PCI: add ICH7/8 ACPI/GPIO io resource quirks
[pv_ops_mirror.git] / fs / reiserfs / file.c
blobb67ce93540485af0762014f7c9213bfed390aabe
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/reiserfs_fs.h>
7 #include <linux/reiserfs_acl.h>
8 #include <linux/reiserfs_xattr.h>
9 #include <linux/smp_lock.h>
10 #include <asm/uaccess.h>
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/blkdev.h>
15 #include <linux/buffer_head.h>
16 #include <linux/quotaops.h>
19 ** We pack the tails of files on file close, not at the time they are written.
20 ** This implies an unnecessary copy of the tail and an unnecessary indirect item
21 ** insertion/balancing, for files that are written in one write.
22 ** It avoids unnecessary tail packings (balances) for files that are written in
23 ** multiple writes and are small enough to have tails.
24 **
25 ** file_release is called by the VFS layer when the file is closed. If
26 ** this is the last open file descriptor, and the file
27 ** small enough to have a tail, and the tail is currently in an
28 ** unformatted node, the tail is converted back into a direct item.
29 **
30 ** We use reiserfs_truncate_file to pack the tail, since it already has
31 ** all the conditions coded.
33 static int reiserfs_file_release(struct inode *inode, struct file *filp)
36 struct reiserfs_transaction_handle th;
37 int err;
38 int jbegin_failure = 0;
40 BUG_ON(!S_ISREG(inode->i_mode));
42 /* fast out for when nothing needs to be done */
43 if ((atomic_read(&inode->i_count) > 1 ||
44 !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) ||
45 !tail_has_to_be_packed(inode)) &&
46 REISERFS_I(inode)->i_prealloc_count <= 0) {
47 return 0;
50 mutex_lock(&inode->i_mutex);
51 reiserfs_write_lock(inode->i_sb);
52 /* freeing preallocation only involves relogging blocks that
53 * are already in the current transaction. preallocation gets
54 * freed at the end of each transaction, so it is impossible for
55 * us to log any additional blocks (including quota blocks)
57 err = journal_begin(&th, inode->i_sb, 1);
58 if (err) {
59 /* uh oh, we can't allow the inode to go away while there
60 * is still preallocation blocks pending. Try to join the
61 * aborted transaction
63 jbegin_failure = err;
64 err = journal_join_abort(&th, inode->i_sb, 1);
66 if (err) {
67 /* hmpf, our choices here aren't good. We can pin the inode
68 * which will disallow unmount from every happening, we can
69 * do nothing, which will corrupt random memory on unmount,
70 * or we can forcibly remove the file from the preallocation
71 * list, which will leak blocks on disk. Lets pin the inode
72 * and let the admin know what is going on.
74 igrab(inode);
75 reiserfs_warning(inode->i_sb,
76 "pinning inode %lu because the "
77 "preallocation can't be freed");
78 goto out;
81 reiserfs_update_inode_transaction(inode);
83 #ifdef REISERFS_PREALLOCATE
84 reiserfs_discard_prealloc(&th, inode);
85 #endif
86 err = journal_end(&th, inode->i_sb, 1);
88 /* copy back the error code from journal_begin */
89 if (!err)
90 err = jbegin_failure;
92 if (!err && atomic_read(&inode->i_count) <= 1 &&
93 (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) &&
94 tail_has_to_be_packed(inode)) {
95 /* if regular file is released by last holder and it has been
96 appended (we append by unformatted node only) or its direct
97 item(s) had to be converted, then it may have to be
98 indirect2direct converted */
99 err = reiserfs_truncate_file(inode, 0);
101 out:
102 mutex_unlock(&inode->i_mutex);
103 reiserfs_write_unlock(inode->i_sb);
104 return err;
107 static void reiserfs_vfs_truncate_file(struct inode *inode)
109 reiserfs_truncate_file(inode, 1);
112 /* Sync a reiserfs file. */
115 * FIXME: sync_mapping_buffers() never has anything to sync. Can
116 * be removed...
119 static int reiserfs_sync_file(struct file *p_s_filp,
120 struct dentry *p_s_dentry, int datasync)
122 struct inode *p_s_inode = p_s_dentry->d_inode;
123 int n_err;
124 int barrier_done;
126 BUG_ON(!S_ISREG(p_s_inode->i_mode));
127 n_err = sync_mapping_buffers(p_s_inode->i_mapping);
128 reiserfs_write_lock(p_s_inode->i_sb);
129 barrier_done = reiserfs_commit_for_inode(p_s_inode);
130 reiserfs_write_unlock(p_s_inode->i_sb);
131 if (barrier_done != 1 && reiserfs_barrier_flush(p_s_inode->i_sb))
132 blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL);
133 if (barrier_done < 0)
134 return barrier_done;
135 return (n_err < 0) ? -EIO : 0;
138 /* I really do not want to play with memory shortage right now, so
139 to simplify the code, we are not going to write more than this much pages at
140 a time. This still should considerably improve performance compared to 4k
141 at a time case. This is 32 pages of 4k size. */
142 #define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE
144 /* Allocates blocks for a file to fulfil write request.
145 Maps all unmapped but prepared pages from the list.
146 Updates metadata with newly allocated blocknumbers as needed */
147 static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode we work with */
148 loff_t pos, /* Writing position */
149 int num_pages, /* number of pages write going
150 to touch */
151 int write_bytes, /* amount of bytes to write */
152 struct page **prepared_pages, /* array of
153 prepared pages
155 int blocks_to_allocate /* Amount of blocks we
156 need to allocate to
157 fit the data into file
161 struct cpu_key key; // cpu key of item that we are going to deal with
162 struct item_head *ih; // pointer to item head that we are going to deal with
163 struct buffer_head *bh; // Buffer head that contains items that we are going to deal with
164 __le32 *item; // pointer to item we are going to deal with
165 INITIALIZE_PATH(path); // path to item, that we are going to deal with.
166 b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored.
167 reiserfs_blocknr_hint_t hint; // hint structure for block allocator.
168 size_t res; // return value of various functions that we call.
169 int curr_block; // current block used to keep track of unmapped blocks.
170 int i; // loop counter
171 int itempos; // position in item
172 unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in
173 // first page
174 unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */
175 __u64 hole_size; // amount of blocks for a file hole, if it needed to be created.
176 int modifying_this_item = 0; // Flag for items traversal code to keep track
177 // of the fact that we already prepared
178 // current block for journal
179 int will_prealloc = 0;
180 RFALSE(!blocks_to_allocate,
181 "green-9004: tried to allocate zero blocks?");
183 /* only preallocate if this is a small write */
184 if (REISERFS_I(inode)->i_prealloc_count ||
185 (!(write_bytes & (inode->i_sb->s_blocksize - 1)) &&
186 blocks_to_allocate <
187 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize))
188 will_prealloc =
189 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize;
191 allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) *
192 sizeof(b_blocknr_t), GFP_NOFS);
193 if (!allocated_blocks)
194 return -ENOMEM;
196 /* First we compose a key to point at the writing position, we want to do
197 that outside of any locking region. */
198 make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ );
200 /* If we came here, it means we absolutely need to open a transaction,
201 since we need to allocate some blocks */
202 reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that.
203 res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough
204 if (res)
205 goto error_exit;
206 reiserfs_update_inode_transaction(inode);
208 /* Look for the in-tree position of our write, need path for block allocator */
209 res = search_for_position_by_key(inode->i_sb, &key, &path);
210 if (res == IO_ERROR) {
211 res = -EIO;
212 goto error_exit;
215 /* Allocate blocks */
216 /* First fill in "hint" structure for block allocator */
217 hint.th = th; // transaction handle.
218 hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine.
219 hint.inode = inode; // Inode is needed by block allocator too.
220 hint.search_start = 0; // We have no hint on where to search free blocks for block allocator.
221 hint.key = key.on_disk_key; // on disk key of file.
222 hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); // Number of disk blocks this file occupies already.
223 hint.formatted_node = 0; // We are allocating blocks for unformatted node.
224 hint.preallocate = will_prealloc;
226 /* Call block allocator to allocate blocks */
227 res =
228 reiserfs_allocate_blocknrs(&hint, allocated_blocks,
229 blocks_to_allocate, blocks_to_allocate);
230 if (res != CARRY_ON) {
231 if (res == NO_DISK_SPACE) {
232 /* We flush the transaction in case of no space. This way some
233 blocks might become free */
234 SB_JOURNAL(inode->i_sb)->j_must_wait = 1;
235 res = restart_transaction(th, inode, &path);
236 if (res)
237 goto error_exit;
239 /* We might have scheduled, so search again */
240 res =
241 search_for_position_by_key(inode->i_sb, &key,
242 &path);
243 if (res == IO_ERROR) {
244 res = -EIO;
245 goto error_exit;
248 /* update changed info for hint structure. */
249 res =
250 reiserfs_allocate_blocknrs(&hint, allocated_blocks,
251 blocks_to_allocate,
252 blocks_to_allocate);
253 if (res != CARRY_ON) {
254 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC;
255 pathrelse(&path);
256 goto error_exit;
258 } else {
259 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC;
260 pathrelse(&path);
261 goto error_exit;
264 #ifdef __BIG_ENDIAN
265 // Too bad, I have not found any way to convert a given region from
266 // cpu format to little endian format
268 int i;
269 for (i = 0; i < blocks_to_allocate; i++)
270 allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]);
272 #endif
274 /* Blocks allocating well might have scheduled and tree might have changed,
275 let's search the tree again */
276 /* find where in the tree our write should go */
277 res = search_for_position_by_key(inode->i_sb, &key, &path);
278 if (res == IO_ERROR) {
279 res = -EIO;
280 goto error_exit_free_blocks;
283 bh = get_last_bh(&path); // Get a bufferhead for last element in path.
284 ih = get_ih(&path); // Get a pointer to last item head in path.
285 item = get_item(&path); // Get a pointer to last item in path
287 /* Let's see what we have found */
288 if (res != POSITION_FOUND) { /* position not found, this means that we
289 might need to append file with holes
290 first */
291 // Since we are writing past the file's end, we need to find out if
292 // there is a hole that needs to be inserted before our writing
293 // position, and how many blocks it is going to cover (we need to
294 // populate pointers to file blocks representing the hole with zeros)
297 int item_offset = 1;
299 * if ih is stat data, its offset is 0 and we don't want to
300 * add 1 to pos in the hole_size calculation
302 if (is_statdata_le_ih(ih))
303 item_offset = 0;
304 hole_size = (pos + item_offset -
305 (le_key_k_offset
306 (get_inode_item_key_version(inode),
307 &(ih->ih_key)) + op_bytes_number(ih,
308 inode->
309 i_sb->
310 s_blocksize)))
311 >> inode->i_sb->s_blocksize_bits;
314 if (hole_size > 0) {
315 int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE); // How much data to insert first time.
316 /* area filled with zeroes, to supply as list of zero blocknumbers
317 We allocate it outside of loop just in case loop would spin for
318 several iterations. */
319 char *zeros = kmalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway.
320 if (!zeros) {
321 res = -ENOMEM;
322 goto error_exit_free_blocks;
324 memset(zeros, 0, to_paste * UNFM_P_SIZE);
325 do {
326 to_paste =
327 min_t(__u64, hole_size,
328 MAX_ITEM_LEN(inode->i_sb->
329 s_blocksize) /
330 UNFM_P_SIZE);
331 if (is_indirect_le_ih(ih)) {
332 /* Ok, there is existing indirect item already. Need to append it */
333 /* Calculate position past inserted item */
334 make_cpu_key(&key, inode,
335 le_key_k_offset
336 (get_inode_item_key_version
337 (inode),
338 &(ih->ih_key)) +
339 op_bytes_number(ih,
340 inode->
341 i_sb->
342 s_blocksize),
343 TYPE_INDIRECT, 3);
344 res =
345 reiserfs_paste_into_item(th, &path,
346 &key,
347 inode,
348 (char *)
349 zeros,
350 UNFM_P_SIZE
352 to_paste);
353 if (res) {
354 kfree(zeros);
355 goto error_exit_free_blocks;
357 } else if (is_statdata_le_ih(ih)) {
358 /* No existing item, create it */
359 /* item head for new item */
360 struct item_head ins_ih;
362 /* create a key for our new item */
363 make_cpu_key(&key, inode, 1,
364 TYPE_INDIRECT, 3);
366 /* Create new item head for our new item */
367 make_le_item_head(&ins_ih, &key,
368 key.version, 1,
369 TYPE_INDIRECT,
370 to_paste *
371 UNFM_P_SIZE,
372 0 /* free space */ );
374 /* Find where such item should live in the tree */
375 res =
376 search_item(inode->i_sb, &key,
377 &path);
378 if (res != ITEM_NOT_FOUND) {
379 /* item should not exist, otherwise we have error */
380 if (res != -ENOSPC) {
381 reiserfs_warning(inode->
382 i_sb,
383 "green-9008: search_by_key (%K) returned %d",
384 &key,
385 res);
387 res = -EIO;
388 kfree(zeros);
389 goto error_exit_free_blocks;
391 res =
392 reiserfs_insert_item(th, &path,
393 &key, &ins_ih,
394 inode,
395 (char *)zeros);
396 } else {
397 reiserfs_panic(inode->i_sb,
398 "green-9011: Unexpected key type %K\n",
399 &key);
401 if (res) {
402 kfree(zeros);
403 goto error_exit_free_blocks;
405 /* Now we want to check if transaction is too full, and if it is
406 we restart it. This will also free the path. */
407 if (journal_transaction_should_end
408 (th, th->t_blocks_allocated)) {
409 res =
410 restart_transaction(th, inode,
411 &path);
412 if (res) {
413 pathrelse(&path);
414 kfree(zeros);
415 goto error_exit;
419 /* Well, need to recalculate path and stuff */
420 set_cpu_key_k_offset(&key,
421 cpu_key_k_offset(&key) +
422 (to_paste << inode->
423 i_blkbits));
424 res =
425 search_for_position_by_key(inode->i_sb,
426 &key, &path);
427 if (res == IO_ERROR) {
428 res = -EIO;
429 kfree(zeros);
430 goto error_exit_free_blocks;
432 bh = get_last_bh(&path);
433 ih = get_ih(&path);
434 item = get_item(&path);
435 hole_size -= to_paste;
436 } while (hole_size);
437 kfree(zeros);
440 // Go through existing indirect items first
441 // replace all zeroes with blocknumbers from list
442 // Note that if no corresponding item was found, by previous search,
443 // it means there are no existing in-tree representation for file area
444 // we are going to overwrite, so there is nothing to scan through for holes.
445 for (curr_block = 0, itempos = path.pos_in_item;
446 curr_block < blocks_to_allocate && res == POSITION_FOUND;) {
447 retry:
449 if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) {
450 /* We run out of data in this indirect item, let's look for another
451 one. */
452 /* First if we are already modifying current item, log it */
453 if (modifying_this_item) {
454 journal_mark_dirty(th, inode->i_sb, bh);
455 modifying_this_item = 0;
457 /* Then set the key to look for a new indirect item (offset of old
458 item is added to old item length */
459 set_cpu_key_k_offset(&key,
460 le_key_k_offset
461 (get_inode_item_key_version(inode),
462 &(ih->ih_key)) +
463 op_bytes_number(ih,
464 inode->i_sb->
465 s_blocksize));
466 /* Search ofor position of new key in the tree. */
467 res =
468 search_for_position_by_key(inode->i_sb, &key,
469 &path);
470 if (res == IO_ERROR) {
471 res = -EIO;
472 goto error_exit_free_blocks;
474 bh = get_last_bh(&path);
475 ih = get_ih(&path);
476 item = get_item(&path);
477 itempos = path.pos_in_item;
478 continue; // loop to check all kinds of conditions and so on.
480 /* Ok, we have correct position in item now, so let's see if it is
481 representing file hole (blocknumber is zero) and fill it if needed */
482 if (!item[itempos]) {
483 /* Ok, a hole. Now we need to check if we already prepared this
484 block to be journaled */
485 while (!modifying_this_item) { // loop until succeed
486 /* Well, this item is not journaled yet, so we must prepare
487 it for journal first, before we can change it */
488 struct item_head tmp_ih; // We copy item head of found item,
489 // here to detect if fs changed under
490 // us while we were preparing for
491 // journal.
492 int fs_gen; // We store fs generation here to find if someone
493 // changes fs under our feet
495 copy_item_head(&tmp_ih, ih); // Remember itemhead
496 fs_gen = get_generation(inode->i_sb); // remember fs generation
497 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing.
498 if (fs_changed(fs_gen, inode->i_sb)
499 && item_moved(&tmp_ih, &path)) {
500 // Sigh, fs was changed under us, we need to look for new
501 // location of item we are working with
503 /* unmark prepaerd area as journaled and search for it's
504 new position */
505 reiserfs_restore_prepared_buffer(inode->
506 i_sb,
507 bh);
508 res =
509 search_for_position_by_key(inode->
510 i_sb,
511 &key,
512 &path);
513 if (res == IO_ERROR) {
514 res = -EIO;
515 goto error_exit_free_blocks;
517 bh = get_last_bh(&path);
518 ih = get_ih(&path);
519 item = get_item(&path);
520 itempos = path.pos_in_item;
521 goto retry;
523 modifying_this_item = 1;
525 item[itempos] = allocated_blocks[curr_block]; // Assign new block
526 curr_block++;
528 itempos++;
531 if (modifying_this_item) { // We need to log last-accessed block, if it
532 // was modified, but not logged yet.
533 journal_mark_dirty(th, inode->i_sb, bh);
536 if (curr_block < blocks_to_allocate) {
537 // Oh, well need to append to indirect item, or to create indirect item
538 // if there weren't any
539 if (is_indirect_le_ih(ih)) {
540 // Existing indirect item - append. First calculate key for append
541 // position. We do not need to recalculate path as it should
542 // already point to correct place.
543 make_cpu_key(&key, inode,
544 le_key_k_offset(get_inode_item_key_version
545 (inode),
546 &(ih->ih_key)) +
547 op_bytes_number(ih,
548 inode->i_sb->s_blocksize),
549 TYPE_INDIRECT, 3);
550 res =
551 reiserfs_paste_into_item(th, &path, &key, inode,
552 (char *)(allocated_blocks +
553 curr_block),
554 UNFM_P_SIZE *
555 (blocks_to_allocate -
556 curr_block));
557 if (res) {
558 goto error_exit_free_blocks;
560 } else if (is_statdata_le_ih(ih)) {
561 // Last found item was statdata. That means we need to create indirect item.
562 struct item_head ins_ih; /* itemhead for new item */
564 /* create a key for our new item */
565 make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3); // Position one,
566 // because that's
567 // where first
568 // indirect item
569 // begins
570 /* Create new item head for our new item */
571 make_le_item_head(&ins_ih, &key, key.version, 1,
572 TYPE_INDIRECT,
573 (blocks_to_allocate -
574 curr_block) * UNFM_P_SIZE,
575 0 /* free space */ );
576 /* Find where such item should live in the tree */
577 res = search_item(inode->i_sb, &key, &path);
578 if (res != ITEM_NOT_FOUND) {
579 /* Well, if we have found such item already, or some error
580 occured, we need to warn user and return error */
581 if (res != -ENOSPC) {
582 reiserfs_warning(inode->i_sb,
583 "green-9009: search_by_key (%K) "
584 "returned %d", &key,
585 res);
587 res = -EIO;
588 goto error_exit_free_blocks;
590 /* Insert item into the tree with the data as its body */
591 res =
592 reiserfs_insert_item(th, &path, &key, &ins_ih,
593 inode,
594 (char *)(allocated_blocks +
595 curr_block));
596 } else {
597 reiserfs_panic(inode->i_sb,
598 "green-9010: unexpected item type for key %K\n",
599 &key);
602 // the caller is responsible for closing the transaction
603 // unless we return an error, they are also responsible for logging
604 // the inode.
606 pathrelse(&path);
608 * cleanup prellocation from previous writes
609 * if this is a partial block write
611 if (write_bytes & (inode->i_sb->s_blocksize - 1))
612 reiserfs_discard_prealloc(th, inode);
613 reiserfs_write_unlock(inode->i_sb);
615 // go through all the pages/buffers and map the buffers to newly allocated
616 // blocks (so that system knows where to write these pages later).
617 curr_block = 0;
618 for (i = 0; i < num_pages; i++) {
619 struct page *page = prepared_pages[i]; //current page
620 struct buffer_head *head = page_buffers(page); // first buffer for a page
621 int block_start, block_end; // in-page offsets for buffers.
623 if (!page_buffers(page))
624 reiserfs_panic(inode->i_sb,
625 "green-9005: No buffers for prepared page???");
627 /* For each buffer in page */
628 for (bh = head, block_start = 0; bh != head || !block_start;
629 block_start = block_end, bh = bh->b_this_page) {
630 if (!bh)
631 reiserfs_panic(inode->i_sb,
632 "green-9006: Allocated but absent buffer for a page?");
633 block_end = block_start + inode->i_sb->s_blocksize;
634 if (i == 0 && block_end <= from)
635 /* if this buffer is before requested data to map, skip it */
636 continue;
637 if (i == num_pages - 1 && block_start >= to)
638 /* If this buffer is after requested data to map, abort
639 processing of current page */
640 break;
642 if (!buffer_mapped(bh)) { // Ok, unmapped buffer, need to map it
643 map_bh(bh, inode->i_sb,
644 le32_to_cpu(allocated_blocks
645 [curr_block]));
646 curr_block++;
647 set_buffer_new(bh);
652 RFALSE(curr_block > blocks_to_allocate,
653 "green-9007: Used too many blocks? weird");
655 kfree(allocated_blocks);
656 return 0;
658 // Need to deal with transaction here.
659 error_exit_free_blocks:
660 pathrelse(&path);
661 // free blocks
662 for (i = 0; i < blocks_to_allocate; i++)
663 reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]),
666 error_exit:
667 if (th->t_trans_id) {
668 int err;
669 // update any changes we made to blk count
670 mark_inode_dirty(inode);
671 err =
672 journal_end(th, inode->i_sb,
673 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
674 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb));
675 if (err)
676 res = err;
678 reiserfs_write_unlock(inode->i_sb);
679 kfree(allocated_blocks);
681 return res;
684 /* Unlock pages prepared by reiserfs_prepare_file_region_for_write */
685 static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */
686 size_t num_pages /* amount of pages */ )
688 int i; // loop counter
690 for (i = 0; i < num_pages; i++) {
691 struct page *page = prepared_pages[i];
693 try_to_free_buffers(page);
694 unlock_page(page);
695 page_cache_release(page);
699 /* This function will copy data from userspace to specified pages within
700 supplied byte range */
701 static int reiserfs_copy_from_user_to_file_region(loff_t pos, /* In-file position */
702 int num_pages, /* Number of pages affected */
703 int write_bytes, /* Amount of bytes to write */
704 struct page **prepared_pages, /* pointer to
705 array to
706 prepared pages
708 const char __user * buf /* Pointer to user-supplied
709 data */
712 long page_fault = 0; // status of copy_from_user.
713 int i; // loop counter.
714 int offset; // offset in page
716 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
717 i++, offset = 0) {
718 size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page
719 struct page *page = prepared_pages[i]; // Current page we process.
721 fault_in_pages_readable(buf, count);
723 /* Copy data from userspace to the current page */
724 kmap(page);
725 page_fault = __copy_from_user(page_address(page) + offset, buf, count); // Copy the data.
726 /* Flush processor's dcache for this page */
727 flush_dcache_page(page);
728 kunmap(page);
729 buf += count;
730 write_bytes -= count;
732 if (page_fault)
733 break; // Was there a fault? abort.
736 return page_fault ? -EFAULT : 0;
739 /* taken fs/buffer.c:__block_commit_write */
740 int reiserfs_commit_page(struct inode *inode, struct page *page,
741 unsigned from, unsigned to)
743 unsigned block_start, block_end;
744 int partial = 0;
745 unsigned blocksize;
746 struct buffer_head *bh, *head;
747 unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT;
748 int new;
749 int logit = reiserfs_file_data_log(inode);
750 struct super_block *s = inode->i_sb;
751 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
752 struct reiserfs_transaction_handle th;
753 int ret = 0;
755 th.t_trans_id = 0;
756 blocksize = 1 << inode->i_blkbits;
758 if (logit) {
759 reiserfs_write_lock(s);
760 ret = journal_begin(&th, s, bh_per_page + 1);
761 if (ret)
762 goto drop_write_lock;
763 reiserfs_update_inode_transaction(inode);
765 for (bh = head = page_buffers(page), block_start = 0;
766 bh != head || !block_start;
767 block_start = block_end, bh = bh->b_this_page) {
769 new = buffer_new(bh);
770 clear_buffer_new(bh);
771 block_end = block_start + blocksize;
772 if (block_end <= from || block_start >= to) {
773 if (!buffer_uptodate(bh))
774 partial = 1;
775 } else {
776 set_buffer_uptodate(bh);
777 if (logit) {
778 reiserfs_prepare_for_journal(s, bh, 1);
779 journal_mark_dirty(&th, s, bh);
780 } else if (!buffer_dirty(bh)) {
781 mark_buffer_dirty(bh);
782 /* do data=ordered on any page past the end
783 * of file and any buffer marked BH_New.
785 if (reiserfs_data_ordered(inode->i_sb) &&
786 (new || page->index >= i_size_index)) {
787 reiserfs_add_ordered_list(inode, bh);
792 if (logit) {
793 ret = journal_end(&th, s, bh_per_page + 1);
794 drop_write_lock:
795 reiserfs_write_unlock(s);
798 * If this is a partial write which happened to make all buffers
799 * uptodate then we can optimize away a bogus readpage() for
800 * the next read(). Here we 'discover' whether the page went
801 * uptodate as a result of this (potentially partial) write.
803 if (!partial)
804 SetPageUptodate(page);
805 return ret;
808 /* Submit pages for write. This was separated from actual file copying
809 because we might want to allocate block numbers in-between.
810 This function assumes that caller will adjust file size to correct value. */
811 static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos, /* Writing position offset */
812 size_t num_pages, /* Number of pages to write */
813 size_t write_bytes, /* number of bytes to write */
814 struct page **prepared_pages /* list of pages */
817 int status; // return status of block_commit_write.
818 int retval = 0; // Return value we are going to return.
819 int i; // loop counter
820 int offset; // Writing offset in page.
821 int orig_write_bytes = write_bytes;
822 int sd_update = 0;
824 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
825 i++, offset = 0) {
826 int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page
827 struct page *page = prepared_pages[i]; // Current page we process.
829 status =
830 reiserfs_commit_page(inode, page, offset, offset + count);
831 if (status)
832 retval = status; // To not overcomplicate matters We are going to
833 // submit all the pages even if there was error.
834 // we only remember error status to report it on
835 // exit.
836 write_bytes -= count;
838 /* now that we've gotten all the ordered buffers marked dirty,
839 * we can safely update i_size and close any running transaction
841 if (pos + orig_write_bytes > inode->i_size) {
842 inode->i_size = pos + orig_write_bytes; // Set new size
843 /* If the file have grown so much that tail packing is no
844 * longer possible, reset "need to pack" flag */
845 if ((have_large_tails(inode->i_sb) &&
846 inode->i_size > i_block_size(inode) * 4) ||
847 (have_small_tails(inode->i_sb) &&
848 inode->i_size > i_block_size(inode)))
849 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
850 else if ((have_large_tails(inode->i_sb) &&
851 inode->i_size < i_block_size(inode) * 4) ||
852 (have_small_tails(inode->i_sb) &&
853 inode->i_size < i_block_size(inode)))
854 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
856 if (th->t_trans_id) {
857 reiserfs_write_lock(inode->i_sb);
858 // this sets the proper flags for O_SYNC to trigger a commit
859 mark_inode_dirty(inode);
860 reiserfs_write_unlock(inode->i_sb);
861 } else {
862 reiserfs_write_lock(inode->i_sb);
863 reiserfs_update_inode_transaction(inode);
864 mark_inode_dirty(inode);
865 reiserfs_write_unlock(inode->i_sb);
868 sd_update = 1;
870 if (th->t_trans_id) {
871 reiserfs_write_lock(inode->i_sb);
872 if (!sd_update)
873 mark_inode_dirty(inode);
874 status = journal_end(th, th->t_super, th->t_blocks_allocated);
875 if (status)
876 retval = status;
877 reiserfs_write_unlock(inode->i_sb);
879 th->t_trans_id = 0;
882 * we have to unlock the pages after updating i_size, otherwise
883 * we race with writepage
885 for (i = 0; i < num_pages; i++) {
886 struct page *page = prepared_pages[i];
887 unlock_page(page);
888 mark_page_accessed(page);
889 page_cache_release(page);
891 return retval;
894 /* Look if passed writing region is going to touch file's tail
895 (if it is present). And if it is, convert the tail to unformatted node */
896 static int reiserfs_check_for_tail_and_convert(struct inode *inode, /* inode to deal with */
897 loff_t pos, /* Writing position */
898 int write_bytes /* amount of bytes to write */
901 INITIALIZE_PATH(path); // needed for search_for_position
902 struct cpu_key key; // Key that would represent last touched writing byte.
903 struct item_head *ih; // item header of found block;
904 int res; // Return value of various functions we call.
905 int cont_expand_offset; // We will put offset for generic_cont_expand here
906 // This can be int just because tails are created
907 // only for small files.
909 /* this embodies a dependency on a particular tail policy */
910 if (inode->i_size >= inode->i_sb->s_blocksize * 4) {
911 /* such a big files do not have tails, so we won't bother ourselves
912 to look for tails, simply return */
913 return 0;
916 reiserfs_write_lock(inode->i_sb);
917 /* find the item containing the last byte to be written, or if
918 * writing past the end of the file then the last item of the
919 * file (and then we check its type). */
920 make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY,
921 3 /*key length */ );
922 res = search_for_position_by_key(inode->i_sb, &key, &path);
923 if (res == IO_ERROR) {
924 reiserfs_write_unlock(inode->i_sb);
925 return -EIO;
927 ih = get_ih(&path);
928 res = 0;
929 if (is_direct_le_ih(ih)) {
930 /* Ok, closest item is file tail (tails are stored in "direct"
931 * items), so we need to unpack it. */
932 /* To not overcomplicate matters, we just call generic_cont_expand
933 which will in turn call other stuff and finally will boil down to
934 reiserfs_get_block() that would do necessary conversion. */
935 cont_expand_offset =
936 le_key_k_offset(get_inode_item_key_version(inode),
937 &(ih->ih_key));
938 pathrelse(&path);
939 res = generic_cont_expand(inode, cont_expand_offset);
940 } else
941 pathrelse(&path);
943 reiserfs_write_unlock(inode->i_sb);
944 return res;
947 /* This function locks pages starting from @pos for @inode.
948 @num_pages pages are locked and stored in
949 @prepared_pages array. Also buffers are allocated for these pages.
950 First and last page of the region is read if it is overwritten only
951 partially. If last page did not exist before write (file hole or file
952 append), it is zeroed, then.
953 Returns number of unallocated blocks that should be allocated to cover
954 new file data.*/
955 static int reiserfs_prepare_file_region_for_write(struct inode *inode
956 /* Inode of the file */ ,
957 loff_t pos, /* position in the file */
958 size_t num_pages, /* number of pages to
959 prepare */
960 size_t write_bytes, /* Amount of bytes to be
961 overwritten from
962 @pos */
963 struct page **prepared_pages /* pointer to array
964 where to store
965 prepared pages */
968 int res = 0; // Return values of different functions we call.
969 unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages.
970 int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page
971 int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1;
972 /* offset of last modified byte in last
973 page */
974 struct address_space *mapping = inode->i_mapping; // Pages are mapped here.
975 int i; // Simple counter
976 int blocks = 0; /* Return value (blocks that should be allocated) */
977 struct buffer_head *bh, *head; // Current bufferhead and first bufferhead
978 // of a page.
979 unsigned block_start, block_end; // Starting and ending offsets of current
980 // buffer in the page.
981 struct buffer_head *wait[2], **wait_bh = wait; // Buffers for page, if
982 // Page appeared to be not up
983 // to date. Note how we have
984 // at most 2 buffers, this is
985 // because we at most may
986 // partially overwrite two
987 // buffers for one page. One at // the beginning of write area
988 // and one at the end.
989 // Everything inthe middle gets // overwritten totally.
991 struct cpu_key key; // cpu key of item that we are going to deal with
992 struct item_head *ih = NULL; // pointer to item head that we are going to deal with
993 struct buffer_head *itembuf = NULL; // Buffer head that contains items that we are going to deal with
994 INITIALIZE_PATH(path); // path to item, that we are going to deal with.
995 __le32 *item = NULL; // pointer to item we are going to deal with
996 int item_pos = -1; /* Position in indirect item */
998 if (num_pages < 1) {
999 reiserfs_warning(inode->i_sb,
1000 "green-9001: reiserfs_prepare_file_region_for_write "
1001 "called with zero number of pages to process");
1002 return -EFAULT;
1005 /* We have 2 loops for pages. In first loop we grab and lock the pages, so
1006 that nobody would touch these until we release the pages. Then
1007 we'd start to deal with mapping buffers to blocks. */
1008 for (i = 0; i < num_pages; i++) {
1009 prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page
1010 if (!prepared_pages[i]) {
1011 res = -ENOMEM;
1012 goto failed_page_grabbing;
1014 if (!page_has_buffers(prepared_pages[i]))
1015 create_empty_buffers(prepared_pages[i],
1016 inode->i_sb->s_blocksize, 0);
1019 /* Let's count amount of blocks for a case where all the blocks
1020 overwritten are new (we will substract already allocated blocks later) */
1021 if (num_pages > 2)
1022 /* These are full-overwritten pages so we count all the blocks in
1023 these pages are counted as needed to be allocated */
1024 blocks =
1025 (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1027 /* count blocks needed for first page (possibly partially written) */
1028 blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1)); /* roundup */
1030 /* Now we account for last page. If last page == first page (we
1031 overwrite only one page), we substract all the blocks past the
1032 last writing position in a page out of already calculated number
1033 of blocks */
1034 blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) -
1035 ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits);
1036 /* Note how we do not roundup here since partial blocks still
1037 should be allocated */
1039 /* Now if all the write area lies past the file end, no point in
1040 maping blocks, since there is none, so we just zero out remaining
1041 parts of first and last pages in write area (if needed) */
1042 if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) {
1043 if (from != 0) { /* First page needs to be partially zeroed */
1044 char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0);
1045 memset(kaddr, 0, from);
1046 kunmap_atomic(kaddr, KM_USER0);
1048 if (to != PAGE_CACHE_SIZE) { /* Last page needs to be partially zeroed */
1049 char *kaddr =
1050 kmap_atomic(prepared_pages[num_pages - 1],
1051 KM_USER0);
1052 memset(kaddr + to, 0, PAGE_CACHE_SIZE - to);
1053 kunmap_atomic(kaddr, KM_USER0);
1056 /* Since all blocks are new - use already calculated value */
1057 return blocks;
1060 /* Well, since we write somewhere into the middle of a file, there is
1061 possibility we are writing over some already allocated blocks, so
1062 let's map these blocks and substract number of such blocks out of blocks
1063 we need to allocate (calculated above) */
1064 /* Mask write position to start on blocksize, we do it out of the
1065 loop for performance reasons */
1066 pos &= ~((loff_t) inode->i_sb->s_blocksize - 1);
1067 /* Set cpu key to the starting position in a file (on left block boundary) */
1068 make_cpu_key(&key, inode,
1069 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)),
1070 TYPE_ANY, 3 /*key length */ );
1072 reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key()
1073 for (i = 0; i < num_pages; i++) {
1075 head = page_buffers(prepared_pages[i]);
1076 /* For each buffer in the page */
1077 for (bh = head, block_start = 0; bh != head || !block_start;
1078 block_start = block_end, bh = bh->b_this_page) {
1079 if (!bh)
1080 reiserfs_panic(inode->i_sb,
1081 "green-9002: Allocated but absent buffer for a page?");
1082 /* Find where this buffer ends */
1083 block_end = block_start + inode->i_sb->s_blocksize;
1084 if (i == 0 && block_end <= from)
1085 /* if this buffer is before requested data to map, skip it */
1086 continue;
1088 if (i == num_pages - 1 && block_start >= to) {
1089 /* If this buffer is after requested data to map, abort
1090 processing of current page */
1091 break;
1094 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
1095 /* This is optimisation for a case where buffer is mapped
1096 and have blocknumber assigned. In case significant amount
1097 of such buffers are present, we may avoid some amount
1098 of search_by_key calls.
1099 Probably it would be possible to move parts of this code
1100 out of BKL, but I afraid that would overcomplicate code
1101 without any noticeable benefit.
1103 item_pos++;
1104 /* Update the key */
1105 set_cpu_key_k_offset(&key,
1106 cpu_key_k_offset(&key) +
1107 inode->i_sb->s_blocksize);
1108 blocks--; // Decrease the amount of blocks that need to be
1109 // allocated
1110 continue; // Go to the next buffer
1113 if (!itembuf || /* if first iteration */
1114 item_pos >= ih_item_len(ih) / UNFM_P_SIZE) { /* or if we progressed past the
1115 current unformatted_item */
1116 /* Try to find next item */
1117 res =
1118 search_for_position_by_key(inode->i_sb,
1119 &key, &path);
1120 /* Abort if no more items */
1121 if (res != POSITION_FOUND) {
1122 /* make sure later loops don't use this item */
1123 itembuf = NULL;
1124 item = NULL;
1125 break;
1128 /* Update information about current indirect item */
1129 itembuf = get_last_bh(&path);
1130 ih = get_ih(&path);
1131 item = get_item(&path);
1132 item_pos = path.pos_in_item;
1134 RFALSE(!is_indirect_le_ih(ih),
1135 "green-9003: indirect item expected");
1138 /* See if there is some block associated with the file
1139 at that position, map the buffer to this block */
1140 if (get_block_num(item, item_pos)) {
1141 map_bh(bh, inode->i_sb,
1142 get_block_num(item, item_pos));
1143 blocks--; // Decrease the amount of blocks that need to be
1144 // allocated
1146 item_pos++;
1147 /* Update the key */
1148 set_cpu_key_k_offset(&key,
1149 cpu_key_k_offset(&key) +
1150 inode->i_sb->s_blocksize);
1153 pathrelse(&path); // Free the path
1154 reiserfs_write_unlock(inode->i_sb);
1156 /* Now zero out unmappend buffers for the first and last pages of
1157 write area or issue read requests if page is mapped. */
1158 /* First page, see if it is not uptodate */
1159 if (!PageUptodate(prepared_pages[0])) {
1160 head = page_buffers(prepared_pages[0]);
1162 /* For each buffer in page */
1163 for (bh = head, block_start = 0; bh != head || !block_start;
1164 block_start = block_end, bh = bh->b_this_page) {
1166 if (!bh)
1167 reiserfs_panic(inode->i_sb,
1168 "green-9002: Allocated but absent buffer for a page?");
1169 /* Find where this buffer ends */
1170 block_end = block_start + inode->i_sb->s_blocksize;
1171 if (block_end <= from)
1172 /* if this buffer is before requested data to map, skip it */
1173 continue;
1174 if (block_start < from) { /* Aha, our partial buffer */
1175 if (buffer_mapped(bh)) { /* If it is mapped, we need to
1176 issue READ request for it to
1177 not loose data */
1178 ll_rw_block(READ, 1, &bh);
1179 *wait_bh++ = bh;
1180 } else { /* Not mapped, zero it */
1181 char *kaddr =
1182 kmap_atomic(prepared_pages[0],
1183 KM_USER0);
1184 memset(kaddr + block_start, 0,
1185 from - block_start);
1186 kunmap_atomic(kaddr, KM_USER0);
1187 set_buffer_uptodate(bh);
1193 /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */
1194 if (!PageUptodate(prepared_pages[num_pages - 1]) ||
1195 ((pos + write_bytes) >> PAGE_CACHE_SHIFT) >
1196 (inode->i_size >> PAGE_CACHE_SHIFT)) {
1197 head = page_buffers(prepared_pages[num_pages - 1]);
1199 /* for each buffer in page */
1200 for (bh = head, block_start = 0; bh != head || !block_start;
1201 block_start = block_end, bh = bh->b_this_page) {
1203 if (!bh)
1204 reiserfs_panic(inode->i_sb,
1205 "green-9002: Allocated but absent buffer for a page?");
1206 /* Find where this buffer ends */
1207 block_end = block_start + inode->i_sb->s_blocksize;
1208 if (block_start >= to)
1209 /* if this buffer is after requested data to map, skip it */
1210 break;
1211 if (block_end > to) { /* Aha, our partial buffer */
1212 if (buffer_mapped(bh)) { /* If it is mapped, we need to
1213 issue READ request for it to
1214 not loose data */
1215 ll_rw_block(READ, 1, &bh);
1216 *wait_bh++ = bh;
1217 } else { /* Not mapped, zero it */
1218 char *kaddr =
1219 kmap_atomic(prepared_pages
1220 [num_pages - 1],
1221 KM_USER0);
1222 memset(kaddr + to, 0, block_end - to);
1223 kunmap_atomic(kaddr, KM_USER0);
1224 set_buffer_uptodate(bh);
1230 /* Wait for read requests we made to happen, if necessary */
1231 while (wait_bh > wait) {
1232 wait_on_buffer(*--wait_bh);
1233 if (!buffer_uptodate(*wait_bh)) {
1234 res = -EIO;
1235 goto failed_read;
1239 return blocks;
1240 failed_page_grabbing:
1241 num_pages = i;
1242 failed_read:
1243 reiserfs_unprepare_pages(prepared_pages, num_pages);
1244 return res;
1247 /* Write @count bytes at position @ppos in a file indicated by @file
1248 from the buffer @buf.
1250 generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want
1251 something simple that works. It is not for serious use by general purpose filesystems, excepting the one that it was
1252 written for (ext2/3). This is for several reasons:
1254 * It has no understanding of any filesystem specific optimizations.
1256 * It enters the filesystem repeatedly for each page that is written.
1258 * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key
1259 * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time
1260 * to reiserfs which allows for fewer tree traversals.
1262 * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks.
1264 * Asking the block allocation code for blocks one at a time is slightly less efficient.
1266 All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to
1267 use it, but we were in a hurry to make code freeze, and so it couldn't be revised then. This new code should make
1268 things right finally.
1270 Future Features: providing search_by_key with hints.
1273 static ssize_t reiserfs_file_write(struct file *file, /* the file we are going to write into */
1274 const char __user * buf, /* pointer to user supplied data
1275 (in userspace) */
1276 size_t count, /* amount of bytes to write */
1277 loff_t * ppos /* pointer to position in file that we start writing at. Should be updated to
1278 * new current position before returning. */
1281 size_t already_written = 0; // Number of bytes already written to the file.
1282 loff_t pos; // Current position in the file.
1283 ssize_t res; // return value of various functions that we call.
1284 int err = 0;
1285 struct inode *inode = file->f_dentry->d_inode; // Inode of the file that we are writing to.
1286 /* To simplify coding at this time, we store
1287 locked pages in array for now */
1288 struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME];
1289 struct reiserfs_transaction_handle th;
1290 th.t_trans_id = 0;
1292 /* If a filesystem is converted from 3.5 to 3.6, we'll have v3.5 items
1293 * lying around (most of the disk, in fact). Despite the filesystem
1294 * now being a v3.6 format, the old items still can't support large
1295 * file sizes. Catch this case here, as the rest of the VFS layer is
1296 * oblivious to the different limitations between old and new items.
1297 * reiserfs_setattr catches this for truncates. This chunk is lifted
1298 * from generic_write_checks. */
1299 if (get_inode_item_key_version (inode) == KEY_FORMAT_3_5 &&
1300 *ppos + count > MAX_NON_LFS) {
1301 if (*ppos >= MAX_NON_LFS) {
1302 send_sig(SIGXFSZ, current, 0);
1303 return -EFBIG;
1305 if (count > MAX_NON_LFS - (unsigned long)*ppos)
1306 count = MAX_NON_LFS - (unsigned long)*ppos;
1309 if (file->f_flags & O_DIRECT) { // Direct IO needs treatment
1310 ssize_t result, after_file_end = 0;
1311 if ((*ppos + count >= inode->i_size)
1312 || (file->f_flags & O_APPEND)) {
1313 /* If we are appending a file, we need to put this savelink in here.
1314 If we will crash while doing direct io, finish_unfinished will
1315 cut the garbage from the file end. */
1316 reiserfs_write_lock(inode->i_sb);
1317 err =
1318 journal_begin(&th, inode->i_sb,
1319 JOURNAL_PER_BALANCE_CNT);
1320 if (err) {
1321 reiserfs_write_unlock(inode->i_sb);
1322 return err;
1324 reiserfs_update_inode_transaction(inode);
1325 add_save_link(&th, inode, 1 /* Truncate */ );
1326 after_file_end = 1;
1327 err =
1328 journal_end(&th, inode->i_sb,
1329 JOURNAL_PER_BALANCE_CNT);
1330 reiserfs_write_unlock(inode->i_sb);
1331 if (err)
1332 return err;
1334 result = do_sync_write(file, buf, count, ppos);
1336 if (after_file_end) { /* Now update i_size and remove the savelink */
1337 struct reiserfs_transaction_handle th;
1338 reiserfs_write_lock(inode->i_sb);
1339 err = journal_begin(&th, inode->i_sb, 1);
1340 if (err) {
1341 reiserfs_write_unlock(inode->i_sb);
1342 return err;
1344 reiserfs_update_inode_transaction(inode);
1345 mark_inode_dirty(inode);
1346 err = journal_end(&th, inode->i_sb, 1);
1347 if (err) {
1348 reiserfs_write_unlock(inode->i_sb);
1349 return err;
1351 err = remove_save_link(inode, 1 /* truncate */ );
1352 reiserfs_write_unlock(inode->i_sb);
1353 if (err)
1354 return err;
1357 return result;
1360 if (unlikely((ssize_t) count < 0))
1361 return -EINVAL;
1363 if (unlikely(!access_ok(VERIFY_READ, buf, count)))
1364 return -EFAULT;
1366 mutex_lock(&inode->i_mutex); // locks the entire file for just us
1368 pos = *ppos;
1370 /* Check if we can write to specified region of file, file
1371 is not overly big and this kind of stuff. Adjust pos and
1372 count, if needed */
1373 res = generic_write_checks(file, &pos, &count, 0);
1374 if (res)
1375 goto out;
1377 if (count == 0)
1378 goto out;
1380 res = remove_suid(file->f_dentry);
1381 if (res)
1382 goto out;
1384 file_update_time(file);
1386 // Ok, we are done with all the checks.
1388 // Now we should start real work
1390 /* If we are going to write past the file's packed tail or if we are going
1391 to overwrite part of the tail, we need that tail to be converted into
1392 unformatted node */
1393 res = reiserfs_check_for_tail_and_convert(inode, pos, count);
1394 if (res)
1395 goto out;
1397 while (count > 0) {
1398 /* This is the main loop in which we running until some error occures
1399 or until we write all of the data. */
1400 size_t num_pages; /* amount of pages we are going to write this iteration */
1401 size_t write_bytes; /* amount of bytes to write during this iteration */
1402 size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */
1404 /* (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */
1405 num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial
1406 pages */
1407 ((count +
1408 (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT);
1409 /* convert size to amount of
1410 pages */
1411 reiserfs_write_lock(inode->i_sb);
1412 if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME
1413 || num_pages > reiserfs_can_fit_pages(inode->i_sb)) {
1414 /* If we were asked to write more data than we want to or if there
1415 is not that much space, then we shorten amount of data to write
1416 for this iteration. */
1417 num_pages =
1418 min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME,
1419 reiserfs_can_fit_pages(inode->i_sb));
1420 /* Also we should not forget to set size in bytes accordingly */
1421 write_bytes = (num_pages << PAGE_CACHE_SHIFT) -
1422 (pos & (PAGE_CACHE_SIZE - 1));
1423 /* If position is not on the
1424 start of the page, we need
1425 to substract the offset
1426 within page */
1427 } else
1428 write_bytes = count;
1430 /* reserve the blocks to be allocated later, so that later on
1431 we still have the space to write the blocks to */
1432 reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1433 num_pages <<
1434 (PAGE_CACHE_SHIFT -
1435 inode->i_blkbits));
1436 reiserfs_write_unlock(inode->i_sb);
1438 if (!num_pages) { /* If we do not have enough space even for a single page... */
1439 if (pos >
1440 inode->i_size + inode->i_sb->s_blocksize -
1441 (pos & (inode->i_sb->s_blocksize - 1))) {
1442 res = -ENOSPC;
1443 break; // In case we are writing past the end of the last file block, break.
1445 // Otherwise we are possibly overwriting the file, so
1446 // let's set write size to be equal or less than blocksize.
1447 // This way we get it correctly for file holes.
1448 // But overwriting files on absolutelly full volumes would not
1449 // be very efficient. Well, people are not supposed to fill
1450 // 100% of disk space anyway.
1451 write_bytes =
1452 min_t(size_t, count,
1453 inode->i_sb->s_blocksize -
1454 (pos & (inode->i_sb->s_blocksize - 1)));
1455 num_pages = 1;
1456 // No blocks were claimed before, so do it now.
1457 reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1458 1 <<
1459 (PAGE_CACHE_SHIFT
1461 inode->
1462 i_blkbits));
1465 /* Prepare for writing into the region, read in all the
1466 partially overwritten pages, if needed. And lock the pages,
1467 so that nobody else can access these until we are done.
1468 We get number of actual blocks needed as a result. */
1469 res = reiserfs_prepare_file_region_for_write(inode, pos,
1470 num_pages,
1471 write_bytes,
1472 prepared_pages);
1473 if (res < 0) {
1474 reiserfs_release_claimed_blocks(inode->i_sb,
1475 num_pages <<
1476 (PAGE_CACHE_SHIFT -
1477 inode->i_blkbits));
1478 break;
1481 blocks_to_allocate = res;
1483 /* First we correct our estimate of how many blocks we need */
1484 reiserfs_release_claimed_blocks(inode->i_sb,
1485 (num_pages <<
1486 (PAGE_CACHE_SHIFT -
1487 inode->i_sb->
1488 s_blocksize_bits)) -
1489 blocks_to_allocate);
1491 if (blocks_to_allocate > 0) { /*We only allocate blocks if we need to */
1492 /* Fill in all the possible holes and append the file if needed */
1493 res =
1494 reiserfs_allocate_blocks_for_region(&th, inode, pos,
1495 num_pages,
1496 write_bytes,
1497 prepared_pages,
1498 blocks_to_allocate);
1501 /* well, we have allocated the blocks, so it is time to free
1502 the reservation we made earlier. */
1503 reiserfs_release_claimed_blocks(inode->i_sb,
1504 blocks_to_allocate);
1505 if (res) {
1506 reiserfs_unprepare_pages(prepared_pages, num_pages);
1507 break;
1510 /* NOTE that allocating blocks and filling blocks can be done in reverse order
1511 and probably we would do that just to get rid of garbage in files after a
1512 crash */
1514 /* Copy data from user-supplied buffer to file's pages */
1515 res =
1516 reiserfs_copy_from_user_to_file_region(pos, num_pages,
1517 write_bytes,
1518 prepared_pages, buf);
1519 if (res) {
1520 reiserfs_unprepare_pages(prepared_pages, num_pages);
1521 break;
1524 /* Send the pages to disk and unlock them. */
1525 res =
1526 reiserfs_submit_file_region_for_write(&th, inode, pos,
1527 num_pages,
1528 write_bytes,
1529 prepared_pages);
1530 if (res)
1531 break;
1533 already_written += write_bytes;
1534 buf += write_bytes;
1535 *ppos = pos += write_bytes;
1536 count -= write_bytes;
1537 balance_dirty_pages_ratelimited_nr(inode->i_mapping, num_pages);
1540 /* this is only true on error */
1541 if (th.t_trans_id) {
1542 reiserfs_write_lock(inode->i_sb);
1543 err = journal_end(&th, th.t_super, th.t_blocks_allocated);
1544 reiserfs_write_unlock(inode->i_sb);
1545 if (err) {
1546 res = err;
1547 goto out;
1551 if (likely(res >= 0) &&
1552 (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))))
1553 res = generic_osync_inode(inode, file->f_mapping,
1554 OSYNC_METADATA | OSYNC_DATA);
1556 mutex_unlock(&inode->i_mutex);
1557 reiserfs_async_progress_wait(inode->i_sb);
1558 return (already_written != 0) ? already_written : res;
1560 out:
1561 mutex_unlock(&inode->i_mutex); // unlock the file on exit.
1562 return res;
1565 const struct file_operations reiserfs_file_operations = {
1566 .read = do_sync_read,
1567 .write = reiserfs_file_write,
1568 .ioctl = reiserfs_ioctl,
1569 #ifdef CONFIG_COMPAT
1570 .compat_ioctl = reiserfs_compat_ioctl,
1571 #endif
1572 .mmap = generic_file_mmap,
1573 .open = generic_file_open,
1574 .release = reiserfs_file_release,
1575 .fsync = reiserfs_sync_file,
1576 .sendfile = generic_file_sendfile,
1577 .aio_read = generic_file_aio_read,
1578 .aio_write = generic_file_aio_write,
1579 .splice_read = generic_file_splice_read,
1580 .splice_write = generic_file_splice_write,
1583 struct inode_operations reiserfs_file_inode_operations = {
1584 .truncate = reiserfs_vfs_truncate_file,
1585 .setattr = reiserfs_setattr,
1586 .setxattr = reiserfs_setxattr,
1587 .getxattr = reiserfs_getxattr,
1588 .listxattr = reiserfs_listxattr,
1589 .removexattr = reiserfs_removexattr,
1590 .permission = reiserfs_permission,