerBits = %d\n"
1254 " FormatFlgs = %d\n"
1255 " OsakVersion = %d.%d.%d.%d\n"
1256 " PercentUsed = %d\n",
1257 mh->bootRecordID, mh->NoOfBootImageBlocks,
1258 mh->NoOfBinaryPartitions,
1259 mh->NoOfBDTLPartitions,
1260 mh->BlockMultiplierBits, mh->FormatFlags,
1261 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1262 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1263 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1264 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1265 mh->PercentUsed);
1267 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1269 blocks = mtd->size >> vshift;
1270 if (blocks > 32768) {
1271 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1272 goto out;
1275 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1276 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1277 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1278 goto out;
1281 /* Scan the partitions */
1282 for (i = 0; (i < 4); i++) {
1283 ip = &(mh->Partitions[i]);
1284 ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
1285 ip->firstUnit = le32_to_cpu(ip->firstUnit);
1286 ip->lastUnit = le32_to_cpu(ip->lastUnit);
1287 ip->flags = le32_to_cpu(ip->flags);
1288 ip->spareUnits = le32_to_cpu(ip->spareUnits);
1289 ip->Reserved0 = le32_to_cpu(ip->Reserved0);
1291 printk(KERN_INFO " PARTITION[%d] ->\n"
1292 " virtualUnits = %d\n"
1293 " firstUnit = %d\n"
1294 " lastUnit = %d\n"
1295 " flags = 0x%x\n"
1296 " spareUnits = %d\n",
1297 i, ip->virtualUnits, ip->firstUnit,
1298 ip->lastUnit, ip->flags,
1299 ip->spareUnits);
1301 if ((show_firmware_partition == 1) &&
1302 (i == 0) && (ip->firstUnit > 0)) {
1303 parts[0].name = " DiskOnChip IPL / Media Header partition";
1304 parts[0].offset = 0;
1305 parts[0].size = mtd->erasesize * ip->firstUnit;
1306 numparts = 1;
1309 if (ip->flags & INFTL_BINARY)
1310 parts[numparts].name = " DiskOnChip BDK partition";
1311 else
1312 parts[numparts].name = " DiskOnChip BDTL partition";
1313 parts[numparts].offset = ip->firstUnit << vshift;
1314 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1315 numparts++;
1316 if (ip->lastUnit > lastvunit)
1317 lastvunit = ip->lastUnit;
1318 if (ip->flags & INFTL_LAST)
1319 break;
1321 lastvunit++;
1322 if ((lastvunit << vshift) < end) {
1323 parts[numparts].name = " DiskOnChip Remainder partition";
1324 parts[numparts].offset = lastvunit << vshift;
1325 parts[numparts].size = end - parts[numparts].offset;
1326 numparts++;
1328 ret = numparts;
1329 out:
1330 kfree(buf);
1331 return ret;
1334 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1336 int ret, numparts;
1337 struct nand_chip *this = mtd->priv;
1338 struct doc_priv *doc = this->priv;
1339 struct mtd_partition parts[2];
1341 memset((char *)parts, 0, sizeof(parts));
1342 /* On NFTL, we have to find the media headers before we can read the
1343 BBTs, since they're stored in the media header eraseblocks. */
1344 numparts = nftl_partscan(mtd, parts);
1345 if (!numparts)
1346 return -EIO;
1347 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1348 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1349 NAND_BBT_VERSION;
1350 this->bbt_td->veroffs = 7;
1351 this->bbt_td->pages[0] = doc->mh0_page + 1;
1352 if (doc->mh1_page != -1) {
1353 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1354 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1355 NAND_BBT_VERSION;
1356 this->bbt_md->veroffs = 7;
1357 this->bbt_md->pages[0] = doc->mh1_page + 1;
1358 } else {
1359 this->bbt_md = NULL;
1362 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1363 At least as nand_bbt.c is currently written. */
1364 if ((ret = nand_scan_bbt(mtd, NULL)))
1365 return ret;
1366 add_mtd_device(mtd);
1367 #ifdef CONFIG_MTD_PARTITIONS
1368 if (!no_autopart)
1369 add_mtd_partitions(mtd, parts, numparts);
1370 #endif
1371 return 0;
1374 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1376 int ret, numparts;
1377 struct nand_chip *this = mtd->priv;
1378 struct doc_priv *doc = this->priv;
1379 struct mtd_partition parts[5];
1381 if (this->numchips > doc->chips_per_floor) {
1382 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1383 return -EIO;
1386 if (DoC_is_MillenniumPlus(doc)) {
1387 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1388 if (inftl_bbt_write)
1389 this->bbt_td->options |= NAND_BBT_WRITE;
1390 this->bbt_td->pages[0] = 2;
1391 this->bbt_md = NULL;
1392 } else {
1393 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1394 if (inftl_bbt_write)
1395 this->bbt_td->options |= NAND_BBT_WRITE;
1396 this->bbt_td->offs = 8;
1397 this->bbt_td->len = 8;
1398 this->bbt_td->veroffs = 7;
1399 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1400 this->bbt_td->reserved_block_code = 0x01;
1401 this->bbt_td->pattern = "MSYS_BBT";
1403 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1404 if (inftl_bbt_write)
1405 this->bbt_md->options |= NAND_BBT_WRITE;
1406 this->bbt_md->offs = 8;
1407 this->bbt_md->len = 8;
1408 this->bbt_md->veroffs = 7;
1409 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1410 this->bbt_md->reserved_block_code = 0x01;
1411 this->bbt_md->pattern = "TBB_SYSM";
1414 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1415 At least as nand_bbt.c is currently written. */
1416 if ((ret = nand_scan_bbt(mtd, NULL)))
1417 return ret;
1418 memset((char *)parts, 0, sizeof(parts));
1419 numparts = inftl_partscan(mtd, parts);
1420 /* At least for now, require the INFTL Media Header. We could probably
1421 do without it for non-INFTL use, since all it gives us is
1422 autopartitioning, but I want to give it more thought. */
1423 if (!numparts)
1424 return -EIO;
1425 add_mtd_device(mtd);
1426 #ifdef CONFIG_MTD_PARTITIONS
1427 if (!no_autopart)
1428 add_mtd_partitions(mtd, parts, numparts);
1429 #endif
1430 return 0;
1433 static inline int __init doc2000_init(struct mtd_info *mtd)
1435 struct nand_chip *this = mtd->priv;
1436 struct doc_priv *doc = this->priv;
1438 this->read_byte = doc2000_read_byte;
1439 this->write_buf = doc2000_writebuf;
1440 this->read_buf = doc2000_readbuf;
1441 this->verify_buf = doc2000_verifybuf;
1442 this->scan_bbt = nftl_scan_bbt;
1444 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1445 doc2000_count_chips(mtd);
1446 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1447 return (4 * doc->chips_per_floor);
1450 static inline int __init doc2001_init(struct mtd_info *mtd)
1452 struct nand_chip *this = mtd->priv;
1453 struct doc_priv *doc = this->priv;
1455 this->read_byte = doc2001_read_byte;
1456 this->write_buf = doc2001_writebuf;
1457 this->read_buf = doc2001_readbuf;
1458 this->verify_buf = doc2001_verifybuf;
1460 ReadDOC(doc->virtadr, ChipID);
1461 ReadDOC(doc->virtadr, ChipID);
1462 ReadDOC(doc->virtadr, ChipID);
1463 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1464 /* It's not a Millennium; it's one of the newer
1465 DiskOnChip 2000 units with a similar ASIC.
1466 Treat it like a Millennium, except that it
1467 can have multiple chips. */
1468 doc2000_count_chips(mtd);
1469 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1470 this->scan_bbt = inftl_scan_bbt;
1471 return (4 * doc->chips_per_floor);
1472 } else {
1473 /* Bog-standard Millennium */
1474 doc->chips_per_floor = 1;
1475 mtd->name = "DiskOnChip Millennium";
1476 this->scan_bbt = nftl_scan_bbt;
1477 return 1;
1481 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1483 struct nand_chip *this = mtd->priv;
1484 struct doc_priv *doc = this->priv;
1486 this->read_byte = doc2001plus_read_byte;
1487 this->write_buf = doc2001plus_writebuf;
1488 this->read_buf = doc2001plus_readbuf;
1489 this->verify_buf = doc2001plus_verifybuf;
1490 this->scan_bbt = inftl_scan_bbt;
1491 this->cmd_ctrl = NULL;
1492 this->select_chip = doc2001plus_select_chip;
1493 this->cmdfunc = doc2001plus_command;
1494 this->ecc.hwctl = doc2001plus_enable_hwecc;
1496 doc->chips_per_floor = 1;
1497 mtd->name = "DiskOnChip Millennium Plus";
1499 return 1;
1502 static int __init doc_probe(unsigned long physadr)
1504 unsigned char ChipID;
1505 struct mtd_info *mtd;
1506 struct nand_chip *nand;
1507 struct doc_priv *doc;
1508 void __iomem *virtadr;
1509 unsigned char save_control;
1510 unsigned char tmp, tmpb, tmpc;
1511 int reg, len, numchips;
1512 int ret = 0;
1514 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1515 if (!virtadr) {
1516 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1517 return -EIO;
1520 /* It's not possible to cleanly detect the DiskOnChip - the
1521 * bootup procedure will put the device into reset mode, and
1522 * it's not possible to talk to it without actually writing
1523 * to the DOCControl register. So we store the current contents
1524 * of the DOCControl register's location, in case we later decide
1525 * that it's not a DiskOnChip, and want to put it back how we
1526 * found it.
1528 save_control = ReadDOC(virtadr, DOCControl);
1530 /* Reset the DiskOnChip ASIC */
1531 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1532 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1534 /* Enable the DiskOnChip ASIC */
1535 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1536 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1538 ChipID = ReadDOC(virtadr, ChipID);
1540 switch (ChipID) {
1541 case DOC_ChipID_Doc2k:
1542 reg = DoC_2k_ECCStatus;
1543 break;
1544 case DOC_ChipID_DocMil:
1545 reg = DoC_ECCConf;
1546 break;
1547 case DOC_ChipID_DocMilPlus16:
1548 case DOC_ChipID_DocMilPlus32:
1549 case 0:
1550 /* Possible Millennium Plus, need to do more checks */
1551 /* Possibly release from power down mode */
1552 for (tmp = 0; (tmp < 4); tmp++)
1553 ReadDOC(virtadr, Mplus_Power);
1555 /* Reset the Millennium Plus ASIC */
1556 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1557 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1558 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1560 mdelay(1);
1561 /* Enable the Millennium Plus ASIC */
1562 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1563 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1564 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1565 mdelay(1);
1567 ChipID = ReadDOC(virtadr, ChipID);
1569 switch (ChipID) {
1570 case DOC_ChipID_DocMilPlus16:
1571 reg = DoC_Mplus_Toggle;
1572 break;
1573 case DOC_ChipID_DocMilPlus32:
1574 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1575 default:
1576 ret = -ENODEV;
1577 goto notfound;
1579 break;
1581 default:
1582 ret = -ENODEV;
1583 goto notfound;
1585 /* Check the TOGGLE bit in the ECC register */
1586 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1587 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1588 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1589 if ((tmp == tmpb) || (tmp != tmpc)) {
1590 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1591 ret = -ENODEV;
1592 goto notfound;
1595 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1596 unsigned char oldval;
1597 unsigned char newval;
1598 nand = mtd->priv;
1599 doc = nand->priv;
1600 /* Use the alias resolution register to determine if this is
1601 in fact the same DOC aliased to a new address. If writes
1602 to one chip's alias resolution register change the value on
1603 the other chip, they're the same chip. */
1604 if (ChipID == DOC_ChipID_DocMilPlus16) {
1605 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1606 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1607 } else {
1608 oldval = ReadDOC(doc->virtadr, AliasResolution);
1609 newval = ReadDOC(virtadr, AliasResolution);
1611 if (oldval != newval)
1612 continue;
1613 if (ChipID == DOC_ChipID_DocMilPlus16) {
1614 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1615 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1616 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1617 } else {
1618 WriteDOC(~newval, virtadr, AliasResolution);
1619 oldval = ReadDOC(doc->virtadr, AliasResolution);
1620 WriteDOC(newval, virtadr, AliasResolution); // restore it
1622 newval = ~newval;
1623 if (oldval == newval) {
1624 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1625 goto notfound;
1629 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1631 len = sizeof(struct mtd_info) +
1632 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1633 mtd = kzalloc(len, GFP_KERNEL);
1634 if (!mtd) {
1635 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1636 ret = -ENOMEM;
1637 goto fail;
1640 nand = (struct nand_chip *) (mtd + 1);
1641 doc = (struct doc_priv *) (nand + 1);
1642 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1643 nand->bbt_md = nand->bbt_td + 1;
1645 mtd->priv = nand;
1646 mtd->owner = THIS_MODULE;
1648 nand->priv = doc;
1649 nand->select_chip = doc200x_select_chip;
1650 nand->cmd_ctrl = doc200x_hwcontrol;
1651 nand->dev_ready = doc200x_dev_ready;
1652 nand->waitfunc = doc200x_wait;
1653 nand->block_bad = doc200x_block_bad;
1654 nand->ecc.hwctl = doc200x_enable_hwecc;
1655 nand->ecc.calculate = doc200x_calculate_ecc;
1656 nand->ecc.correct = doc200x_correct_data;
1658 nand->ecc.layout = &doc200x_oobinfo;
1659 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1660 nand->ecc.size = 512;
1661 nand->ecc.bytes = 6;
1662 nand->options = NAND_USE_FLASH_BBT;
1664 doc->physadr = physadr;
1665 doc->virtadr = virtadr;
1666 doc->ChipID = ChipID;
1667 doc->curfloor = -1;
1668 doc->curchip = -1;
1669 doc->mh0_page = -1;
1670 doc->mh1_page = -1;
1671 doc->nextdoc = doclist;
1673 if (ChipID == DOC_ChipID_Doc2k)
1674 numchips = doc2000_init(mtd);
1675 else if (ChipID == DOC_ChipID_DocMilPlus16)
1676 numchips = doc2001plus_init(mtd);
1677 else
1678 numchips = doc2001_init(mtd);
1680 if ((ret = nand_scan(mtd, numchips))) {
1681 /* DBB note: i believe nand_release is necessary here, as
1682 buffers may have been allocated in nand_base. Check with
1683 Thomas. FIX ME! */
1684 /* nand_release will call del_mtd_device, but we haven't yet
1685 added it. This is handled without incident by
1686 del_mtd_device, as far as I can tell. */
1687 nand_release(mtd);
1688 kfree(mtd);
1689 goto fail;
1692 /* Success! */
1693 doclist = mtd;
1694 return 0;
1696 notfound:
1697 /* Put back the contents of the DOCControl register, in case it's not
1698 actually a DiskOnChip. */
1699 WriteDOC(save_control, virtadr, DOCControl);
1700 fail:
1701 iounmap(virtadr);
1702 return ret;
1705 static void release_nanddoc(void)
1707 struct mtd_info *mtd, *nextmtd;
1708 struct nand_chip *nand;
1709 struct doc_priv *doc;
1711 for (mtd = doclist; mtd; mtd = nextmtd) {
1712 nand = mtd->priv;
1713 doc = nand->priv;
1715 nextmtd = doc->nextdoc;
1716 nand_release(mtd);
1717 iounmap(doc->virtadr);
1718 kfree(mtd);
1722 static int __init init_nanddoc(void)
1724 int i, ret = 0;
1726 /* We could create the decoder on demand, if memory is a concern.
1727 * This way we have it handy, if an error happens
1729 * Symbolsize is 10 (bits)
1730 * Primitve polynomial is x^10+x^3+1
1731 * first consecutive root is 510
1732 * primitve element to generate roots = 1
1733 * generator polinomial degree = 4
1735 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1736 if (!rs_decoder) {
1737 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1738 return -ENOMEM;
1741 if (doc_config_location) {
1742 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1743 ret = doc_probe(doc_config_location);
1744 if (ret < 0)
1745 goto outerr;
1746 } else {
1747 for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1748 doc_probe(doc_locations[i]);
1751 /* No banner message any more. Print a message if no DiskOnChip
1752 found, so the user knows we at least tried. */
1753 if (!doclist) {
1754 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1755 ret = -ENODEV;
1756 goto outerr;
1758 return 0;
1759 outerr:
1760 free_rs(rs_decoder);
1761 return ret;
1764 static void __exit cleanup_nanddoc(void)
1766 /* Cleanup the nand/DoC resources */
1767 release_nanddoc();
1769 /* Free the reed solomon resources */
1770 if (rs_decoder) {
1771 free_rs(rs_decoder);
1775 module_init(init_nanddoc);
1776 module_exit(cleanup_nanddoc);
1778 MODULE_LICENSE("GPL");
1779 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1780 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");