ia64/kvm: compilation fix. export account_system_vtime.
[pv_ops_mirror.git] / drivers / scsi / aacraid / commctrl.c
blob5fd83deab36ca6f1bf0834c83e4714fae63b124a
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * commctrl.c
27 * Abstract: Contains all routines for control of the AFA comm layer
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/types.h>
34 #include <linux/pci.h>
35 #include <linux/spinlock.h>
36 #include <linux/slab.h>
37 #include <linux/completion.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h> /* ssleep prototype */
41 #include <linux/kthread.h>
42 #include <linux/semaphore.h>
43 #include <asm/uaccess.h>
45 #include "aacraid.h"
47 /**
48 * ioctl_send_fib - send a FIB from userspace
49 * @dev: adapter is being processed
50 * @arg: arguments to the ioctl call
52 * This routine sends a fib to the adapter on behalf of a user level
53 * program.
55 # define AAC_DEBUG_PREAMBLE KERN_INFO
56 # define AAC_DEBUG_POSTAMBLE
58 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
60 struct hw_fib * kfib;
61 struct fib *fibptr;
62 struct hw_fib * hw_fib = (struct hw_fib *)0;
63 dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
64 unsigned size;
65 int retval;
67 if (dev->in_reset) {
68 return -EBUSY;
70 fibptr = aac_fib_alloc(dev);
71 if(fibptr == NULL) {
72 return -ENOMEM;
75 kfib = fibptr->hw_fib_va;
77 * First copy in the header so that we can check the size field.
79 if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
80 aac_fib_free(fibptr);
81 return -EFAULT;
84 * Since we copy based on the fib header size, make sure that we
85 * will not overrun the buffer when we copy the memory. Return
86 * an error if we would.
88 size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr);
89 if (size < le16_to_cpu(kfib->header.SenderSize))
90 size = le16_to_cpu(kfib->header.SenderSize);
91 if (size > dev->max_fib_size) {
92 if (size > 2048) {
93 retval = -EINVAL;
94 goto cleanup;
96 /* Highjack the hw_fib */
97 hw_fib = fibptr->hw_fib_va;
98 hw_fib_pa = fibptr->hw_fib_pa;
99 fibptr->hw_fib_va = kfib = pci_alloc_consistent(dev->pdev, size, &fibptr->hw_fib_pa);
100 memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
101 memcpy(kfib, hw_fib, dev->max_fib_size);
104 if (copy_from_user(kfib, arg, size)) {
105 retval = -EFAULT;
106 goto cleanup;
109 if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
110 aac_adapter_interrupt(dev);
112 * Since we didn't really send a fib, zero out the state to allow
113 * cleanup code not to assert.
115 kfib->header.XferState = 0;
116 } else {
117 retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
118 le16_to_cpu(kfib->header.Size) , FsaNormal,
119 1, 1, NULL, NULL);
120 if (retval) {
121 goto cleanup;
123 if (aac_fib_complete(fibptr) != 0) {
124 retval = -EINVAL;
125 goto cleanup;
129 * Make sure that the size returned by the adapter (which includes
130 * the header) is less than or equal to the size of a fib, so we
131 * don't corrupt application data. Then copy that size to the user
132 * buffer. (Don't try to add the header information again, since it
133 * was already included by the adapter.)
136 retval = 0;
137 if (copy_to_user(arg, (void *)kfib, size))
138 retval = -EFAULT;
139 cleanup:
140 if (hw_fib) {
141 pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa);
142 fibptr->hw_fib_pa = hw_fib_pa;
143 fibptr->hw_fib_va = hw_fib;
145 if (retval != -EINTR)
146 aac_fib_free(fibptr);
147 return retval;
151 * open_getadapter_fib - Get the next fib
153 * This routine will get the next Fib, if available, from the AdapterFibContext
154 * passed in from the user.
157 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
159 struct aac_fib_context * fibctx;
160 int status;
162 fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
163 if (fibctx == NULL) {
164 status = -ENOMEM;
165 } else {
166 unsigned long flags;
167 struct list_head * entry;
168 struct aac_fib_context * context;
170 fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
171 fibctx->size = sizeof(struct aac_fib_context);
173 * Yes yes, I know this could be an index, but we have a
174 * better guarantee of uniqueness for the locked loop below.
175 * Without the aid of a persistent history, this also helps
176 * reduce the chance that the opaque context would be reused.
178 fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
180 * Initialize the mutex used to wait for the next AIF.
182 init_MUTEX_LOCKED(&fibctx->wait_sem);
183 fibctx->wait = 0;
185 * Initialize the fibs and set the count of fibs on
186 * the list to 0.
188 fibctx->count = 0;
189 INIT_LIST_HEAD(&fibctx->fib_list);
190 fibctx->jiffies = jiffies/HZ;
192 * Now add this context onto the adapter's
193 * AdapterFibContext list.
195 spin_lock_irqsave(&dev->fib_lock, flags);
196 /* Ensure that we have a unique identifier */
197 entry = dev->fib_list.next;
198 while (entry != &dev->fib_list) {
199 context = list_entry(entry, struct aac_fib_context, next);
200 if (context->unique == fibctx->unique) {
201 /* Not unique (32 bits) */
202 fibctx->unique++;
203 entry = dev->fib_list.next;
204 } else {
205 entry = entry->next;
208 list_add_tail(&fibctx->next, &dev->fib_list);
209 spin_unlock_irqrestore(&dev->fib_lock, flags);
210 if (copy_to_user(arg, &fibctx->unique,
211 sizeof(fibctx->unique))) {
212 status = -EFAULT;
213 } else {
214 status = 0;
217 return status;
221 * next_getadapter_fib - get the next fib
222 * @dev: adapter to use
223 * @arg: ioctl argument
225 * This routine will get the next Fib, if available, from the AdapterFibContext
226 * passed in from the user.
229 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
231 struct fib_ioctl f;
232 struct fib *fib;
233 struct aac_fib_context *fibctx;
234 int status;
235 struct list_head * entry;
236 unsigned long flags;
238 if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
239 return -EFAULT;
241 * Verify that the HANDLE passed in was a valid AdapterFibContext
243 * Search the list of AdapterFibContext addresses on the adapter
244 * to be sure this is a valid address
246 spin_lock_irqsave(&dev->fib_lock, flags);
247 entry = dev->fib_list.next;
248 fibctx = NULL;
250 while (entry != &dev->fib_list) {
251 fibctx = list_entry(entry, struct aac_fib_context, next);
253 * Extract the AdapterFibContext from the Input parameters.
255 if (fibctx->unique == f.fibctx) { /* We found a winner */
256 break;
258 entry = entry->next;
259 fibctx = NULL;
261 if (!fibctx) {
262 spin_unlock_irqrestore(&dev->fib_lock, flags);
263 dprintk ((KERN_INFO "Fib Context not found\n"));
264 return -EINVAL;
267 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
268 (fibctx->size != sizeof(struct aac_fib_context))) {
269 spin_unlock_irqrestore(&dev->fib_lock, flags);
270 dprintk ((KERN_INFO "Fib Context corrupt?\n"));
271 return -EINVAL;
273 status = 0;
275 * If there are no fibs to send back, then either wait or return
276 * -EAGAIN
278 return_fib:
279 if (!list_empty(&fibctx->fib_list)) {
281 * Pull the next fib from the fibs
283 entry = fibctx->fib_list.next;
284 list_del(entry);
286 fib = list_entry(entry, struct fib, fiblink);
287 fibctx->count--;
288 spin_unlock_irqrestore(&dev->fib_lock, flags);
289 if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
290 kfree(fib->hw_fib_va);
291 kfree(fib);
292 return -EFAULT;
295 * Free the space occupied by this copy of the fib.
297 kfree(fib->hw_fib_va);
298 kfree(fib);
299 status = 0;
300 } else {
301 spin_unlock_irqrestore(&dev->fib_lock, flags);
302 /* If someone killed the AIF aacraid thread, restart it */
303 status = !dev->aif_thread;
304 if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
305 /* Be paranoid, be very paranoid! */
306 kthread_stop(dev->thread);
307 ssleep(1);
308 dev->aif_thread = 0;
309 dev->thread = kthread_run(aac_command_thread, dev, dev->name);
310 ssleep(1);
312 if (f.wait) {
313 if(down_interruptible(&fibctx->wait_sem) < 0) {
314 status = -EINTR;
315 } else {
316 /* Lock again and retry */
317 spin_lock_irqsave(&dev->fib_lock, flags);
318 goto return_fib;
320 } else {
321 status = -EAGAIN;
324 fibctx->jiffies = jiffies/HZ;
325 return status;
328 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
330 struct fib *fib;
333 * First free any FIBs that have not been consumed.
335 while (!list_empty(&fibctx->fib_list)) {
336 struct list_head * entry;
338 * Pull the next fib from the fibs
340 entry = fibctx->fib_list.next;
341 list_del(entry);
342 fib = list_entry(entry, struct fib, fiblink);
343 fibctx->count--;
345 * Free the space occupied by this copy of the fib.
347 kfree(fib->hw_fib_va);
348 kfree(fib);
351 * Remove the Context from the AdapterFibContext List
353 list_del(&fibctx->next);
355 * Invalidate context
357 fibctx->type = 0;
359 * Free the space occupied by the Context
361 kfree(fibctx);
362 return 0;
366 * close_getadapter_fib - close down user fib context
367 * @dev: adapter
368 * @arg: ioctl arguments
370 * This routine will close down the fibctx passed in from the user.
373 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
375 struct aac_fib_context *fibctx;
376 int status;
377 unsigned long flags;
378 struct list_head * entry;
381 * Verify that the HANDLE passed in was a valid AdapterFibContext
383 * Search the list of AdapterFibContext addresses on the adapter
384 * to be sure this is a valid address
387 entry = dev->fib_list.next;
388 fibctx = NULL;
390 while(entry != &dev->fib_list) {
391 fibctx = list_entry(entry, struct aac_fib_context, next);
393 * Extract the fibctx from the input parameters
395 if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
396 break;
397 entry = entry->next;
398 fibctx = NULL;
401 if (!fibctx)
402 return 0; /* Already gone */
404 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
405 (fibctx->size != sizeof(struct aac_fib_context)))
406 return -EINVAL;
407 spin_lock_irqsave(&dev->fib_lock, flags);
408 status = aac_close_fib_context(dev, fibctx);
409 spin_unlock_irqrestore(&dev->fib_lock, flags);
410 return status;
414 * check_revision - close down user fib context
415 * @dev: adapter
416 * @arg: ioctl arguments
418 * This routine returns the driver version.
419 * Under Linux, there have been no version incompatibilities, so this is
420 * simple!
423 static int check_revision(struct aac_dev *dev, void __user *arg)
425 struct revision response;
426 char *driver_version = aac_driver_version;
427 u32 version;
429 response.compat = 1;
430 version = (simple_strtol(driver_version,
431 &driver_version, 10) << 24) | 0x00000400;
432 version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
433 version += simple_strtol(driver_version + 1, NULL, 10);
434 response.version = cpu_to_le32(version);
435 # ifdef AAC_DRIVER_BUILD
436 response.build = cpu_to_le32(AAC_DRIVER_BUILD);
437 # else
438 response.build = cpu_to_le32(9999);
439 # endif
441 if (copy_to_user(arg, &response, sizeof(response)))
442 return -EFAULT;
443 return 0;
449 * aac_send_raw_scb
453 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
455 struct fib* srbfib;
456 int status;
457 struct aac_srb *srbcmd = NULL;
458 struct user_aac_srb *user_srbcmd = NULL;
459 struct user_aac_srb __user *user_srb = arg;
460 struct aac_srb_reply __user *user_reply;
461 struct aac_srb_reply* reply;
462 u32 fibsize = 0;
463 u32 flags = 0;
464 s32 rcode = 0;
465 u32 data_dir;
466 void __user *sg_user[32];
467 void *sg_list[32];
468 u32 sg_indx = 0;
469 u32 byte_count = 0;
470 u32 actual_fibsize64, actual_fibsize = 0;
471 int i;
474 if (dev->in_reset) {
475 dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
476 return -EBUSY;
478 if (!capable(CAP_SYS_ADMIN)){
479 dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
480 return -EPERM;
483 * Allocate and initialize a Fib then setup a SRB command
485 if (!(srbfib = aac_fib_alloc(dev))) {
486 return -ENOMEM;
488 aac_fib_init(srbfib);
490 srbcmd = (struct aac_srb*) fib_data(srbfib);
492 memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
493 if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
494 dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
495 rcode = -EFAULT;
496 goto cleanup;
499 if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) {
500 rcode = -EINVAL;
501 goto cleanup;
504 user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
505 if (!user_srbcmd) {
506 dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
507 rcode = -ENOMEM;
508 goto cleanup;
510 if(copy_from_user(user_srbcmd, user_srb,fibsize)){
511 dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
512 rcode = -EFAULT;
513 goto cleanup;
516 user_reply = arg+fibsize;
518 flags = user_srbcmd->flags; /* from user in cpu order */
519 // Fix up srb for endian and force some values
521 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this
522 srbcmd->channel = cpu_to_le32(user_srbcmd->channel);
523 srbcmd->id = cpu_to_le32(user_srbcmd->id);
524 srbcmd->lun = cpu_to_le32(user_srbcmd->lun);
525 srbcmd->timeout = cpu_to_le32(user_srbcmd->timeout);
526 srbcmd->flags = cpu_to_le32(flags);
527 srbcmd->retry_limit = 0; // Obsolete parameter
528 srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
529 memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
531 switch (flags & (SRB_DataIn | SRB_DataOut)) {
532 case SRB_DataOut:
533 data_dir = DMA_TO_DEVICE;
534 break;
535 case (SRB_DataIn | SRB_DataOut):
536 data_dir = DMA_BIDIRECTIONAL;
537 break;
538 case SRB_DataIn:
539 data_dir = DMA_FROM_DEVICE;
540 break;
541 default:
542 data_dir = DMA_NONE;
544 if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
545 dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
546 le32_to_cpu(srbcmd->sg.count)));
547 rcode = -EINVAL;
548 goto cleanup;
550 actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
551 ((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
552 actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
553 (sizeof(struct sgentry64) - sizeof(struct sgentry));
554 /* User made a mistake - should not continue */
555 if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
556 dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
557 "Raw SRB command calculated fibsize=%lu;%lu "
558 "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
559 "issued fibsize=%d\n",
560 actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
561 sizeof(struct aac_srb), sizeof(struct sgentry),
562 sizeof(struct sgentry64), fibsize));
563 rcode = -EINVAL;
564 goto cleanup;
566 if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
567 dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n"));
568 rcode = -EINVAL;
569 goto cleanup;
571 byte_count = 0;
572 if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
573 struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
574 struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
577 * This should also catch if user used the 32 bit sgmap
579 if (actual_fibsize64 == fibsize) {
580 actual_fibsize = actual_fibsize64;
581 for (i = 0; i < upsg->count; i++) {
582 u64 addr;
583 void* p;
584 /* Does this really need to be GFP_DMA? */
585 p = kmalloc(upsg->sg[i].count,GFP_KERNEL|__GFP_DMA);
586 if(!p) {
587 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
588 upsg->sg[i].count,i,upsg->count));
589 rcode = -ENOMEM;
590 goto cleanup;
592 addr = (u64)upsg->sg[i].addr[0];
593 addr += ((u64)upsg->sg[i].addr[1]) << 32;
594 sg_user[i] = (void __user *)(uintptr_t)addr;
595 sg_list[i] = p; // save so we can clean up later
596 sg_indx = i;
598 if (flags & SRB_DataOut) {
599 if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
600 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
601 rcode = -EFAULT;
602 goto cleanup;
605 addr = pci_map_single(dev->pdev, p, upsg->sg[i].count, data_dir);
607 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
608 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
609 byte_count += upsg->sg[i].count;
610 psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
612 } else {
613 struct user_sgmap* usg;
614 usg = kmalloc(actual_fibsize - sizeof(struct aac_srb)
615 + sizeof(struct sgmap), GFP_KERNEL);
616 if (!usg) {
617 dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
618 rcode = -ENOMEM;
619 goto cleanup;
621 memcpy (usg, upsg, actual_fibsize - sizeof(struct aac_srb)
622 + sizeof(struct sgmap));
623 actual_fibsize = actual_fibsize64;
625 for (i = 0; i < usg->count; i++) {
626 u64 addr;
627 void* p;
628 /* Does this really need to be GFP_DMA? */
629 p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
630 if(!p) {
631 kfree (usg);
632 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
633 usg->sg[i].count,i,usg->count));
634 rcode = -ENOMEM;
635 goto cleanup;
637 sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
638 sg_list[i] = p; // save so we can clean up later
639 sg_indx = i;
641 if (flags & SRB_DataOut) {
642 if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
643 kfree (usg);
644 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
645 rcode = -EFAULT;
646 goto cleanup;
649 addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
651 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
652 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
653 byte_count += usg->sg[i].count;
654 psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
656 kfree (usg);
658 srbcmd->count = cpu_to_le32(byte_count);
659 psg->count = cpu_to_le32(sg_indx+1);
660 status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
661 } else {
662 struct user_sgmap* upsg = &user_srbcmd->sg;
663 struct sgmap* psg = &srbcmd->sg;
665 if (actual_fibsize64 == fibsize) {
666 struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
667 for (i = 0; i < upsg->count; i++) {
668 uintptr_t addr;
669 void* p;
670 /* Does this really need to be GFP_DMA? */
671 p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
672 if(!p) {
673 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
674 usg->sg[i].count,i,usg->count));
675 rcode = -ENOMEM;
676 goto cleanup;
678 addr = (u64)usg->sg[i].addr[0];
679 addr += ((u64)usg->sg[i].addr[1]) << 32;
680 sg_user[i] = (void __user *)addr;
681 sg_list[i] = p; // save so we can clean up later
682 sg_indx = i;
684 if (flags & SRB_DataOut) {
685 if(copy_from_user(p,sg_user[i],usg->sg[i].count)){
686 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
687 rcode = -EFAULT;
688 goto cleanup;
691 addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
693 psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
694 byte_count += usg->sg[i].count;
695 psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
697 } else {
698 for (i = 0; i < upsg->count; i++) {
699 dma_addr_t addr;
700 void* p;
701 p = kmalloc(upsg->sg[i].count, GFP_KERNEL);
702 if (!p) {
703 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
704 upsg->sg[i].count, i, upsg->count));
705 rcode = -ENOMEM;
706 goto cleanup;
708 sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
709 sg_list[i] = p; // save so we can clean up later
710 sg_indx = i;
712 if (flags & SRB_DataOut) {
713 if(copy_from_user(p, sg_user[i],
714 upsg->sg[i].count)) {
715 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
716 rcode = -EFAULT;
717 goto cleanup;
720 addr = pci_map_single(dev->pdev, p,
721 upsg->sg[i].count, data_dir);
723 psg->sg[i].addr = cpu_to_le32(addr);
724 byte_count += upsg->sg[i].count;
725 psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
728 srbcmd->count = cpu_to_le32(byte_count);
729 psg->count = cpu_to_le32(sg_indx+1);
730 status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
732 if (status == -EINTR) {
733 rcode = -EINTR;
734 goto cleanup;
737 if (status != 0){
738 dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
739 rcode = -ENXIO;
740 goto cleanup;
743 if (flags & SRB_DataIn) {
744 for(i = 0 ; i <= sg_indx; i++){
745 byte_count = le32_to_cpu(
746 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)
747 ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count
748 : srbcmd->sg.sg[i].count);
749 if(copy_to_user(sg_user[i], sg_list[i], byte_count)){
750 dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
751 rcode = -EFAULT;
752 goto cleanup;
758 reply = (struct aac_srb_reply *) fib_data(srbfib);
759 if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){
760 dprintk((KERN_DEBUG"aacraid: Could not copy reply to user\n"));
761 rcode = -EFAULT;
762 goto cleanup;
765 cleanup:
766 kfree(user_srbcmd);
767 for(i=0; i <= sg_indx; i++){
768 kfree(sg_list[i]);
770 if (rcode != -EINTR) {
771 aac_fib_complete(srbfib);
772 aac_fib_free(srbfib);
775 return rcode;
778 struct aac_pci_info {
779 u32 bus;
780 u32 slot;
784 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
786 struct aac_pci_info pci_info;
788 pci_info.bus = dev->pdev->bus->number;
789 pci_info.slot = PCI_SLOT(dev->pdev->devfn);
791 if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
792 dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
793 return -EFAULT;
795 return 0;
799 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg)
801 int status;
804 * HBA gets first crack
807 status = aac_dev_ioctl(dev, cmd, arg);
808 if(status != -ENOTTY)
809 return status;
811 switch (cmd) {
812 case FSACTL_MINIPORT_REV_CHECK:
813 status = check_revision(dev, arg);
814 break;
815 case FSACTL_SEND_LARGE_FIB:
816 case FSACTL_SENDFIB:
817 status = ioctl_send_fib(dev, arg);
818 break;
819 case FSACTL_OPEN_GET_ADAPTER_FIB:
820 status = open_getadapter_fib(dev, arg);
821 break;
822 case FSACTL_GET_NEXT_ADAPTER_FIB:
823 status = next_getadapter_fib(dev, arg);
824 break;
825 case FSACTL_CLOSE_GET_ADAPTER_FIB:
826 status = close_getadapter_fib(dev, arg);
827 break;
828 case FSACTL_SEND_RAW_SRB:
829 status = aac_send_raw_srb(dev,arg);
830 break;
831 case FSACTL_GET_PCI_INFO:
832 status = aac_get_pci_info(dev,arg);
833 break;
834 default:
835 status = -ENOTTY;
836 break;
838 return status;