2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
34 * Link tuning handlers
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev
*rt2x00dev
)
38 if (!test_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
))
42 * Reset link information.
43 * Both the currently active vgc level as well as
44 * the link tuner counter should be reset. Resetting
45 * the counter is important for devices where the
46 * device should only perform link tuning during the
47 * first minute after being enabled.
49 rt2x00dev
->link
.count
= 0;
50 rt2x00dev
->link
.vgc_level
= 0;
53 * Reset the link tuner.
55 rt2x00dev
->ops
->lib
->reset_tuner(rt2x00dev
);
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev
*rt2x00dev
)
61 * Clear all (possibly) pre-existing quality statistics.
63 memset(&rt2x00dev
->link
.qual
, 0, sizeof(rt2x00dev
->link
.qual
));
66 * The RX and TX percentage should start at 50%
67 * this will assure we will get at least get some
68 * decent value when the link tuner starts.
69 * The value will be dropped and overwritten with
70 * the correct (measured )value anyway during the
71 * first run of the link tuner.
73 rt2x00dev
->link
.qual
.rx_percentage
= 50;
74 rt2x00dev
->link
.qual
.tx_percentage
= 50;
76 rt2x00lib_reset_link_tuner(rt2x00dev
);
78 queue_delayed_work(rt2x00dev
->hw
->workqueue
,
79 &rt2x00dev
->link
.work
, LINK_TUNE_INTERVAL
);
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev
*rt2x00dev
)
84 cancel_delayed_work_sync(&rt2x00dev
->link
.work
);
88 * Radio control handlers.
90 int rt2x00lib_enable_radio(struct rt2x00_dev
*rt2x00dev
)
95 * Don't enable the radio twice.
96 * And check if the hardware button has been disabled.
98 if (test_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
) ||
99 test_bit(DEVICE_DISABLED_RADIO_HW
, &rt2x00dev
->flags
))
103 * Initialize all data queues.
105 rt2x00queue_init_rx(rt2x00dev
);
106 rt2x00queue_init_tx(rt2x00dev
);
112 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_ON
);
116 rt2x00leds_led_radio(rt2x00dev
, true);
117 rt2x00led_led_activity(rt2x00dev
, true);
119 __set_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
);
124 rt2x00lib_toggle_rx(rt2x00dev
, STATE_RADIO_RX_ON
);
127 * Start the TX queues.
129 ieee80211_start_queues(rt2x00dev
->hw
);
134 void rt2x00lib_disable_radio(struct rt2x00_dev
*rt2x00dev
)
136 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
))
140 * Stop all scheduled work.
142 if (work_pending(&rt2x00dev
->intf_work
))
143 cancel_work_sync(&rt2x00dev
->intf_work
);
144 if (work_pending(&rt2x00dev
->filter_work
))
145 cancel_work_sync(&rt2x00dev
->filter_work
);
148 * Stop the TX queues.
150 ieee80211_stop_queues(rt2x00dev
->hw
);
155 rt2x00lib_toggle_rx(rt2x00dev
, STATE_RADIO_RX_OFF
);
160 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_OFF
);
161 rt2x00led_led_activity(rt2x00dev
, false);
162 rt2x00leds_led_radio(rt2x00dev
, false);
165 void rt2x00lib_toggle_rx(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
168 * When we are disabling the RX, we should also stop the link tuner.
170 if (state
== STATE_RADIO_RX_OFF
)
171 rt2x00lib_stop_link_tuner(rt2x00dev
);
173 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
176 * When we are enabling the RX, we should also start the link tuner.
178 if (state
== STATE_RADIO_RX_ON
&&
179 (rt2x00dev
->intf_ap_count
|| rt2x00dev
->intf_sta_count
))
180 rt2x00lib_start_link_tuner(rt2x00dev
);
183 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev
*rt2x00dev
)
185 enum antenna rx
= rt2x00dev
->link
.ant
.active
.rx
;
186 enum antenna tx
= rt2x00dev
->link
.ant
.active
.tx
;
188 rt2x00_get_link_ant_rssi_history(&rt2x00dev
->link
, ANTENNA_A
);
190 rt2x00_get_link_ant_rssi_history(&rt2x00dev
->link
, ANTENNA_B
);
193 * We are done sampling. Now we should evaluate the results.
195 rt2x00dev
->link
.ant
.flags
&= ~ANTENNA_MODE_SAMPLE
;
198 * During the last period we have sampled the RSSI
199 * from both antenna's. It now is time to determine
200 * which antenna demonstrated the best performance.
201 * When we are already on the antenna with the best
202 * performance, then there really is nothing for us
205 if (sample_a
== sample_b
)
208 if (rt2x00dev
->link
.ant
.flags
& ANTENNA_RX_DIVERSITY
)
209 rx
= (sample_a
> sample_b
) ? ANTENNA_A
: ANTENNA_B
;
211 if (rt2x00dev
->link
.ant
.flags
& ANTENNA_TX_DIVERSITY
)
212 tx
= (sample_a
> sample_b
) ? ANTENNA_A
: ANTENNA_B
;
214 rt2x00lib_config_antenna(rt2x00dev
, rx
, tx
);
217 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev
*rt2x00dev
)
219 enum antenna rx
= rt2x00dev
->link
.ant
.active
.rx
;
220 enum antenna tx
= rt2x00dev
->link
.ant
.active
.tx
;
221 int rssi_curr
= rt2x00_get_link_ant_rssi(&rt2x00dev
->link
);
222 int rssi_old
= rt2x00_update_ant_rssi(&rt2x00dev
->link
, rssi_curr
);
225 * Legacy driver indicates that we should swap antenna's
226 * when the difference in RSSI is greater that 5. This
227 * also should be done when the RSSI was actually better
228 * then the previous sample.
229 * When the difference exceeds the threshold we should
230 * sample the rssi from the other antenna to make a valid
231 * comparison between the 2 antennas.
233 if (abs(rssi_curr
- rssi_old
) < 5)
236 rt2x00dev
->link
.ant
.flags
|= ANTENNA_MODE_SAMPLE
;
238 if (rt2x00dev
->link
.ant
.flags
& ANTENNA_RX_DIVERSITY
)
239 rx
= (rx
== ANTENNA_A
) ? ANTENNA_B
: ANTENNA_A
;
241 if (rt2x00dev
->link
.ant
.flags
& ANTENNA_TX_DIVERSITY
)
242 tx
= (tx
== ANTENNA_A
) ? ANTENNA_B
: ANTENNA_A
;
244 rt2x00lib_config_antenna(rt2x00dev
, rx
, tx
);
247 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev
*rt2x00dev
)
250 * Determine if software diversity is enabled for
251 * either the TX or RX antenna (or both).
252 * Always perform this check since within the link
253 * tuner interval the configuration might have changed.
255 rt2x00dev
->link
.ant
.flags
&= ~ANTENNA_RX_DIVERSITY
;
256 rt2x00dev
->link
.ant
.flags
&= ~ANTENNA_TX_DIVERSITY
;
258 if (rt2x00dev
->hw
->conf
.antenna_sel_rx
== 0 &&
259 rt2x00dev
->default_ant
.rx
== ANTENNA_SW_DIVERSITY
)
260 rt2x00dev
->link
.ant
.flags
|= ANTENNA_RX_DIVERSITY
;
261 if (rt2x00dev
->hw
->conf
.antenna_sel_tx
== 0 &&
262 rt2x00dev
->default_ant
.tx
== ANTENNA_SW_DIVERSITY
)
263 rt2x00dev
->link
.ant
.flags
|= ANTENNA_TX_DIVERSITY
;
265 if (!(rt2x00dev
->link
.ant
.flags
& ANTENNA_RX_DIVERSITY
) &&
266 !(rt2x00dev
->link
.ant
.flags
& ANTENNA_TX_DIVERSITY
)) {
267 rt2x00dev
->link
.ant
.flags
= 0;
272 * If we have only sampled the data over the last period
273 * we should now harvest the data. Otherwise just evaluate
274 * the data. The latter should only be performed once
277 if (rt2x00dev
->link
.ant
.flags
& ANTENNA_MODE_SAMPLE
)
278 rt2x00lib_evaluate_antenna_sample(rt2x00dev
);
279 else if (rt2x00dev
->link
.count
& 1)
280 rt2x00lib_evaluate_antenna_eval(rt2x00dev
);
283 static void rt2x00lib_update_link_stats(struct link
*link
, int rssi
)
290 if (link
->qual
.avg_rssi
)
291 avg_rssi
= MOVING_AVERAGE(link
->qual
.avg_rssi
, rssi
, 8);
292 link
->qual
.avg_rssi
= avg_rssi
;
295 * Update antenna RSSI
297 if (link
->ant
.rssi_ant
)
298 rssi
= MOVING_AVERAGE(link
->ant
.rssi_ant
, rssi
, 8);
299 link
->ant
.rssi_ant
= rssi
;
302 static void rt2x00lib_precalculate_link_signal(struct link_qual
*qual
)
304 if (qual
->rx_failed
|| qual
->rx_success
)
305 qual
->rx_percentage
=
306 (qual
->rx_success
* 100) /
307 (qual
->rx_failed
+ qual
->rx_success
);
309 qual
->rx_percentage
= 50;
311 if (qual
->tx_failed
|| qual
->tx_success
)
312 qual
->tx_percentage
=
313 (qual
->tx_success
* 100) /
314 (qual
->tx_failed
+ qual
->tx_success
);
316 qual
->tx_percentage
= 50;
318 qual
->rx_success
= 0;
320 qual
->tx_success
= 0;
324 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev
*rt2x00dev
,
327 int rssi_percentage
= 0;
331 * We need a positive value for the RSSI.
334 rssi
+= rt2x00dev
->rssi_offset
;
337 * Calculate the different percentages,
338 * which will be used for the signal.
340 if (rt2x00dev
->rssi_offset
)
341 rssi_percentage
= (rssi
* 100) / rt2x00dev
->rssi_offset
;
344 * Add the individual percentages and use the WEIGHT
345 * defines to calculate the current link signal.
347 signal
= ((WEIGHT_RSSI
* rssi_percentage
) +
348 (WEIGHT_TX
* rt2x00dev
->link
.qual
.tx_percentage
) +
349 (WEIGHT_RX
* rt2x00dev
->link
.qual
.rx_percentage
)) / 100;
351 return (signal
> 100) ? 100 : signal
;
354 static void rt2x00lib_link_tuner(struct work_struct
*work
)
356 struct rt2x00_dev
*rt2x00dev
=
357 container_of(work
, struct rt2x00_dev
, link
.work
.work
);
360 * When the radio is shutting down we should
361 * immediately cease all link tuning.
363 if (!test_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
))
369 rt2x00dev
->ops
->lib
->link_stats(rt2x00dev
, &rt2x00dev
->link
.qual
);
370 rt2x00dev
->low_level_stats
.dot11FCSErrorCount
+=
371 rt2x00dev
->link
.qual
.rx_failed
;
374 * Only perform the link tuning when Link tuning
375 * has been enabled (This could have been disabled from the EEPROM).
377 if (!test_bit(CONFIG_DISABLE_LINK_TUNING
, &rt2x00dev
->flags
))
378 rt2x00dev
->ops
->lib
->link_tuner(rt2x00dev
);
381 * Precalculate a portion of the link signal which is
382 * in based on the tx/rx success/failure counters.
384 rt2x00lib_precalculate_link_signal(&rt2x00dev
->link
.qual
);
387 * Send a signal to the led to update the led signal strength.
389 rt2x00leds_led_quality(rt2x00dev
, rt2x00dev
->link
.qual
.avg_rssi
);
392 * Evaluate antenna setup, make this the last step since this could
393 * possibly reset some statistics.
395 rt2x00lib_evaluate_antenna(rt2x00dev
);
398 * Increase tuner counter, and reschedule the next link tuner run.
400 rt2x00dev
->link
.count
++;
401 queue_delayed_work(rt2x00dev
->hw
->workqueue
, &rt2x00dev
->link
.work
,
405 static void rt2x00lib_packetfilter_scheduled(struct work_struct
*work
)
407 struct rt2x00_dev
*rt2x00dev
=
408 container_of(work
, struct rt2x00_dev
, filter_work
);
410 rt2x00dev
->ops
->lib
->config_filter(rt2x00dev
, rt2x00dev
->packet_filter
);
413 static void rt2x00lib_intf_scheduled_iter(void *data
, u8
*mac
,
414 struct ieee80211_vif
*vif
)
416 struct rt2x00_dev
*rt2x00dev
= data
;
417 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
419 struct ieee80211_tx_control control
;
420 struct ieee80211_bss_conf conf
;
424 * Copy all data we need during this action under the protection
425 * of a spinlock. Otherwise race conditions might occur which results
426 * into an invalid configuration.
428 spin_lock(&intf
->lock
);
430 memcpy(&conf
, &intf
->conf
, sizeof(conf
));
431 delayed_flags
= intf
->delayed_flags
;
432 intf
->delayed_flags
= 0;
434 spin_unlock(&intf
->lock
);
436 if (delayed_flags
& DELAYED_UPDATE_BEACON
) {
437 skb
= ieee80211_beacon_get(rt2x00dev
->hw
, vif
, &control
);
438 if (skb
&& rt2x00dev
->ops
->hw
->beacon_update(rt2x00dev
->hw
,
443 if (delayed_flags
& DELAYED_CONFIG_ERP
)
444 rt2x00lib_config_erp(rt2x00dev
, intf
, &intf
->conf
);
446 if (delayed_flags
& DELAYED_LED_ASSOC
)
447 rt2x00leds_led_assoc(rt2x00dev
, !!rt2x00dev
->intf_associated
);
450 static void rt2x00lib_intf_scheduled(struct work_struct
*work
)
452 struct rt2x00_dev
*rt2x00dev
=
453 container_of(work
, struct rt2x00_dev
, intf_work
);
456 * Iterate over each interface and perform the
457 * requested configurations.
459 ieee80211_iterate_active_interfaces(rt2x00dev
->hw
,
460 rt2x00lib_intf_scheduled_iter
,
465 * Interrupt context handlers.
467 static void rt2x00lib_beacondone_iter(void *data
, u8
*mac
,
468 struct ieee80211_vif
*vif
)
470 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
472 if (vif
->type
!= IEEE80211_IF_TYPE_AP
&&
473 vif
->type
!= IEEE80211_IF_TYPE_IBSS
)
476 spin_lock(&intf
->lock
);
477 intf
->delayed_flags
|= DELAYED_UPDATE_BEACON
;
478 spin_unlock(&intf
->lock
);
481 void rt2x00lib_beacondone(struct rt2x00_dev
*rt2x00dev
)
483 if (!test_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
))
486 ieee80211_iterate_active_interfaces(rt2x00dev
->hw
,
487 rt2x00lib_beacondone_iter
,
490 queue_work(rt2x00dev
->hw
->workqueue
, &rt2x00dev
->intf_work
);
492 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone
);
494 void rt2x00lib_txdone(struct queue_entry
*entry
,
495 struct txdone_entry_desc
*txdesc
)
497 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
498 struct skb_frame_desc
*skbdesc
;
499 struct ieee80211_tx_status tx_status
;
500 int success
= !!(txdesc
->status
== TX_SUCCESS
||
501 txdesc
->status
== TX_SUCCESS_RETRY
);
502 int fail
= !!(txdesc
->status
== TX_FAIL_RETRY
||
503 txdesc
->status
== TX_FAIL_INVALID
||
504 txdesc
->status
== TX_FAIL_OTHER
);
507 * Update TX statistics.
509 rt2x00dev
->link
.qual
.tx_success
+= success
;
510 rt2x00dev
->link
.qual
.tx_failed
+= txdesc
->retry
+ fail
;
513 * Initialize TX status
516 tx_status
.ack_signal
= 0;
517 tx_status
.excessive_retries
= (txdesc
->status
== TX_FAIL_RETRY
);
518 tx_status
.retry_count
= txdesc
->retry
;
519 memcpy(&tx_status
.control
, txdesc
->control
, sizeof(*txdesc
->control
));
521 if (!(tx_status
.control
.flags
& IEEE80211_TXCTL_NO_ACK
)) {
523 tx_status
.flags
|= IEEE80211_TX_STATUS_ACK
;
525 rt2x00dev
->low_level_stats
.dot11ACKFailureCount
++;
528 tx_status
.queue_length
= entry
->queue
->limit
;
529 tx_status
.queue_number
= tx_status
.control
.queue
;
531 if (tx_status
.control
.flags
& IEEE80211_TXCTL_USE_RTS_CTS
) {
533 rt2x00dev
->low_level_stats
.dot11RTSSuccessCount
++;
535 rt2x00dev
->low_level_stats
.dot11RTSFailureCount
++;
539 * Send the tx_status to debugfs. Only send the status report
540 * to mac80211 when the frame originated from there. If this was
541 * a extra frame coming through a mac80211 library call (RTS/CTS)
542 * then we should not send the status report back.
543 * If send to mac80211, mac80211 will clean up the skb structure,
544 * otherwise we have to do it ourself.
546 skbdesc
= get_skb_frame_desc(entry
->skb
);
547 skbdesc
->frame_type
= DUMP_FRAME_TXDONE
;
549 rt2x00debug_dump_frame(rt2x00dev
, entry
->skb
);
551 if (!(skbdesc
->flags
& FRAME_DESC_DRIVER_GENERATED
))
552 ieee80211_tx_status_irqsafe(rt2x00dev
->hw
,
553 entry
->skb
, &tx_status
);
555 dev_kfree_skb(entry
->skb
);
558 EXPORT_SYMBOL_GPL(rt2x00lib_txdone
);
560 void rt2x00lib_rxdone(struct queue_entry
*entry
,
561 struct rxdone_entry_desc
*rxdesc
)
563 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
564 struct ieee80211_rx_status
*rx_status
= &rt2x00dev
->rx_status
;
565 struct ieee80211_supported_band
*sband
;
566 struct ieee80211_hdr
*hdr
;
567 const struct rt2x00_rate
*rate
;
573 * Update RX statistics.
575 sband
= &rt2x00dev
->bands
[rt2x00dev
->curr_band
];
576 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
577 rate
= rt2x00_get_rate(sband
->bitrates
[i
].hw_value
);
579 if (((rxdesc
->dev_flags
& RXDONE_SIGNAL_PLCP
) &&
580 (rate
->plcp
== rxdesc
->signal
)) ||
581 (!(rxdesc
->dev_flags
& RXDONE_SIGNAL_PLCP
) &&
582 (rate
->bitrate
== rxdesc
->signal
))) {
589 WARNING(rt2x00dev
, "Frame received with unrecognized signal,"
590 "signal=0x%.2x, plcp=%d.\n", rxdesc
->signal
,
591 !!(rxdesc
->dev_flags
& RXDONE_SIGNAL_PLCP
));
596 * Only update link status if this is a beacon frame carrying our bssid.
598 hdr
= (struct ieee80211_hdr
*)entry
->skb
->data
;
599 fc
= le16_to_cpu(hdr
->frame_control
);
600 if (is_beacon(fc
) && (rxdesc
->dev_flags
& RXDONE_MY_BSS
))
601 rt2x00lib_update_link_stats(&rt2x00dev
->link
, rxdesc
->rssi
);
603 rt2x00dev
->link
.qual
.rx_success
++;
605 rx_status
->rate_idx
= idx
;
607 rt2x00lib_calculate_link_signal(rt2x00dev
, rxdesc
->rssi
);
608 rx_status
->ssi
= rxdesc
->rssi
;
609 rx_status
->flag
= rxdesc
->flags
;
610 rx_status
->antenna
= rt2x00dev
->link
.ant
.active
.rx
;
613 * Send frame to mac80211 & debugfs.
614 * mac80211 will clean up the skb structure.
616 get_skb_frame_desc(entry
->skb
)->frame_type
= DUMP_FRAME_RXDONE
;
617 rt2x00debug_dump_frame(rt2x00dev
, entry
->skb
);
618 ieee80211_rx_irqsafe(rt2x00dev
->hw
, entry
->skb
, rx_status
);
621 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone
);
624 * TX descriptor initializer
626 void rt2x00lib_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
628 struct ieee80211_tx_control
*control
)
630 struct txentry_desc txdesc
;
631 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(skb
);
632 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skbdesc
->data
;
633 const struct rt2x00_rate
*rate
;
641 memset(&txdesc
, 0, sizeof(txdesc
));
643 txdesc
.queue
= skbdesc
->entry
->queue
->qid
;
644 txdesc
.cw_min
= skbdesc
->entry
->queue
->cw_min
;
645 txdesc
.cw_max
= skbdesc
->entry
->queue
->cw_max
;
646 txdesc
.aifs
= skbdesc
->entry
->queue
->aifs
;
649 * Read required fields from ieee80211 header.
651 frame_control
= le16_to_cpu(hdr
->frame_control
);
652 seq_ctrl
= le16_to_cpu(hdr
->seq_ctrl
);
654 tx_rate
= control
->tx_rate
->hw_value
;
657 * Check whether this frame is to be acked
659 if (!(control
->flags
& IEEE80211_TXCTL_NO_ACK
))
660 __set_bit(ENTRY_TXD_ACK
, &txdesc
.flags
);
663 * Check if this is a RTS/CTS frame
665 if (is_rts_frame(frame_control
) || is_cts_frame(frame_control
)) {
666 __set_bit(ENTRY_TXD_BURST
, &txdesc
.flags
);
667 if (is_rts_frame(frame_control
)) {
668 __set_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
.flags
);
669 __set_bit(ENTRY_TXD_ACK
, &txdesc
.flags
);
671 __clear_bit(ENTRY_TXD_ACK
, &txdesc
.flags
);
672 if (control
->rts_cts_rate
)
673 tx_rate
= control
->rts_cts_rate
->hw_value
;
676 rate
= rt2x00_get_rate(tx_rate
);
679 * Check if more fragments are pending
681 if (ieee80211_get_morefrag(hdr
)) {
682 __set_bit(ENTRY_TXD_BURST
, &txdesc
.flags
);
683 __set_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
.flags
);
687 * Beacons and probe responses require the tsf timestamp
688 * to be inserted into the frame.
690 if (control
->queue
== RT2X00_BCN_QUEUE_BEACON
||
691 is_probe_resp(frame_control
))
692 __set_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
.flags
);
695 * Determine with what IFS priority this frame should be send.
696 * Set ifs to IFS_SIFS when the this is not the first fragment,
697 * or this fragment came after RTS/CTS.
699 if ((seq_ctrl
& IEEE80211_SCTL_FRAG
) > 0 ||
700 test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
.flags
))
701 txdesc
.ifs
= IFS_SIFS
;
703 txdesc
.ifs
= IFS_BACKOFF
;
707 * Length calculation depends on OFDM/CCK rate.
709 txdesc
.signal
= rate
->plcp
;
710 txdesc
.service
= 0x04;
712 length
= skbdesc
->data_len
+ FCS_LEN
;
713 if (rate
->flags
& DEV_RATE_OFDM
) {
714 __set_bit(ENTRY_TXD_OFDM_RATE
, &txdesc
.flags
);
716 txdesc
.length_high
= (length
>> 6) & 0x3f;
717 txdesc
.length_low
= length
& 0x3f;
720 * Convert length to microseconds.
722 residual
= get_duration_res(length
, rate
->bitrate
);
723 duration
= get_duration(length
, rate
->bitrate
);
729 * Check if we need to set the Length Extension
731 if (rate
->bitrate
== 110 && residual
<= 30)
732 txdesc
.service
|= 0x80;
735 txdesc
.length_high
= (duration
>> 8) & 0xff;
736 txdesc
.length_low
= duration
& 0xff;
739 * When preamble is enabled we should set the
740 * preamble bit for the signal.
742 if (rt2x00_get_rate_preamble(tx_rate
))
743 txdesc
.signal
|= 0x08;
746 rt2x00dev
->ops
->lib
->write_tx_desc(rt2x00dev
, skb
, &txdesc
, control
);
749 * Update queue entry.
751 skbdesc
->entry
->skb
= skb
;
754 * The frame has been completely initialized and ready
755 * for sending to the device. The caller will push the
756 * frame to the device, but we are going to push the
757 * frame to debugfs here.
759 skbdesc
->frame_type
= DUMP_FRAME_TX
;
760 rt2x00debug_dump_frame(rt2x00dev
, skb
);
762 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc
);
765 * Driver initialization handlers.
767 const struct rt2x00_rate rt2x00_supported_rates
[12] = {
769 .flags
= DEV_RATE_CCK
| DEV_RATE_BASIC
,
775 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
| DEV_RATE_BASIC
,
781 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
| DEV_RATE_BASIC
,
787 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
| DEV_RATE_BASIC
,
793 .flags
= DEV_RATE_OFDM
| DEV_RATE_BASIC
,
799 .flags
= DEV_RATE_OFDM
,
805 .flags
= DEV_RATE_OFDM
| DEV_RATE_BASIC
,
811 .flags
= DEV_RATE_OFDM
,
817 .flags
= DEV_RATE_OFDM
| DEV_RATE_BASIC
,
823 .flags
= DEV_RATE_OFDM
,
829 .flags
= DEV_RATE_OFDM
,
835 .flags
= DEV_RATE_OFDM
,
842 static void rt2x00lib_channel(struct ieee80211_channel
*entry
,
843 const int channel
, const int tx_power
,
846 entry
->center_freq
= ieee80211_channel_to_frequency(channel
);
847 entry
->hw_value
= value
;
848 entry
->max_power
= tx_power
;
849 entry
->max_antenna_gain
= 0xff;
852 static void rt2x00lib_rate(struct ieee80211_rate
*entry
,
853 const u16 index
, const struct rt2x00_rate
*rate
)
856 entry
->bitrate
= rate
->bitrate
;
857 entry
->hw_value
= rt2x00_create_rate_hw_value(index
, 0);
858 entry
->hw_value_short
= entry
->hw_value
;
860 if (rate
->flags
& DEV_RATE_SHORT_PREAMBLE
) {
861 entry
->flags
|= IEEE80211_RATE_SHORT_PREAMBLE
;
862 entry
->hw_value_short
|= rt2x00_create_rate_hw_value(index
, 1);
866 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev
*rt2x00dev
,
867 struct hw_mode_spec
*spec
)
869 struct ieee80211_hw
*hw
= rt2x00dev
->hw
;
870 struct ieee80211_channel
*channels
;
871 struct ieee80211_rate
*rates
;
872 unsigned int num_rates
;
874 unsigned char tx_power
;
877 if (spec
->supported_rates
& SUPPORT_RATE_CCK
)
879 if (spec
->supported_rates
& SUPPORT_RATE_OFDM
)
882 channels
= kzalloc(sizeof(*channels
) * spec
->num_channels
, GFP_KERNEL
);
886 rates
= kzalloc(sizeof(*rates
) * num_rates
, GFP_KERNEL
);
888 goto exit_free_channels
;
891 * Initialize Rate list.
893 for (i
= 0; i
< num_rates
; i
++)
894 rt2x00lib_rate(&rates
[i
], i
, rt2x00_get_rate(i
));
897 * Initialize Channel list.
899 for (i
= 0; i
< spec
->num_channels
; i
++) {
900 if (spec
->channels
[i
].channel
<= 14) {
901 if (spec
->tx_power_bg
)
902 tx_power
= spec
->tx_power_bg
[i
];
904 tx_power
= spec
->tx_power_default
;
906 if (spec
->tx_power_a
)
907 tx_power
= spec
->tx_power_a
[i
];
909 tx_power
= spec
->tx_power_default
;
912 rt2x00lib_channel(&channels
[i
],
913 spec
->channels
[i
].channel
, tx_power
, i
);
917 * Intitialize 802.11b, 802.11g
921 if (spec
->supported_bands
& SUPPORT_BAND_2GHZ
) {
922 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_channels
= 14;
923 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_bitrates
= num_rates
;
924 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].channels
= channels
;
925 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].bitrates
= rates
;
926 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] =
927 &rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
];
931 * Intitialize 802.11a
933 * Channels: OFDM, UNII, HiperLAN2.
935 if (spec
->supported_bands
& SUPPORT_BAND_5GHZ
) {
936 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_channels
=
937 spec
->num_channels
- 14;
938 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_bitrates
=
940 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].channels
= &channels
[14];
941 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].bitrates
= &rates
[4];
942 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] =
943 &rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
];
950 ERROR(rt2x00dev
, "Allocation ieee80211 modes failed.\n");
954 static void rt2x00lib_remove_hw(struct rt2x00_dev
*rt2x00dev
)
956 if (test_bit(DEVICE_REGISTERED_HW
, &rt2x00dev
->flags
))
957 ieee80211_unregister_hw(rt2x00dev
->hw
);
959 if (likely(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
])) {
960 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->channels
);
961 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->bitrates
);
962 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = NULL
;
963 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = NULL
;
967 static int rt2x00lib_probe_hw(struct rt2x00_dev
*rt2x00dev
)
969 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
973 * Initialize HW modes.
975 status
= rt2x00lib_probe_hw_modes(rt2x00dev
, spec
);
982 status
= ieee80211_register_hw(rt2x00dev
->hw
);
984 rt2x00lib_remove_hw(rt2x00dev
);
988 __set_bit(DEVICE_REGISTERED_HW
, &rt2x00dev
->flags
);
994 * Initialization/uninitialization handlers.
996 static void rt2x00lib_uninitialize(struct rt2x00_dev
*rt2x00dev
)
998 if (!__test_and_clear_bit(DEVICE_INITIALIZED
, &rt2x00dev
->flags
))
1002 * Unregister extra components.
1004 rt2x00rfkill_unregister(rt2x00dev
);
1007 * Allow the HW to uninitialize.
1009 rt2x00dev
->ops
->lib
->uninitialize(rt2x00dev
);
1012 * Free allocated queue entries.
1014 rt2x00queue_uninitialize(rt2x00dev
);
1017 static int rt2x00lib_initialize(struct rt2x00_dev
*rt2x00dev
)
1021 if (test_bit(DEVICE_INITIALIZED
, &rt2x00dev
->flags
))
1025 * Allocate all queue entries.
1027 status
= rt2x00queue_initialize(rt2x00dev
);
1032 * Initialize the device.
1034 status
= rt2x00dev
->ops
->lib
->initialize(rt2x00dev
);
1036 rt2x00queue_uninitialize(rt2x00dev
);
1040 __set_bit(DEVICE_INITIALIZED
, &rt2x00dev
->flags
);
1043 * Register the extra components.
1045 rt2x00rfkill_register(rt2x00dev
);
1050 int rt2x00lib_start(struct rt2x00_dev
*rt2x00dev
)
1054 if (test_bit(DEVICE_STARTED
, &rt2x00dev
->flags
))
1058 * If this is the first interface which is added,
1059 * we should load the firmware now.
1061 retval
= rt2x00lib_load_firmware(rt2x00dev
);
1066 * Initialize the device.
1068 retval
= rt2x00lib_initialize(rt2x00dev
);
1075 retval
= rt2x00lib_enable_radio(rt2x00dev
);
1077 rt2x00lib_uninitialize(rt2x00dev
);
1081 rt2x00dev
->intf_ap_count
= 0;
1082 rt2x00dev
->intf_sta_count
= 0;
1083 rt2x00dev
->intf_associated
= 0;
1085 __set_bit(DEVICE_STARTED
, &rt2x00dev
->flags
);
1090 void rt2x00lib_stop(struct rt2x00_dev
*rt2x00dev
)
1092 if (!test_bit(DEVICE_STARTED
, &rt2x00dev
->flags
))
1096 * Perhaps we can add something smarter here,
1097 * but for now just disabling the radio should do.
1099 rt2x00lib_disable_radio(rt2x00dev
);
1101 rt2x00dev
->intf_ap_count
= 0;
1102 rt2x00dev
->intf_sta_count
= 0;
1103 rt2x00dev
->intf_associated
= 0;
1105 __clear_bit(DEVICE_STARTED
, &rt2x00dev
->flags
);
1109 * driver allocation handlers.
1111 int rt2x00lib_probe_dev(struct rt2x00_dev
*rt2x00dev
)
1113 int retval
= -ENOMEM
;
1116 * Make room for rt2x00_intf inside the per-interface
1117 * structure ieee80211_vif.
1119 rt2x00dev
->hw
->vif_data_size
= sizeof(struct rt2x00_intf
);
1122 * Let the driver probe the device to detect the capabilities.
1124 retval
= rt2x00dev
->ops
->lib
->probe_hw(rt2x00dev
);
1126 ERROR(rt2x00dev
, "Failed to allocate device.\n");
1131 * Initialize configuration work.
1133 INIT_WORK(&rt2x00dev
->intf_work
, rt2x00lib_intf_scheduled
);
1134 INIT_WORK(&rt2x00dev
->filter_work
, rt2x00lib_packetfilter_scheduled
);
1135 INIT_DELAYED_WORK(&rt2x00dev
->link
.work
, rt2x00lib_link_tuner
);
1138 * Allocate queue array.
1140 retval
= rt2x00queue_allocate(rt2x00dev
);
1145 * Initialize ieee80211 structure.
1147 retval
= rt2x00lib_probe_hw(rt2x00dev
);
1149 ERROR(rt2x00dev
, "Failed to initialize hw.\n");
1154 * Register extra components.
1156 rt2x00leds_register(rt2x00dev
);
1157 rt2x00rfkill_allocate(rt2x00dev
);
1158 rt2x00debug_register(rt2x00dev
);
1160 __set_bit(DEVICE_PRESENT
, &rt2x00dev
->flags
);
1165 rt2x00lib_remove_dev(rt2x00dev
);
1169 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev
);
1171 void rt2x00lib_remove_dev(struct rt2x00_dev
*rt2x00dev
)
1173 __clear_bit(DEVICE_PRESENT
, &rt2x00dev
->flags
);
1178 rt2x00lib_disable_radio(rt2x00dev
);
1181 * Uninitialize device.
1183 rt2x00lib_uninitialize(rt2x00dev
);
1186 * Free extra components
1188 rt2x00debug_deregister(rt2x00dev
);
1189 rt2x00rfkill_free(rt2x00dev
);
1190 rt2x00leds_unregister(rt2x00dev
);
1193 * Free ieee80211_hw memory.
1195 rt2x00lib_remove_hw(rt2x00dev
);
1198 * Free firmware image.
1200 rt2x00lib_free_firmware(rt2x00dev
);
1203 * Free queue structures.
1205 rt2x00queue_free(rt2x00dev
);
1207 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev
);
1210 * Device state handlers
1213 int rt2x00lib_suspend(struct rt2x00_dev
*rt2x00dev
, pm_message_t state
)
1217 NOTICE(rt2x00dev
, "Going to sleep.\n");
1218 __clear_bit(DEVICE_PRESENT
, &rt2x00dev
->flags
);
1221 * Only continue if mac80211 has open interfaces.
1223 if (!test_bit(DEVICE_STARTED
, &rt2x00dev
->flags
))
1225 __set_bit(DEVICE_STARTED_SUSPEND
, &rt2x00dev
->flags
);
1230 rt2x00lib_stop(rt2x00dev
);
1231 rt2x00lib_uninitialize(rt2x00dev
);
1234 * Suspend/disable extra components.
1236 rt2x00leds_suspend(rt2x00dev
);
1237 rt2x00rfkill_suspend(rt2x00dev
);
1238 rt2x00debug_deregister(rt2x00dev
);
1242 * Set device mode to sleep for power management,
1243 * on some hardware this call seems to consistently fail.
1244 * From the specifications it is hard to tell why it fails,
1245 * and if this is a "bad thing".
1246 * Overall it is safe to just ignore the failure and
1247 * continue suspending. The only downside is that the
1248 * device will not be in optimal power save mode, but with
1249 * the radio and the other components already disabled the
1250 * device is as good as disabled.
1252 retval
= rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_SLEEP
);
1254 WARNING(rt2x00dev
, "Device failed to enter sleep state, "
1255 "continue suspending.\n");
1259 EXPORT_SYMBOL_GPL(rt2x00lib_suspend
);
1261 static void rt2x00lib_resume_intf(void *data
, u8
*mac
,
1262 struct ieee80211_vif
*vif
)
1264 struct rt2x00_dev
*rt2x00dev
= data
;
1265 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
1267 spin_lock(&intf
->lock
);
1269 rt2x00lib_config_intf(rt2x00dev
, intf
,
1270 vif
->type
, intf
->mac
, intf
->bssid
);
1274 * Master or Ad-hoc mode require a new beacon update.
1276 if (vif
->type
== IEEE80211_IF_TYPE_AP
||
1277 vif
->type
== IEEE80211_IF_TYPE_IBSS
)
1278 intf
->delayed_flags
|= DELAYED_UPDATE_BEACON
;
1280 spin_unlock(&intf
->lock
);
1283 int rt2x00lib_resume(struct rt2x00_dev
*rt2x00dev
)
1287 NOTICE(rt2x00dev
, "Waking up.\n");
1290 * Restore/enable extra components.
1292 rt2x00debug_register(rt2x00dev
);
1293 rt2x00rfkill_resume(rt2x00dev
);
1294 rt2x00leds_resume(rt2x00dev
);
1297 * Only continue if mac80211 had open interfaces.
1299 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND
, &rt2x00dev
->flags
))
1303 * Reinitialize device and all active interfaces.
1305 retval
= rt2x00lib_start(rt2x00dev
);
1310 * Reconfigure device.
1312 rt2x00lib_config(rt2x00dev
, &rt2x00dev
->hw
->conf
, 1);
1313 if (!rt2x00dev
->hw
->conf
.radio_enabled
)
1314 rt2x00lib_disable_radio(rt2x00dev
);
1317 * Iterator over each active interface to
1318 * reconfigure the hardware.
1320 ieee80211_iterate_active_interfaces(rt2x00dev
->hw
,
1321 rt2x00lib_resume_intf
, rt2x00dev
);
1324 * We are ready again to receive requests from mac80211.
1326 __set_bit(DEVICE_PRESENT
, &rt2x00dev
->flags
);
1329 * It is possible that during that mac80211 has attempted
1330 * to send frames while we were suspending or resuming.
1331 * In that case we have disabled the TX queue and should
1332 * now enable it again
1334 ieee80211_start_queues(rt2x00dev
->hw
);
1337 * During interface iteration we might have changed the
1338 * delayed_flags, time to handles the event by calling
1339 * the work handler directly.
1341 rt2x00lib_intf_scheduled(&rt2x00dev
->intf_work
);
1346 rt2x00lib_disable_radio(rt2x00dev
);
1347 rt2x00lib_uninitialize(rt2x00dev
);
1348 rt2x00debug_deregister(rt2x00dev
);
1352 EXPORT_SYMBOL_GPL(rt2x00lib_resume
);
1353 #endif /* CONFIG_PM */
1356 * rt2x00lib module information.
1358 MODULE_AUTHOR(DRV_PROJECT
);
1359 MODULE_VERSION(DRV_VERSION
);
1360 MODULE_DESCRIPTION("rt2x00 library");
1361 MODULE_LICENSE("GPL");