[CRYPTO] api: Add crypto_ablkcipher_ctx_aligned
[pv_ops_mirror.git] / include / linux / reiserfs_fs.h
blob180a9d832dde000f966cee08666235b58690f168
1 /*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
5 /* this file has an amazingly stupid
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
11 #ifndef _LINUX_REISER_FS_H
12 #define _LINUX_REISER_FS_H
14 #include <linux/types.h>
15 #include <linux/magic.h>
17 #ifdef __KERNEL__
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/sched.h>
21 #include <linux/workqueue.h>
22 #include <asm/unaligned.h>
23 #include <linux/bitops.h>
24 #include <linux/proc_fs.h>
25 #include <linux/smp_lock.h>
26 #include <linux/buffer_head.h>
27 #include <linux/reiserfs_fs_i.h>
28 #include <linux/reiserfs_fs_sb.h>
29 #endif
32 * include/linux/reiser_fs.h
34 * Reiser File System constants and structures
38 /* in reading the #defines, it may help to understand that they employ
39 the following abbreviations:
41 B = Buffer
42 I = Item header
43 H = Height within the tree (should be changed to LEV)
44 N = Number of the item in the node
45 STAT = stat data
46 DEH = Directory Entry Header
47 EC = Entry Count
48 E = Entry number
49 UL = Unsigned Long
50 BLKH = BLocK Header
51 UNFM = UNForMatted node
52 DC = Disk Child
53 P = Path
55 These #defines are named by concatenating these abbreviations,
56 where first comes the arguments, and last comes the return value,
57 of the macro.
61 #define USE_INODE_GENERATION_COUNTER
63 #define REISERFS_PREALLOCATE
64 #define DISPLACE_NEW_PACKING_LOCALITIES
65 #define PREALLOCATION_SIZE 9
67 /* n must be power of 2 */
68 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
70 // to be ok for alpha and others we have to align structures to 8 byte
71 // boundary.
72 // FIXME: do not change 4 by anything else: there is code which relies on that
73 #define ROUND_UP(x) _ROUND_UP(x,8LL)
75 /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
76 ** messages.
78 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
80 void reiserfs_warning(struct super_block *s, const char *fmt, ...);
81 /* assertions handling */
83 /** always check a condition and panic if it's false. */
84 #define __RASSERT( cond, scond, format, args... ) \
85 if( !( cond ) ) \
86 reiserfs_panic( NULL, "reiserfs[%i]: assertion " scond " failed at " \
87 __FILE__ ":%i:%s: " format "\n", \
88 in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
90 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
92 #if defined( CONFIG_REISERFS_CHECK )
93 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
94 #else
95 #define RFALSE( cond, format, args... ) do {;} while( 0 )
96 #endif
98 #define CONSTF __attribute_const__
100 * Disk Data Structures
103 /***************************************************************************/
104 /* SUPER BLOCK */
105 /***************************************************************************/
108 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
109 * the version in RAM is part of a larger structure containing fields never written to disk.
111 #define UNSET_HASH 0 // read_super will guess about, what hash names
112 // in directories were sorted with
113 #define TEA_HASH 1
114 #define YURA_HASH 2
115 #define R5_HASH 3
116 #define DEFAULT_HASH R5_HASH
118 struct journal_params {
119 __le32 jp_journal_1st_block; /* where does journal start from on its
120 * device */
121 __le32 jp_journal_dev; /* journal device st_rdev */
122 __le32 jp_journal_size; /* size of the journal */
123 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */
124 __le32 jp_journal_magic; /* random value made on fs creation (this
125 * was sb_journal_block_count) */
126 __le32 jp_journal_max_batch; /* max number of blocks to batch into a
127 * trans */
128 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async
129 * commit be */
130 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
131 * be */
134 /* this is the super from 3.5.X, where X >= 10 */
135 struct reiserfs_super_block_v1 {
136 __le32 s_block_count; /* blocks count */
137 __le32 s_free_blocks; /* free blocks count */
138 __le32 s_root_block; /* root block number */
139 struct journal_params s_journal;
140 __le16 s_blocksize; /* block size */
141 __le16 s_oid_maxsize; /* max size of object id array, see
142 * get_objectid() commentary */
143 __le16 s_oid_cursize; /* current size of object id array */
144 __le16 s_umount_state; /* this is set to 1 when filesystem was
145 * umounted, to 2 - when not */
146 char s_magic[10]; /* reiserfs magic string indicates that
147 * file system is reiserfs:
148 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
149 __le16 s_fs_state; /* it is set to used by fsck to mark which
150 * phase of rebuilding is done */
151 __le32 s_hash_function_code; /* indicate, what hash function is being use
152 * to sort names in a directory*/
153 __le16 s_tree_height; /* height of disk tree */
154 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address
155 * each block of file system */
156 __le16 s_version; /* this field is only reliable on filesystem
157 * with non-standard journal */
158 __le16 s_reserved_for_journal; /* size in blocks of journal area on main
159 * device, we need to keep after
160 * making fs with non-standard journal */
161 } __attribute__ ((__packed__));
163 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
165 /* this is the on disk super block */
166 struct reiserfs_super_block {
167 struct reiserfs_super_block_v1 s_v1;
168 __le32 s_inode_generation;
169 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */
170 unsigned char s_uuid[16]; /* filesystem unique identifier */
171 unsigned char s_label[16]; /* filesystem volume label */
172 char s_unused[88]; /* zero filled by mkreiserfs and
173 * reiserfs_convert_objectid_map_v1()
174 * so any additions must be updated
175 * there as well. */
176 } __attribute__ ((__packed__));
178 #define SB_SIZE (sizeof(struct reiserfs_super_block))
180 #define REISERFS_VERSION_1 0
181 #define REISERFS_VERSION_2 2
183 // on-disk super block fields converted to cpu form
184 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
185 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
186 #define SB_BLOCKSIZE(s) \
187 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
188 #define SB_BLOCK_COUNT(s) \
189 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
190 #define SB_FREE_BLOCKS(s) \
191 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
192 #define SB_REISERFS_MAGIC(s) \
193 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
194 #define SB_ROOT_BLOCK(s) \
195 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
196 #define SB_TREE_HEIGHT(s) \
197 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
198 #define SB_REISERFS_STATE(s) \
199 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
200 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
201 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
203 #define PUT_SB_BLOCK_COUNT(s, val) \
204 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
205 #define PUT_SB_FREE_BLOCKS(s, val) \
206 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
207 #define PUT_SB_ROOT_BLOCK(s, val) \
208 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
209 #define PUT_SB_TREE_HEIGHT(s, val) \
210 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
211 #define PUT_SB_REISERFS_STATE(s, val) \
212 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
213 #define PUT_SB_VERSION(s, val) \
214 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
215 #define PUT_SB_BMAP_NR(s, val) \
216 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
218 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
219 #define SB_ONDISK_JOURNAL_SIZE(s) \
220 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
221 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
222 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
223 #define SB_ONDISK_JOURNAL_DEVICE(s) \
224 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
225 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
226 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
228 #define is_block_in_log_or_reserved_area(s, block) \
229 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
230 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
231 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
232 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
234 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
235 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
236 int is_reiserfs_jr(struct reiserfs_super_block *rs);
238 /* ReiserFS leaves the first 64k unused, so that partition labels have
239 enough space. If someone wants to write a fancy bootloader that
240 needs more than 64k, let us know, and this will be increased in size.
241 This number must be larger than than the largest block size on any
242 platform, or code will break. -Hans */
243 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
244 #define REISERFS_FIRST_BLOCK unused_define
245 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
247 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
248 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
250 // reiserfs internal error code (used by search_by_key adn fix_nodes))
251 #define CARRY_ON 0
252 #define REPEAT_SEARCH -1
253 #define IO_ERROR -2
254 #define NO_DISK_SPACE -3
255 #define NO_BALANCING_NEEDED (-4)
256 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
257 #define QUOTA_EXCEEDED -6
259 typedef __u32 b_blocknr_t;
260 typedef __le32 unp_t;
262 struct unfm_nodeinfo {
263 unp_t unfm_nodenum;
264 unsigned short unfm_freespace;
267 /* there are two formats of keys: 3.5 and 3.6
269 #define KEY_FORMAT_3_5 0
270 #define KEY_FORMAT_3_6 1
272 /* there are two stat datas */
273 #define STAT_DATA_V1 0
274 #define STAT_DATA_V2 1
276 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
278 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
281 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
283 return sb->s_fs_info;
286 /** this says about version of key of all items (but stat data) the
287 object consists of */
288 #define get_inode_item_key_version( inode ) \
289 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
291 #define set_inode_item_key_version( inode, version ) \
292 ({ if((version)==KEY_FORMAT_3_6) \
293 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
294 else \
295 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
297 #define get_inode_sd_version(inode) \
298 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
300 #define set_inode_sd_version(inode, version) \
301 ({ if((version)==STAT_DATA_V2) \
302 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
303 else \
304 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
306 /* This is an aggressive tail suppression policy, I am hoping it
307 improves our benchmarks. The principle behind it is that percentage
308 space saving is what matters, not absolute space saving. This is
309 non-intuitive, but it helps to understand it if you consider that the
310 cost to access 4 blocks is not much more than the cost to access 1
311 block, if you have to do a seek and rotate. A tail risks a
312 non-linear disk access that is significant as a percentage of total
313 time cost for a 4 block file and saves an amount of space that is
314 less significant as a percentage of space, or so goes the hypothesis.
315 -Hans */
316 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
318 (!(n_tail_size)) || \
319 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
320 ( (n_file_size) >= (n_block_size) * 4 ) || \
321 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
322 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
323 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
324 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
325 ( ( (n_file_size) >= (n_block_size) ) && \
326 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
329 /* Another strategy for tails, this one means only create a tail if all the
330 file would fit into one DIRECT item.
331 Primary intention for this one is to increase performance by decreasing
332 seeking.
334 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
336 (!(n_tail_size)) || \
337 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
341 * values for s_umount_state field
343 #define REISERFS_VALID_FS 1
344 #define REISERFS_ERROR_FS 2
347 // there are 5 item types currently
349 #define TYPE_STAT_DATA 0
350 #define TYPE_INDIRECT 1
351 #define TYPE_DIRECT 2
352 #define TYPE_DIRENTRY 3
353 #define TYPE_MAXTYPE 3
354 #define TYPE_ANY 15 // FIXME: comment is required
356 /***************************************************************************/
357 /* KEY & ITEM HEAD */
358 /***************************************************************************/
361 // directories use this key as well as old files
363 struct offset_v1 {
364 __le32 k_offset;
365 __le32 k_uniqueness;
366 } __attribute__ ((__packed__));
368 struct offset_v2 {
369 __le64 v;
370 } __attribute__ ((__packed__));
372 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
374 __u8 type = le64_to_cpu(v2->v) >> 60;
375 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
378 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
380 v2->v =
381 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
384 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
386 return le64_to_cpu(v2->v) & (~0ULL >> 4);
389 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
391 offset &= (~0ULL >> 4);
392 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
395 /* Key of an item determines its location in the S+tree, and
396 is composed of 4 components */
397 struct reiserfs_key {
398 __le32 k_dir_id; /* packing locality: by default parent
399 directory object id */
400 __le32 k_objectid; /* object identifier */
401 union {
402 struct offset_v1 k_offset_v1;
403 struct offset_v2 k_offset_v2;
404 } __attribute__ ((__packed__)) u;
405 } __attribute__ ((__packed__));
407 struct in_core_key {
408 __u32 k_dir_id; /* packing locality: by default parent
409 directory object id */
410 __u32 k_objectid; /* object identifier */
411 __u64 k_offset;
412 __u8 k_type;
415 struct cpu_key {
416 struct in_core_key on_disk_key;
417 int version;
418 int key_length; /* 3 in all cases but direct2indirect and
419 indirect2direct conversion */
422 /* Our function for comparing keys can compare keys of different
423 lengths. It takes as a parameter the length of the keys it is to
424 compare. These defines are used in determining what is to be passed
425 to it as that parameter. */
426 #define REISERFS_FULL_KEY_LEN 4
427 #define REISERFS_SHORT_KEY_LEN 2
429 /* The result of the key compare */
430 #define FIRST_GREATER 1
431 #define SECOND_GREATER -1
432 #define KEYS_IDENTICAL 0
433 #define KEY_FOUND 1
434 #define KEY_NOT_FOUND 0
436 #define KEY_SIZE (sizeof(struct reiserfs_key))
437 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
439 /* return values for search_by_key and clones */
440 #define ITEM_FOUND 1
441 #define ITEM_NOT_FOUND 0
442 #define ENTRY_FOUND 1
443 #define ENTRY_NOT_FOUND 0
444 #define DIRECTORY_NOT_FOUND -1
445 #define REGULAR_FILE_FOUND -2
446 #define DIRECTORY_FOUND -3
447 #define BYTE_FOUND 1
448 #define BYTE_NOT_FOUND 0
449 #define FILE_NOT_FOUND -1
451 #define POSITION_FOUND 1
452 #define POSITION_NOT_FOUND 0
454 // return values for reiserfs_find_entry and search_by_entry_key
455 #define NAME_FOUND 1
456 #define NAME_NOT_FOUND 0
457 #define GOTO_PREVIOUS_ITEM 2
458 #define NAME_FOUND_INVISIBLE 3
460 /* Everything in the filesystem is stored as a set of items. The
461 item head contains the key of the item, its free space (for
462 indirect items) and specifies the location of the item itself
463 within the block. */
465 struct item_head {
466 /* Everything in the tree is found by searching for it based on
467 * its key.*/
468 struct reiserfs_key ih_key;
469 union {
470 /* The free space in the last unformatted node of an
471 indirect item if this is an indirect item. This
472 equals 0xFFFF iff this is a direct item or stat data
473 item. Note that the key, not this field, is used to
474 determine the item type, and thus which field this
475 union contains. */
476 __le16 ih_free_space_reserved;
477 /* Iff this is a directory item, this field equals the
478 number of directory entries in the directory item. */
479 __le16 ih_entry_count;
480 } __attribute__ ((__packed__)) u;
481 __le16 ih_item_len; /* total size of the item body */
482 __le16 ih_item_location; /* an offset to the item body
483 * within the block */
484 __le16 ih_version; /* 0 for all old items, 2 for new
485 ones. Highest bit is set by fsck
486 temporary, cleaned after all
487 done */
488 } __attribute__ ((__packed__));
489 /* size of item header */
490 #define IH_SIZE (sizeof(struct item_head))
492 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
493 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
494 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
495 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
496 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
498 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
499 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
500 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
501 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
502 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
504 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
506 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
507 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
509 /* these operate on indirect items, where you've got an array of ints
510 ** at a possibly unaligned location. These are a noop on ia32
512 ** p is the array of __u32, i is the index into the array, v is the value
513 ** to store there.
515 #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
516 #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
519 // in old version uniqueness field shows key type
521 #define V1_SD_UNIQUENESS 0
522 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
523 #define V1_DIRECT_UNIQUENESS 0xffffffff
524 #define V1_DIRENTRY_UNIQUENESS 500
525 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
528 // here are conversion routines
530 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
531 static inline int uniqueness2type(__u32 uniqueness)
533 switch ((int)uniqueness) {
534 case V1_SD_UNIQUENESS:
535 return TYPE_STAT_DATA;
536 case V1_INDIRECT_UNIQUENESS:
537 return TYPE_INDIRECT;
538 case V1_DIRECT_UNIQUENESS:
539 return TYPE_DIRECT;
540 case V1_DIRENTRY_UNIQUENESS:
541 return TYPE_DIRENTRY;
542 default:
543 reiserfs_warning(NULL, "vs-500: unknown uniqueness %d",
544 uniqueness);
545 case V1_ANY_UNIQUENESS:
546 return TYPE_ANY;
550 static inline __u32 type2uniqueness(int type) CONSTF;
551 static inline __u32 type2uniqueness(int type)
553 switch (type) {
554 case TYPE_STAT_DATA:
555 return V1_SD_UNIQUENESS;
556 case TYPE_INDIRECT:
557 return V1_INDIRECT_UNIQUENESS;
558 case TYPE_DIRECT:
559 return V1_DIRECT_UNIQUENESS;
560 case TYPE_DIRENTRY:
561 return V1_DIRENTRY_UNIQUENESS;
562 default:
563 reiserfs_warning(NULL, "vs-501: unknown type %d", type);
564 case TYPE_ANY:
565 return V1_ANY_UNIQUENESS;
570 // key is pointer to on disk key which is stored in le, result is cpu,
571 // there is no way to get version of object from key, so, provide
572 // version to these defines
574 static inline loff_t le_key_k_offset(int version,
575 const struct reiserfs_key *key)
577 return (version == KEY_FORMAT_3_5) ?
578 le32_to_cpu(key->u.k_offset_v1.k_offset) :
579 offset_v2_k_offset(&(key->u.k_offset_v2));
582 static inline loff_t le_ih_k_offset(const struct item_head *ih)
584 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
587 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
589 return (version == KEY_FORMAT_3_5) ?
590 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
591 offset_v2_k_type(&(key->u.k_offset_v2));
594 static inline loff_t le_ih_k_type(const struct item_head *ih)
596 return le_key_k_type(ih_version(ih), &(ih->ih_key));
599 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
600 loff_t offset)
602 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */
603 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
606 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
608 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
611 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
612 int type)
614 (version == KEY_FORMAT_3_5) ?
615 (void)(key->u.k_offset_v1.k_uniqueness =
616 cpu_to_le32(type2uniqueness(type)))
617 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
619 static inline void set_le_ih_k_type(struct item_head *ih, int type)
621 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
624 #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
625 #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
626 #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
627 #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
630 // item header has version.
632 #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
633 #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
634 #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
635 #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
638 // key is pointer to cpu key, result is cpu
640 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
642 return key->on_disk_key.k_offset;
645 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
647 return key->on_disk_key.k_type;
650 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
652 key->on_disk_key.k_offset = offset;
655 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
657 key->on_disk_key.k_type = type;
660 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
662 key->on_disk_key.k_offset--;
665 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
666 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
667 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
668 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
670 /* are these used ? */
671 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
672 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
673 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
674 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
676 #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
677 ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
678 I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
680 /* maximal length of item */
681 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
682 #define MIN_ITEM_LEN 1
684 /* object identifier for root dir */
685 #define REISERFS_ROOT_OBJECTID 2
686 #define REISERFS_ROOT_PARENT_OBJECTID 1
687 extern struct reiserfs_key root_key;
690 * Picture represents a leaf of the S+tree
691 * ______________________________________________________
692 * | | Array of | | |
693 * |Block | Object-Item | F r e e | Objects- |
694 * | head | Headers | S p a c e | Items |
695 * |______|_______________|___________________|___________|
698 /* Header of a disk block. More precisely, header of a formatted leaf
699 or internal node, and not the header of an unformatted node. */
700 struct block_head {
701 __le16 blk_level; /* Level of a block in the tree. */
702 __le16 blk_nr_item; /* Number of keys/items in a block. */
703 __le16 blk_free_space; /* Block free space in bytes. */
704 __le16 blk_reserved;
705 /* dump this in v4/planA */
706 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
709 #define BLKH_SIZE (sizeof(struct block_head))
710 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
711 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
712 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
713 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
714 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
715 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
716 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
717 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
718 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
719 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
722 * values for blk_level field of the struct block_head
725 #define FREE_LEVEL 0 /* when node gets removed from the tree its
726 blk_level is set to FREE_LEVEL. It is then
727 used to see whether the node is still in the
728 tree */
730 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
732 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
733 #define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data))
734 /* Number of items that are in buffer. */
735 #define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
736 #define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh)))
737 #define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh)))
739 #define PUT_B_NR_ITEMS(p_s_bh,val) do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
740 #define PUT_B_LEVEL(p_s_bh,val) do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
741 #define PUT_B_FREE_SPACE(p_s_bh,val) do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
743 /* Get right delimiting key. -- little endian */
744 #define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))))
746 /* Does the buffer contain a disk leaf. */
747 #define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
749 /* Does the buffer contain a disk internal node */
750 #define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
751 && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
753 /***************************************************************************/
754 /* STAT DATA */
755 /***************************************************************************/
758 // old stat data is 32 bytes long. We are going to distinguish new one by
759 // different size
761 struct stat_data_v1 {
762 __le16 sd_mode; /* file type, permissions */
763 __le16 sd_nlink; /* number of hard links */
764 __le16 sd_uid; /* owner */
765 __le16 sd_gid; /* group */
766 __le32 sd_size; /* file size */
767 __le32 sd_atime; /* time of last access */
768 __le32 sd_mtime; /* time file was last modified */
769 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
770 union {
771 __le32 sd_rdev;
772 __le32 sd_blocks; /* number of blocks file uses */
773 } __attribute__ ((__packed__)) u;
774 __le32 sd_first_direct_byte; /* first byte of file which is stored
775 in a direct item: except that if it
776 equals 1 it is a symlink and if it
777 equals ~(__u32)0 there is no
778 direct item. The existence of this
779 field really grates on me. Let's
780 replace it with a macro based on
781 sd_size and our tail suppression
782 policy. Someday. -Hans */
783 } __attribute__ ((__packed__));
785 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
786 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
787 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
788 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
789 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
790 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
791 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
792 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
793 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
794 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
795 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
796 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
797 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
798 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
799 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
800 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
801 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
802 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
803 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
804 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
805 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
806 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
807 #define sd_v1_first_direct_byte(sdp) \
808 (le32_to_cpu((sdp)->sd_first_direct_byte))
809 #define set_sd_v1_first_direct_byte(sdp,v) \
810 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
812 /* inode flags stored in sd_attrs (nee sd_reserved) */
814 /* we want common flags to have the same values as in ext2,
815 so chattr(1) will work without problems */
816 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
817 #define REISERFS_APPEND_FL FS_APPEND_FL
818 #define REISERFS_SYNC_FL FS_SYNC_FL
819 #define REISERFS_NOATIME_FL FS_NOATIME_FL
820 #define REISERFS_NODUMP_FL FS_NODUMP_FL
821 #define REISERFS_SECRM_FL FS_SECRM_FL
822 #define REISERFS_UNRM_FL FS_UNRM_FL
823 #define REISERFS_COMPR_FL FS_COMPR_FL
824 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL
826 /* persistent flags that file inherits from the parent directory */
827 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
828 REISERFS_SYNC_FL | \
829 REISERFS_NOATIME_FL | \
830 REISERFS_NODUMP_FL | \
831 REISERFS_SECRM_FL | \
832 REISERFS_COMPR_FL | \
833 REISERFS_NOTAIL_FL )
835 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
836 address blocks) */
837 struct stat_data {
838 __le16 sd_mode; /* file type, permissions */
839 __le16 sd_attrs; /* persistent inode flags */
840 __le32 sd_nlink; /* number of hard links */
841 __le64 sd_size; /* file size */
842 __le32 sd_uid; /* owner */
843 __le32 sd_gid; /* group */
844 __le32 sd_atime; /* time of last access */
845 __le32 sd_mtime; /* time file was last modified */
846 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
847 __le32 sd_blocks;
848 union {
849 __le32 sd_rdev;
850 __le32 sd_generation;
851 //__le32 sd_first_direct_byte;
852 /* first byte of file which is stored in a
853 direct item: except that if it equals 1
854 it is a symlink and if it equals
855 ~(__u32)0 there is no direct item. The
856 existence of this field really grates
857 on me. Let's replace it with a macro
858 based on sd_size and our tail
859 suppression policy? */
860 } __attribute__ ((__packed__)) u;
861 } __attribute__ ((__packed__));
863 // this is 44 bytes long
865 #define SD_SIZE (sizeof(struct stat_data))
866 #define SD_V2_SIZE SD_SIZE
867 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
868 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
869 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
870 /* sd_reserved */
871 /* set_sd_reserved */
872 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
873 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
874 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
875 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
876 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
877 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
878 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
879 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
880 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
881 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
882 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
883 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
884 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
885 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
886 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
887 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
888 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
889 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
890 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
891 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
892 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
893 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
895 /***************************************************************************/
896 /* DIRECTORY STRUCTURE */
897 /***************************************************************************/
899 Picture represents the structure of directory items
900 ________________________________________________
901 | Array of | | | | | |
902 | directory |N-1| N-2 | .... | 1st |0th|
903 | entry headers | | | | | |
904 |_______________|___|_____|________|_______|___|
905 <---- directory entries ------>
907 First directory item has k_offset component 1. We store "." and ".."
908 in one item, always, we never split "." and ".." into differing
909 items. This makes, among other things, the code for removing
910 directories simpler. */
911 #define SD_OFFSET 0
912 #define SD_UNIQUENESS 0
913 #define DOT_OFFSET 1
914 #define DOT_DOT_OFFSET 2
915 #define DIRENTRY_UNIQUENESS 500
917 /* */
918 #define FIRST_ITEM_OFFSET 1
921 Q: How to get key of object pointed to by entry from entry?
923 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
924 of object, entry points to */
926 /* NOT IMPLEMENTED:
927 Directory will someday contain stat data of object */
929 struct reiserfs_de_head {
930 __le32 deh_offset; /* third component of the directory entry key */
931 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
932 by directory entry */
933 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
934 __le16 deh_location; /* offset of name in the whole item */
935 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
936 entry is hidden (unlinked) */
937 } __attribute__ ((__packed__));
938 #define DEH_SIZE sizeof(struct reiserfs_de_head)
939 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
940 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
941 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
942 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
943 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
945 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
946 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
947 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
948 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
949 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
951 /* empty directory contains two entries "." and ".." and their headers */
952 #define EMPTY_DIR_SIZE \
953 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
955 /* old format directories have this size when empty */
956 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
958 #define DEH_Statdata 0 /* not used now */
959 #define DEH_Visible 2
961 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
962 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
963 # define ADDR_UNALIGNED_BITS (3)
964 #endif
966 /* These are only used to manipulate deh_state.
967 * Because of this, we'll use the ext2_ bit routines,
968 * since they are little endian */
969 #ifdef ADDR_UNALIGNED_BITS
971 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
972 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
974 # define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
975 # define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
976 # define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
978 #else
980 # define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
981 # define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
982 # define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
984 #endif
986 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
987 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
988 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
989 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
991 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
992 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
993 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
995 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
996 __le32 par_dirid, __le32 par_objid);
997 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
998 __le32 par_dirid, __le32 par_objid);
1000 /* array of the entry headers */
1001 /* get item body */
1002 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1003 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1005 /* length of the directory entry in directory item. This define
1006 calculates length of i-th directory entry using directory entry
1007 locations from dir entry head. When it calculates length of 0-th
1008 directory entry, it uses length of whole item in place of entry
1009 location of the non-existent following entry in the calculation.
1010 See picture above.*/
1012 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1013 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1015 static inline int entry_length(const struct buffer_head *bh,
1016 const struct item_head *ih, int pos_in_item)
1018 struct reiserfs_de_head *deh;
1020 deh = B_I_DEH(bh, ih) + pos_in_item;
1021 if (pos_in_item)
1022 return deh_location(deh - 1) - deh_location(deh);
1024 return ih_item_len(ih) - deh_location(deh);
1027 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1028 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1030 /* name by bh, ih and entry_num */
1031 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1033 // two entries per block (at least)
1034 #define REISERFS_MAX_NAME(block_size) 255
1036 /* this structure is used for operations on directory entries. It is
1037 not a disk structure. */
1038 /* When reiserfs_find_entry or search_by_entry_key find directory
1039 entry, they return filled reiserfs_dir_entry structure */
1040 struct reiserfs_dir_entry {
1041 struct buffer_head *de_bh;
1042 int de_item_num;
1043 struct item_head *de_ih;
1044 int de_entry_num;
1045 struct reiserfs_de_head *de_deh;
1046 int de_entrylen;
1047 int de_namelen;
1048 char *de_name;
1049 unsigned long *de_gen_number_bit_string;
1051 __u32 de_dir_id;
1052 __u32 de_objectid;
1054 struct cpu_key de_entry_key;
1057 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1059 /* pointer to file name, stored in entry */
1060 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1062 /* length of name */
1063 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1064 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1066 /* hash value occupies bits from 7 up to 30 */
1067 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1068 /* generation number occupies 7 bits starting from 0 up to 6 */
1069 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1070 #define MAX_GENERATION_NUMBER 127
1072 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1075 * Picture represents an internal node of the reiserfs tree
1076 * ______________________________________________________
1077 * | | Array of | Array of | Free |
1078 * |block | keys | pointers | space |
1079 * | head | N | N+1 | |
1080 * |______|_______________|___________________|___________|
1083 /***************************************************************************/
1084 /* DISK CHILD */
1085 /***************************************************************************/
1086 /* Disk child pointer: The pointer from an internal node of the tree
1087 to a node that is on disk. */
1088 struct disk_child {
1089 __le32 dc_block_number; /* Disk child's block number. */
1090 __le16 dc_size; /* Disk child's used space. */
1091 __le16 dc_reserved;
1094 #define DC_SIZE (sizeof(struct disk_child))
1095 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1096 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1097 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1098 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1100 /* Get disk child by buffer header and position in the tree node. */
1101 #define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\
1102 ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1104 /* Get disk child number by buffer header and position in the tree node. */
1105 #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1106 #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1108 /* maximal value of field child_size in structure disk_child */
1109 /* child size is the combined size of all items and their headers */
1110 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1112 /* amount of used space in buffer (not including block head) */
1113 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1115 /* max and min number of keys in internal node */
1116 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1117 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1119 /***************************************************************************/
1120 /* PATH STRUCTURES AND DEFINES */
1121 /***************************************************************************/
1123 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1124 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1125 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1126 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1127 position of the block_number of the next node if it is looking through an internal node. If it
1128 is looking through a leaf node bin_search will find the position of the item which has key either
1129 equal to given key, or which is the maximal key less than the given key. */
1131 struct path_element {
1132 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */
1133 int pe_position; /* Position in the tree node which is placed in the */
1134 /* buffer above. */
1137 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1138 #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1139 #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1141 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1142 #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1144 /* We need to keep track of who the ancestors of nodes are. When we
1145 perform a search we record which nodes were visited while
1146 descending the tree looking for the node we searched for. This list
1147 of nodes is called the path. This information is used while
1148 performing balancing. Note that this path information may become
1149 invalid, and this means we must check it when using it to see if it
1150 is still valid. You'll need to read search_by_key and the comments
1151 in it, especially about decrement_counters_in_path(), to understand
1152 this structure.
1154 Paths make the code so much harder to work with and debug.... An
1155 enormous number of bugs are due to them, and trying to write or modify
1156 code that uses them just makes my head hurt. They are based on an
1157 excessive effort to avoid disturbing the precious VFS code.:-( The
1158 gods only know how we are going to SMP the code that uses them.
1159 znodes are the way! */
1161 #define PATH_READA 0x1 /* do read ahead */
1162 #define PATH_READA_BACK 0x2 /* read backwards */
1164 struct treepath {
1165 int path_length; /* Length of the array above. */
1166 int reada;
1167 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1168 int pos_in_item;
1171 #define pos_in_item(path) ((path)->pos_in_item)
1173 #define INITIALIZE_PATH(var) \
1174 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1176 /* Get path element by path and path position. */
1177 #define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset))
1179 /* Get buffer header at the path by path and path position. */
1180 #define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1182 /* Get position in the element at the path by path and path position. */
1183 #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1185 #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1186 /* you know, to the person who didn't
1187 write this the macro name does not
1188 at first suggest what it does.
1189 Maybe POSITION_FROM_PATH_END? Or
1190 maybe we should just focus on
1191 dumping paths... -Hans */
1192 #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1194 #define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1196 /* in do_balance leaf has h == 0 in contrast with path structure,
1197 where root has level == 0. That is why we need these defines */
1198 #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1199 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1200 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1201 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1203 #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1205 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1206 #define get_ih(path) PATH_PITEM_HEAD(path)
1207 #define get_item_pos(path) PATH_LAST_POSITION(path)
1208 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1209 #define item_moved(ih,path) comp_items(ih, path)
1210 #define path_changed(ih,path) comp_items (ih, path)
1212 /***************************************************************************/
1213 /* MISC */
1214 /***************************************************************************/
1216 /* Size of pointer to the unformatted node. */
1217 #define UNFM_P_SIZE (sizeof(unp_t))
1218 #define UNFM_P_SHIFT 2
1220 // in in-core inode key is stored on le form
1221 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1223 #define MAX_UL_INT 0xffffffff
1224 #define MAX_INT 0x7ffffff
1225 #define MAX_US_INT 0xffff
1227 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1228 #define U32_MAX (~(__u32)0)
1230 static inline loff_t max_reiserfs_offset(struct inode *inode)
1232 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1233 return (loff_t) U32_MAX;
1235 return (loff_t) ((~(__u64) 0) >> 4);
1238 /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1239 #define MAX_KEY_OBJECTID MAX_UL_INT
1241 #define MAX_B_NUM MAX_UL_INT
1242 #define MAX_FC_NUM MAX_US_INT
1244 /* the purpose is to detect overflow of an unsigned short */
1245 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1247 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1248 #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1249 #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1251 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1252 #define get_generation(s) atomic_read (&fs_generation(s))
1253 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1254 #define __fs_changed(gen,s) (gen != get_generation (s))
1255 #define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1257 /***************************************************************************/
1258 /* FIXATE NODES */
1259 /***************************************************************************/
1261 #define VI_TYPE_LEFT_MERGEABLE 1
1262 #define VI_TYPE_RIGHT_MERGEABLE 2
1264 /* To make any changes in the tree we always first find node, that
1265 contains item to be changed/deleted or place to insert a new
1266 item. We call this node S. To do balancing we need to decide what
1267 we will shift to left/right neighbor, or to a new node, where new
1268 item will be etc. To make this analysis simpler we build virtual
1269 node. Virtual node is an array of items, that will replace items of
1270 node S. (For instance if we are going to delete an item, virtual
1271 node does not contain it). Virtual node keeps information about
1272 item sizes and types, mergeability of first and last items, sizes
1273 of all entries in directory item. We use this array of items when
1274 calculating what we can shift to neighbors and how many nodes we
1275 have to have if we do not any shiftings, if we shift to left/right
1276 neighbor or to both. */
1277 struct virtual_item {
1278 int vi_index; // index in the array of item operations
1279 unsigned short vi_type; // left/right mergeability
1280 unsigned short vi_item_len; /* length of item that it will have after balancing */
1281 struct item_head *vi_ih;
1282 const char *vi_item; // body of item (old or new)
1283 const void *vi_new_data; // 0 always but paste mode
1284 void *vi_uarea; // item specific area
1287 struct virtual_node {
1288 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */
1289 unsigned short vn_nr_item; /* number of items in virtual node */
1290 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1291 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1292 short vn_affected_item_num;
1293 short vn_pos_in_item;
1294 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */
1295 const void *vn_data;
1296 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1299 /* used by directory items when creating virtual nodes */
1300 struct direntry_uarea {
1301 int flags;
1302 __u16 entry_count;
1303 __u16 entry_sizes[1];
1304 } __attribute__ ((__packed__));
1306 /***************************************************************************/
1307 /* TREE BALANCE */
1308 /***************************************************************************/
1310 /* This temporary structure is used in tree balance algorithms, and
1311 constructed as we go to the extent that its various parts are
1312 needed. It contains arrays of nodes that can potentially be
1313 involved in the balancing of node S, and parameters that define how
1314 each of the nodes must be balanced. Note that in these algorithms
1315 for balancing the worst case is to need to balance the current node
1316 S and the left and right neighbors and all of their parents plus
1317 create a new node. We implement S1 balancing for the leaf nodes
1318 and S0 balancing for the internal nodes (S1 and S0 are defined in
1319 our papers.)*/
1321 #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1323 /* maximum number of FEB blocknrs on a single level */
1324 #define MAX_AMOUNT_NEEDED 2
1326 /* someday somebody will prefix every field in this struct with tb_ */
1327 struct tree_balance {
1328 int tb_mode;
1329 int need_balance_dirty;
1330 struct super_block *tb_sb;
1331 struct reiserfs_transaction_handle *transaction_handle;
1332 struct treepath *tb_path;
1333 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1334 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */
1335 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1336 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1337 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1338 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1340 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1341 cur_blknum. */
1342 struct buffer_head *used[MAX_FEB_SIZE];
1343 struct buffer_head *thrown[MAX_FEB_SIZE];
1344 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1345 shifted to the left in order to balance the
1346 current node; for leaves includes item that
1347 will be partially shifted; for internal
1348 nodes, it is the number of child pointers
1349 rather than items. It includes the new item
1350 being created. The code sometimes subtracts
1351 one to get the number of wholly shifted
1352 items for other purposes. */
1353 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1354 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1355 S[h] to its item number within the node CFL[h] */
1356 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1357 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1358 S[h]. A negative value means removing. */
1359 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1360 balancing on the level h of the tree. If 0 then S is
1361 being deleted, if 1 then S is remaining and no new nodes
1362 are being created, if 2 or 3 then 1 or 2 new nodes is
1363 being created */
1365 /* fields that are used only for balancing leaves of the tree */
1366 int cur_blknum; /* number of empty blocks having been already allocated */
1367 int s0num; /* number of items that fall into left most node when S[0] splits */
1368 int s1num; /* number of items that fall into first new node when S[0] splits */
1369 int s2num; /* number of items that fall into second new node when S[0] splits */
1370 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1371 /* most liquid item that cannot be shifted from S[0] entirely */
1372 /* if -1 then nothing will be partially shifted */
1373 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1374 /* most liquid item that cannot be shifted from S[0] entirely */
1375 /* if -1 then nothing will be partially shifted */
1376 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1377 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1378 int s2bytes;
1379 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1380 char *vn_buf; /* kmalloced memory. Used to create
1381 virtual node and keep map of
1382 dirtied bitmap blocks */
1383 int vn_buf_size; /* size of the vn_buf */
1384 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */
1386 int fs_gen; /* saved value of `reiserfs_generation' counter
1387 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1388 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1389 struct in_core_key key; /* key pointer, to pass to block allocator or
1390 another low-level subsystem */
1391 #endif
1394 /* These are modes of balancing */
1396 /* When inserting an item. */
1397 #define M_INSERT 'i'
1398 /* When inserting into (directories only) or appending onto an already
1399 existant item. */
1400 #define M_PASTE 'p'
1401 /* When deleting an item. */
1402 #define M_DELETE 'd'
1403 /* When truncating an item or removing an entry from a (directory) item. */
1404 #define M_CUT 'c'
1406 /* used when balancing on leaf level skipped (in reiserfsck) */
1407 #define M_INTERNAL 'n'
1409 /* When further balancing is not needed, then do_balance does not need
1410 to be called. */
1411 #define M_SKIP_BALANCING 's'
1412 #define M_CONVERT 'v'
1414 /* modes of leaf_move_items */
1415 #define LEAF_FROM_S_TO_L 0
1416 #define LEAF_FROM_S_TO_R 1
1417 #define LEAF_FROM_R_TO_L 2
1418 #define LEAF_FROM_L_TO_R 3
1419 #define LEAF_FROM_S_TO_SNEW 4
1421 #define FIRST_TO_LAST 0
1422 #define LAST_TO_FIRST 1
1424 /* used in do_balance for passing parent of node information that has
1425 been gotten from tb struct */
1426 struct buffer_info {
1427 struct tree_balance *tb;
1428 struct buffer_head *bi_bh;
1429 struct buffer_head *bi_parent;
1430 int bi_position;
1433 /* there are 4 types of items: stat data, directory item, indirect, direct.
1434 +-------------------+------------+--------------+------------+
1435 | | k_offset | k_uniqueness | mergeable? |
1436 +-------------------+------------+--------------+------------+
1437 | stat data | 0 | 0 | no |
1438 +-------------------+------------+--------------+------------+
1439 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1440 | non 1st directory | hash value | | yes |
1441 | item | | | |
1442 +-------------------+------------+--------------+------------+
1443 | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1444 +-------------------+------------+--------------+------------+
1445 | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1446 +-------------------+------------+--------------+------------+
1449 struct item_operations {
1450 int (*bytes_number) (struct item_head * ih, int block_size);
1451 void (*decrement_key) (struct cpu_key *);
1452 int (*is_left_mergeable) (struct reiserfs_key * ih,
1453 unsigned long bsize);
1454 void (*print_item) (struct item_head *, char *item);
1455 void (*check_item) (struct item_head *, char *item);
1457 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1458 int is_affected, int insert_size);
1459 int (*check_left) (struct virtual_item * vi, int free,
1460 int start_skip, int end_skip);
1461 int (*check_right) (struct virtual_item * vi, int free);
1462 int (*part_size) (struct virtual_item * vi, int from, int to);
1463 int (*unit_num) (struct virtual_item * vi);
1464 void (*print_vi) (struct virtual_item * vi);
1467 extern struct item_operations *item_ops[TYPE_ANY + 1];
1469 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1470 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1471 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1472 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1473 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1474 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1475 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1476 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1477 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1478 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1480 #define COMP_SHORT_KEYS comp_short_keys
1482 /* number of blocks pointed to by the indirect item */
1483 #define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1485 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1486 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1488 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1490 /* get the item header */
1491 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1493 /* get key */
1494 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1496 /* get the key */
1497 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1499 /* get item body */
1500 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1502 /* get the stat data by the buffer header and the item order */
1503 #define B_N_STAT_DATA(bh,nr) \
1504 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1506 /* following defines use reiserfs buffer header and item header */
1508 /* get stat-data */
1509 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1511 // this is 3976 for size==4096
1512 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1514 /* indirect items consist of entries which contain blocknrs, pos
1515 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1516 blocknr contained by the entry pos points to */
1517 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1518 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1520 struct reiserfs_iget_args {
1521 __u32 objectid;
1522 __u32 dirid;
1525 /***************************************************************************/
1526 /* FUNCTION DECLARATIONS */
1527 /***************************************************************************/
1529 /*#ifdef __KERNEL__*/
1530 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1532 #define journal_trans_half(blocksize) \
1533 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1535 /* journal.c see journal.c for all the comments here */
1537 /* first block written in a commit. */
1538 struct reiserfs_journal_desc {
1539 __le32 j_trans_id; /* id of commit */
1540 __le32 j_len; /* length of commit. len +1 is the commit block */
1541 __le32 j_mount_id; /* mount id of this trans */
1542 __le32 j_realblock[1]; /* real locations for each block */
1545 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1546 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1547 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1549 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1550 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1551 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1553 /* last block written in a commit */
1554 struct reiserfs_journal_commit {
1555 __le32 j_trans_id; /* must match j_trans_id from the desc block */
1556 __le32 j_len; /* ditto */
1557 __le32 j_realblock[1]; /* real locations for each block */
1560 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1561 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1562 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1564 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1565 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1567 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1568 ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1569 ** and this transaction does not need to be replayed.
1571 struct reiserfs_journal_header {
1572 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */
1573 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */
1574 __le32 j_mount_id;
1575 /* 12 */ struct journal_params jh_journal;
1578 /* biggest tunable defines are right here */
1579 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1580 #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1581 #define JOURNAL_TRANS_MIN_DEFAULT 256
1582 #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1583 #define JOURNAL_MIN_RATIO 2
1584 #define JOURNAL_MAX_COMMIT_AGE 30
1585 #define JOURNAL_MAX_TRANS_AGE 30
1586 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1587 #ifdef CONFIG_QUOTA
1588 /* We need to update data and inode (atime) */
1589 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1590 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1591 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1592 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1593 /* same as with INIT */
1594 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1595 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1596 #else
1597 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1598 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1599 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1600 #endif
1602 /* both of these can be as low as 1, or as high as you want. The min is the
1603 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1604 ** as needed, and released when transactions are committed. On release, if
1605 ** the current number of nodes is > max, the node is freed, otherwise,
1606 ** it is put on a free list for faster use later.
1608 #define REISERFS_MIN_BITMAP_NODES 10
1609 #define REISERFS_MAX_BITMAP_NODES 100
1611 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1612 #define JBH_HASH_MASK 8191
1614 #define _jhashfn(sb,block) \
1615 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1616 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1617 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1619 // We need these to make journal.c code more readable
1620 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1621 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1622 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1624 enum reiserfs_bh_state_bits {
1625 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
1626 BH_JDirty_wait,
1627 BH_JNew, /* disk block was taken off free list before
1628 * being in a finished transaction, or
1629 * written to disk. Can be reused immed. */
1630 BH_JPrepared,
1631 BH_JRestore_dirty,
1632 BH_JTest, // debugging only will go away
1635 BUFFER_FNS(JDirty, journaled);
1636 TAS_BUFFER_FNS(JDirty, journaled);
1637 BUFFER_FNS(JDirty_wait, journal_dirty);
1638 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1639 BUFFER_FNS(JNew, journal_new);
1640 TAS_BUFFER_FNS(JNew, journal_new);
1641 BUFFER_FNS(JPrepared, journal_prepared);
1642 TAS_BUFFER_FNS(JPrepared, journal_prepared);
1643 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1644 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1645 BUFFER_FNS(JTest, journal_test);
1646 TAS_BUFFER_FNS(JTest, journal_test);
1649 ** transaction handle which is passed around for all journal calls
1651 struct reiserfs_transaction_handle {
1652 struct super_block *t_super; /* super for this FS when journal_begin was
1653 called. saves calls to reiserfs_get_super
1654 also used by nested transactions to make
1655 sure they are nesting on the right FS
1656 _must_ be first in the handle
1658 int t_refcount;
1659 int t_blocks_logged; /* number of blocks this writer has logged */
1660 int t_blocks_allocated; /* number of blocks this writer allocated */
1661 unsigned long t_trans_id; /* sanity check, equals the current trans id */
1662 void *t_handle_save; /* save existing current->journal_info */
1663 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1664 should be displaced from others */
1665 struct list_head t_list;
1668 /* used to keep track of ordered and tail writes, attached to the buffer
1669 * head through b_journal_head.
1671 struct reiserfs_jh {
1672 struct reiserfs_journal_list *jl;
1673 struct buffer_head *bh;
1674 struct list_head list;
1677 void reiserfs_free_jh(struct buffer_head *bh);
1678 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1679 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1680 int journal_mark_dirty(struct reiserfs_transaction_handle *,
1681 struct super_block *, struct buffer_head *bh);
1683 static inline int reiserfs_file_data_log(struct inode *inode)
1685 if (reiserfs_data_log(inode->i_sb) ||
1686 (REISERFS_I(inode)->i_flags & i_data_log))
1687 return 1;
1688 return 0;
1691 static inline int reiserfs_transaction_running(struct super_block *s)
1693 struct reiserfs_transaction_handle *th = current->journal_info;
1694 if (th && th->t_super == s)
1695 return 1;
1696 if (th && th->t_super == NULL)
1697 BUG();
1698 return 0;
1701 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1703 return th->t_blocks_allocated - th->t_blocks_logged;
1706 int reiserfs_async_progress_wait(struct super_block *s);
1708 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1709 super_block
1711 int count);
1712 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1713 int reiserfs_commit_page(struct inode *inode, struct page *page,
1714 unsigned from, unsigned to);
1715 int reiserfs_flush_old_commits(struct super_block *);
1716 int reiserfs_commit_for_inode(struct inode *);
1717 int reiserfs_inode_needs_commit(struct inode *);
1718 void reiserfs_update_inode_transaction(struct inode *);
1719 void reiserfs_wait_on_write_block(struct super_block *s);
1720 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1721 void reiserfs_allow_writes(struct super_block *s);
1722 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1723 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1724 int wait);
1725 void reiserfs_restore_prepared_buffer(struct super_block *,
1726 struct buffer_head *bh);
1727 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1728 unsigned int);
1729 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1730 int journal_release_error(struct reiserfs_transaction_handle *,
1731 struct super_block *);
1732 int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1733 unsigned long);
1734 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1735 unsigned long);
1736 int journal_mark_freed(struct reiserfs_transaction_handle *,
1737 struct super_block *, b_blocknr_t blocknr);
1738 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
1739 int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr,
1740 int searchall, b_blocknr_t * next);
1741 int journal_begin(struct reiserfs_transaction_handle *,
1742 struct super_block *p_s_sb, unsigned long);
1743 int journal_join_abort(struct reiserfs_transaction_handle *,
1744 struct super_block *p_s_sb, unsigned long);
1745 void reiserfs_journal_abort(struct super_block *sb, int errno);
1746 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1747 int reiserfs_allocate_list_bitmaps(struct super_block *s,
1748 struct reiserfs_list_bitmap *, int);
1750 void add_save_link(struct reiserfs_transaction_handle *th,
1751 struct inode *inode, int truncate);
1752 int remove_save_link(struct inode *inode, int truncate);
1754 /* objectid.c */
1755 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1756 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1757 __u32 objectid_to_release);
1758 int reiserfs_convert_objectid_map_v1(struct super_block *);
1760 /* stree.c */
1761 int B_IS_IN_TREE(const struct buffer_head *);
1762 extern void copy_item_head(struct item_head *p_v_to,
1763 const struct item_head *p_v_from);
1765 // first key is in cpu form, second - le
1766 extern int comp_short_keys(const struct reiserfs_key *le_key,
1767 const struct cpu_key *cpu_key);
1768 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1770 // both are in le form
1771 extern int comp_le_keys(const struct reiserfs_key *,
1772 const struct reiserfs_key *);
1773 extern int comp_short_le_keys(const struct reiserfs_key *,
1774 const struct reiserfs_key *);
1777 // get key version from on disk key - kludge
1779 static inline int le_key_version(const struct reiserfs_key *key)
1781 int type;
1783 type = offset_v2_k_type(&(key->u.k_offset_v2));
1784 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1785 && type != TYPE_DIRENTRY)
1786 return KEY_FORMAT_3_5;
1788 return KEY_FORMAT_3_6;
1792 static inline void copy_key(struct reiserfs_key *to,
1793 const struct reiserfs_key *from)
1795 memcpy(to, from, KEY_SIZE);
1798 int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path);
1799 const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path,
1800 const struct super_block *p_s_sb);
1801 int search_by_key(struct super_block *, const struct cpu_key *,
1802 struct treepath *, int);
1803 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1804 int search_for_position_by_key(struct super_block *p_s_sb,
1805 const struct cpu_key *p_s_cpu_key,
1806 struct treepath *p_s_search_path);
1807 extern void decrement_bcount(struct buffer_head *p_s_bh);
1808 void decrement_counters_in_path(struct treepath *p_s_search_path);
1809 void pathrelse(struct treepath *p_s_search_path);
1810 int reiserfs_check_path(struct treepath *p);
1811 void pathrelse_and_restore(struct super_block *s, struct treepath *p_s_search_path);
1813 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
1814 struct treepath *path,
1815 const struct cpu_key *key,
1816 struct item_head *ih,
1817 struct inode *inode, const char *body);
1819 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
1820 struct treepath *path,
1821 const struct cpu_key *key,
1822 struct inode *inode,
1823 const char *body, int paste_size);
1825 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1826 struct treepath *path,
1827 struct cpu_key *key,
1828 struct inode *inode,
1829 struct page *page, loff_t new_file_size);
1831 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1832 struct treepath *path,
1833 const struct cpu_key *key,
1834 struct inode *inode, struct buffer_head *p_s_un_bh);
1836 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1837 struct inode *inode, struct reiserfs_key *key);
1838 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1839 struct inode *p_s_inode);
1840 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1841 struct inode *p_s_inode, struct page *,
1842 int update_timestamps);
1844 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1845 #define file_size(inode) ((inode)->i_size)
1846 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1848 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1849 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1851 void padd_item(char *item, int total_length, int length);
1853 /* inode.c */
1854 /* args for the create parameter of reiserfs_get_block */
1855 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
1856 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */
1857 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
1858 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
1859 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
1860 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
1862 int restart_transaction(struct reiserfs_transaction_handle *th,
1863 struct inode *inode, struct treepath *path);
1864 void reiserfs_read_locked_inode(struct inode *inode,
1865 struct reiserfs_iget_args *args);
1866 int reiserfs_find_actor(struct inode *inode, void *p);
1867 int reiserfs_init_locked_inode(struct inode *inode, void *p);
1868 void reiserfs_delete_inode(struct inode *inode);
1869 int reiserfs_write_inode(struct inode *inode, int);
1870 int reiserfs_get_block(struct inode *inode, sector_t block,
1871 struct buffer_head *bh_result, int create);
1872 struct dentry *reiserfs_get_dentry(struct super_block *, void *);
1873 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1874 int len, int fhtype,
1875 int (*acceptable) (void *contect,
1876 struct dentry * de),
1877 void *context);
1878 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1879 int connectable);
1881 int reiserfs_truncate_file(struct inode *, int update_timestamps);
1882 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
1883 int type, int key_length);
1884 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
1885 int version,
1886 loff_t offset, int type, int length, int entry_count);
1887 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
1889 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1890 struct inode *dir, int mode,
1891 const char *symname, loff_t i_size,
1892 struct dentry *dentry, struct inode *inode);
1894 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1895 struct inode *inode, loff_t size);
1897 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1898 struct inode *inode)
1900 reiserfs_update_sd_size(th, inode, inode->i_size);
1903 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
1904 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
1905 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1907 /* namei.c */
1908 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
1909 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
1910 struct treepath *path, struct reiserfs_dir_entry *de);
1911 struct dentry *reiserfs_get_parent(struct dentry *);
1912 /* procfs.c */
1914 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1915 #define REISERFS_PROC_INFO
1916 #else
1917 #undef REISERFS_PROC_INFO
1918 #endif
1920 int reiserfs_proc_info_init(struct super_block *sb);
1921 int reiserfs_proc_info_done(struct super_block *sb);
1922 struct proc_dir_entry *reiserfs_proc_register_global(char *name,
1923 read_proc_t * func);
1924 void reiserfs_proc_unregister_global(const char *name);
1925 int reiserfs_proc_info_global_init(void);
1926 int reiserfs_proc_info_global_done(void);
1927 int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset,
1928 int count, int *eof, void *data);
1930 #if defined( REISERFS_PROC_INFO )
1932 #define PROC_EXP( e ) e
1934 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
1935 #define PROC_INFO_MAX( sb, field, value ) \
1936 __PINFO( sb ).field = \
1937 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
1938 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1939 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1940 #define PROC_INFO_BH_STAT( sb, bh, level ) \
1941 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
1942 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
1943 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
1944 #else
1945 #define PROC_EXP( e )
1946 #define VOID_V ( ( void ) 0 )
1947 #define PROC_INFO_MAX( sb, field, value ) VOID_V
1948 #define PROC_INFO_INC( sb, field ) VOID_V
1949 #define PROC_INFO_ADD( sb, field, val ) VOID_V
1950 #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
1951 #endif
1953 /* dir.c */
1954 extern const struct inode_operations reiserfs_dir_inode_operations;
1955 extern const struct inode_operations reiserfs_symlink_inode_operations;
1956 extern const struct inode_operations reiserfs_special_inode_operations;
1957 extern const struct file_operations reiserfs_dir_operations;
1959 /* tail_conversion.c */
1960 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
1961 struct treepath *, struct buffer_head *, loff_t);
1962 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
1963 struct page *, struct treepath *, const struct cpu_key *,
1964 loff_t, char *);
1965 void reiserfs_unmap_buffer(struct buffer_head *);
1967 /* file.c */
1968 extern const struct inode_operations reiserfs_file_inode_operations;
1969 extern const struct file_operations reiserfs_file_operations;
1970 extern const struct address_space_operations reiserfs_address_space_operations;
1972 /* fix_nodes.c */
1974 int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb,
1975 struct item_head *p_s_ins_ih, const void *);
1976 void unfix_nodes(struct tree_balance *);
1978 /* prints.c */
1979 void reiserfs_panic(struct super_block *s, const char *fmt, ...)
1980 __attribute__ ((noreturn));
1981 void reiserfs_info(struct super_block *s, const char *fmt, ...);
1982 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
1983 void print_indirect_item(struct buffer_head *bh, int item_num);
1984 void store_print_tb(struct tree_balance *tb);
1985 void print_cur_tb(char *mes);
1986 void print_de(struct reiserfs_dir_entry *de);
1987 void print_bi(struct buffer_info *bi, char *mes);
1988 #define PRINT_LEAF_ITEMS 1 /* print all items */
1989 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
1990 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
1991 void print_block(struct buffer_head *bh, ...);
1992 void print_bmap(struct super_block *s, int silent);
1993 void print_bmap_block(int i, char *data, int size, int silent);
1994 /*void print_super_block (struct super_block * s, char * mes);*/
1995 void print_objectid_map(struct super_block *s);
1996 void print_block_head(struct buffer_head *bh, char *mes);
1997 void check_leaf(struct buffer_head *bh);
1998 void check_internal(struct buffer_head *bh);
1999 void print_statistics(struct super_block *s);
2000 char *reiserfs_hashname(int code);
2002 /* lbalance.c */
2003 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2004 int mov_bytes, struct buffer_head *Snew);
2005 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2006 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2007 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2008 int del_num, int del_bytes);
2009 void leaf_insert_into_buf(struct buffer_info *bi, int before,
2010 struct item_head *inserted_item_ih,
2011 const char *inserted_item_body, int zeros_number);
2012 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2013 int pos_in_item, int paste_size, const char *body,
2014 int zeros_number);
2015 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2016 int pos_in_item, int cut_size);
2017 void leaf_paste_entries(struct buffer_head *bh, int item_num, int before,
2018 int new_entry_count, struct reiserfs_de_head *new_dehs,
2019 const char *records, int paste_size);
2020 /* ibalance.c */
2021 int balance_internal(struct tree_balance *, int, int, struct item_head *,
2022 struct buffer_head **);
2024 /* do_balance.c */
2025 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2026 struct buffer_head *bh, int flag);
2027 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2028 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2030 void do_balance(struct tree_balance *tb, struct item_head *ih,
2031 const char *body, int flag);
2032 void reiserfs_invalidate_buffer(struct tree_balance *tb,
2033 struct buffer_head *bh);
2035 int get_left_neighbor_position(struct tree_balance *tb, int h);
2036 int get_right_neighbor_position(struct tree_balance *tb, int h);
2037 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2038 struct buffer_head *, int);
2039 void make_empty_node(struct buffer_info *);
2040 struct buffer_head *get_FEB(struct tree_balance *);
2042 /* bitmap.c */
2044 /* structure contains hints for block allocator, and it is a container for
2045 * arguments, such as node, search path, transaction_handle, etc. */
2046 struct __reiserfs_blocknr_hint {
2047 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */
2048 long block; /* file offset, in blocks */
2049 struct in_core_key key;
2050 struct treepath *path; /* search path, used by allocator to deternine search_start by
2051 * various ways */
2052 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2053 * bitmap blocks changes */
2054 b_blocknr_t beg, end;
2055 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2056 * between different block allocator procedures
2057 * (determine_search_start() and others) */
2058 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2059 * function that do actual allocation */
2061 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
2062 * formatted/unformatted blocks with/without preallocation */
2063 unsigned preallocate:1;
2066 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2068 int reiserfs_parse_alloc_options(struct super_block *, char *);
2069 void reiserfs_init_alloc_options(struct super_block *s);
2072 * given a directory, this will tell you what packing locality
2073 * to use for a new object underneat it. The locality is returned
2074 * in disk byte order (le).
2076 __le32 reiserfs_choose_packing(struct inode *dir);
2078 int reiserfs_init_bitmap_cache(struct super_block *sb);
2079 void reiserfs_free_bitmap_cache(struct super_block *sb);
2080 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2081 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2082 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2083 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2084 b_blocknr_t, int for_unformatted);
2085 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2086 int);
2087 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2088 b_blocknr_t * new_blocknrs,
2089 int amount_needed)
2091 reiserfs_blocknr_hint_t hint = {
2092 .th = tb->transaction_handle,
2093 .path = tb->tb_path,
2094 .inode = NULL,
2095 .key = tb->key,
2096 .block = 0,
2097 .formatted_node = 1
2099 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2103 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2104 *th, struct inode *inode,
2105 b_blocknr_t * new_blocknrs,
2106 struct treepath *path, long block)
2108 reiserfs_blocknr_hint_t hint = {
2109 .th = th,
2110 .path = path,
2111 .inode = inode,
2112 .block = block,
2113 .formatted_node = 0,
2114 .preallocate = 0
2116 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2119 #ifdef REISERFS_PREALLOCATE
2120 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2121 *th, struct inode *inode,
2122 b_blocknr_t * new_blocknrs,
2123 struct treepath *path, long block)
2125 reiserfs_blocknr_hint_t hint = {
2126 .th = th,
2127 .path = path,
2128 .inode = inode,
2129 .block = block,
2130 .formatted_node = 0,
2131 .preallocate = 1
2133 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2136 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2137 struct inode *inode);
2138 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2139 #endif
2140 void reiserfs_claim_blocks_to_be_allocated(struct super_block *sb, int blocks);
2141 void reiserfs_release_claimed_blocks(struct super_block *sb, int blocks);
2142 int reiserfs_can_fit_pages(struct super_block *sb);
2144 /* hashes.c */
2145 __u32 keyed_hash(const signed char *msg, int len);
2146 __u32 yura_hash(const signed char *msg, int len);
2147 __u32 r5_hash(const signed char *msg, int len);
2149 /* the ext2 bit routines adjust for big or little endian as
2150 ** appropriate for the arch, so in our laziness we use them rather
2151 ** than using the bit routines they call more directly. These
2152 ** routines must be used when changing on disk bitmaps. */
2153 #define reiserfs_test_and_set_le_bit ext2_set_bit
2154 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
2155 #define reiserfs_test_le_bit ext2_test_bit
2156 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2158 /* sometimes reiserfs_truncate may require to allocate few new blocks
2159 to perform indirect2direct conversion. People probably used to
2160 think, that truncate should work without problems on a filesystem
2161 without free disk space. They may complain that they can not
2162 truncate due to lack of free disk space. This spare space allows us
2163 to not worry about it. 500 is probably too much, but it should be
2164 absolutely safe */
2165 #define SPARE_SPACE 500
2167 /* prototypes from ioctl.c */
2168 int reiserfs_ioctl(struct inode *inode, struct file *filp,
2169 unsigned int cmd, unsigned long arg);
2170 long reiserfs_compat_ioctl(struct file *filp,
2171 unsigned int cmd, unsigned long arg);
2173 /* ioctl's command */
2174 #define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
2175 /* define following flags to be the same as in ext2, so that chattr(1),
2176 lsattr(1) will work with us. */
2177 #define REISERFS_IOC_GETFLAGS FS_IOC_GETFLAGS
2178 #define REISERFS_IOC_SETFLAGS FS_IOC_SETFLAGS
2179 #define REISERFS_IOC_GETVERSION FS_IOC_GETVERSION
2180 #define REISERFS_IOC_SETVERSION FS_IOC_SETVERSION
2182 /* the 32 bit compat definitions with int argument */
2183 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
2184 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
2185 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
2186 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
2187 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
2189 /* Locking primitives */
2190 /* Right now we are still falling back to (un)lock_kernel, but eventually that
2191 would evolve into real per-fs locks */
2192 #define reiserfs_write_lock( sb ) lock_kernel()
2193 #define reiserfs_write_unlock( sb ) unlock_kernel()
2195 /* xattr stuff */
2196 #define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
2198 #endif /* _LINUX_REISER_FS_H */